View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1988

A Parallel Spline Collocation-Capacitance Method for Elliptic
Parallel Differential Equations

C. C. Christara

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
88-735

Christara, C. C.; Houstis, Elias N.; and Rice, John R., "A Parallel Spline Collocation-Capacitance Method for
Elliptic Parallel Differential Equations” (1988). Department of Computer Science Technical Reports. Paper
634.

https://docs.lib.purdue.edu/cstech/634

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972388?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A PARALLEL SPLINE COLLOCATION--
CAPACITANCE METHOD FOR ELLIPTIC
PARTIAL DIFFERENTIAL EQUATIONS

C.C. Christara
E.N. Houstis
J. R. Rice

Depariment of Computer Science
Purdue University
West Lafayette, IN 49707

CSD-TR-735
January 1988

A PARALLEL SPLINE COLLOCATION —~ CAPACITANCE METHOD
FOR ELLIPTIC PARTIAL DIFFERENTIAL EQUATIONS

C.C. Christara, EN. Houstis and J.R. Rice
Purdue University
Department of Computer Science
West Lafayette, IN 47907

Technical Report CSD-TR-735
CAPO Report CER-88-14
January 1988

ABSTRACT

We consider the integration of a domain decomposition technique with a new qua-
dratic spline collocation discretization scheme for solving second order elliptic boun-
dary value problems on rectangles. The domain decomposition method is based on
the capacitance matrix technique. Due to the limitations of existing methods for
solving the corresponding capacitance problem, we develop and analyze iterative
methods for its solution. The optimum partitioning and mapping of the underlying
computation is studied on hypercube architectures. A numerical realization of this
meihod is presented on NCUBE/7 (128 processors) and its comparative efficiency is
measured. The resulting parallel quadratic spline collocation-capacitance method is
seen to be efficient in achieving accurate solutions and in using paralle] architectures.

This research supported in part by NSF grants CCR-8704826, AFOSR grant 840385, ARO grant
DAAL03-86-K-0106, David Ross Foundation and ESPRIT project 1588.

1. INTRODUCTION

In this paper we study a domain decomposition method with a quadratic spline collocation
discretization method [5] for solving the second order partial differential equation (PDE)

Lu=aDZu +bD,Dyu + cD}u +dDu + eDyu + fu=g in Q (1.1)
subject to mixed type boundary conditions
Bu=ou+pDu=gg on oQ

where Q = {ax, bx] X [ay, by] is a rectangular domain, a, b, ¢, d, ¢, f, o, B, g, go are functions
of x and y in C[Q], D,u is the normal derivative of # and 3% is the boundary of Q.

The chosen discretization schemes have been shown to be very effective for this class of
boundary value problems [5). In Section 2, we briefly describe them and present some dara
which demonstrate their efficiency. So far there is limited information about the effectiveness of
parallel methods for such discretized equations. In Section 3 we define the paralle! quadratic
spline collocation-capacitance method. We present a domain decomposition method for solving
the resulting equations using a capacitance matrix technique [8] because of its inherent parallel-
ism. This technique reduces the work required to solve the so called capacitance system. This
is often done by a conjugate gradient (CG) method with appropriate preconditioners. However,
in our case we were not able to apply CG successfully. Thus in Secton 3.3 we develop and
analyze new iterative techniques to solve the capacitance matrix problem.

One of our objectives is to use these methods on MIMD parallel architectures and to deter-
mine optimal partitions for the undertying computation. In Sections 4 and 5 we accomplish this
for a hypercube machine, the NCUBE/7 with 128 processors. Finally, in Section 6 we present
numerical data that illustrates the good efficiency of this method on hypercube architectures.

1. THE QUADRATIC SPLINE COLLOCATION METHOD
bx — ax

LetA;={xy=ax+kh,; k=0,..., M}, with h, = be a uniform partition of the

intorval [ax, bx] and Ay = {y =@y + Iy [=0,..., N}, with by = 22 3 uniform pars-

tion of [ay, by]. Throughout we denote by A=A, x A, the induced grid pantition of © and by
77, { = 1..M the midpoints of A; and by 7%, j=1,..., N the midpoints of A,. For conveni-
ence we extend the notation so that t§ = xo, Tir41 = Xy, T4 = Yo, T4 =yy. For later use we
define the following sets of points: T = {(zF,), i=0,....,M+1,j=0,..., N+1} the set
of collocation points, T; = {(1F, hi=2,...,M=-1,j=2,..., N-1 T the subset of inte-
rior collocation points, Ty, = {(tf, =1).(zdy, ©1), (0, 2, (tf;, T} < T the set of corner col-
location points of Q , T, =T N3Q the set of boundary collocation points in T and
Tp =T = (T; U T W T) the subset of interior-boundary collocation points.

-3-

Throughout, we denote by § the quadratic spline interpolant of the true solution x of the
PDE problem (1.1), defined by the interpolation relations

S=uon T-—T,,

B,
S=u—-—12—8Dxu on Tbn{x=xo,xN}.
and

hy

4
123 Dyu on Ty N {y =yq, yn}-

S=u-—

By definition, § belongs to S5, =Py N C1(C), where P54 is the tensor product of one-
dimensional piecewise quadratic polynomials in x and y over the partitions A, and A,, respec-
tively. S will be referred throughout as the quadratic spline space in two dimensions.

The quadratic spline collocation method introduced in [5] is defined in terms of the fol-
lowing discretization operators. For each interior collocation point in 75, P S is defined by the
stencil

-

c D} Si j+1
b Dy Dy S;jn
—€ Dy SI'J+I
—2a sz Si,j
, aD} Siu; —4bD.D, Sij aD? S
—_ | _ . 2
>4 b D; D, Si-1,j —2¢ Dy S -b D. D, Siv1,j
~d Dx Sl'—-l.j +24d Dx Sl'.j — Dx S|'+l.j
+28 Dy S;',j
[Dy Si,j—l
—b D, Dy Sij-1
| -£ Dy Sl',j-l J

For each interior-boundary collocation point on x =17, P.S is defined by the stencil

[—bD:Dy S1,jm1
+CD§ hY 1,j+1
—-eD;, Sijn

+2aD} S1; ~5aD} S2; +4aD? S3; -aD? Sy
+5b D, DJ, Sz‘j —4b D, D}, Sg‘j +b Dx Dy S4,j

% —2CD3 Sl'j

=2dD_ Sl,j +54 D, S2J —44d D_ S3J‘ +d D, S4.j

+28Dy S Lj

—bD.Dy S1 ;.1

+CD3' S Lj-1

. _eD)' Sl.j_l F,

Then P,S is defined by similar stencils at the rest of the interior boundary collocation points in
T;p corresponding t0 x =1Tj;, y =7{ and y =tj. Further, P, S is defined at the comer colloca-
ton point {1, T{) by the stencil

[44D, D, S4

- D} 84
+e Dy Sl.q
—4b D, D, S)3
+4c DY §)4
+e Dy 31.3
L 4D, D, §
24 x Ly 1.2
—S¢ D} Sia
+5e D). Sl,?,

+2a Df S11 +5a .D% S2_1 -4a Dzz S3'1 —2 Df S4.1
~4bDyDy S1y 456 DDy Sz —4bDyD,Ss; +bD, D, 5S4,

+2c D)z,,' Si1
—2d D, Sl.l +54 D, S2.l —44 D, S3.1 1 D, 54.1
| —2e DJ, Sl,l J

Similar stencils define ;S at the rest of the comer collocation points in T;.. Finally, for the

-5-

boundary collocation points on the boundary line x = ax, PpS is determined by the siencil

r

—_— SBD.: SIJ _13BDIS2J +11BD: S3J _BBDx S4,j

Similar stencils define PpS in the rest of the boundary collocation points corresponding to the
boundary lines x = bx, y = ay and y = by.

In [5] we proved the following lemma.

Lemma 1. If « belongs to C'5(€2) then

LS=g+0(k% on T ~T,,
BS =go+O(?% on T, 2.1

and
L'S=g+0®h* or LS=g—-P;S +0¢* on T-T,,
B’S=go+ 0% or BS=gy—PpS+0®*Y on Ty @2

where L’S = LS + P.S, B’S = BS + PgS, P;S and Pp§ are perturbation terms defined by the
discretization operators above.

2.1 Formulation of the Quadratic Spline Collocation Method

The relations (2.1)2.2) lead to three different formulations of the quadratic collocation
method. Throughout, they are referred with the acronyms P2C1COL, P2C1CL1 and P2CICL2,

The first is the standard quadratic spline collocarion method. In this case the quadratic
spline approximation u, to the true solution u of (1.1) is forced to satisfy

P2C1COL: Lup=g on T-T,,

Bus=gp on T,. 2.3)

This scheme gives second order convergence [5] which follows from Lemma 1.

The fourth order quadratic spline collocation method [5] has i defined by the extrapolated
scheme

P2CICLI: L'up=g on T-T,,
B’ua =go On Tb (24)

A mathematically equivalent but computationaily advantageous version of this method is the
wo step deferred correction method defined by

P2CICL2: (Iststep) Lv=g on T-T,
Bv=gy on Ty, 2.52)
(2nd step) Lup=g—Prv onT—T,,
(2.5b)

Bﬂ.a:go-—PBV on Tb-

Figures 2.1, 2.2 show the structure of the collocation matrices corresponding to equations
2.3 (or 2.52) and (2.4), respectively. Equations (2.3) have at most 9 non-zero elements per row
and lower and upper bandwidth ¥ +3, while equations (2.5) have at most 27 non-zero elements
per row and lower and upper bandwidth 5§ + 11,

[S R w m s n b amn o m e m e E e h e E o EE ey
T T
T T T T
I
I T O
~xdx. L R T T T T T T T T T,
..... ld.....::.....................,,,,_,........
L 3 SPE dx X w man v n v man 4 e b aeE E et aae s e e
L I O . T T T T
L e T T T T T
e R T N R
ixx., L T L
AXX xdx . LI T T T T
..... L T 37T T
....... el O 3 7T T
....... L I I T T T
........ L R I 27T T
......... L R e 2 T
.......... XXxx sEd X L L ERE L L L i e h o m e e
........... T .xdx. XA XX 2 . n o moEE .. rsam s s o ea
............ R T T . e .
.............. e T T - S L
.............. EEE w o v XdX it o EX Xt o any yn v nnannanows
............... L I N TR E T T
................ TEX ., L B £ 5. T
................. XIx N 2.1 T
.................. Txx xdx.. EXX, o oo v s b s n=nn
................... L R . B . T
..................... EXwna s adX ot i v E Ky bonmwnen nans
..................... L e L L T kT
...................... LR E IR N N R R T § 2
....................... XX . B N R 1. T,
........................ ixx xdx., 3 T
......................... IXx Sxdx, XXX .. .0
.......................... X YR EE § PR S I
............................ I I ¥ S
............................ LS S A T E T & & T
............................. TXT....xdx2 X.
.............................. IX%..,, ,xdX..,.xxX
............................... Ixx .xdx ., ZEX
................................ XXX .adx. Ixx
................................. XX, ,...%d,....1K
................................... | ¥ R L
................................... EEXEX . .-.5dX.,.
.................................... TEIXZd% ..
..................................... ZEXXxdx.
...................................... Txx “xdx
....................................... Ixa s .xdx
.. EL.aaexd

Figure 2.1. Structure of the matrix of collocation equation corresponding to P2C1COL
for N =M =35. x denotes a non-zero off diagonal element, d a non-zero diagonal one, while all
2€T0 entries are represented by **."” character.

I SF
T .. T,
P X L E R R i i e s b e e E o r e e e e m e e e
B R T T T T T TS
. CRAdN L. ITITE u ut o nomm mwmor R R L R Ay 4 ma e e e o.
..... LI .
IX. .. dx e T T
XIXZZXZ . 2dI XX EXXXEX ST T 0 r v s XX e s s X T s ons womom
TXXXxx,.xzxdxzzx..xkxxx IXX . . AXXT & o o b XEX v ubomnnea .
+XEXXXX . . xxdxX..xz2T%.,, . AXNX. «IXIT .., ZEX u uonoaonoan o
XXxXxa..zxdx1..xXTXXX...232X . EXE., ZAEE - 4 s e
EXTITXIXZT.ZEZXRx:dx . TXXXXIK... . .XIXK AKX, AET o onnwr
..... R 2L T T
....... Lo T B X T T R T
XEX . . c RZEEXNZT - TA T AL X . TXIXTTXE - RX R b s tomomonoatonomomornononss
TXX .. .ZTXAXX. . XX dax..XZIXXX .
+XZXIA .. ,EXZXX, . x2dXI.,.XXAAK P EEX s s s s s ey
«XEXX., . .ZXLXEZX Zxdax..Zxxxx s EE X u oy v om e om e
XA .ITXIXEX . XXX dA .2 EANZT PR D R s . . r bt e e
............ R . T T T T T,
.............. ol T T I I S
....... XX ... XXX X .3dX XXX . XXATXTTT0X ET o s avvowoncroens
........ IXTE .o o TEXXEN o s EXd X R o o T E T E R w s o ET T oaow v ovonomomnn
......... XX, ., .XXZIZX..22dX2X . XXLETX., ., X% 2 s a-rvorwoonsn
.......... ITXX. . .XTXTEXX . .ZXd XX . XXX TE, » o AEX + v ononaan .
........... XXX .XZXXIXZ.ZXAXdE . IXIXKXE, . o ZAXuoa-wou,on
................... T T - O e
..................... TXZ . 8x, . O 3 T T
.............. XXX IIXTIEX .2 dXx T XX.xXAXZIX..AAKR
............... TXX . «XXEZXTX,. . X84 .. XXX ., .20X...
................ AXX. . .,TZXXR..Txdxx..xx3531x.,...T3IN.
................. IXXX2XIXIR . . KEdXK, .XITIXXK .. XXFK ~
.................. TXX.IXXXIX . ZXxXEXdx.xzaxXxXxx....%3%%
.......................... L R L T O
............................ LI ST TR
....... XEIE 2 o o ZX T2 u v o XXX 2o IXXXEXZT.XAdIXTX .AEXZXTX.,
........ TAX - . XXxx...,.ZXx..,.%32xxzx..3xxdxA..3x232%x ..
......... xIx, P I 3 R AXxX,.,.xzzxxx..xxdxx.,..xx323.
.......... TAX - XXX, P XXX . . LXXXAXT. .x3dXX ..z X
........... XXX Xz A XIX , XRIXEXI. XXX dX,.XXXXZTX
................................. L TR L T ¥
................................... L3 S - T
................................... AXX .. -EdH ...
.................................... XXXxdx ..
..................................... TEX....xdx.
...................................... XXX .xdx
....................................... IXTZX .Edx
.. IXZ.n..xd

Figure 2.2. Structure of the matrix of collocation equations corresponding to P2CICL1
for N =M = 5. The notation of Figure 2.1 is used here.

22 Sequential Solution of the Quadratic Spiine Collocation Equations

In this section we present some numerical results indicating the computational efficiency
of various linear algebraic equation solvers for the equations (2.4) and (2.5a). All computations
in this section were carried out in double precision on a VAX 8600. A complete scientifically
based experimental study of their performance is presented in [9]. Table 2.1 indicates typical
performance of several direct and iterative methods for a general elliptic PDE. It is interesting
to observe that the iterative methods are applicable to such classes of equations and they
become very competitive both in memory and processing time for large grids.

Table 2.2 compares the performance of these spline collocation methods and some Galer-
kin metheds for the problem

— %
I+x+y
Bu=uy on oQ

Lu = (e® u,), + (™ u), - in Q=1[0,1]x[0,1],

(2.6)

whose true solution is u = 0.75¢™ sin(mx) sin(ry). The collocation equations of P2C1CL1 are
solved with Envelope LDU, the ones of P2CICL2 are solved with Band GE No Piv, while for
the Galerkin ones we have applied Envelope LDLT.

-8-

Table 2.1. Time in seconds to solve the collocation equations (2.4) and (2.5a) using the
indicated direct and iterative methods. The equations were obtained by applying P2C1COL and
P2CI1CL1 on a general elliptic PDE with a 29%29 uniform grid.

Method P2CICL1 P2CICL2
Solver*
SSOR SI 14.3 54
Envelope LDU 22.0 43
Band GE No Piv 54.3 4.9
Sparse GE No Piv 338 6.2
Linpack Band 750 53

Table 2.2. Times in seconds for the solution of problem (2.6) using the indicated finite
element methods and grids.

Method | P2C1CL1 | P2CICL2 | Galerkin(2,1) | Galerkin(3,2)
Grid

5%5 0.167 0.105 0.147 0.351

9x9 0.662 0.324 0.564 1.366

17x17 4.034 1.660 2.913 7.332

33%33 39.370 13.715 22.602 54.683

The main objective of this paper is t0 present and study a class of domain decomposition
methods for the solution of spline collocation equations using a capacitance matrix technique or
Schur complement method. These are attractive because their inherent parallelism allows us to
have efficient parallel implementation on MIMD architectures. For completeness, for four
methods we include Table 2.3 which show the errors on the grid points when solving problem
{2.6) and the respective orders of convergence. The results of Tables 2.1-2.3 are in agreement
with the theoretical analysis of the methods [5] and indicate that spline collocation methods are
efficient alternatives for solving general second order elliptic PDEs.

* Abbreviation of methods (see [13] for more derails):

SSOR SL SOR iteration accelerated by semi-iteration.

Envelope LDU: An LDU faciorizetion for matrices in envelope form.

Band GE No Piv: Modified version of Linpack Band.

Sparse GE No Piv: An LU faclorization of a mamix using a fast siorage conserving non-symmetric scheme,
Linpack Band: An LU factorizaton with partial pivoting for banded matrices.

Galerkin (£./): Galerkin method for self-adjoint problems based on & degree splines with [continuity.

.9.

Table 2.3. Errors and order of convergence for problem (2.6) using the quadratic spline
collocation mcthods and the corresponding Galerkin method.

Method P2C1COL P2C1CL1 P2CiCL2 Galerkin (2.1)
Grid [Eror Convergence|Error Convergence|Emmor Convergence| Emmor Convergence
5x5 1242 273 2.83 59-3
1.98 3.32 3.32 425 -
9x9 |6.1-3 2,74 2.8-4 3.14
2.02 301 3.81 4.11
17x17 |1.5-3 1.8-5 2.0-5 1.8-5
2,10 391 3.94 4.03
33x33 |3.54 1.2-6 1.3-6 1.1-6

3. A PARALLEL QUADRATIC SPLINE COLLOCATION - CAPACITANCE
METHOD

First, we present briefly the idea of the capacitance matrix method for a general system
Ax = b with X equations. This method is based on paritioning Ax = b into

A xp +Ag x; =by (3.2a)
Ay xg+Aq X =5 (3.2b)

where A g is an g X g matrix x = (xp, x1)7 & = (bp, b;)7. We choose ng < <K so that the
system Ay x =r is easily solvable as compared to Ax = 5. In the context of solving elliptic
PDEs, we decompose Q into subdomains and renumber the unknowns and equations so that the
unknowns xq correspond to the boundaries of the subdomains. If the domains contain large
numbers of discretization points or elements, then the condition ng < < X is satisfied. The sim-
Plest decomposition of Q that leads to the above partition of the system is that involving two
vertical shrips, say), Q,, where xq is the vector of unknowns that belong to the middle line
that separates Q; from £, and x; are the rest of the unknowns. After the elimination of X1
from (3.2b) and its substitution in (3.2a) we obtain the matrix problem

Cxo=(Apo — Ao AT} A1) xo=bo —Ag; Al by =w. (3.3

The coefficient matrix C is known as the capacitance mairix, After solving (3.3) for xo one can
compute x; from

A x1=5b1 — Ay xp. (3.4)

It is worth noticing that A, is a relatively large well structured matrix, while C is relatively

-10 -

small, but dense. The computation of C involves the computation of Al'll which is cxpensive
and should be avoided. In the case of positive definite systems, conjugate gradicnt method
(CG) with appropriate preconditioners is usually applied for the solution of (3.3) [10]. In the
case of the spline collocation capacitance matrix problem, the CG method does not seem to con-
verge. At least, so far, we are not able to find appropriate preconditioners.

In the rest of the paper, we consider the integration of the capacitance matrix technique
with the P2C1COL and P2C1CL2 discretization schemes and its implementation on shared and
non-shared memory MIMD machines,

3.1 Domain Decomposition Ordering of the Collocation Equations

In order to apply the capacitance matrix method for the solution of (2.3), we reorder the
collocation equations so that the system A y; x; = r in (3.2) is easily solvable. For the reorder-
ing of the (2.3) equations, we assume a decomposition of Q in P = MP x NP rectangular sub-
domains and number them from bottom up and then from left to right. Throughout we impli-
citly assume that the computation associated with each subdomain will be allocated to a separate
PIOCESSOr. -

In the formulation of the collocation equations, the ordering coincides with the ordering of
the collocation points. Thus to obtain the decomposition (3.2), it is sufficient to order the collo-
cation points appropriately. We first number the ng collocation points that lie on subdomain
boundaries. Their numbering is irrelevant up to this point. Then we number the rest of the
points, i.e., the interior or boundary collocation points of each subdomain, first by the number-
ing of the subdomains and then numbering the points of each subdomain from left to right and
then bottom up.

Figure 3.1a depicts the structure of the matrix of collocation equations with the original

ordering (suitable for sequential solution of the system) and Figure 3.1b shows the reordering
described above suitable for the capacitance matrix method.

3.2 The Quadratic Spline Collocation-Capacitance Method
With the above reordering of the spline collocation equations, the system is decomposed

int four main parts
Ago Agr | [x bo
A Ay | |x1 | | by

The order of this system is X = (M+2)(N+2) and Ago is an np X ng sparse matrix with
ng = M+2)(NP - 1) + (N42)(MP — 1) — (MP — 1)(NP — 1), Ag; is an ng X n, sparse matrix
with n; =K — ng, Ayg is an ny X ny sparse matrix and Ay is an ny X n; block diagonal
matrix with each block being a banded matrix whose bandwidth is (M+3)/MP and having
((N+3)/NP — 1) X ((M+3)/MP — 2) rows. Then the quadratic spline collocation-capacitance
method for the collocation equations is defined by the following steps:

-11-

=5 grid

M

Figure 3.1(a). Structure of the matrix of collocation equations (2.3) for N

with the original ordering. 4, x, * are defined as in Figure 2.1,

=5 grid and a

M

Figure 3.1(b). Structure of the matrix of collocation equations for ¥
2 X 2 domain decomposition renumbering. d, x, - are defined as in Figure 2.1,

-12-

Solve A X = by,
Compute w = bg — Ag 1.
Solve Cxg=w, C =Ax —Ag AT A0

Solve Ay x1=b;—Apxp

bl S

For the parallel implementation of this algorithm we observe that the computation in Step
1, ie the soluton of Ay ¥y =b; is equivalent to solving AP %5 =bf, forp=1,..., P,
where Af) is the p-th block of Ay associated with the p-th subdomain or processor. Further,
the computations of Step 2 and 4 involve the evaluation of the product Apgvy and Ay v, for
some vectors vy and v,. Assuming that each processor knows the vectors v, and v, this can
be carried out in parallel in 2 straightforward manner. Thus the efficiency of this method
depends very much on the computation of Step 3 and its parallel implementation.

3.3 Iterative methods for solving the capacitance matrix system

For the solution of the capacitance systemt Cxo = win Step 3-of the method, we attempted -~
the conjugate gradient method without much success. Thus we introduce a J acobi-type iterative
scheme that avoids the explicit computation of €. This scheme is based on the observation that
Cxo =w is equivalent to Aggxo =w + A A1{Apxg. If we denote by Dgq the diagonal matrix
consisting of the diagonal entries of A gy, then Cxg = w is equivalently written in the form -

Doy xp =w—~Cxg+Dgxp. (3.5)

Starting with some initial approximation x{*, we compute successive approximations to
the solution of Cx¢ = w using the following asynchronous Jacobi-like iteration scheme

x§* = D@ (w — CxfPy + x®
or

XV = rBpdoe + 2, i=1,..., ng (3.6)

where the subscript { denotes the i-th component of a vector and r® =w — Cx§9 is the vector
of residuals for the k-th iteration. In its implementation we use the relative norm of the residual
as the stopping criterion.

In order to study the convergence of the iterative scheme (3.6), we carried out several
experiments on sequential machines. Table 3.1 summarizes the results of these experiments for
the PDE problem.

Lu= U+ gy + Uy + 2 +uy +u on Q=(0,1] X [0,1]
Bu=u on 90 (3.7

-13-

Table 3.1. Number of iterations required to reduce the relative residual to £ = 107 for the
problem (3.7), with several grid sizes and domain decompositions.

Grid Domain Size of C | Iterations | Optimal ® Iterations
Decomposition w=1 ®=1 ® = oplimal
M N | MP NP P ng niter @ niter @
32 32 1 2 2 33 222 0.85 190
2 1 2 33 161 0.50 85
1 4 4 99 284 0.85 245
2 2 4 65 302 0.85 258
4 1 4 99 248 0.50 125
1 8 8 231 466 0.85 386
2 4 8 129 359 0.85 317 |
4 2 8 - 129 366 0.85 305 |-
8 1 8 231 435 0.50 231
1 16 16 495 789 0.85 656
2 8 16 257 505 0.85 437
4 4 16 189 422 2. 085 | 368
8 2 16 257 513 0.85 436
16 1 16 495 733 0.50 436
48 48 1 2 2 49 324 0.85 286
2 1 2 49 250 0.50 129
1 4 4 147 413 0.85 354
2 2 4 97 432 0.85 369
4 1 4 147 369 0.50 197
1 8 8 343 667 0.85 573
2 4 8 193 521 0.85 450
4 2 8 193 526 0.85 444
g 1 8 343 621 0.50 324
1 16 16 735 1001 0.85 044
2 8 16 385 731 0.85 630
4 4 16 285 603 0.85 527
8 2 16 385 731 0.85 598
16 1 16 735 1001 0.50 553

- - - - ® = optimal

-
-
-

32 x 32 grid

-
-
—

-
-
-
p—_

48 x 48 grid
A
1
1
I
I
I
1
1
1
I
1
1
1
1
1
t

500

|
100
log(ng)

1000 —

500 —
200 —
100 —

log(niter)

200

50

20

Figure 3.3. Graph of the niter vs ng with ® =1 and ® equal to the computed optimal.

-15-
where the true solution is u =x'32 - y!'¥2 These numerical experiments suggest that the
number of iterations needed to reduce the relative residual 1o £= 107° grows linearly with the
size of C, i.e., with M - NP + N - MP, In fact, Table 3.1 suggests that the average number of
iterations is 3ng. It is worth noticing that for a constant number of processors the least number
of iterations is obtained for NP = MP. This is in agreement with the observations of others
studying domain decomposition. There is, though, the possibility of reducing significantly the
number of iterations by introducing a relaxation factor @ in the iteration formula, thus
transforming it into an accelerated Jacobi-like iteration

2§D = Dol (g — xf Yo + xP.

The last column of Table 3.1 shows the number of iterations required for problem (3.7) using
various values of . Figure 3.3 shows also the growth of niter with the size of . Additional
experiments have shown that niter does not depend much on the nature of x and operator L.
Also the optimal value @ was not affected by the size of the grid and u, but it appears that it
depends on L. s Co

4. THE PARALLEL QUADRATIC SPLINE COLLOCATION-CAPACITANCE
METHOD

In this section, we define the parallel quadratic spline collocation—capacitance method
(PQSCC method) and discuss its implementation and complexity. Assume we have P proces-
sors. Each processor is assigned to handle the computations associated with 74/P rows of A
and Ap;. In case of the remaining rows, the last no — ng/Pl - P processors are assigned one
additional row of Agy and Ag;. Each processor is also assigned to handle the computations of
one block of Ay and the respective rows of 4,5. We will assume for simplicity that MP
divides M+2 and NP divides N+2. This partitions the matrices Ag, Al and Afy, assigned to
the pth processor forp =1,..., P. The matrices Afy, Af; and Af, are stored in sparse matrix
form, while respectives rows of Af; are stored in LINPACK band form. All of them are stored
in the local memory of processor p.

Specifically, the algorithm for the pth processor written in a pseudo-language consists of
the following statements:

Code executed by the pth processor

01. Solve Af x{ = bf

02. Distribute xf among all other processors

03. Receive x{ from all other processors, ¢ # p, and update X1.
04. Compute g? = bf — A x;

05.k=0

06. Compute initial guess x§* for xg

-16 -

07.for k=0,..., maxitdo /* maxitis the maximum number of iterations allowed */
08. Compute Afpx0

09. Solve A8 1P =—Afx® for P

10. Distribute s among all other processors

11. Receive r7 from all other processors, ¢ # p, and store it in ¢

12, Compute AdpxE?) + ABt /* this is CPxg */

13. Compute residual r? = g? — CPxy

14, If I 1rP 1 1<eps send satisfaction flag to other processors

15. else send continuation flag /* eps is the precision required */
16. Receive flags from all other processors

17. If all flags are satisfactory exit loop

18. Update x§, xf**) = DgrP + 2§®

19, k=k+1

20. Distribute x§ among all other processors

21. Receive x§® from all other processors, ¢ # p, and store it in x{2
22. endfor e .

23. Distribute final x§ among all other processors

24. Receive x{ from all other processors, ¢ = p, and store it in x,.

25. Compute Afpx§

26. Solve Af1xf =bf — Afyxg

27. Send final x§ and xf to host processor

To measure the processing time of the PQSCC method, we counted the operations needed
for each computational step and also carried out several numerical experiments. With the grid
size (M X N), the number of processors (P) and the domain decomposition (MP x NP = P), the
complexity of the algorithm is summarized in the fo]loiving lemma. Time is measured in units
of one arithmetic operation, communication is assumed to be instantaneous.

Lemma 2 Assuming an MP X NP decomposition of domain £, then the processing time

required to solve the spline collocation equations (2.3) on a P-processor MIMD machine with

the PQSCC method is
M}-N . M2 -N
[MPE. P] + niter O MP P 3.7

where niter is the number of iterations of the Jacobi scheme (3.6) for solving the corresponding
capacitance system.

Proof. Based on the previously presented algorithm that each processor executes, it is clear
that the steps that dominate in processing time are Steps 1 and 9. Note that Step 1 is executed

only once and the factorization of the blocks A{’ 1,p=1,..., P is saved, while Step 9 is exe-
cuted nérer times. The factorization of each block takes
M43 M43 N+3 . .
0 - —_ 1 i
[AP [WP _1] NP time which grves the first component of (3.7), and the

-17-

N+3
NP

M+3
MP -1

M+3
MP

back substitution O [[- IH time which gives the second component

of (3.7).
a
Based on our experiments reported in Section 3.3 (Table 3.1 and Figure 3.3), we can

safely assume that niter = O(M - NP + N - MP). Suppose for simplicity that M = N, then the

12 +l which is the same
MP P
order as the time required to solve the capacitance system. From the complexity of the PQSCC
method, we make the following important observation, which we formulate as a corollary.

complexity of the PQSCC method is of the order O |M*

Corollary 2. Assuming the number of iterations required by the Jacobi scheme (3.6) to reduce
the residual r =w — Cxg 10 € grows linearly with M * NP + N - MP, then the optimal PQSCC
implementation is based on a domain decomposition consisting of vertical strips, i.e., MP = P
and NP = 1.

The Corollary 2 is a consequence of the fact that the bandwidth of Af; is O (M/MP). The
above observations are supported by the numerical data of Tables 4.1a, 4.1b and 4.1c. All com-
putations in these tables were carried out in single precision on a NCUBE/7 hypercube machine
with 128 processors and convergence tolerance £= 1075,

-18 -

Table 4.1a. Timing of PQSCC on the NCUBE/7 in msecs for different domain decompo-
sitions and grid sizes. The total fime of the algorithm is presented as a sum of the required
discretization and sclution times. The iteration time includes processing and communication

lime per iteration.

TOTAL ITER

M N | MP NP | P | NIT TIME TIME
6 6 1 230 + 176*
1 26 259 + 541 17.63
2 I 19 255 + 351 15.50
2 2 4 150 + 415 12.65
14 14 1 1094 + 1924%
2 77 1211 + 8329 9745

54 | 117244277 | 7202 :
4 f 91 | 65145070 | 51967 -
9 | 618+4214 | 4191
76 | 626+299 | 37.56
8 | 114 | 33943357 | 2848
113 | 340+3036 | 26.07
16 | 130 | 198+2044 | 2212
22 22 1 2600 + 8459*
2 | 124 | 2873 +4032 | 29548
88 | 2832 + 18980 | 199.17
4 | 153 | 1557 +24156 | 147.48
160 | 1460 + 17835 | 107.14
129 | 1462 +12529 | 9376
8 | 246 | 817+18555 | 7339
195 | 780 +12502 | 6234
196 | 769+ 11169 | 55.86
218 | 773+ 11650 | 52.63
16 | 286 | 426+ 11842 | 4091
226 | 497+8879 | 3873
267 | 422+10092 | 3738
32303 | 24849745 | 31.86
301 | 254+9531 | 3139
64 | 362 | 167+11249 | 30.88

BoR N AN =N
N R A 1% T R N]

0 00 oo B NOO R e DR e B
L= R o R ¢ e - T -Vt N, T N

* Time to solve equations (2.3) by Band GE NO PIV [13]

-19-

Table 4.1b. Timing of PQSCC on the NCUBE/7 in msecs for different domain decompo-
sitions and grid sizes. The total time of the algorithm is presented as a sum of the required
discretization and solution times.

TOTAL ITER
M N |MP NP | P | NITER TIME TIME
30 30 1 4744 + 25502%
1 2| 2 171 | 5609 + 124679 | 664.50
2 1| 122 | 5266 + 55459 | 442.58
1 4 | 4 | 212 | 2901+74031 | 32626
2 2 223 | 2692 +51097 | 22076
4 1 181 | 2662 + 30687 | 164.55
1 8 | 8 | 352 | 1500+56954 | 156.84
2 4 | - 275. | 1418 + 34002 | 12077
4 2 278 | 1384 +26750 | 94.61
8§ 1 316 | 1381 +27109 | 84.80
1 16 | 16 | 558 793 + 40434 | 72.01
2 8 403- |- 759+29183 | 7151 - -— - -
4 4 320 753 + 20040 | 61.87
8 2 386 740 + 22170 | 56.97
16 1 486 752 +28876 | 59.05
2 16| 32| 60 426 +29163 | 4841
4 8 435 423420652 | 47.18
§ 4 428 421+ 19350 | 44.92
16 2 541 423 +24913 | 4584
4 16 | 64 | 650 255 +27244 | 41.80
8 8 528 257 +21760 | 41.08
16 4 570 258 + 23686 | 4143
8 16 [128 | 710 181 +30096 | 4229
16 8 627 183 + 26607 | 4230

* Time to solve (2.3) by Band GE NO PIV [13]

-20-

Table 4.1c, Timing of PQSCC on the NCUBE/7 in msecs for different domain decompo-
sitions and grid sizes. The total time of the algorithm is presented as a sum of the required
discretization and solution times.

TOTAL ITER
M N |MP NP | P | NIT TIME TIME
38 38 1 8000 + 60508*

200 | 8514 + 155892 | 770.12
4 | 271 | 4793 + 178938 | 615.22
286 | 4336 + 117400 | 396.04
232 | 4240+ 72449 | 303.97
8 | 452 | 2493 + 137960 | 293.82
354 | 2266 + 76474 - | 210.52 S
358 | 2191+60855 - | 167.35 -~ -
413 | 2173+ 57990 | 139.07
519 | 1200 + 62087 | 118.06
415 | 1179 + 42727 | 101.76
500 | 1154 +44393 | 8821
526 | 955+37724 | 7127
32 | 810 | 550+47662 | 58.64
564 | 655+39899 | 70.31

JB R 500 s oo A= AR =N
e I S B Bl I - TR R N

5. MAPPING PQSCC TO A HYPERCUBE ARCHITECTURE

In this section, we study the mapping of the PQSCC algorithm to 2 hypercube architecture
and discuss its implementation on the NCUBE/7 with 128 processors. One of the primary
objectives of the mapping process is the minimization of the communication cost. According to
the description of the algorithm in Section 4, the processors need to exchange the parts of the
solution that each computes. For example, in the case of vector xg (length ng), each processor
compuies no/P of its components and sends them to every other processor. This implies that
each xo processor generates P messages of size no/P. Assuming no overlap of communication
and that the cost of each message is proportional to its size and the length of the path between
processors plus an initialization overhead, then we conclude that the total communication cost
for completing the update of xg is O(P - A + noB log P) where A is the overhead constant and
B the average cost per message.

Following Stout [12], we have implemented a faster communication scheme for updating
the solution vector on all processors where messages are grouped to produce bigger messages
which in turn can be broadcast in less time. In this scheme, first the processors exchange vector
parts with their lowest bit neighbor and update the corresponding parts of the solution vector.
Then they exchange vector parts with the second lowest bit neighbor. This exchange of data
continues until they reach to the highest bit neighbor.

-2] -

The code executed by each processor to exchange data with all other processors follows.
It is written in a pseudo language cxtended with the operations send (message, processor) and
ger (message, processor), which respectively perform a send of the message to the processor
and a receive of a message from a processor,

for bit = 1, log P do
send (my_data, bit_neighbor_processor)
get (others_data, bit_neighbor_processor)
my_data = my_data and others_data

end for

Initially each processor has its own computed data in my_data, Finally my_data contains the
data from all processors. The operation and means either concatenating two vectors, or doing
logical operations with flags.

Figure 5.1 shows graphically the steps of the exchange procedure for a third order cube

where each processor has computed 10 components of a vector. . Assuming -the previously—- - ————— — .

defined notation, each processor generates log P messages of increasing size and the total com-
munication cost is O(A log P + Bng). This is a consequence of the fact that the total length of
Ha legP -1 |
the messages generated by one processor is =2 Yy, 2=ng
i=0
tumns out to be optimal, since the longest path among processors on a hypercube architecture is
of order log P.

. The above scheme

-0

Processor :

0 1 2 3 - 4 5
Step }
0 1-10 11-20 21-30 -- 3140 - 41-50 - 51-60 61-70 ~ 71-80
1 1-20 120 2140 2140 41-60 41-60 61-80 61-80
2 140 140 1-40 140 41-80 41-80 41-80 41-80
3 1-80 1-80 1-80 1-80 1-80 1-80 1-80 1-80

Figure 5.1. Exchange steps for a 3-dimensional cube and a vector of 80 components.

6. NUMERICAL RESULTS

We have implemented the PQSCC algorithm on several configurations of the NCUBE/7
hypercube machine and measured its performance for various grids. Figures 6.1 and 6.2 show
these data in graphical form. Several quantitative data are given in Tables 4.1a,b,c. In Figure
6.3, we compare the performance of the PQSCC 1o sequential Gauss elimination (Band GE NO
PIV [13]). These data indicate that the efficiency of the method depends on the size of the
problem. This is true for any MIMD algorithm. Given the memory limitations of the current
NCUBE configuration, one can not achieve a balance between the processing and communica-
tion time for a large number of processors. Although we have found a relatively fast way to
solve the capacitance system (3.2), we feel that there is potential for further improvement. We
are currently studying different alternatives.

e with communication
- - - - w/out communication
38 x 38 grid
10000 30 x 30 grid
log(time)
1000 -
) _-_':”3';6— grid
] —= ' '
i 10 100

log(nodes)

Figure 6.1. Timing of PQSCC algorithm in msecs on the NCUBE/7 with the acceleration
constant o equal to the computed optimal one. In this graph we plot the toral time {solid line)
and processing time (dotted line) versus the number of NCUBE processors (nodes) used for ad-
ditional grids. The accelerated Jacobi method (3.6) was used to Solve the capacitance system
with tolerance & = 107, The dots on the left indicate the processing time of Band GE without
pivoting to solve the same collocation equations.

————— with communication
100000 -~ - - - - w/out communication
100004 °
log(time)
1000 S
:-""""-—-—..
“~ 6% 6grid
T —) T
1 10 100

log(nodes)

Figure 6.2. This graph is similar to the one in Figure 6.1 with © = 1 as the acceleration
comstant,

10 < ' , Il
. . . . optimal (relative to P = 2) ’,' Il
2 F 4
. . / e
- - - « w/out communication ; /’ S L
. ’,
. R - .-'. ’, ’/ ’I’
----- with communication . ./ S .

log(speedup)

| I
2 5 10 20 50 100
log(nodes)

Figure 6.3 This graph corresponds to Figure 6.2 and plots the speedup vs number of pro-

cessors. The speedup is determined-with respect to the time of the PQSCC algorithm on twb
Processors.

-26-

REFERENCES

1)

[2]

(3]

4]

Peter E. Bjorstand and Olof B. Widlund, “‘Iterative methods for the solution of elliptic
problems on regions partitioned into substructures'’, SIAM J. Numer. Anal., 23, (1986),
pp. 1097-1120.

J.H, Bramble, J.E. Pasciak and A.H. Schatz, ‘'The construction of preconditioners for
elliptic problems by substructuring I'', Math. Comp., 47, (1986), pp. 103-134.

J.H. Bramble, J.E. Pasciak and A.H. Schatz, “*An ijterative method for elliptic problems on
regions partitioned into substructures’’, Macth. Comp., 46, (1986), pp. 361-369.

Tony F. Chan, '*Analysis of pmcondmonels for domain decomposition’’, STAM J. Numer.

" Anal., (1987), pp. 382-390.

[3]

(6]

(7]

(8]

(9]

[10]

[11]

(12]
[13]

[14]

C.C. Christara, Parallel Algorithms/Architectures for the Solution of Elliptic Pariial Dif-
ferential Equations, Ph.D. Thesis, Purdue University, August 1988 (expected).

Q.V. Dihn, R. Glowinski and J. Periaux, '*Solving elliptic problems by domain decompo-
siion methods with apphcal:lons" Ell:pnc Problem Solvers H Academic Press, (1984),
PP. 395-426.

M. Dryja and W. Proskurowski, ‘'Iterative methods in subspaces for solving elliptic prob-
lems using domain decomposmon" Tech. Rpt. CRI-86-10, University of Southern Cali-
fornia, May 1986, ;

M. Dryja, **A finite element ~ capacitance method for elliptic problems on regions parti-
tioned into subregions™’, Numer. Math., 44, (1984), pp. 153-168.

E.N. Houstis, LR, Rice, C.C. Christara and E.A. Vavalis, *‘Performance of scientific
software"’, in: Scientific Software, (IR, Rice, ed.), Springer Verlag, 1988.

David E. Keys and William D. Gropp, ‘‘A comparison of domain decomposition tech-
niques for elliptic partial differential equations and their paratiel implementation®®, SIAM J.
Sci. Stat, Comput., 8, (1987), pp. 5166-s202.

Keith Miller, ‘‘Numerical analogs to the Schwartz altemnating procedure’’, Numer. Math.,
7, (1965), pp. 91~103.

Quentin F. Stout and Bruce Wagar, Tech. Rpt., University of Michigan, Ann Arbor.

John R. Rice and R. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer Ver-
lag, 1984.

Wei-Pai Tang, Schwariz Splitting and Template Operators, PLLD. Thesis, Stanford Univer-
sity, June 1987.

	A Parallel Spline Collocation-Capacitance Method for Elliptic Parallel Differential Equations
	Report Number:
	

	tmp.1307986960.pdf.ogsc1

