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A WORKLOAD PARTITIONING STRATEGY FOR PDES
BY A GENERALIZED NEURAL NETWORK

H. Byun, S.K. Kortesis, and FE.N.Houstis
Computer Science Department
Purdue University
West Lafayette, IN {7907

Abstract

e consider the partitioning of a workload defined over a discrete
geometrical data structure in a way that balances i across muiti-
ple processors while minimizing the communication/synchronization
among them. We formulate this problem in the context of the numeri-
cal solution of partial differential equations in distributed multiproces-
sor hardware environments and we explore a neural network approach
for determining its solution. Specifically we are developing four neu-
ral network models for the corresponding geometric graph partitioning
problem, examine the optimality of the obtained solution and argue
about their suitability in solving these types of problerns.

1 INTRODUCTION

The problem of partitioning and allocation of a giver workload or compu-
tation is one of the major bottlenecks to the effective use of multiprocessor
machines. In this study we are considering the partitioning of computations
defined over discrete geometrical domains (i.e., finite element and finite dif-
ference meshes). Specifically, we seek optimum and fast partitioning of the
geometrical data associated with the numerical solution of partial differential
equations (PDEs) which balances the workload across multiple processors
with minimum commurication and synchronization requirements among the
assigned ones. The above problem is formulated as a geometric graph parti-
tioning problem for general finite element meshes. The algorithms developed
apply equally well to other type of meshes. In [Chri 89) we have analyzed
the same problem using clustering and optimization based techniques. In
this paper we are developing several neural network models for its solution.
The formulation of the partitioning problem is discussed in Section 2. Sec-
tion 3 contains a brief deseription of the neural network approach in solving
these problems. In Section 4 we are developing four neural network models




[or the solution of the 2-way geometrical partitioning problem. Finally in
Section 5, we present quantitative and qualitative results for the 2-way so-
lution obtained by the four models and compare the ob{ained solution with
the conventional techniques developed in [Chri 89].

2 WORKLOAD PARTITIONING STRATEGY
FOR. PDES

We consider the partitioning of a problem defined on a fixed discrete geomet-
rical domain, in a way that balances the workload across multiple proces-
sors and minimizes the communication/synchronization among them. These
problems arise, for example, in solving partial differential equations. Chriso-
choides et al, [Chri 89] have reviewed the various approaches to partitioning
PDE computations and have devised new methods for their automatic de-
composition. In this paper we are interested in the geometry decomposition
of finite element meshes. Other types of domain discretizations can be han-
dled similarly. Throughout, we assume that a finite element mesh is defined
by the set of nedes {n;(z,y,2)}L, with connectivity {w,,}/L, and the set
of elements {emj(n,-“...,n.-t)}ff, where n; and m; indicate orderings of
nodes and elements.

On this mesh, one can define a geometrical graph G(V, ') whose vertices
correspond to elements and edges indicate their connectivity in the mesh.
Thus, the partitioning of the mesh in subdomains can be viewed as the par-
titioning of the corresponding graph G. Following [Chri 89], we are seeking
a partition of the mesh or graph such that (i) the subdomains have equal
number of elements, (ii) the subdomains are “spherical” and connected. and
(iii) their connectivity is minimum. Under certain assumptions, these type
of meshes guarantee optimum partitions of the underlying computations.
Specifically, in this paper, we try to determine 2-way domain decomposi-
tions that satisfy criteria (i) to (iii) using neural netwcrk approaches. Ve
lave shown in [Chri 89] that this problem can be formulated as an opti-
mization problem where the objective function is the cutting cost of the
geometrical graph or the communicatior cost of the two subdomains, sub-
ject to load balanced (subdomain sizes) constraints. If we denote by D1, D,
the two subdomains, x(ei,e;) the characteristic function that takes values

xlei,e;) = 1if e;, e; are adjacent and belong to the different subdomains
and x(e;,e;) = O otherwise then the objective function is
2
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subject to the constraints |D;] = k and [Dy] = # — »n In the rest of
the paper we formulate several neural network models for solving the above
optimization problem.

3 NEURAL NETWORK APPROACH

In this section we review a neural network methodology for solving problems
which are reduced to optimization problems. First, Hopfield [Hopf 84] and
Hopfield and Tank [Hopf 85] used this methodology to develop a solution
to some quadratic optimization problems. A neural network can be viewed
as a {ully connected graph, whose vertices correspond to neurons and edges
to synopsis between the neurons. The degree of connectivity among i and
J neurons is defined by a weight T; ;. If two neurons are disconnected, then
T;; is set to zero. The output of a neuron 7 is represented by the variable
Vi and its input by wu; where u; = Z;-'=1 T;;V; and n is the total number
of neurons. For the description of a given problem, a relation between the
input and output at each neuron is defined by the threshold function

Vi = g(w)

while a Hamiltonian {(energy function) E(Vy,...,V;) is constructed so that
the desired solution occurs at the minimum of E. This amounts to formu-
lating the original problem as an optimization problem. Hopfield and Tank
[Hopf 85) introduced the so called “Neural Network” approach for solving
this problem which is equivalent to assigning “suitable” random values to the
input variables #; and integrating the generalized “Hopfield-Tank network
equation”

du _ _w_

dt - _T_l' JWE(‘/:I!"“IVR)

until the state converges (see [Fox 89]). The final state of this network can
be interpreted as the problem solution. Next we are developing four such
models [or the solution of the 2-way graph partitioning problems described
in Section 2.



4 DOMAIN DECOMPOSITION BY A NEURAL
NETWORK

In this section we develop four neural networks that describe the 2-way
partitioning problem formulated in Section 2. They consist of (i} the set of
state variables V;, (ii) their energy function, (iii) network connectivity {7} ;}
and (iv) the associated threshold function.

4.1 Neural Model I

First we consider a2 neural network whose output variables V; needed to
describe a 2-way feasible solution, are selected to be V; > 0 [or every
e; € Dy and V; < 0 if ¢ € Dy. The optimum solution is assumed to
correspond to the minimum of the energy function

E=—%Aiic;,jViV}+B[iW—(2k—”) ]?

i=1 j=1 i=1

where ¢;; = x{ei,e;), k¥ = |D1] and A, B are appropriate weights. The
minimization of the first term in the energy function (4.1) corresponds to
the minimization of the communication cost or cut-cost of the corresponding
geometric graph 2-way partitioning. The second term in (4.1) is minimized
when the number of ¥; > 0 or ¢; € D, becomes equal to k. The weighs
A and B are selected to assign different emphasis to the communication
balance or criterion. The energy function (4.1) can be rewritten in form

E= _% S (dei; - 2B)ViV ~ 3 Vi(2B(2k — n) + B(2k — ).

i=1j3=1 i=1

whose minimum value corresponds to the stable state solution of the system
of differential equations
du; K

a - T
where %ﬁ- = — ¥ %1 (Ac; ; -2B)V; - 2B(2k — ) since ¢;,; = ¢;ji. In this case
the connectivity weights are T;; = Aei; — 28 and g(z,) = tanh(w). Ilin
the energy function (4.1) we add the term —B 3 V2, then the minimization
of E forces the V¥; to take the values +1lor — 1 and we have Tj; = 0 for all i.
This usually accelerates the convergence of (4.2).



4.2 Neural Model II

This model consists of the previous network with an additional neuron
{Nn41) connected with all others, such that Tine1 =land Thyy; = —d. In
this model, the energy function has the form

1 n+1n+41
E = -33° ) TV
i=1 j=I1
1 n on 1 n 1 n ]
= -3 Y STV - §Vn+1 Y TimaVi- 5Vn41 Y TorriVi
1=1 j=1 i=1 i=1

where T; ; = ¢;; fori,j # n+1, Liayi=land Thyy; = —~dfori =1,2,. .
for all . The above energy function can be rewritten in the form

n n 1]
E= —%Azzc;,jv.-vj - %(1 — )V 3 _ Vi

=1 3=1 ‘=1
The second term in the energy function (4.3) has as its mission to enforce
the constraints of the 2-way partition problem. If d > 1 then its min-
imization depends on the term V, Y1, Vi Furthermore, if we choose
Var1 = 9(2n41) = tenh{r(uny1 — (2k — n))) then the size of Heng1)tng
will depend on the values of r and k, since upy; = it Vie f k=% then
9(2n+1)ngq > 0 and its minimum value (zero) occurs at tn4y1 = 0. This
gives the desired load balanced |Dy| = 3. If & # 7 the product g(un4)unyy
becomes negative when u,4 takes values in the interval {0, 2k—n)(2k-n.0)
and its values are reduced, while u,4; tends to 2k — r. Ia this case it is easy
to realize that a condition for balance load is |un41 — (2k — n)| < 2. Further-
more, we choose the value of r relative big so that the effect of the factor
7(tn+1) in the reduction of the value g(un41)ungy is minimum. It appears
that the second neural model has smaller connectivity 35 IC 1+ 27 com-
pared to the connectivity of the first model n(n— 1). Furthermore, the state
function of the neuron ¥, 4,

0 if [tanh(r(uns1 — (2k - n})| < €
tanh(r(unyr — (2% k = n))) otherwise

g(¥ny1) = {

allows the network of the first n neurons to examine the states of the energy
function, independently of the problem constraints. The experimental re-
sults to be presented in Sectior 5 indicate that the two models produce solu-
tion qualitative similar to the 2-way solution obtained by the Kernighan-Lin
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algorithm [Kerl 70] as it has been implemented in (Chri 89]. The disadvan-
tage of this solution is the fact it corresponds. to a local minimum of the
communication or cut-cost function associated with the 2-way partitioning
problem [Chri 89]. To avoid this behavior Chrisochoides et al. [Chri 89) in-
troduced a new profit function for selecting the elements to be interchanged
which involves the distance of the current subdomains. In the next model.
we incorporate this distance into the energy function.

4.3 Neural Network Modei III

In this model we introduce an energy function that involves the minimum
length d;; of the path that connects the elements e;, €, in the geometrical
graph G(V, E). This model assumes the network I or II and the Hamiltonian

n

E= —%AZZC.‘,;WV}+ BIY Vil*+ %Dzzdi,jviv}
1

t=1 j= i=1 i=1 =1
with k = 3.

The first two terms are the same with the ones in (4.1). The third
term is the factor that enforces the “spherical” nature of the partitioning
subdomains. For its minimization we must have V;V; > 0,that is, ¢; and e;
must belong to the same subdomains for the smallest possible values of d; ;.
This leads to a better matching of the partitioning criterion (ii). Finally,
the new energy function (4.4) for k = % can be written in the form

E=—-

[ =

) Zn:(ACi.j — 9B — Dd; ))ViV;
i=1;=1

In the case k # 3 (assuming £ > 3 without loss of generality), we define
the energy function such that

E= _%,.1 S5 e ViV + Bl D Vi — (2k = n) P+ %D SO sidiViVi
i=1

i=1 j=1 = =l =l

The factor s; in the third term of (4.5) controls the “cpherical” nature of
the partitioning subdomains and it is defined as

{1 V>0
5=

£ V<0




It is used to balance the “spherical” requirement among the two subdomains.
The final form of (4.6) is

E= —% i i(ﬁlc,—lj =28 — Ds;id; ;)V;V; — i Vi(2B(2k —n)) + B(2k — n)?

i=I j=1 =1
and T} ; = Ac;; ~ 2B - 5;Dd; ;.

4.4 Neural Network Model IV

First we define the Hamiltonian function of this model ‘or & = 5 to be

113

n n n n
S Vi (L= W L Vih 303 Y side %,
i=]

i=1j=1 i=1j=1

E=-

B —

with V.41 = tanh(un41), which takes into consideration the requirement of
“spherical” and non-disconnected partition. The threshold function g(u;) is
similar to the one in Model II, while the network connectivity is defined by
the weighted [unction

Aeij—38i fori<i,j<n
Ti;=1¢ 1, for j = n+1
—d, fori = n41

In the case k # Z[k > ] the energy function is defined by the expression

n n n n kil
E= =AY 3 WV = 51~ d)Voa 3o Vi 2D 30 sidi V505,
=1 =1 1=1 1=1 j=1
with Voy1 = tanh(ungy ~ (2% — n)), while the rest of the parameters are
set as in Model IT and IIL. In this model, the network connectivity should
be complete, since the weights of connections are analogous to path length
of the corresponding vertices in the geometrical graph of the partitioning
problem. It turns out that the parameters (A,D) must be selected appro-
priately, so that some balance is achieved among the satisfiability of criteria

(i) to (iii).

5 PERFORMANCE OF ANN MODELS FOR
2-WAY DECOMPOSITIONS

In this section we consider the performance evaluation of the four neural
network models for the solution of the 2-way partitioning of finite element
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meshes. Specifically, we apply these models to orthogonal meshes of a rect-
angular, semi-annulus and holes in two-dimensional dornain (see Figure 1).
Ve measure the performance in terms of the length of interfaces, network
complezity (number of neuron state changes), cut-cost of the corresponding
G(V, E) graph and communication reduction (defined as the ratio of the final
over the initial cut-cost). For all performance data presented in this section,
the selected parameter values used are given in Table 1.

Model Parameters

A BID| d r

I (n—-1)/811]1
2

I 8 |15
ur | (a-1)/8 |1
v 1 w* | 15

Table 1: Selection of model parameters for the data of Tables 2 to 19. The
“k? yalne is dynamically computed by the simulation model, such that the
parameters of “spheristicity” D, “balance” B and “communication” A have
the same weight at each neuron. The value whin ig equal to the maximum
input of each neuron.

Tables 2 to 19 present the performance of a balanced (k = nf2) 2-way
partition as measured by the above indicators. The data in Tables 2 to 7
indicate that models III and IV give the most accurate solutions with the
best performance, assuming a random initial 2-way partition. Tables 8 to
13 present the performance of the four models on 203 rectangular element
mesh of the semi-annulus domain assuming a CM-clustering 2-way partition
[Chris 89). These data show a similar behavior observed in the rectangular
domain.



Mesh Size | 50 98 153 200 242
Model Interface Length

L 14 12 19 27 13

IT 6 10 13 27 15

III 6 8 11 13 13

IV 6 8 11 11 12

Optimum | 6 8 1@ 11 12

Table 2: The number of interface nodes for balanced 2-way partitions of var-
ious orthogonal domain meshes of a rectangular domain assuming a random
2-way initial partition.

Mesh Size | 50 98 153 200 242

Model Cut Cost
1 27 23 45 64 34
II 13 21 28 64 34

111 13 19 26 33 33
\Y 13 19 26 30 31
Optimum |13 19 26 30 31

Table 3: The cut-cost of interface nodes for balanced 2-way partitions of var-
ious orthogonal domain meshes of a rectangular domain assuming a random
2-way initial partition.

Mesh Size | 50 98 153 200 242
Model % Communication
reduction
| 31 13 15 16 7
II 13 11 10 186 7
III 13 9 9 8 6
v 13 9 9 6 5
Optimum |13 9 9 6 5

Table 4: The ratio of the final number of interface nodes on the number of
initial interface nodes over balanced 2-way partitions of various orthogonal
meshes of a rectangular domain assuming a random 2-way initial partition.



Mesh Size

50 98 153 . 200 242

Model

% Communication
reduction

I
11
I1I
v
Optimum

34 14 18 18
16 12 11 I8
16 11 10 10
16 11 10 9
16 11 10 9

=1 =1 ~1 O OO

Table 5: The ratio of the final cut-cost over the intizl cut-cost of inter-
[ace nodes for balanced 2-way partitions of various orthogonal meshes of a
rectangular domain assuming a random 2-way initial partition.

II

Mesh Size | 50 98 153 200 242
Model Maximum Complexity
I 3 2 3 2 6

16 17 30 16

7
IIL 3 3 3 5 3
Iv 3 1 5 6 4

Table 6: The maximum complexity of interface nodes for balanced 2-way
partitions of various orthogonal meshes of a rectangular domain assuming a
random 2-way initial partition.

Mesh Size | 50 98 153 200 242

Model Average Complexity
I 14 1.2 12 12 13
1I 23 21 29 21 19

III 1.3 1.3 1.2 15 1.3
v 13 1 14 14 1.1

Table T: The average complexity of interface nodes for balanced 2-way par-
titions of various orthogonal meshes of a rectangular domain assuming a
random 2-way initial partition.
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No.Elem 203 elements of semi-anulus domain
Model | Interface | Cut | Percent of | Percent of | Maximum Average
Node |cost| Interface | Cut cost | complexity complexity
Node
I 19 44 100 90 1 1
I1 15 32 79 65 30 3.9
I 12 28 63 57 1 1
IV 11 27 38 55 2.1
Optimum 11 27 58 55

Table 8: results for a 2-way partition of semi-annulus domain with fixed
mesh size of 203 elements and initial partition the CM-clustering solution.

6 Performance of numerical simulation of Hop-
field Models

The ANN models presented are simulated using some well known existing
numerical methods. In particular, the results in Tables 2 to 13 were obtained
by applying a fourth order Runge-Kutta(R-K) method in the interval [0,20].
In the context of neural networks the numerical method is applied until the
stable state of the ANN network is reached. This occurs when the state of
each neuron remains unchanged. For the ANN I, III and IV, the stable state
is achieved for ¢ > 0 while ANN 1I requires more time.

From these data we conclude that the step sizes considered have some
minor inverse effect with respect to step size. In fact the 2-way solution
corresponding to the larger step performs best for all models, which resuits
in better efficiency of the numerical ANN models.

Tables 16 to 22 depict the performance of a HOP solutions to the two way
mesh partitioning problems simulated by three numerical methods: Euler,
2nd order R-K and 4th order R-K under different step sizes. The penaliza-
tion parameter used for these results are listed in table 15 for three different
orthognal meshed of a rectangular region.

11




StepSixe { 05 .1 .15 .2 .25
Model Inteface Length

I 36 36 35 36 33

It 33 32 33 31 32

I1L 11* 11* 11* 11* 11*

v 12 12 12 12 12

Optimum | 12 12 12 12 12

Table 9: The number of interface nodes as a function of the Runge-Kutta
ANN step size for 2 2-way partition of rectangular domain mesh with 210
elements using a random initial partition. (*Unbalanced stable state with a
difference of 5 elements from balance state.)

Step Sixe | .06 .1 .15 .2 .25
Model Maximum Complexity

I 3 3 3 3 3
II 63 31 32 18 19
501 3 3 3 3 3
v 9 17 11 11 6

Table 10: The maximum complexity as a function of the Runge-Kutta ANN
for some 2-way partitions of rectangular domain mesh with 210 elements
using a random initial partition.

Step Sixe | .05 .1 .15 .2 .25

Model Average Complexity
I 1.3 1.3 14 13 13
II 33 29 29 23 24
1T 14 14 14 14 14

Iv 14 14 16 1.2 1.2

Table 11: The average complexity as a function of the Runge-Kutta ANN
for some 2-way partitions of rectangular domain mesh with 210 elements

using a random initial partition.

12



Step Sixe | .05 .1 .15 2 25
Model Interface Length

I 19 19 19 19 19

II 17 15 15 15 15

I 15 12 11 11 12

v 11 11 11 11 1

Optimum | 11 11 11 11 11

Table 12: The number of interface nodes as a function of the Runge-Kutta
ANN step size for 2-way partitions of semi-annulus domain with a fixed
mesh size of 203 elements and using an initial partition the CM-clustering
[Chris 89].

Step Sixe | .05 .1 .15 .2 .25
Model Maximum Complexity

I 1 1 1 1 1

II 18 30 26 24 21
II 1 1 1 1 1
IV T 7 1 5 7

Table 13: The maximum complexity as a function of the Runge-Kutta ANN
step size for 2-way partitions of semi-annulus domain with fixed mesh size
of 203 elements using an initial partition the CM-clustering.

Step Sixe | .05 .1 .15 .2 .25

Model Average Complexity
I 1 1 1 1 1
II 34 39 3.7 38 3.5
11 1 1 1 1 1

1V 22 21 1.7 1.6 1.6

Table 14: The average complexity as a function of the Runge-Kutta ANN
step size for 2-way partitions of semi-annulus domain with fixed mesh size
of 203 elements using as initial partition the CM-clustering solution.
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Model A B|D
I (n-1)/8 [ 5
II 1 8
III 5 0] 2
v 1 8|2

Table 15: The values of penalization parameters used

size | type 4th RK 2nd RK Euler
0.05(0.10 | 0.25) 0.05 | 0.10 } 0.25 | 0.05 | 0.10 ) 0.25
50 I 31 31 31 31 31 30 31 31 30
II 16 16 16 16 18 16 16 ** o
11T 13 13 13 13 13 13 13 13 13
IV 13 13 13 13 13 13 13 13 13
98 I 46 42 39 42 42 39 42 38 33
II 23 23 23 23 23 23 23 o *x
III 19 19 19 19 19 19 19 19 15
IAY 19 19 19 19 19 19 19 19 19
200 I 84 85 84 90 95 95 85 94 g
1I *41 *909 *90 *11 *ag de *¥ *4 *¥
[1I 28 28 28 28 28 28 28 28 28
IV 28 28 28 28 28 28 28 28 28

Table 16: The Final Cut-Cost of four two-way partivioning of three dif-
[erent size meshes using 4th order R-K, 2nd order R-K and Euler methods

for different step sizes

14




size | type dth RK 2nd RK Euler
0.05]0.10 | 0.25 | 0.05 | 0.10 [ 0.25 | 0.05 | 0.10 | 0.25
50 I 16 16 16 16 16 16 16 16 16
II T 7 7 7 T 7 T ** **
IIT 6 6 6 6 6 6 6 6 6
8% 6 6 6 6 6 6 3 6 6
98 [ 22 19 18 19 19 18] 20 18 15
II 10 10 10 10 10 10 10 A *
111 8 3 8 8 8 3 8 8 3
v 8 8 8 8 8 8 S 3 3
200 I|] 38| 38| 38| 42 444} 42| 384 43| 35
I "7 *192 *12 *17 *19 ¥ * ¥ *k *
111 11 11 11 11 11 il 11 11 11
IV 11 11 11 11 11 11 11 11 11

Table 17: Final Interface Nodes of four two-way partitioning of three
different size meshes using 4th order R-K, 2nd order R-K and Euler methods
for different step sizes

size | type 4th RK 2nd RK Euler

0.05( 010 0.25| 0.05 0.10 | .25 0.05]0.10 | 0.25

30 [l 1.38% 126§ 1.17 | 1.43 134 1.13 | 1.44 | 1.34 | 3.21
II| 836 511 2.62| 8.57 6.71 | 15.67 | 11.45 * b
Il 143 131 1.24] 1.42 1.34 7 1.21 | 1.41 | 1.40| L.31
v] 136 123 1.13] 1.33 .29 1.181 1.37 | 1.31 | L.14

98 Il 1.35] 136 131 .36 125 1.28 | L1.40| 2.25 | 2.06
II| 652 4.03| 2.44| 6.69 5.61 | &07 | 11.65 ¥* w*
nr| 24| 1.19| 11064 1025 L2001 1.12 | 1.27 | 1.22 | L.15
IV | 1.07| 106 | 1.03| 1.09 1.06 | 1.041 1.09| 1.08] 1.09

200 Il 143 L34 L74| 142 1.36 [ 1.30 | 1.48}|1.51|1.38
II| *7.64 | *6.94 | *4.60 | *3.14 | *15.71 X ** ** **
I | 1.23| 120 11} 1.24 1.19( 1.08( 1.25(1.211{ 1.95
IV | 116 1.13| 1.10) 1.17 1.1b) 112 1.22 ) 1.17 | 1.15

Table 18: Mean Complexity of four two-way partitioning of three different
size meshes using 4th order R-K, 2nd order R-K and Euler methods for
different step sizes

15
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size | type ith RK 2nd RK Euler
0.05| 0.10| 0.25 0.05( 0.10| 0.25| 0.05{ 0.10| 0.25
50 [| 38.10( 38.10 | 38.10 | 38.10 | 38.10 | 47.78 | 38.10 } 38.10 | 37.18
II| 19.89(19.89}19.89 ( 19.89 | 19.89 | 19.89 | 19.89 ok **
IIT | 1592 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92
IV 1592 15.92 | 15.92 | 15.92 | 15.92 | 15.92 | 15.92 ] 15.92 | 15.92
08 I[{ 27.44125.19 | 23.55 | 25.19 | 25.19 | 23.39 | 25.34 | 22.94 | 22.25
IT | 14.11 | 14.11 | 14.11 | 14.11 | 14.11 | 14.11 | 14.11 ** *¥
IIT | 11.26 | 11.26 | 11.26 | 11.26 | 11.26 { 11.26 { 11.26 | 11.26 } 11.26
IV | 11.26 | 11.26 | 11.26 | 11.26 | 11.26 | 11.26 | 11.26 | 11.26 | 11.26
200 [ 24.29 [ 24.50 | 24.28 | 26.07 | 27.58 | 27.30 | 24.50 | 27.21 | 22.25
II|*12.13 | *8.12 | *8.12 | *12.13 | *8.12 *x ** ** ok
III 8.10| 810} 8.10 810{ 8.10| 595 | 8.10( 8.10| S8.10
v 8.10| 8.10] 8.10 8.10 | 8.10| 8.10| 8.10| 8.10| 8.10
Table 21: Reduction of Cut-Cost as percen of four two-way partitioning
of three different size meshes using 4th order R-K, 2nd order R-K and Luler
methods [or different step sizes
size | type 4th RK 2nd RK Euler
0.05| 0.10] 0.25 0.05| 0.10] 0.25{ 0.05| 0.10) 0.25
50 I| 36.19136.19]36.19  36.19 | 36.19 | 46.74 | 36.19 | 36.19 { 35.10
I[I| 16.43 | 16.43 | 16.43 | 16.43 | 16.43 | 16.43 | 16.43 ** **
III| 13.09 | 13.09 | 13.09 ( 13.09 | 13.09 | 13.09 | 13.09 | 13.09 | 13.09
IV | 13.09 | 13.09 | 13.09 | 13.09 | 13.09 | 13.09 | 13.09 | 13.09 | 13.09
98 1| 24.92 (2245 21.11 | 22.45| 22.45 | 20.84 | 22.76 | 20.84 | 17.65
II 11.37 | 11.37 | 11.37 11.37 | 11.37 | 11.37 | 11.37 ** *H
I1I 9.18| 9.18| 9.18 9.18| 9.18| 9.18| 9.18| 9.18| 9.18
v 918 9.18| 9.18 918 | 9.18| 9.18| 9.18| 9.18] 9.18
200 I] 21.96 [ 22.10 | 21.84 | 23.92 | 25.47 | 24.33 | 22.10 | 24.90 | 20.16
II | ¥17.25 | *6.55 | *6.55 | *10.23 | *6.55 *x ** ** **
III 6.32 | 6.32| 6.32 6.32| 6.32| 4.64| 632 | 6.32| 6.32
v 6.32 | 632 6.32 632 6.32| 6.32| 632 6.32] 6.32

Table 22: Reduction of Interface Nodes as percent of four two-way
partitioning of three different size meshes using 4th order R-K, 2nd order
R-K and Euler methods for different step sizes
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7 Tuning of penalization parameters

In this section we present the performance of the solution for the various
models as a function of the penalization parameters. The results on Tables
23-26 indicates various measures of a two-way partitioniag of three different
orthogonal meshes of a rectangular 2-D region. Tables 23-26 indicates the
effect of penalization parameters. These type of data were used to obtain
the parameter values listed in table 1.

A=l B=1 B=0.5 B=0.25 B=0.1
nodes 50| 98 (200 50| 98 1200 S0 98| 200 | s50( 98| 200
cut-cost 31 33 - 171 39| 68 161 30 45 16 | 22| 66
steps 30 | 302 - |[ 223 | 152 | 454 )| 168 | 281 ] 1040 || 135 | 285 | 546
mean-com. | 1.7 | 2.7 -l 3.1 2.5 4| 3.4 | 3.2 69| 3.7 41 5.2
max-com. 5( 10 - 12| 13| 27 17 254 212 18| 39| 101
balance 4B | 4B -|| 4B| 4By 4B{ 4B | 4B JB | 4B | 4B | 1B
stability 45 | 48 -|| 48| 4S | 45| 4S | 4S8 45 || 45| 45| 4S5
red. % 38| 23 - 21| 231 20| 20| 19 13 20| 17| 19
optimum 13] 19 - 13| 19| 28 13| 19 28 13 19] 28
Table 23: The performance of Model I two-way partitioning for three differ-
ent size meshes for different values of parameter B
A=1 B=8§ B=5 B=3 B=1
nodes 50| 98 (*200 | S50 98 | *200| 50 98| *200| 50 [ 98 { *200
cut-cost 16| 24 20) 16| 24 20 16] 24 20 16 | 24 29
steps 108 | 204 | 822 ) 102|204 | 822 97204 | 821 | 96| 206 | 821
mean-com. | 2.8 4 69| 47| 3.3 7139] 3.9 69|42 3.7| 89
max-com. | 37 32 67| 30| 30 G6 | 18] 28 66 | 25| 23 71
balance 4B | 4B 3B| 4B | 4B 3B | 4B | 4B 3B | 4B | 4B 3B
stability 45 | 48 38| 45| 48 3S | 45| 48 35 | 45 [ 4S 3
red.% 201 14 8| 207 14 8( 20| 14 8{ 20| 14 8
optimum 13{ 19 28| 13| 19 28| 13| 19 281 13| 19 28

Table 24: The performance of Model II two-way partitioning for three dif-
ferent size meshes for different values of parameter B
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A=40,B=1,D=1 | A=40,B=0,D=2 | A=3B=1,D=1 A=5,B=0,D=2

nodes 501 98 200([ 50| 98 200 | 50 | 98 200 | 50| 98 | 200
cut-cost 131 24 4| 13 ) 19 281 13| 19 281 13 19 28
steps 95 | 133 154 | 79 | 74 113 { 40 ( 35 28 [ 23| 18 17
mean-com. | 1.5 | 1.5 1311414 14|15 1.3 1.2 113 t.2 1.1
max-com. 3 4 3513313.5 3.2 (35|35 352823 28
balance JB| 3B 2B | 3B | 2B 4B (4B | 4B | 4B [ 4B | 4B {B
stability 45 | 48 25 | 48 | 48 45| 4S | 48 15 | 45| 48 45
red.% 16 [ 14 16 16 | 11 3|1 16| 11 81 16| 11 8
optimum 131 19 281 13| 19 281 13 ] 19 28 131 19 28

Table 25: The performance of Model III two-way partitioning for three
different size meshes for different values of parameters A,B and D

A=40,B=1,D=1 | A=40,B=8,D=1 | A=1,B=],D=4 A=1,B=8,D=2

nodes 50 98 200 | 50| 98 200 50| 98| 200 | 50| 98 | 200
cut-cost 14| 24 54| 14| 28 5941 131 19 28 13| 19 28
steps 45 | 181 176 | 43 | 130 228 [ 14 8 20 131 14 30
mean-com. | 1.2 | 1.2 1.1 1121 1.2 1.1 1.2 1 1.L111.2]11 1.1
Max-com. 2| 2.8 25123 2.8 25125(18| 25128 2| 2.5
balance 2B | 1B 0B | 2B | 1B 1B | 4B | 4B 4B | 4B | 4B 4B
stability 45 | 4§ 45 | 45| 48 45 | 45| 4S 45 | 45 | 4§ 45
red.% 17| 14 16 | 17| 17 16 16 11| 81| 16| 11 8.1
optimum 13| 19 28 13| 19 281 13| 19 28 13| 19 28

Table 26: The performance of Model IV two-way partitioning for three

different size meshes for different values of parameters A,B and D



8 The effect of geometry in the performance of
HOP two-way mesh partitioning

In this section we present the performance of a two-way partitioning of
various meshes corresponding to different geometric regions. The intend is
Lo see the effect of the geometry in the Hopfield solution of the partitioning
problem. The meshes considered were kept approximately equal. Tables 28-
30 indicate the geometry effects the performance of the computed solution.
Furthermore all tables including Table 31 support the claim that model III
is the more accurate and efficient for the workload partitioning problem
considered in this report.

[ Model I] - A=(n-1)/8B =8
[ Model I]] A=1B=3S8
[ Model I1I A=5 B=1 D=2
[ Model IV A=1B=1D =4
1 Final cut-cost
2 Final Interface Node
3] Optimal Cut-cost
4 Optimal Interface Node
5 Initial Cut-cost
(6 Initial Interface Node
7 Reduction of Cut-Cost as prrcent
8 Reduction of Interface Node as percent
9 Balance
10 Stability
11 Maximum Complexity
12 Mean Complexity
13 Number of steps
* average of 3 problems

Table 27: This table shows the constants used in Table, and what each
number represents
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I 11 1T v

50 98] 200 50| 98 [*200 50 [ 98] 200 50 98[ 200
1] 36| 47| 86| 16| 24| 29 13 19| 28 13 19 28
2] 19 23 | 40 7 10| 12 6 8| 11 6 8| 11
3] 13 19 28 13 19| 28 13 19 28 13 19| 28
4 6 8 11 6 8| 11 6 8| Il 6 8| 11
5 82| 169 | 346} 82| 169 | 353 82| 169 | 346 32 | 168 | 316
6 46 | 88| 174| 46| 87| 178 46 88 | 174 | 46 88 | 174
(7] | 44.49 | 27.94 | 24.78 | 19.89 | 14.11 | 8.12 | 15.92 | 11.26 | 8.10 | 15.92 [ 11.26 | 8.10
8] | 41.22 | 25.75 | 22.38 | 16.43 | 11.37 | 6.55 | 13.09 | 9.18 [ 6.32 [13.09 [ 9.18 | 6.3
9 aB| 4B | 4B | 4B| 4B| 3B| 4B| 4B| 4B| 4B| 4B| 4B
(10 45 4S5 | 45| 45| 4S| 3S 45| 4S| 4S| 45| 45| 48
11] | L.75| 3.00| 3.50| 37| 32| 67| 35| 35| 35| 25| L8| 25
12| 1.08| 1.29| .29 4.14| 3.72| 6.93 | 1.50 | 1.33| 1.23 | 1.20 | 1.04 | L1
13 16| 43| 92| 95| 206 821 39 34| 28 14 8| 20

Table 28: Rectangular Domain using 4th corder R-K
I II T v

50 92| 198] 50| 92 198 50| 921 198 50| 927 198
1 31| 41| 84 10] 13] 42 0] 13 22 0] 13| 22
2 15| 20| 40 5 6 22 5 6 9 3 6| o9
3 10 3] 22 10 13 22 10| 13| 22 10} 13| 22
4 5 6 9 5 6 9 5 6 9 5 6 9O
5 75| 151 | 342 77| 156 | 336 75 | 151 | 342 75 | 151 | 342
6 12| 80| 172| 43| 84| 168 42| 80| 12| 42| 80| 172
71 | 42.12 | 26.60 | 24.04 | 12.09 | 8.33 | 12.50 | 13.38 | 8.61 | 6.45 | 13.38 | 8.61 | 6.45
3] | 37.66 | 24.50 | 23.23 | 11.63 | 7.14 | 13.10 [ 11.95 | 7.51 | 5.25 | 11.95 | 7.51 | 5.25
9 1B | 4B | 4B| 4B| 4B| 4B| 4B| 4B| 4B| 4B]| 4B| 4B
10 aS| 45| 45| 4S| 4S| 4S] 4S| 4S| 4§ 15| 45| 45
11 | 1.50 | 3.50 | 4.25] 7.00 | 55.00 | 58.00 | 2.50 | 3.25 | 3.00 [ 1.50 [ 2.00 [ 2.25
121 | 1.07 | 128 1.32| 2.00| 7.54| 457 | 1.33|1.35]1.28] 113 1.08 [ 1.12
13 28 521 83| 46| 588 382 34| 39| 29 131 14| 29

Table 29: Semi-Annuius Domain using 4th order R-K
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I IL I vV

60 100] 196 60 100 ] 196 60 | 100 | 196 60 ] 100 | 196

1 20 45 66 8 20 32 8 8] 14 8 S| 14
2 12 27 34 6 10 14 6 6 ) 6 6| 8
3 3 8 14 8 8 14 8 S| 14 8 8| 14
1] 6 6 8 6 6 8 6 6 8 6 6 8
5 83| 152 | 321 88 | 163 | 333 83 | 152 | 321 83 | 152 | 321
6 53 93 | 172 56 | 103 | 184 33| 93 [ 172 53 | 93| 172
7] [ 22.97 | 29.21 | 20.45 | 9.09 | 12.27 | 9.61| 9.68 | 5.20 | 4.37 | 9.68 | 5.29 | 4.37
8] | 22.56 | 28.43 | 10.83 | 10.71 | 9.71| 7.61§ 11.34 | 6.50 | 4.66 | 11.3% | 6.50 | 4.6
9 iB| 4B | 4B | 4B | 4B| 4B| 4B| 4B | 4B| 4B | 4B | 4B
10 45 48 48 48 4S8 45 45 45 48 45 48 48
[11] | 2.50 | 3.00 | 5.50 | 10.00 | 36.00 | 30.00 | 2.50 | 3.25 | 2.50 | 1.30 | 1.50 | 2.25
(12] | 1.15| 1.29| 142 2.63| 4.46| 3.58| 1.22 [1.29 | 1.16 | 1.05| 1.05 | 1.07
[13] 28 24 92 52 | 246 | 207 17| 23| 18 6 12] 12

Table 30: Hole Domain using 4th order R-K

I IT IIT v

Cut-Cost 256 | 156 52 52
Interface Node 113 70 19 19
Initial Cut-cost 1914 | 1914 | 1914 | 1914
Initial Inter{face Node 888 888 | 888 | 888
Reduction of Cut-Cost 13.38 | 8.15 | 2.72 | 2.72
Reduction of Interface Node | 12.73 | 7.88 | 2.14{ 2.14
Balance B B B B
Stability S 5 S 3
Maximum Compexity 4] 199 3 48
Mean Complexity 1.28 ] 7.52 | 1.28 | 1.84
Steps 98 | 1020 80| 135

Table 31: Semi-Annulus Domain with 1018 elements using 4th or-
der R-K
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