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A WORKLOAD PARTITIONING STRATEGY FOR PDES
BY A GENERALIZED NEURAL NETWORK

H. Byun, s.K. Kortesis, and E.N.Haufe"tis
Computer Science Department

Purdue University
West Lafayette, IN 41907

Abstract

We consider the partitioning of a workload defined over a discrete
geometrical data structure in a way that balanc~ i, across multi­
ple processors while minimizing the communication/!;ynchronization
among them. We formulate this problem in the context of the numeri­
cal solution of partial differential equations in distribut,~d multiproces­
sor hardware environments and we explore a neural nef.work approach
for determining its solution. Specifically we are devel(lping four neu­
ral network models for the corresponding geometric graph partitioning
problem, examine the optimality of the obtained solution and argue
about their suitability in solving these types of problems.

1 INTRODUCTION

The problem of partitioning and allocation of a given workload or compu.
tation is One of the major bottlenecks to the effective u~e of multiprocessor
machines. In this study we are considering the partitioning of computations
defined over discrete geometrical domains (i.e., finite element and finite dif­
ference meshes). Specifically, we seek optimum and fast partitioning of the
geometrical data associated with the numerical solution (,fpartial differential
equations (PDEs) which balances the workload across multiple processors
with minimum communication and synchronization requirements among the
assigned ones. The above problem is formulated as a geometric graph parti­
tioning problem for general finite element meshes. The algorithms developed
apply equally well to other type of meshes. In [Chri 8~IJ we have analyzed
the same problem using clustering and optimization based techniques. In
tltis paper we are developing several neural network mod.els for its solution.
The formulation of the partitioning problem is discussed in Section 2. Sec­
tion 3 contains a brief description of the neural network approach in solving
these problems. In Section 4 we are developing four neural network models
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for the solution of the 2-way geometrical partitioning problem. Finally in
Section 5, we present quantitative and qualitative results for the 2-way so­
lution obtained by the four models and compare the obtained solution with
the conventional techniques developed in [Chri 89].

2 WORKLOAD PARTITIONING STRATEGY
FOR PDES

We consider the partitioning of a problem defined on a fixed discrete geomet­
rical domain, in a way that balances the workload across multiple proces­
sors and minimizes the communication/synchronization among them. These
problems arise, for example. in solving partial differential equations. Chriso­
choides et al, [Chri 89J have reviewed the various approaches to partitioning
PDE computations and have devised new methods for their automatic de­
composition. In this paper we are interested in the geometry decomposition
of finite element meshes. Other types of domain discretizations can be han­
dled simila.rly. Throughout, we assume that a finite element mesh is defined
by the set of nodes {ni(z, y, Z)}~l with connectivity {iDnj}~, and the set
of elements {emj(nil, ... ,nil-)}f!, where nj and mj indicate orderings of
nodes and elements.

On this mesh, one can define a geometrical graph G(V, E) whose vertices
correspond to elements and edges indicate their connectivity in the mesh.
Thus, the partitioning of the mesh in subdomains can bl! viewed as the par­
titioning of the corresponding graph G. Following [Chri 89J, we are seeking
a partition of the mesh or graph such that (i) the subclomains have equal
number of elements, (ii) the subdomains are "'spherical" and connected. and
(iii) their connectivity is mjaimum. Under certain assumptions, these type
of meshes guarantee optimum partitions of the underlying computations.
Specifically, in this paper, we try to determine 2-way domain decomposi­
tions that satisfy criteria (i) to (iii) using neural netwc·rk approaches. We
have shown in [Chri 89J that this problem can be formulated as an opti­
mization problem where the objective function is the cutting cost of the
geometrical graph or the communication cost of the two subdomains, sub­
ject to load balanced (subdomain sizes) constraints. If we denote by Dl, D2
the two subdomains, x(ei,ej) the characteristic function that takes values
y(ei,ej) = 1 if e

"
ej are adjacent and belong to the different subdomains

and x(ei,ej) = 0 otherwise then the objective function is
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1 n n

:1 LLx(ei,ej)
;=1 ;=1

subject to the constraints IDil = k and [D21 = I~ - n In the rest of
the paper we formulate several neural network models for solving the above
optimization problem.

3 NEURAL NETWORK APPROACH

In this section we review a neural network methodology for solving problems
which are reduced to optimization problems. First, Hopfield (Hopf 84J and
IIopfield and Tank (Hopf 85] used this methodology to develop a solution
to some quadratic optimization problems. A neural network can be viewed
as a fully connected graph, whose vertices correspond to neurons and edges
to synopsis between the neurons. The degree of connec.tivity among i and
j neurons is defined by a weight Ti.j. If two neurons are disconnected, then
T;,j is set to zero. The output of a neuron i is represented by the variable
lf; and its input by Uj where Uj = L:i=l TjiVj and n is the total number
of neurons. For the description of a given problem, a r,~lation between the
input and output at each neuron is defined by the threshold function

V"j = Y(u;)

while a Hamiltonian (energy function) E(Vl , ... , V.,) is constructed so that
the desired solution occurs at the minimum of E. This amounts to formu­
lating the original problem as an optimization problem. Hopfield and Tank
[Hopf 85] introduced the so called" Neural NetworJ(' approach for solving
this problem which is equivalent to assigning "suitablell random values to the
input variables Uj and integrating the generalized "Hol'field-Tank network
equation"

du; Uj 0
- = -- - -E(V" ... , Vnl
dt Ti elf;

until the state converges (see [Fox 89]). The final state of this network can
be interpreted as the problem solution. Next we are developing four such
models for the solution of the 2-way graph partitioning problems described
in Section 2.
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4 DOMAIN DECOMPOSITION BY A NEURAL
NETWORK

In this section we develop four neural networks that describe the 2·way
partitioning problem formulated in Section 2. They consist of 0) the set of
state variables Vi, (ii) their energy function, (iii) network connectivity {Ti,j}
and (iv) the associated threshold function.

4.1 Neural Model I

First we consider a neural network whose output variables Vi needed to
describe a 2·way feasible solution, are selected to be V; > 0 for every
ej E D 1 and Vi < 0 if ej E D 2 • The optimum solution is assumed to
correspond to the mjnimum of the energy function

1 n n n

E = -2A LLc,.jV;Vj +HI I: V; - (2k - n) )'
;=1 j=l i=1

where ci,i = x(ej,ej), k = IDtl and At B are appropriate weights. The
minimization of the first term in the energy function (4.1) corresponds to
the minimization of the communication cost or cut-cost of the corresponding
geometric graph 2-way partitioning. The second term in (4.1) is minimized
when the number of Vi > 0 or Cj E D1 becomes equa.l to k. The weighs
A and B are selected to assign different emphasis to the communication
balance or criterion. The energy function (4.1) can be rewritten in form

1 n n n

E = -- L L(Ac;.j - 2H)V;Vj - I:V;(2H(2k - nl) + H(2k - n)'.
2. . . 1,=1 J=I .=

dUj 6E
---u'--
dt- '6Vi

where W; = - I:i=I(Aci,j-2B)Vj-2B(2k-n) since Ci,.i = Cj,i. In this case
the connectivity weights are Tj,j = ACi,j - 2B and g(u,) = tanh(ud. rr in
the energy function (4.1) we add the term -B I: V?, th(m the minimization
of E forces the Vi to take the values +1or -1 and we h.~ve Tjj = 0 for all i.
This usually accelerates the convergence of (4.2).

whose minimum value corresponds to the stable state solution of the system
of differential equations
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4.2 Neural Model II

This model consists of the previous network with an additional neuron
(Nn+d connected with all others, such that Ti,n+l = 1 and Tn+1,i = -d. In
this model, the energy function has the form

1 n+l n+l

E = -2LLT;,iViV;
;=1 j=I

In" 1 n 1 n-'2?=?= Ti,jViVj - 2Vn+l ?=Ti,n+l Vi - 2"1I"n+1 ?=Tn+l,ivi
.=1 J=l ,=1 ,=1

where Ti.j = ci.i for i, j f:. n+ I, Ti,n+! = 1 and Tn+1•i = --d for i = 1,2, ... , n
for all i. The above energy function can be rewritten in the form

1 n n 1 n

E = --ALL';,iViVj - -(1- d)V'+'LVi
2 ;=1 j=l 2 :=1

The second term in the energy function (4.3) has as its mission to enforce
the constraints of the 2-way partition problem. IT d > 1 then its min­
imization depends on the term Vn+t Li'=l Vi. Furthermore, if we choose
Vn+l = g(un+l} = tanh(r(un+l - (2k - n))) then the size of g(un+l)un+l
will depend on the values of rand k, since un+! == 2:i=l Vi. If k == ~ then
g(un+dun+! ~ 0 and its minimum value (zero) occurs at un+! == O. This
gh'es the desired load balanced IDtl == ~. If k '# ~ the product g(un+dun+!

becomes negative when Un +l takes values in the interval (0, 2k-n) (2k-n. 0)
and its values are reduced, while Un+! tends to 2k - n. h this case it is easy
to realize that a condition for balance load is IUn+l - (2k - n)1 < 2. Further.
more, we choose the value of r relative big so that the effect of the factor
g( un+d in the reduction of the value g(un+t )un+! is minimum. It appears
that the second neural model has smaller connectivity ! ;~i=l ICe,1 +2n com­
pared to the connectivity of the first model n(n -1). Furthermore, the state
function of the neuron N n+!

{
0 if Itanh(r(u.+l - (2k - n))1 < <

g(un+d = tanh(r(un+! _ (2 *k - n))) otherwise

allows the network of the first n neurons to examine the states of the energy
[unction, independently of the problem constraints. The expedmental reo
suIts to be presented in Section 5 indicate that the two models produce solu­
tion qualitative similar to the 2-way solution obtained by the Kernighan-Lin
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algorithm [Ked 70] as it has been implemented in [Chri 89]. The disadvan­
tage of this solution is the fact it corresponds to a local minimum of the
communication or cut-cost function associated with the 2-way partitioning
problem [Chri 89]. To avoid this behavior Chrisochoides et at. [Chri 89] in­
troduced a new profit function for selecting the elements to be interchanged
which involves the distance of the current subdomains. In the next model.
we incorporate this distance into the energy function.

4.3 Neural Network Model III

In this model we introduce an energy function that involves the minimum
length di.j of the path that connects the elements ei, e, in the geometrical
graph G(V, E). This model assumes the network I or II and the Hamiltonian

Inn n Inn

E = --A""c· ·V,V· +B[" V, I' + -D"''' d· 'V:'V'2 L-- L...J ',] I ] L-- 1 2 L-~ ',] I ]

.=1 j=l i=1 i=1 j=l

with k = ~.
The first two terms are the same with the ODes ill (4.1). The third

term is the factor that enforces the "spherical" nature of the partitioning
subdomains. For its minimization we must have ViVj > O,that is, ej and ej

must belong to the same subdomains for the smallest possible values of di,j.

This leads to a better matching of the partitioning criterion (ii). Finally,
the new energy function (4.4) for k = I can be written in the form

1 n n

E = -2I: I:<Ac;.; - 2B - Dd;.;)V;V;
;=1 j=1

In the case k ¥- I (assuming k > I without loss of generality), we define

the energy function such that

The factor 8j in the third term of (4.5) controls the ".!'pherical
n

nature of
the partitioning subdomains and it is defined as

s; = {
1

Jn~'

6

if Vi > 0

if Vi < 0



It is used to balance the "spherical" requirement among the two subdomains.
The final form of (4.6) is

1 n n n
E = -"2 L L(Ac',j - 2B - Ds,d,.;)V,Vj - L V,(2B(2k - n)) + B(2k _ n)'

;=1 j=l i=1

and Ti,j = AC;,j - 2B - s;Ddi,j.

4.4 Neural Network Model IV

First we define the Hamiltonian function of this model ~_·or k = I to be

Inn 1 n 1 nIl
E = -- '\' '\' c' 'V-V- - -(1 - d)v' +1 '\' v,. + -D " '\' s·d ·VOV2~~ I,) '} 2 n ~' '2 ":~~' .,] , }'

,=1 }=l .=1 ,=1 }=I

with Vn+I = tanh(un+t), which takes into consideration the requirement of
"spherical" and non·disconnected partition. The threshold function g(u;) is
similar to the one in Model II, while the network conneo:tivity is defined by
the weighted function

{

Ac·· - 8' for i < i J' < n',}' - , -
Ti,j = I. for j = n+I

-d, for i = n+l

In the case k #: I[k > Il the energy function is defined by the expression

Inn 1 n Inn
E = --A'\' '\' c' ·VoV - -(1- d)v' +1 '\' Vo + -D '\' '\' ,·d· ·Vv,·2 ~{- I,] • J 2 n ~' 2 !- 4-- ~ l ',J • J'

,=1 J=1 ,=1 .=1 J=l

with Vn+t = lanh(un+I - (2k - n)), while the rest of the parameters are
set as in Model II and III. In this model, the network connectivity should
be complete, since the weights of connections are analol~ous to path length
of the corresponding vertices in the geometrical graph of the partitioning
problem. It turns out that the parameters (A,D) must be selected appro­
priately, so that some balance is achieved among the satisfiability of criteria
(i) to (iii).

5 PERFORMANCE OF ANN MODELS FOR
2-WAY DECOMPOSITIONS

In this section we consider the performance evaluation of the four neural
network models for the solution of the 2-way partitioning of finite element
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meshes. Specifically, we apply these models to orthogonal meshes of a rect­
angular, semi-annulus and holes in two-dimensional domain (see Figure 1).
We measure the performance in terms of the length of interfaces, network
complexity (number of neuron state changes), cut-cost of the corresponding
G(V, E) graph and communication reduction (defined as the ratio of the final
over the initial cut-cost). For all performance data presented in this section.
the selected parameter values used are given in Table 1.

Model Parameters
A B D d •

I (n 1)/8 1 I

II 2 8 1.5

III (n-I)/8 1 •
IV I • •• 1.5

Table 1: Selection of model parameters for the data of Tables 2 to 19. The
"*,, value is dynamically computed by the simulation model, such that the
parameters of "spheristicity" D, "balance" B and "communication" A have
the same weight at each neuron. The value «+*" is equal to the maximum

input of each neuron.

Tables 2 to 19 present the performance of a balanc(!d (k = n{2) 2-way
partition as measured by the above indicators. The da.ta in Tables 2 to 7
indicate that models III and IV give the most accurate solutions with the
best performance, assuming a random initial 2-way partition. Tables 8 to
13 present the performance of the four models on 203 rectangular element
mesh of the semi-annulus domain assuming a CM-clustering 2-way partition
[Chris 89}. These data show a similar beha.vior observed in the rectangular

domain.
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Mesh Size 50 98 153 200 242
Model Interface Length

1 14 12 19 27 15
11 6 10 13 27 15
111 6 8 11 13 13
IV 6 8 11 11 12

Optimum 6 8 11 11 12

Table 2: The number of interface nodes for balanced 2-way partitions of var­
ious orthogonal domain meshes of a rectangular domain assuming a random
2-way initial partition.

1.fesh Size 50 98 153 200 242
Model Cut Cost

1 27 23 45 64 34
11 13 21 28 64 34
III 13 19 26 33 33
IV 13 19 26 30 31

Optimum 13 19 26 30 31

Table 3: The cut-cost of interface nodes for balanced 2-way partitions of var­
ious orthogonal domain meshes of a rectangular domain assuming a random
2-way initial partition.

Mesh Size 50 98 153 200 242
Model % Communication

reduction
[ 31 13 15 16 7

11 13 11 10 16 7
111 13 9 9 8 6
IV 13 9 9 6 5

Optimum 13 9 9 6 5

Table 4: The ratio of the final number of interface nodE~s on the number of
initial interface nodes over balanced 2-way partitions of various orthogonal
meshes of a rectangular domain assuming a random 2-way initial partition.
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Mesh Size 50 98 153. 200 24~

Model % Communication
reduction

I 34 14 18 18 8
II 16 12 11 18 8
III 16 11 10 10 7

IV 16 11 10 9 7

Optimum 16 11 10 9 ;

Table 5: The ratio of the final cut-cost over the intial cut-cost of intcr­
face nodes for balanced 2-way partitions of various orthogonal meshcs of a
rectangular domain assuming a random 2-way initial pa,rtition.

Mesh Size 50 98 153 200 242
Model Maximum Complexity

I 3 2 3 2 6
II 7 16 17 30 16
III 3 3 3 5 3
IV 3 1 5 6 4

Table 6: The maximum complexity of interface nodes for balanced 2-way
partitions of various orthogonal meshes of a rectangular domain assuming a
random 2-way initial partition.

Mesh Size 50 98 153 200 242
L\'lodel Average Complexity

I 1.4 1.2 1.2 1.2 t.:l
II 2.3 2.1 2.9 2.1 1.9
III 1.3 1.3 1.2 1.5 1.-1
IV 1.3 1 1.4 1.4 1.1

Table 7: The average complexity of interface nodes for balanced 2-way par­
titions of various orthogonal meshes of a rectangular domain assuming a
random 2-way initial partition.
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No.Elem 203 elements of semi-anulus domain
Model Interface Cut Percent of Percent of Maximum Average

Node cost Interface Cut cost complexity complexity
Node

I 19 44 100 90 I I
II 15 32 79 65 30 .1.9
III 12 28 63 57 I I
IV 11 27 58 55 7 2.1

Optimum 11 27 58 55

Table 8: results for a 2-way partition of semi-annulus domain with fixed
mesh size of 203 elements and initial partition the CM-clustering solution.

6 Performance of numerical simulation of Hop­
field Models

The ANN models presented are simulated using some well known existing
numerical methods. In particular, the results in Tables 2 to 13 were obtained
by applying a fourth order Runge-Kutta(R-K) method in the interval [0,20).
In the context of neural networks the numerical method is applied until the
stable slate of the ANN network is reached. This occurs when the state of
each neuron remains unchanged. For the ANN I, III and IV, the stable state
is achieved for t ;::: 0 while ANN II requires more time.

From these data we conclude that the step sizes considered have some
minor inverse effect with respect to step size. In fact the 2-way solution
corresponding to the larger step performs best for all models, which results
in better efficiency of the numerical ANN models.

Tables 16 to 22 depict the performance of a HOP solutions to the two way
mesh partitioning problems simulated by three numerical methods: Euler.
2nd order R-K and 4th order R-K under different step sizes. The penaliza­
tion parameter used for these results are listed in table 15 for three different
orthognal meshed of a rectangular region.
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Step Sixe .05 .1 .15 .2 .25
Model Inteface Length

1 36 36 35 36 3.5
11 33 32 33 31 32
III 11' 11' 11' 11' 11'
IV 12 12 12 12 12

Optimum 12 12 12 12 1'1

Table 9: The number of interface nodes as a function of the Runge-Kutta
ANN step size for a 2·way partition of rectangular domain mesh with 210
elements using a random initial partition. ("'Unbalanced stable state with a
difference of 5 elements from balance state.)

Step Sixe .05 .1 .15 .2 .25
Model Maximum Complexity

1 3 3 3 3 3
11 6.3 31 32 18 19
III 3 3 3 3 3
IV 9 17 11 11 6

Table 10: The maximum complexity as a function of the Runge-Kutta ANN
for some 2·way partitions of rectangular domain mesh with 210 elements
using a random initial partition.

Step Sixe .05 .1 .15 .2 .25
~Iodel Average Complexity

I 1.3 1.3 1.4 1.3 1.3
11 3.3 2.9 2.9 2.3 2.4
III 1.4 1.4 1.4 1.4 1.4
IV 1.4 1.4 1.6 1.2 1.2

Table 11: The average complexity as a function of the Runge-Kutta ANN
for some 2-way partitions of rectangular domain mesh with 210 elements
using a random initial partition.
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Step Sixe .05 .1 .15 .2 .25
Model Interface Length

I 19 19 19 19 19
11 17 15 15 15 15
III 15 12 11 11 12
IV 11 11 11 11 11

Optimum 11 11 11 11 11

Table 12: The number of interface nodes as a function of the Runge.Kutta
ANN step size for 2-way partitions of semi-annulus domain with a fixed
mesh size of 203 elements and using an initial partition the CM-clustering
[Chris 891.

Step Sixe .05 .1 .15 .2 .25
Model Maximum Complexity

I 1 I 1 I 1
11 18 30 26 24 21
III I I 1 I 1
IV 7 7 7 5 7

Table 13: The maximum complexity as a function of the Runge-Kutta ANN
step size for 2-way partitions of semi-annulus domain with fixed mesh size
of 203 elements using an initial partition the CM-clustering.

Step Sixe .05 .1 .15 .2 .25
:Model Average Complexity

I I 1 I 1 1
II 3.4 3.9 3.i 3.8 3.5
III I I 1 I I
IV 2.2 2.1 1.7 1.6 1.6

Table 14: The average complexity as a function of the Runge-Kutta ANN
step size for 2-way partitions of semi-annulus domain with fixed mesh size
of 203 elements using as initial partition the CM.clustering solution.
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Model A B D
I (n-1l/8 5
II 1 8
III 5 0 2
IV 1 8 2

Table 15: The values of penalization parameters used

size type 4th RK 2nd RK Euler
0.05 0.10 0.25 0.05 0.10 0.25 11.05 0.10 0.25

50 I 31 31 31 31 31 30 31 31 30
II 16 16 16 16 16 16 16 " "

III 13 13 13 13 13 13 13 13 13
IV 13 13 13 13 13 13 13 13 13

98 I 46 42 39 42 42 39 42 38 33
II 23 23 23 23 23 23 23 " "

III 19 19 19 19 19 19 19 19 19
IV 19 19 19 19 19 19 19 19 19

200 I 84 85 84 90 95 95 85 94 77
II '41 '29 '29 '41 '29 " " " "

III 28 28 28 28 28 28 28 28 28
IV 28 28 28 28 28 28 28 28 28

Table 16: The Final Cut-Cost of four two-way parthioning of three dif·
ferent size meshes using 4th order R·K, 2nd order R·K and Euler methods
for different step sizes
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size type "th RK 2nd RK Euler
0.05 0.10 0.25 0.05 0.10 0.25 (1.05 0.10 0.25

50 I 16 16 16 16 16 16 16 16 16
II , 7 7 7 , 7 7 ** **

III 6 6 G 6 6 6 6 6 6
IV 6 6 6 6 6 6 6 6 G

98 I 22 19 18 19 19 18 20 18 1.5
II 10 10 10 10 10 10 10 ** ..

III 8 8 8 8 8 8 8 8 8
IV 8 8 8 8 8 8 8 8 d

200 I 38 38 38 42 "4 "2 :J8 ":J :35
II ·Ii *12 *12 *17 *12 ** *- ** **

III 11 11 11 11 11 11 11 11 11
IV 11 11 11 11 11 11 11 11 11

Table 17: Final Interface Nodes of four two· way partitioning of three
different size meshes using 4th order R-K, 2nd order R·I( and Eulcr methods
for different step sizes

size type 4th RK 2nd RK Euler
0.05 0.10 0.25 0.05 0.10 0.25 0.05 0.10 0.25

50 [ 1.38 1.26 1.17 1.43 1.34 1.13 1.44 1.3" 3.21
II 8.36 5.11 2.62 8.57 6.71 1~1.67 11..15 .* .-

1II 1.43 1.31 1.24 1.42 1.34 1.21 1.41 lAO 1.31
IV 1.36 1.23 1.13 1.33 1.29 1.18 1.37 1.31 1.1"

98 [ 1.35 1.36 1.31 1.36 1.25 1.28 lAO 2.25 2.06
II 6.52 "-03 2.44 6.69 5.61 f:.07 11.65 ** -*

III 1.24 1.19 1.10 1.25 1.20 1.12 1.27 1.22 1.15
IV 1.07 1.06 1.03 1.09 1.06 1.04 1.09 1.08 1.09

200 I lA3 1.3" 1.74 1.42 1.36 1.30 lA8 l.51 1.38
II ·7.6-1: "6.9-1: ··1.(30 *3.U *15.Tl ** ** ** **

III 1.23 1.20 1.11 1.24 1.19 1.08 1.25 1.21 1.95
IV 1.16 1.13 1.10 1.17 1.11 1.12 1.22 1.1 j 1.15

Table 18: Mean Complexity of four two·way partitioning of three different
size meshes using 4th order R-K, 2nd order R·K and Euler methods for
different step sizes
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size
tYpe

.jth Rl(

2nd Rl(

EUler

0.05 0.10 0.25 0.05 0.10 0.25 1J.05

50 I 3

0.10 0.25

2 2 4 3 1 5

If 71

3 6

37 11 68 44 56 57 ** *,

lfI 3 2 2 3 3 2

IV

4 3 3

3 2 2 3 3 2 3

98 I 4 3 3
3 2

If
3 3 3 4 6 6

63 32 13 65 29 42 69 ** **

I1I 2 2 2 2 2 2 3 2

IV 2 2 1 2
2

200 I
1 1 2 2 2

7 4 5 6
If *84

5 3 7 5 6

*66 *43 *91 *83 ** **

lfI

** **

42 21 9 42 21 9

IV

45 24 1]

3 2 2 3 3 2 4 3 2

Table 19. M'-,mum C l'

~ omp e",ty of four tlVo. ".
different size meshes Using 4th order a-l( 2 d d lVi part1t,onmg of three
for different step sizes , n Or er -l( and EUler methods

size tYpe
4th Rl(

2nd Rl(
0.05

EUler

0.10 0.25 0.05 0.10 0.25 0.05

50
1 48

0.10 0.25

24 10 47 29 10

If 216 108
48 24 14

41 216 114 119 276 ** '*

I1I 57 28 11 57 29 12

IV
24 12

59 20 1.)

6 25 13 6 28

98 I 92 77

16 8

23 179 89 20 182

II

93 ./.\

407 204 78 406 196 128 614 ** **

I1I 44 22 9 44 22
IV

9 46 24 10

26 13 6 27 14 7 29

200
f 92

17 9

97
41 179

99
If *842

30 182 107 59

*822 *366 *842 *818 ** ** ** **

I1I 42 21 9 42 21 9

IV 97 50
45 24 1I

19 100 46 21 106 52 2.\

Table 20. N Ulnber of Steps of four tlVo IV ".

size meshes Using 4tll ord "" 2 d ~ ay partltl0nJYlg of three different
. er "-", n order R-l( and E 1 h dd'fferent Step sizes u er met 0 s for
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size type <th RK 2nd RK Euler
0.05 0.10 0.25 0.05 0.10 0.25 0.05 0.10 0.25

50 [ 38.10 38.10 38.10 38.10 38.10 ~:7.78 38.10 38.10 37.18
II 19.89 19.89 19.89 19.89 19.89 19.89 19.89 •• ••

III 15.92 15.92 15.92 15.92 15.92 15.92 15.92 15.92 15.92
IV 15.92 15.92 15.92 15.92 15.92 15.92 15.92 15.92 15.92

98 I 27.44 25.19 23.55 25.19 25.19 ~~3.39 25.34 22.94 22.25
II 14.11 14.11 14.11 14.11 14.11 14.11 14.11 *. ••

III 11.26 11.26 11.26 11.26 11.26 1l.26 11.26 11.26 11.26
IV 11.26 11.26 11.26 11.26 11.26 11.26 11.26 11.26 11.26

200 [ 24.29 24.50 24.28 26.07 27.58 ~~7.50 24.50 27.21 22.25
II *12.13 *8.12 *8.12 *12.13 *8.12 ** •• •• **

III 8.10 8.10 8.10 8.10 8.10 5.95 8.10 8.10 8.10
IV 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10 8.10

Table 21: Reduction of Cut-Cost as percen of four two-way partitioning
of three different size meshes using 4th order R-K, 2nd order R-K and Euler
methods for different step sizes

size type 4th RK 2nd RK Euler
0.05 0.10 0.25 0.05 0.10 0.25 0.05 0.10 0.25

50 I 36.19 36.19 36.19 36.19 36.19 ~:6_74 36.19 36.19 35.10
II 16.43 16.43 16.43 16.43 16.43 16.43 16.43 ** *'

III 13.09 13.09 13.09 13.09 13.09 13.09 13.09 [3.09 13.09
IV 13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09 13.09

98 I 24.92 22.45 21.11 22.45 22.45 20.84 22.76 20.84 17.65
II 11.37 11.37 11.37 11.37 11.37 11.37 11.37 •• ••

III 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18
IV 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18 9.18

200 I 21.96 22.10 21.84 23.92 25.47 ~~4.33 22.10 24.90 20.16
II *17.25 *6.55 *6.55 *10.23 *6.55 •• •• ** **

III 6.32 6.32 6.32 6.32 6.32 4.64 6.32 6.32 6.32
IV 6.32 6.32 6.32 6.32 6.32 6.32 6.32 13.32 6.32

Table 22: Reduction of Interface Nodes as percent of four two-way
partitioning of three different size meshes using 4th order R-K, 2nd order
R-K and Euler methods for different step sizes
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7 Tuning of penalization parameters

In this section we present the performance of the solul;ion for the various
models as a function of the penaliza.tion parameters. The results on Tables
23-26 indicates various measures of a. two-way partitioni::tg of three different
orthogonal meshes of a rectangular 2-D region. Tables 23-26 indicates the
effect of penalization parameters. These type of data. were used to obtain
the parameter values listed in table 1.

A-I B_1 B-0.5 1l-0.25 B-O.l
nodes 50 98 200 50 98 200 50 98 200 .\0 98 200

cut-cost 31 33 · 17 39 68 16 30 45 16 22 66
steps 30 302 · 223 152 454 168 281 1040 135 285 546

mean-com. 1.7 2.7 · 3.1 2.5 4 3.4 3.2 6.9 3.7 4 5.2
max-com. 5 10 · 12 13 27 17 25 212 18 :39 101

balance 4B 4B · 4B 4B 4B 4B 4B 3B 4B 4B lB
stability 45 45 · 45 45 45 45 45 45 45 45 45

red.% 38 23 · 21 23 20 20 19 13 20 17 19
optimum 13 19 · 13 19 28 13 19 28 13 19 28

Table 23: The performance of Model I two-way partitioning for three differ­
ent size meshes for different values of parameter B

A-I 11-8 B-5 11_3 B_1
nodes 50 98 *200 50 98 *200 50 98 *200 50 98 *200

cut-cost 16 24 29 16 24 29 16 24 29 16 24 29
steps 108 204 822 102 204 822 97 204 821 96 206 821

mean-com. 2.8 4 6.9 4.7 3.8 7 3.9 3.9 6.9 4.2 3.7 8.9
max-com. 37 32 67 30 30 66 18 28 66 25 23 71

balance 411 4B 3B 4B 4B 3B 4B 4B 311 4B 4B 38
stability 45 45 35 45 45 35 45 45 35 45 45 35

red.% 20 14 8 20 14 8 20 14 8 20 14 8
optimum 13 19 28 13 19 28 13 19 28 13 19 28

Table 24: The performance of Model II two-way partitioning for three dif­
ferent size meshes for different values of parameter B

18



A_40,B_l,D_l A_40,B_O,D_2 A_-5,B_l,D_l A-5,B-O,D_2
nodes 50 98 200 50 98 200 50 98 200 50 98 200

cut·cost 13 24 54 13 19 28 13 19 28 13 19 28
steps 95 133 154 79 74 113 40 35 28 23 18 17

mean-com. 1.5 1.5 1.3 1.4 1.4 1.4 1.5 1.3 1.2 1.3 1.2 1.1
ma..X-COffi. 3 4 3.5 3.3 3.5 3.2 3.5 3.5 3.5 2.8 2.3 2.8

balance 3B 3B 2B 3B 2B 4B 4B 4B 4B 4B 'llJ 4B
stability 48 48 28 48 48 48 48 48 48 48 48 48

red.% 16 14 16 16 11 8 16 11 8 16 11 8
optimum 13 19 28 13 19 28 13 19 28 13 19 28

Table 25: The performance of Model III two-way partitioning for three
different size meshes for different values of parameters A,B and D

A 40,n 1,0 1 A 40,B 8,0 1 A 1,B 1,0 4 A I,B 8,0 2
nodes 50 98 200 50 98 200 50 98 200 50 98 200

cut-cost 14 24 54 14 28 54 13 19 28 13 19 28
steps 45 181 176 43 130 228 14 8 20 13 14 50

mean-com. 1.2 1.2 1.1 1.2 1.2 1.1 1.2 1 1.1 1.2 1.1 1.1
max-com. 2 2.8 2.5 2.3 2.8 2.5 2.5 1.8 2.5 2.8 2 2.5

balance 2B lB DB 2B lB lB 4B 4B 4B 4B 4B 4B
stability 48 48 48 48 48 48 48 48 48 48 48 48

red.% 17 14 16 17 17 16 16 11 8.1 16 11 8.1
optimum 13 19 28 13 19 28 13 19 28 13 19 28

Table 26: The performance of Model IV two-way partitioning for three
different size meshes for different values of parameters A,B and D
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8 The effect of geometry in the performance of
HOP two-way mesh partitioning

In this section we present the performance of a two-way partitioning of
various meshes corresponding to different geometric regjons. The intend is
lo see the effect of the geometry in the Hopfield solution. of the partitioning
problem. The meshes considered were kept approximately equa1. Tables 28­
30 indicate the geometry effects the performance of the computed solution.
Furthermore all tables including Table 31 support the claim that model III
is the more accurate and efficient for the workload p;utitioning problem
considered in tills report.

[ Model I] A-(n-I)/8 B - 8
[ Model II] A _I B _ 8

[ Model III! A 5 B ID 2
[ Model IV] A-I B- I D 4

[I] Final cut-cost
[2} Final Interface Node
[3] Optimal Cut-cost
[4] Optimal Interface Nod,~

[51 Initial Cut-cost
[6] Initial Interface Node

[7J Reduction of Cut-Cost as pr~rcent

[8] Reduction of Interface Node as percent
[9] Balance
[10] Stability

[l1J Maximum Complexity
[12] Mean Complexity .

[13] Number of steps

• average of 3 problems

Table 27: This table shows the constants used in Table, and what each
number represents
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I II III IV
50 98 200 50 98 *200 50 98 200 50 98 200

[I] 36 47 86 16 24 29 13 19 28 13 19 28
[2] 19 23 40 7 10 12 6 8 11 6 8 11
[3] 13 19 28 13 19 28 13 19 28 13 19 28
[4] 6 8 11 6 8 11 6 8 11 6 8 11
[5] 82 169 346 82 169 353 82 169 346 82 168 346
[6] 46 88 174 46 87 178 46 88 174 46 88 174
(7) 44.49 27.94 24.78 19.89 14.11 8.12 15.92 11.26 8.10 15.92 11.26 8.10
[8J 41.22 25.75 22.38 16.43 11.37 6.55 13.09 9.18 6.32 13.09 9.18 6.3
[9] 4B 4B 48 48 4B 38 ·18 4B 4B 48 4B 4B

[10] 4S 4S 4S 4S 4S 3S 4S 4S 4S 4S 4S 4S
[11] 1.75 3.00 3.50 37 32 67 :1.5 3.5 3.5 2.5 1.8 2.5
[12] 1.08 1.29 1.29 4.14 3.72 6.93 1.50 1.33 1.23 1.20 1.04 1.11
(13) 16 43 92 95 206 821 39 34 28 14 8 20

Table 28: Rectangular Domain using 4th order R·K

I II III IV
50 92 198 50 92 198 50 92 198 50 92 198

[1] 31 41 84 10 13 42 10 13 22 10 13 22
[2J 15 20 40 5 6 22 5 6 9 5 6 9
[3] 10 13 22 10 13 22 10 13 22 10 13 22
[4] 5 6 9 5 6 9 5 6 9 5 6 9
(5) 75 151 342 77 156 336 75 151 342 75 151 342

[6J 42 80 172 43 84 168 42 80 Ii2 42 80 172
[7] 42.12 26.69 24.94 12.99 8.33 12.50 13.38 8.61 6.45 13.38 8.61 6.45
[8] 37.66 24.59 23.23 11.63 7.14 13.10 11.95 7.51 5.25 11.95 7.51 5.25

[9J ·W 4B 4B 48 4B 48 48 4B 48 48 4B 48

[10] 4S 4S 4S 4S 4S 4S 4S 4S 4S 4S 4S 4S
[11] 1.50 3.50 4.25 7.00 55.00 58.00 2.50 3.25 3.00 1.50 2.00 2.25

[12J 1.07 1.28 1.32 2.09 7.54 4.57 1.33 1.35 1.28 1.13 1.08 1.12

[13] 28 .52 83 46 588 382 34 39 29 13 14 29

Table 29: Semi-Annulus Domain using 4th order R-K
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I II III IV
60 100 196 60 100 196 60 100 196 60 100 196

[I] 20 45 66 8 20 32 8 8 14 8 8 14
[2] 12 27 34 6 10 14 6 6 8 r, 6 8
[3] 8 8 14 8 8 14 8 8 14 8 8 14
[4] 6 6 8 6 6 8 6 6 8 6 6 8
[5] 83 152 321 88 163 333 83 152 321 83 152 321
[6] 53 93 172 56 103 184 53 93 172 53 93 172
[7] 22.97 29.2-I 20.45 9.09 12.27 9.61 9.68 5.29 4.37 9.68 5.29 4.37

[8] 22.56 28.43 19.83 10.71 9.71 7.61 11.34 6.50 4.66 11.34 6.50 -I.66
[9] -IB 4B -IB -IB -IB -IB -IB -IB -IB -IB -IB -In

[10] 45 45 45 45 45 45 45 45 ·15 -I5 45 45
[II] 2.50 3.00 5.50 10.00 36.00 30.00 2.50 3.25 2.50 1.50 1.50 2.25
[12] I.I5 1.29 1.42 2.63 4.46 3.58 1.22 1.29 I.I6 1.05 1.05 1.07
[13J 28 24 92 52 246 207 17 23 18 6 12 12

Table 30: Hole Domain using 4th order R-K

I II III IV
Cut-Cost 256 156 52 .52

Interface Node 113 70 19 19
Initial Cut-cost 1914 1914 1914 1914

Initial Interface Node 888 888 S88 888
Reduction of Cut-Cost 13.38 8.15 ~.72 2.72

Reduction of Interface Node 12.73 7.88 ~~.14 2.14
Balance B B B B
Stability 5 5 5 5

~bxjmum Compexlty 4 199 3 48
Mean Complexity 1.28 7.52 1.28 1.84

Steps 98 1020 80 135

Table 31: Semi-Annulus Domain with 1018 elements using 4th or­
der R-K
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