
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Future Research Directions in Problem Solving Environments for Future Research Directions in Problem Solving Environments for

Computational Science Computational Science

Stratis Gallopoulos

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
92-032

Gallopoulos, Stratis; Houstis, Elias N.; and Rice, John R., "Future Research Directions in Problem Solving
Environments for Computational Science" (1992). Department of Computer Science Technical Reports.
Paper 954.
https://docs.lib.purdue.edu/cstech/954

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972379?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

FUTURE RF...sEARCH DIRECTIONS IN PROBLEM
SOLVING ENVIRONMENTS FOR COMPUTATIONAL SCIENCE

Stratis GaUopouls
Fliss N. Houstis

John R. Rice

CSD·TR 92-032
May 1992

FUTURE RESEARCH DIRECTIONS
IN

PROBLEM SOLVING ENVIRONMENTS
FOR COMPUTATIONAL SCIENCE

Stratis Gallopoulos l

Elias Houstis and John IUce
Computer Science Department

Purdue University
West Lafayette, IN 47907

Technical Report CSD-TIt-92-0;J2
CAPO Report CER·92-15

August 1992

lOepnnment of Computer Science, University of Tllinois, Urbana, IL.

FUTURE RESEARCH DIRECTIONS
IN

PROBLEM SOLVING ENVIRONMENTS
FOR COMPUTATIONAL SCIENCE

Report of a Workshop on Research Directions in Integrating Numerical Analysis, Symbolic Com
puting, Computational Geometry, and Artificial Intelligence for Computational Science

April 11-12, 1991
Washington, D.C.

Edited by

Stratis Gallopoulos
University of Illinois

Elias Houstis and J olm Rice
Purdue University

The preparation of this report was partially supported by Grant CCR-90-24549 from the National
Science Foundation. This is a report to the National Science Foundation and other agencies; it is
not a report by or of the National Science Foundation or any other agency.

1

Participants at the Workshop on Research Directions
in Integrating Numerical Analysis, Symbolic Computing,

Computational Geometry, and Artificial Intelligence
for

Computational Science

Conference Organizers

Stratis Gallopoulos, Center for Supercomputing Research and Development, University of illinois
Elias N. Houstis, Department of Computer Sciences, Purdue University
John J. Rice, Department of Computer Sciences, Purdue University

Participants

Robert Caviness, Computer Science Department, University of Delaware
Grant Cook, Lawrence Livermore National Laboratory
Andre Deprit, National Institute of Standards and Technology
Joseph Flaherty, Department of Computer Science, Rensselear Polytechnic Institute
Dennis Gannon, Center for Innovative Computer Applications, Indiana University
Keith Geddes, Computer Science Department, University of Waterloo
Luddy Harrison, Center for Supercomputing Research and Development, University of lllinois
Christoph M. Hoffmann, Department of Computer Sciences, Purdue University
Moyyad Hussain, General Electric Research and Development Center
David J. Kuck, Center for Supercomputing Research and Development, University of illinois
Cleve Moler, The Math Works

David H. Padua, Center for Supercomputing Research and Developlllent, University of lllinois
James 1. Phillips, Applied Mathematics and Statistics, Boeing Computer Services
Allan Robinson, Division of Applied Sciences, Harvard University
Jacob T. Schwartz, Computer Science Department, New York University
Siu Shing Tong, General Electric Research and Development Center
Joseph Tribbia, Climate and Global Dynamics Division,

National Center for Atmospheric Research
Paul Wang, Institute for Computational Mathematics, Kent State University

NSF Observers
Kamal Abdali, Computation and Computing Research, National Science Foundation
Charles Brownstein, Directorate of Computer and Information Sciences and Engineering,

National Science Foundation

2

Contents

1 INTRODUCTION
1.1 Purpose of this Report .
1.2 Background of Recent Reports and Studies

2 PROBLEM SOLVING ENVIRONMENTS
2.1 Definition of Problem Solving Environments.
2.2 Maturation of the Field .
2.3 Scientific and Economic Impact .
2.4 Grand Challenges and Petty Challenges

3 CURRENT STATUS
3.1 Introduction .
3.2 Three Scientific Problem Solving Environments

3.2.1 Matrix Laboratories .
3.2.2 PSEs for PDE-Based Systems.
3.2.3 Statistical Systems .

3.3 Component Areas .
3.3.1 Symbolic and Algebraic Computing
3.3.2 Numerical Analysis .
3.3.3 Artificial Intelligence .
3.3.4 Computational Geometry .
3.3.5 Visualization and Graphics
3.3.6 Software Infrastructure ..

3.4 Supporting Areas .
3.4.1 Parallel and Distributed Computation
3.4.2 Networks .

3.5 Domaln·Specific Problem Solving Environments.
3.6 Professional Infrastructure .

3.6.1 University of Michigan .
3.6.2 North Carolina State University
3.6.3 Rice University .
3.6.4 Stanford University .
3.6.5 University of California at Davis
3.6.6 The University of lllinois, Urbana-Champaign.

3

5
5
5

7
7

8
9

10

11
11
13
14
15
19
19
19
20
21
22
23
24
26
26
26
27
29
29
30
31
31
32
32

4 FUTURE RESEARCH DIRECTIONS
4.1 Future Problem Solving Environments .
4.2 Generic Proulem Solving Environments .
4.3 Application Specific Problem Solving Environments
4.4 Problem Solving Environments for Education . ..
4.5 Implementation of Problem Solving Environments

5 FINDINGS AND RECOMMENDATIONS
.5.1 Findings .
5.2 Recommendations .

<I

34
34
36
37
38
:l9

40
40
42

1 INTRODUCTION

During the early 19605 some were visualizing that computers could provide a powerful problem
solving environment (PSE) which would interact with scientists on their own terms. By the mid
19605 there were lllauy attempts underway to create these PSEs, but the early 19705 almost all
of these attempts had been abandoned, because the technological infrastructure could not yet
support PSEs in computational science. The dream of the 19605 can be the reality of the 19905;
high performance computers combined with better understanding of computing and computational
science have put PSEs well within our reach.

1.1 Purpose of this Report

A workshop was held in Washington, D.C., on April 11-12,1991 to explore future research direc
tions for PSEs. Application areas were represented as well as four of the most relevant areas of
computer science: numerical analysis, symbolic computing, computational geometry, and artificial
intelligence. The goals of the workshop were:

• to describe the current state of research and development in problems solving environments,

• to indicate future directions for research,

• to assess the role and impact of problem solving environments for computationaJ science, and

• to determine actions needed to advance the field.

This report presents the findings and recommendations of the workshop.

1.2 Background of Recent Reports and Studies

In the past decade there have been a number of reports and studies relevant to computational
science that consider various aspects of high performance computing, supercomputers, computa
tional mathematics, and scientific software. The reports listed below provide the background for
the present workshop and report.

1. Report of tile Panel on Large Scale Computing in Science and Enginec1·ing. Peter Lax, Chair
man. Sponsored by the U.S. Department of Defense and the National Science Foundation, in
cooperation with the Department of Energy and National Aeronautics and Space Adminis
tration, Washington, D.C., December, 1982.

5

2. A National Computing Envil"Onmentjol' Academic Research. Marcel Bardon and Kent Curtis,
Editors, National Science Foundation Working Group on Computers for Research. National
Science Foundation, Washington, D.C., July, 1983.

;3. A Report of tile Panel on FutU7'e Directions in Computational Mathematics, Algorithms, and
Scie'ttijic Sojtwaf'e. Werner C. Rheinboldt, Chairman. SIAM Publications, Philadelphia,
1985.

4. A National Computing Initiative - The Agenda for Leadel·ship. Report of the Panel on
Research Issues in Large-Scale Computational Science and Engineering. H.J. Raveche, D.H.
Lawrie, and A.M. Despain, Editors. SIAM Publications, Philadelphia, 1987.

5. Research and Development Strategy jor !/igll Performallce Computing. Office of Science and
Technology Policy, Executive Office of the President, Nov. 20,1987.

6. Future Directions f01' Research in Symbolic Computing. Report of a Workshop on Symbolic
and Algebraic Computation. Anthony Hearn, Chairman. Ann Boyle and B.F. Caviness,
Editors. SIAM Publications, Philadelphia, 1990.

7. Grand Challenges: High Performance Computing and Communications. Federal Coordinat
ing Council for Science, Enginering, and Technology. National Science Foundation, Washing
ton, D.C., 1991.

6

2 PROBLEM SOLVING ENVIRONMENTS

Problem solving environments (PSE) llleaDS different things to different people because it is rel
atively immature and development has started only very recently. PSEs of a very simple nature
appeared early in computing without being recognized as such, whereas some of the PSE capa
bilities we project in Section 4 almost resemble science fiction. It is dear that whatever PSEs
eventually turn out to be, they will playa big role in the future of scientific computing and their
scientific and economic impact will be enormous.

2.1 Definition of Problem Solving Environments

A problem solving environment is a computer system that provides aU the computational facilities
to solve a target class of problems. Furthermore, these facilities use the terms of the target class of
problems and therefore can be used specialized knowledge of the underlying computer hardware or
software systems. One might say that a PSE solves problems by communicating in the user's own
terms. Solving power and problem orientation are the two essential characteristics of PSESi other
important characteristics include the following:

• PSEs use modern computing facilities and methods, for example, interactive color graphics,
powerful processors, or networks for specialized services.

• Several, perhaps many, solution methods are used, and the PSE helps one in choosing the
best among them. The choice can be completely automatic.

• The PSEs manage the computing resources for the user, including distributed and/or parallel
computing.

• Solving a problem might require a long interaction with the IIser over a period of hours or
days; the PSE keeps track of the problem solVing task and allows the user to review it easily.

• PSEs use state-of-the-art methods. New and improved methods can be added easily to keep
a PSE up-to-date or to expand its capability.

• A PSE is designed to create a framework that is all things to an people, solve simple or complex
problems, support rapid prototyping or detailed analysis, and can be used in introductory
education or at the frontiers of science. For example, while designing an entire airplane, a
user can ask for the formula used to compute the size of the bolts for the seats and then
modify the result for a special lise.

7

In summary, a PSE definition can almost become a wish list for the capabilities of computers in
science fiction. The fact is that many PSEs have been built, more sophisticated (and powerful)
ones are being built, and no one can say what will be possible by the year 2000 except that PSEs
will be considerably more advanced than today's PSEs.

The nature and current status of PSEs for computational sciences is discussed in depth in
Section 3, but three general measures of PSEs are discussed here: scope, power, and reliability. By
scope we mean the extent of the problem set the PSE addresses. [f the scope is small enough, then
one can build PSEs easily. Consider, for example, a PSE intended to solve multiplication problems
at the second-grade level. As another example, one can view Fortran as an early attempt at aPSE
for elementary college algebra (the "modern" computing facilities of the late 19.50's were almost
fully exploited). It was a great advance compared to machine language to write

ANSWER = ;J.7hX**(3.2*A) * (1 - COS(3 * PI * X) * EXP(- Y + X))

The]Jowerof a PSE refers to its ability to actually solve the problems that can be posed within
the PSE. Once the problem class lIecomes complex, it is almost certain that a knowledgeable user
can pose problems that the PSE cannot solve. On the other hand, there are examples of PSEs
that failed to solve even simple, straightforward problems. An extreme example is a PSE that
purports to converse in natural language but responds "What?" to all input it does not recognize.
Then its implementation might recognize only statements of the form A, H, C when A is one of
"what", "who", "where"; H is one of "is", "are", and C is one of 500 nouns. Instances of such
misrepresentation have occurred.

The reliability of a PSE is a measure of how often it produces incorrect answers. A PSE that
responds with "unable to solve problem" is much better than one that responds with an incorrect
answer. A high level of reliability is difficult to achieve and substantially increases the cost and
complexity of many PSEs. Because reliability is harder to judge than scope or power, it is sometimes
neglected by PSE builders.

2.2 Maturation of the Field

Although the introduction of Fortran was not seen initially as a step in that direction, it was not
long before people realized that computers would make it possible to create very sophisticated and
powerful problem solving environments. In less than a decade after Fortran was introduced, there
were many projects aimed at developing various aspects of PSEs. The proceedings of the 1967
ACM conference, Intemclive Systems for Experimental Al,plied Mathematics [KR68], provides an
overview of early work. The title of Culler and Fried's paper, "An On-Line Computing Center for
Scientific Problems" [CF63J indicates the high ambition for PSEs at a time when Fortran and Algol
were still novelties.

8

These early efforts at PSEs failed primarily because of the lack of computing power. It was
not until the late 1970's that interactive PSEs reappeared in another context, software for personal
computers. In the meantime, there was progress in creating batch processing PSEs. Simple PSEs
for statistics (e.g., SPSS and SAS) were created because the bulk of the consumers of statistics
could not or would not learn Fortran programming; they demanded a simple way to use statistical
methods, and it was provided. Although the statistical systems of the 1970's seem primitive to us
now, they were such an improvement over traditional programming that these PSEs "captured"
the statistical computing market (see [Ric7G]).

The personal computers and workstations of the 1980's finally provided the computing power
to realize the hopes of the early 1960's. In 20 years the mass market of computing moved from
science to the office (spreadsheets, word processors), to the home (games, tax preparation), and to
services (airline reservations, banking). That PSEs would thrive in these markets is natural; the
solvers are usuaUy simpler and less compute intensive, and the users are less able to do traditional
programming. If the PSEs were not available, these computations would not be done. An ironic
possibility arose; the scientists, who were the first market for PSEs, might be among the last to
enjoy their benefits. Even at this writing PSEs are not common in science and engineering except in
limited areas, such as CAD (computer aided design) systems for structural engineering and design
systems for electronics.

Research and development activity has started again in science applications. The example and
success of Mathematica [WoISS] shows that some science PSE markets are large enough to justify
substantial investments. But the market for most science and engineering PSEs is likely to be
small, numbering in the hundreds or a few thousand. For a view of current developments, see
recent conference proceedings [HRV90j, [HRV92], [GH92] as well as Section 3.

2.3 Scientific and Economic Impact

There are two basic motives for building PSEs:

they enable people to solve p7"Obiems much Jaster.

they enable many people to do things that they could not otherwise do.

The old saying, "Time is money", is relevant here, but accomplishing things faster also has non
economic consequences. Doing things 10 to 100 times faster makes many projects in science feasible
which otherwise would not be. Engineers can write aU the programs for their projects, just as a
master carpenter can do all the carpentry work in a house by hand; but houses are not built that
way because using power tools and prefabricated windows, moldings, trusses, etc., is much faster
and therefore much cheaper and often results in a better house. Likewise, engineers should have

9

PSEs for all the routine and standard parts of their computations, hut they should also have PSEs
as tools to use for their non-standard computations.

It is easy to document the enormous impact of computing on science, engineering, and the
economy; those who do not exploit this technology fall behind and, eventually, by the wayside.
Yet it is harder to define the technology necessary to achieve this impact. Is it high performance
computers? Is it the better algorithms and methods for problem solving"! Is it the infrastructure of
networks, languages, aud programming systems? Is it problem solving environments that deliver
the answers? All of these components are essential, but the importance of lhe PSE is less well
recognized.

For the impact of computational science PSEs on science and engineering, see [G H92], [HRV92J.
For the impact of PSEs on economic industrial activity, (see [NEH90J, [Ric76J, [Tong9]).

2.4 Grand Challenges and Petty Challenges

The High Performance Computing and Communication Initiative has popularized the concept of
gmnd challenges for computer sciences [FCCDl], and it is natural to relate PSEs for computational
science to these challenges. Because PSEs facilitate science in general, they will be expected to
contribute to meeting these challenges in many ways. Although it might eventuaJly be desirable
to create PSEs specifically in response to the grand challenges, it should not be assumed that this
should be done immediately. The nature of most grand challenges is experimental. Whereas the
nature of the science and engineering problems for which PSEs can be developed must be well
understood and standardized. One cannot hope for a powerful and reliable PSE in an area where
no one yet knows how to solve the principal underlying problems.

PSEs are directed toward petty challenges as well as toward grand challenges; toward solving
problems that are understood well enough so solutions are possible and are common enough so
that it is important to the scientific consumer that this knowledge be codified and made available.
It is practical now to create a PSE that an engineer can use to speed up the design of the crank
mechanism for a window, a new beer can, the insulation for a safe, or the electrical controls
of a dishwasher. These a.re the bread·and-butter tasks of computational science, tasks that use
sophisticated, but well·understood, methods. PSEs can deliver problem solving power for most
routine problems so that time and energy can be devoted primarily to non-routine and innovative
aspects of a project. The scientific and economic impact of meeting the many petty challenges is
diffuse but as enormous of the more focused impact of meeting one of the grand challenges.

In summary, it is a grand challenge for computer science to acate PSEs for all the petty
challenges of computational science; to increase our science and engineering productivity so that
we are competitive in international, technology-driven markets.

10

3 CURRENT STATUS

3.1 Introduction

It is generally accepted that computational simulation has become an essential component of the
scientific process, complementing theory and experiment. To place in perspective any efforts to
build PSEs, it is instructive to examine the typical problem solving procedure of a computational
scientist, which includes some or all of the following steps:

1. Construct a mathematical model of the phenomenon under study.

2. Select relevant physics and geometry.

:3. Manipulate equations and associated conditions, making simplifications to allow for suitable
solution methods to be applied.

4. Specify a solution method based on analytical and approximate techniques.

5. Use appropriate specification and programming languages, specifying and creating (building
or evolving from existing material) a program for the solution method. Documentation is an
integral part of this step.

6. Construct [test] problems and data sets.

7. Apply the program to (test] data.

8. Validate the results.

9. Compare the quality of results and performance with alternative solution procedures.

10. Obtain and manipulate (e.g., extract information from) output data.

11. Record the steps of the experiment.

12. Communicate the results to the scientific community by sharing the output, preparing reports
and presentations, and incorporating the experience ill a database.

Observations

• Not all of these steps need to be applied, and several may be used repetitively. In general,
the ordering of the steps is not strict.

11

• There is constant consultation with knowledge bases snch as references, databases, and col
leagues to find and explore reuse of existing material.

• Most steps require the application of systems for monitoring quality (e.g., numerical error) and
performance. The latter is desirable where speed is critical and high-performance computer
systems are used, so that performance behavior can be analyzed and weaknesses identified
and corrected.

• Most steps involve decisions that depend on the available components of the problem solv
ing environment. For example, the architecture(s) of the computer system(s) used for the
experiment will influence such factors as the solution strategy and the specifications.

• The modules and submodules of the PSE need to communicate. The design of proper com
munication protocols and module interconnection language is essential.

• Human problem solving frequently requires a synergism of skills such as pattern recognition
and intuition. It is thus desirable to provide tools to facilitate this process. One desirable
feature for many applications would be the availability of interactive manipulation of data
and graphical steering of the computation.

• The problem solving process described above can be viewed in a hierarchical manner in that
most of the steps could form entry nodes of another problem solving sequence.

• Realistic problems feature solutions that evolve on diverse temporal and spatial scales. An
efficient solution method should be able to adapt itself in order to be efficient, reliable, and
robust.

The above steps include both abstraction (the paradigm of work of the experimental scientist)
and design (the paradigm of work of the engineer) [DCG+S9], [GWY89]. This combination of
paradigms is characteristic of computational science and renders necessary the creation of PSEs.
The problem solving steps outlined above drive the specifications of PSE modules.

By their nature, PSEs are complicated and massive software systems. As a result, it is expected
that software engineering principles will play an important role in their creation and management.
PSEs should allow the user easy manipulation of high-level objects. Decomposability, hierarchical
representation, rapid proto typing, software reuse, and information hiding are issues that must be
addressed, because they provide the vehicle for handling the accidental and essential difficulties of
complex scientific applications [Br087].

As noted earlier, there have already been attempts to create PSEs. The simplest of them
are toolkits, which rely on a front-end user interface that issues calls to a back-end library. As
components are added, the system moves closer to satisfying the pl'Oblem solving steps outlined

12

Table 3.1: Problem solving environments which

Activity PSE

have revolutionized certain activities.

Replaced
Accounting spreadsheets
Typing word processors

Statistics

Architecture and
civil engineering

Publishing

Reservations

SPSS, SAS,

CAD systems

word processing,
publishing programs
reservation systems

desk calculators, paper
a) retyping and correcting

manuscripts
h) TeX and troIT
a) desk calculators
b) Fortran programs
Handbooks, hand calculations
and Fortran programs
typesetting, manual page
layout
telephone/mail, large ledgers

earlier. PSEs will be based largely on symbolic, algebraic, and numerical computing tools, artificial
intelligence, expert systems, and computational geometry systems. In turn, these components will
rely on "backbone" developments in hardware and software technologies. High-speed workstations,
parallel architectures and software, windowing environments, graphics, high-level languages, and
object-oriented programming are all examples of such critical developments.

In the next sections we discuss a few examples of progress in PSEs and their infrastructure
components.

3.2 Three Scientific Problem Solving Environments

One thesis of this report is that problem solving environments can and will revolutionize many
scientific computing activities. In fact, this has already happened in a variety of activities, as
indicated in Table 3.1. These PSEs are not all fully developed in the way we visuatize future PSEs,
but they have enough of the characteristics of PSEs to have had a major impact on their fields.
The common characteristic of these systems is that they cOllllllunicate on the users terms, and
they enable users to make computations easily that are otherwise either very tedious or beyond
their technical capability. We present in some detail three scientific activities where PSEs are being
developed.

13

3.2.1 Matrix Laboratories

The benefits of problem solving environments can be demonstrated in numerkal scientific com
putation by the creation of matrix laboratories. Systems such as MATLAH (MATrix LABoratory)
[MLB90j and CLAM [GFCS9j allow rapid prototyping and testing of lIew ideas. The success of
matrix laboratories is due to a combination of the following characteristics:

1. Sophisticated user interface afforded by advancE'S in window technology.

2. H;gh-performance compn'ing works'a';nns made poss;ble by advances in compu'ing hardware
technology.

3. Effective graphics tools.

4. A clear and simple programming langltage, free of several syntactic and format restrictions
imposed by prevalent scientific programming languages such as Fortran 77.

5. The maturation of areas of numerical mathematics related to the area (linear algebra) and
the development of a library of robust mathematical software.

6. The maturation in the software engineering, integration, and packaging of these systems.

7. The systems are open, in that it is easy to import and export data and interface with external
systems.

8. The systems are extensible in that they evolve as users add functionality specialized to their
needs.

It can be argued that these characteristics arE' necessary for a s\lccessful PSE environnment,
a view that is reinforced by their adoption hy symbolic and algebraic computing systems such as
Maple and Mathematica.

Some additional observations can l>e made. First, note that it is common for entire libraries
specific to a particular area to be constructed and provided separately, as can be seen from the
emergence of MATLAB toolboxes for signal processing, automatic control, simulation, optimization,
and splines. For example, automatic control, where the matrix algebra content is well defined
and small-scale problems are interesting and realistic [LauS!:>J, is one of the first areas where the
tools are used successfully in a context other than education. The creation of matrix laboratories
was facilitated by the existence of mature numerical libraries. For exaIllple, MATLAB was created
as a driver of LIN PACK and EISPACK. The second observation relates to Section ;3.3.F and the
importance of interface tools for one- or two-way interconnection with other systems. For example,
MATLAB tools make it possible (after some work) to call "foreign" Fortran 01' C modules from inside

14

a laboratory session. The benefits are substantial: first, one has access to an enormous resource
of existing Fortran scientific libraries. A recent example is &he interfacing of PC-MATLAB with the
SLICOT Fortran library (produced by NAG) for automatic control [RVDB91], [vBD+91]. Second,
it is possible to use mature compiler technology for code optimization of these modules in order to
obtain high performance on the underlying compnting platform (FG90J. Two-way interconnection
is a recent enhancement which allows MATLAB to be used as a computational engine from a C
program. Other tools can be envisaged, for example, that will automatically create Fortran 01' C
output from the PSE language level. All these tools are of interest because they enable users to
program at the levels Lhey find most appropriate.

In order for matrix laboratories to be used effectively to solve real problems in more areas of
scientific computing, they must be able to handle sparse computations. Thls is certainly true for
areas such as computational ~uid dynamics, where resolution requirements demand sparse direct
or iterative solvers, and is gradually becoming necessary in areas such as automatic control [LaugI]
[Saa90a] (GarBB] [BG84J. Matrix laboratories for sparse data structures have been slower in coming,
reflecting the less-developed state of the numerical library technology for sparse computations.
Fortunately, as discussed in Section 3.3.B, much progress has been made in that area recently to the
benefit of matrix laboratories. It must be said, however, that sparse matrices and algorithms have
been targeted since the creation of CLAM, whereas for MATLAB this is only a recent development
[GMS91J. With the incorporation of facilities for sparse computations, matrix laboratories can be
used for rapid prototyping and experiments with industrial-strength data, thus better fulfilling their
PSE role. In conjunction with these developments, it is becoming clear that close attention must
be paid to performance issues. Indeed, the engineering workstation which is the common platform
for the matrix laboratory may be inadequate for large industrial problems ancl may necessitate
running at least portions of the code on very high performance platforms. Performance monitoring,
modelling, and evaluation will also be necessary to explain and improve the code behavior [GLJ+91].
Parallel processing will thus become essential, also leading to scalability concerns (c.f. Section
3.4.A). Finally, it must be noted that as pieces of software of ever-increasing size are being written
directly at the level of the matrix laboratory, it is becoming clear that these laboratories meet one
major goal of numerical software experts, namely to learn how to bulld applications on top of good,
robust numerical software.

3.2.2 PSEs for PDE-Based Systems

Partial differential equations (PDEs) are the fundamental mathematical tools for describing the
physical behavior of many application processes in science and engineering. There exists mathe
matical software to deal primarily with the solution of specific classes of POEs [BK9IJ. A number
of software packages exist that are used exclusively to simulate specific applications in stmctural

15

mechanics, weather prediction, and climate simulation. A partial list of major engineering packages
for structural analysis and their capabilities can be found in [FMS3J. These packages implement
the finite element method, not on the POE describing the physical problem but on the physical
principles governing it. The software for the other applications mentioned above is very often based
on special efficient techniques that cannot be used easily to simulate other applications.

Most of these systems are well-defined, documented, and tested libraries of procedures controlled
by a well-defined driver. However, a few of them already support some functionality of PSEs. In
this section we review systems with some PSE characteristics that have a wide distribution basis,
are not tied to some specific application, or can be found in the public domain. Table 3.2 presents
a number of desirable features that PSEs for PDE computations should support, as well as the
acronyms of some of the existing POE systems with a PSE type environment. The crossed entries
indicate which PSE feature is present in these systems.

We now describe each of the POE systems in Table 3.2. The first system RPI [MOFS9j, is
a. mathematical software package for the adaptive solution of parabolic POEs in one- and two
space dimensions by finite element procedures that automatically refine and coarsen computational
meshes, vary the degree of the piecewise polynomials basis, and, in one dimension, move the com
putational mesh. Temporal integration, within a method-of-lines framework, uses either backward
difference methods or variant of the singly implicit Runge-Kutta methods. A high-level user inter
face facilitates the use of this system.

Another well-known PDE system is ELLPACK [RBSS]. The system was designed to solve second
order elliptic POEs in two and three dimensions and to evaluate software for such computations. It
follows a modular programming paradigm which is supported by a domain-specific POE language.
Its solution software supports a variety of elliptic POE solvers for two-dimensional problems. The
POE language interface allows the IIser to develop high-level programs that can be used to solve
nonlinear and time dependent PDEs. Recently two lIew systems hav£> been developed based on
the architecture and philosophy of ELLPACK. These are the XELLPACK [B092] and Parallel (f j)
ELLPACK [HPR90] systems. XELLPACK is an extension of ELLPACK based on the X windowing
environment. XELLPACK provides graphical input for constructing grids, pop-up menus for select·
ing solution techniques, and color graphics output for analyzing solutions. Using the X paradigm,
a user can interface with XELLPACK from any X workstation while an XELLPACK client solves
an elliptic problem on any machine or machines on the network. / /ELLPACK is an X·based PSE
interface to various libraries of parallel elliptic POE solvers. Its PSE allows the user to specify
the POE problem interactively and, to use symbolic processing to transform it from nonlinear to
linear form. / /ELLPACK automatically generates pseudo code for time dependent PDE solvers,
and it determines the mapping of the underlying computation 011 the targeting architectnre auto
matically. This mapping can be visualized and modified interactively. The development of tools
for the automatic determination of (grid, method) and (configuration, machine) pairs are being

IG

Table 3.2: PSE characteristics of PDE systems and tools.

I RPI I ELLPACK I XELLPACK I //ELLPACK I DEQSOL I VECFEM I ALPAL I PDE20

p

PSEfunc IOn y

Interac~ive I a , , , , , ,
Graplllca11 0 , , , , , ,
Multimedia (0
Interactive
Gcome~ryModeling , , ,

Automatic Geome~ry

Discretization , , , , , , ,
POE Language , , , , , , , ,
POE Model Genernlor
POE Solver

Generator , , , , , ,
Advising " " "E;o:plaining
Tutoring
Navigation
Deeision Making ,

" " "Para,meter
Estimation ,

" "
,

Error Es~imatioll ,
IlI~erll.Ctive

Debugging ,
hlterll.Clive

RWI Time Control
Symbolic/Numeric

Computing , , ,
Sequential

Processing , , , , , , , ,
ProgranmJing ill lhe

Llll"ge , , , , , , ,
Vec~or Processing , , , ,
Parallel Processing ,
Dinribu~ed rocessing ,
Perfomumce

Estimatioil , , ,
Oo<;ument GenerMioli
Portability , , , , , , , ,
OpelUleS5 , , , , ,
Solu~ion

hlirastrueture , , , , , , ,
EXlcndability

(Generic Archite<;lure)
Interface to

Scientific blstrumel1lS
• under develo men~

17

planned. Currently / /ELLPACK provides MIMD POE solvers based on the domain decomposition
methodology. The system generates code for nCUBE and Intel hypercubes. All three systems have
a facility for collecting, visualizing, and analyzing performance data.

The VECFEM system [GSS91] is for the numerical solution of I-D, 2·0, and 3-0 elliptic,
parabolic, and eigenvalue functional equations on vector machines. In space direction the equations
are discretized by the finite element method so that arbitrary domains can be considered. In the
initial value direction of the parabolic problems the finite difference method with self-adapted step
size and order control is used. Parts of VECFEM are the linear equation solver FEMLIN and the
matrix eigenvalue problem solver FEMEPS. Both use iterative methods of the conjugate-gradient
type. The Cllrrent version 1.1 does not offer a user-friendly interface but there is a plan to drive
the system through a macro extension of FORTRAN (PATRAN) and also use the system I-OEAS
for geometric modeling. The architecture of the system is based on a finite element kernel defined
through well-known finite element data structures and interfaces.

The PDE2D system [SewS5] is used for the numerical solution of nonlinear elliptic, parabolic,
and eigenvalue POE problems in two dimensions using the Galerkin method with adaptive meshes.
The system uses PROTRAN [AR83] to drive the computations and to input/output the POE data.

OEQSOL is a PDE system [KUIO~IO] with its own very high level specification language, an
interactive/visual user interface for PDE problem specification, debugging, diagnosis, and visual
ization of numerical simulation of POE problems. OEQSOL supports finite difference and finite
element discretizations of time dependent PDEs. It currently generates sequential and vector code.

A PSE for some PDE based computations is ALPAL [CP92]. It is a tool that automatically
generates code to solve nonlinear integro-differential equations, given a very high level specification
of the equations to be solved and the numerical methods to be used. ALPAL is designed to handle
the sort of complicated mathematical models used in very large scientific simulation codes. Other
features of ALPAL include all interactive graphical front end, the ability to symbolically compute
exact Jacobians for implicit methods, and a high degree of code optimization.

Table 3.2 indicates that all these systems are either domain or method specific. None of these
is easily expandable, and the majority of them lack many of the PSE features. It is clear that none
of these systems has been designed to control rE'al or experimental processes used in production
or laboratories. Thus, there is need to design and implement software engineering platforms for
generating PSEs and the related algorithmic infrastructure for any class of PDE problems and PDE
based applications on heterogeneous hardware facility consisting of a network of paraUel processors
with different architectures and software environments. To achieve the above design objectives, one
must address the issue of integration of numeric, symbolic, multimedia, and Al processing.

18

3.2.3 Statistical Systems

Statistics is basic to most experimental sciences, and statistical computations are the principal
computations in many disciplines. Statistics has two characteristics which strongly motivate the
devetopment of high level PSEs:

1. Many statistical quantities are computed by complicated algorithms which must be imple
mented carefully if accurate results are to be obtained.

2. Even "simple" statistical applications involve assumptions and analyses that are mathemati
cally deep and difficult to understand, even for sophisticated Ph.D.-level statisticians.

Thus statistics was the first area of science to see the widespread use of high-level, user-oriented
systems. By the mid 19705, statistical software suppliers were introducing special languages in
an attempt to allow non· statisticians to carry out statistical calculations correctly. Examples of
such software came from SPSS, SAS, Minitab, DMD, and Pstat; the languages were initially user
friendly interfaces to a library of Fortran statistical subprograms. This software created considerable
controversy in statistical education [Ric76], where it was viewed as allowing students to use statistics
without understanding it. By 1991 these systems were evolving into complete PSEs, the use of
elaborate graphics was commonplace, and expert systems help (which this community of users
needs particularly badly) was being developed and introduced.

3.3 Component Areas

3.3.1 Symbolic and Algebraic Computing

Examples of symbolic and algebraic computing systems (SACs) are MACSYMA [Fat8g]. [MF71],
REDUCE [Hea71], [HeaS;]' Maple [CGG+SS], Scratchpad II [.JSW8S], DERIVE [Sof89], and Math
ematica [Abb92], [WoISS]. A recent important report summarizes a wealth of information about
current and future applications of SAC technology [HBC89].

SACs can help in the early problem solving steps of specification and model creation. They
can perform analytical manipulations before the application of numerical techniques; these manip
ulations are useful but also tedious and error prone if done manually. This easy-to-apply prepro
cessing leads to better understanding of the mathematical problem and important simplifications
([GI<K90][Sch88]) and selection of proper solution procedures [Duv92]. SAC systems provide the
framework for describing equations and translating them into a suitable format for manipulation in
subsequent phases. Systems have been built for automatically writing code to solve elliptic differ·
ential equations in general coordinates based on finite-differellce/finite-volmue approximation; for
time dependent problems [ES80J, and for generating finite element code [FH87], [Tan8S], [Wan86].

19

Another use of symbolic algebra tools for PSEs is in slability investigations of finite-difference
approximations to differential equatiotlS [ES84], [GLS9J, [ThuSG].

SAC systems also reduce or eliulinate errors whenever the generation of Jacobian matrices is
called for during the solution of non-linear equations' ([Coo90j, pvIOF89], [PC92J, [vdHvHGS9J).
As described in Section 3.2.3, environments such as ALPAL also provide tools for the manipulation
of the Jacobian. It must be noted that here have been interesting developments in the area of
automatic differentiation theory and tools which offer attractive alternatives to symbolic generation
or finite difference approximation of Jacobians occurring in the solution of nonlinear systems.
[Gri89], [Gri90], [GC91]. One advantage of using symbolic as opposed to numerical manipulations
is the reduction in the roundoff resulting from finite prC!cision arithmetic. This is a consequence of
using exact or high order formulas; for example, consider the use of symbolic integration instead
of numerical quadrature to evaluate stiffness matrices. Nevertheless, since PSEs are based on the
integration of symbolic and numerical computations, the symbolic expressions output by the SAC
system must be such that they return reliable results when floating point numbers are substituted
in place of symbolic variables. This was demonstrated convincingly in [FK87j with an example
where SAC output was used with floating-point arguments and produced IIlHnerical values less
accurate than approximate methods. Recent SAC systems have started paying some attention to
their interface with users and other systems, by means of tools for graphics, for interaction with
the file system, for outputting Fortran code or ~TEX expressions, and for connecting with foreign
(e.g., Fortran) procedures.

The data structures and computations used by SAC systems are very demanding of the computer
system, so that the potential of parallel computation should be exploited. [n the same time, current
research tries to address the issues of computational efficiency, expressiveness, and friendliness of
SACs [Dav90], [Fat90]. For reasons similar to those that led to the development of numerical
software libraries, there is a need for SAC software libraries. These should he easily accessible,
(c.L, the NE:TLIB-type organization of a library for REDUCE).

Currently, several companies are relying on SAC systems for complicated industrial tasks rang
ing from the design of three-dimensional elements to simulate singular behavior in stress fields
[HCZSO], to studying seismic wave propagation [KDMW90j, conducting reliability analysis for off
shore oil rigs and nuclear reactors, and complementing finite element methods in the design of wind
turbines and next-generation engines.

3.3.2 Numerical Analysis

Numerical analysis is one of the most mature areas amongst the providers of software parts to
PSE 'y,tem, [Cow84], [DDMS78], [PdUK83]. [R;c71], [Ric90], [Rk92J, [RS83], The contr;but;oll

I'n the words of Painler and Cook in [PC92], ~Bcfore ALP,\L, 100% accurate Jacobians were uuheard of at LLNL."

20

consists mostly of numerical libraries whose fundamental role in practical numerical analysis was
detected very early [Cod84], [Ric90]. As problems increase in complexity, the presence of reliable,
efficient and easily assembled software parts becomes essential [RS83]. The existence of high-quality
numerical Ilbraries (Hop78] [IMS87J, [Num88], gives more freedom to the user to concentrate on
the higher level issues instead of rewriting software. Sources sllch as NETLII:I provide ready access
to numerical software (e.g., the source of the algorithms collected and published in the ACM
Transactions OIl Mathematical Software) and other scientific software [DG87]. Currently, there is
intense research and development activity in algorithms and libraries for direct and iterative sparse
computations [AGL+87], [AlvS9], [AS90], [OERS9], [OGL], [OL80a], [OL851>], [OJ](89], [GHN+90],
[Saa89], [Saa90b], [Sea89], [SW88]. Some libraries also contain tools for visualizing the sparse
data structures hence bringing them closer to the matrix laboratories described in the next section
[AlvS9], [Saa90b], [Tn90].

Numerical analysis research, however, is not only directed toward solving state-of-the-art prob
lems but also toward re-evaluation of existing solution methods in light of new developments [Par78].
For example, novel computer systems have triggered research in algorithmic techniques to exploit
vector, parallel, and hierarchical memory resources [G.JMS88j, [Wij89]. Libraries based on such
techniques are already under construction and standardization (e.g., LAPACIi: [BD89]).

It is hoped that PSEs will significantly reduce the present delay in applying and testing novel
numerical algorithms in the context of real applications as well as simplifying the design of appro
priate test problems. Indeed, the lack of adequate test problems and data sets has been recognized
as a serious impediment to research in many subfields of numerical analysis (BeI91J, [JBNP91].
Although efforts are being made to construct collections of test data, PSEs offer a natural solution
to this problem.

Just as one seldom questions the reliability of results obtaill(~d with trigonometric functions, the
PSE user should be able to rely on intermediate results when using components of the environment;
this assumes a high degree of confidence for these routines, demonstrates the necessity for numerical
algorithms in a PSE to be reliable, and indicates the imporlance of current research in error
estimation and control, adaptive algorithms and software for the complex problems to which PSEs
will be applied [Ban90], [Ewi90j, [FPSVS9j, [FVZ90], [FW90), [Ode91].

3.3.3 Artificial Intelligence

Techniques for efficient problem solving constitute an important topic of artificial intelligence (AI)
research [Ama85J. Expert systems constitute a major aspect of AI with respect to problem solving
tasks.

From early on, polyalgorithms and automatic algorithm selection procedures were recognized
as important to the development of efficient and reliable numerical software' [Rie8S). With the

21

proliferation of solution methods, it bccomes clear that the selection process should be largely
automated. (See [BK91] for a review of some relevant projects, such as GAMS, NAXPER.T, NEXUS,

AND SLADOC.)

Expert systems have been developed for several areas of scientific computing other than numer
ical linear algebra. Such are systems for the selection of appropriate ordinary differential equations
solvers [KE92], [LG92Jj Elliptic Expert [DGR92J for the XELLPACK environment [BD92], and
ATHENA [HHK+92J for j jELLPACI\ (HItC+90]; and objcct-oriented systcllls for partial differential
equations [BBP+92j, [Pes90). It must be noted, however, that the feasibility of constructing sys
tems able to handle general PDEs has still to be demonstrated (d. the disclission in [Co08S]). In
some areas, such as civil engineering and architecture. knowledge-based systems are combined with
CAD tools to improve the overall design process [BF89]. (See also [BijS6] and other articles in that
volume.)

Successful use of Al techniques for automatic preparatioll, execution, and control of numeri
cal experiments has been reported in [AEH+89]; other IIscful references include [Br092], [Cla92],
[C,y92], [Hag92], [Ton92J.

3.3.4 Computational Geometry

Geometry is a critical component for most applications. The almost exclusive lise of single rectan
gular or circular slopes in textbooks clouds the fact that most applications really involve somewhat
more complicated shapes. For example, computer-aided design ill structural engineering is based on
interaction of solid modeling, finite element mesh generation, solution and postprocessing [Fie86].
The structural engineering community has developed a methodology for a wide range of shapes,
the "building block" approach (i.e., finite elements or constructive solid geometry), which is quite
effective for many applications. On the other hand, it is 1101. as effective when smooth shapes are es
sential to the applications. More distressing to those trying to build versatile systems, is that most
of the geometry manipulation capability is deeply buried within massive software systems. There
have been efforts recently to create geometry systems that can interface naturally with various
levels of application, for example, the Protosolid system [Van89]. There are also important efforts
to provide "design shells" for large structural analysis systems (e.g., the cOlllmercial products Ideas
and Adams), which provide more natura] and simple-to·use geometry as well as other benefits.

It is essential that computational geometry be integrated into software environments of com
putational engineering and science for the 1990's. This task requires efforts on several layers.
Beginning at the infrastructure level, geometric modeling systems pose many research problems in
the integration of numerical and symbolic computation and in the practical application of theories
from geometry and algebra [HorsD]. On the systems integration level, geometric modeling systems
need to be restructured into open systems that give freely access to infrastructure functionalities

11

and provide tools for interfacing with complex interval data struClUI'CS. 011 the llser-interface level,
finally, the traditional geometric design gestures and paradigms need to be rethought from an ap
plications point of view that incorporates into the need for specifiying shape, the additional need to
specify visually, and conveniently the parameters of the physical problems to be analyzed. Success
on tltis level will require melding different research communities.

Architects and civil engineers have been investigating CAD environments, combining knowledge
based engineering, computer graphics [Gre9l], geometry and solid modeling, and design optimiza
tion, for some time [FMS84], [RS88], It is argued that future architectural PSEs could free CAD
from its current restrictions [Nov9l] and enable users to explore completely innovative solutions
(d"igns) [MitOOJ, [MM01].

3.3.5 Visualization and Graphics

The importance of visualization is now well recognized as an integral part of aPSE. Brodlie
[Brodlie 91] remarks that the NSF report by McCormick et al [McCormick 1987] makes the case
for a strong visualization initiative so that advances in numerical simulation software/hardware
environments can be matched by an improved ability to assimilate the results. McCormick's report
identifies the difference between "visualizationll and traditional graphical representation. Farrell
[Farrell 91] observes that presenting information in image form allows viewers to perceive patterns
and relationships which may be missed in table of numbers; graphics and images have been essential
in the development of science and engineering. According to Farrel, visual data interpretation is
more than forming a three dimensional view of data or colored images. The goal is to provide tools
and systems which allow the user to extract information from the data. This involves a diverse set
of tasks. Volume 35 of IBM Journal of Research and Development addresses these diverse aspects
of data visualization. Traditionally, visuaJization techniques are primarily applied in the pre- or
post-processing of the solution process. Often, there is a need to observe the computation during
run-time and to change the data or the model itself before the completion of the computation. Fur
thermore, the introduction of parallel computing and its realization on varied parallel architectures
has necessitated the collection of run-time data that show the performance and flow of parallel
computations. Graphical representation of these data is the only way to perceive changes and take
appropriate actions. We predict that future PSEs will allow users to visualize their computation
and to interact with them, The symbolic representation of three dimensional post-processing input
data is impractical. Already, CAD systems have revolutionized the way we specify such data. The
integration of graphics to specify the physical world and support the simulation process is one of
the main PSE design objectives. We believe that the integration of numerical computation and
visualization should be one of the main research ohjectives of PSE development.

23

3.3.6 Software Infrastructure

PSEs must enable the computational scientist to program in the large. As managers of complexity,
PSEs, their component subsystems, and their design targets are all large and complex. Software
engineering is expected to be a source of useful techni<jues and experience.

Object-Oriented Design. Object-oriented techniques will be Ilseful for rendering PSEs com
prehensible and manageable [Bro87], [OOA90J. Object-oriented, logic programming environ
ments have been used to represent domain knowledge appropriate for an environment for
numeric program generation [Pes90]. In many cases the classical objC'ct-orientecl view must
be enriched, such as when the same object must be described from complementary points of
view; for example, matrices can be classified by shape, structural properties, and numerical
properties [PvGS90] and [RR92] who proposed Lhe introduction of points of view on a family
of classes, discuss this aspect of object-oriented design. Since PSE components are expected
to cooperate in their problem solving functions, techniques from concurrent object-oriented
programming could also prove useful [Agh90], [AYWA91). Object-oriented programming
techniqes are gradually becoming more common in compl!tational science [CSSY91], [LG9l].
Object-oriented techniques were also used recently in MATLAB [MLB90J.

Software Interconnection Technologies. The integration of complex numerical and symbolic
systems needs appropriate software interconnection technology and module interconnection
languages for the efficient description and control of problem solving. When code modules
are written to solve PDEs, interfaces must be written to link with general purpose numer
ical software and application codes [CPB91]. A softwa.re bus could provide the appropriate
connecting infrastructure [PRG88], [Pur86J, [Pur92b]. As specified in [Pur92b], the design
goals of the bus are to allow programs to be desCl'ihed and manipulated in terms of minimum
specifications and to provide a language for describing module inLerfaces in a manner that is
independent of the application's implementation language.. The software bus encapsulates and
isolates run-time interfacing concerns for an application. Hence, to change interfacing prop
erties, one changes the bus, not the application modules. This technology can also be used,
with considerable modification, for the dynamic reconfiguration of a computation [Pur92aJ.
(Recent work on system-independent user interfaces, based on the X II window system, was
described in [DW90].) As systems such as matrix laboratories and SACs continue to be de
veloped, several examples of interconnection techniques and tools can be cited. As noted in
Section 3.2.1, matrix laboratories are built on top of sophisticated mathematical software li
braries. Tremendous power is added as it becomes possible to link the systems with numerical
libraries written in Fortran or C. There exist several projects for interconnecting SACs with
numerical software libraries (e.g., IRENA and INTEll.CALL to link REDUCE and ~bthematica

with the NAG library [BI(R+9lj, [Dew89J, [DR90]).

24

User Interface. Ease of lise is an important quality of the systems to be designed, which means
that special attention should be paid to designing the user interface. (See [Kaj90] and (Soi91],
for problems and solutions related to the interface design for SAC's.)

Language and Compiler Technology. The important role of language in the problem solving
process is widely recognized [B01l85], [Shn85]. Some of the systems described earlier already
provide their own language. New languages are also being proposed, some specifically di
rected toward scientific computation [Lea90] [HCS9], [EHJP90], [Mv90], [MvS7J, [RS87], while
object-oriented languages such as C++ gain currency in the scientific computation area. The
development of compilers and other tools for these languages and their implementation on
target architectures is another important activity. (See [KMT91] and [GNP90] for additional
discussion.)

One criticism of symbolic systems is that they are slow. The re-asons for this are manifold.
'Whereas most numerical computations are based on the iterative manipulation of regular
data structures, thus allowing loop distribution across processors and regular sequences of
memory access patterns, symbolic systems manipulate irregular and dynamic data structures
(e.g. lists, graphs, trees). In addition, SACs are frequcntly written on Lisp-type languages
for which restructuring compiler technology is milch less developed. While research for the
discovery of better SAC algorithms is continuing, improvements in speed and usability are
expected as good compilers for the underlying lculguages become available [Pon88a], [Pon8Sb];
examples are the paraUelizing compiler for sequential Scheme [HP88]; research in obtaining
multiprocessing extensions for Lisp [GGS9], (ZHL+89]; the effort of [Fit89J for constructing
a compilation-driven parallel REDUCE system for loosely coupled, distributed architectures.
There have also been efforts to provide implementations of Lisp-based systems such as REDUCE

in C by building a translator frolll REDUCE source to C [Fit90]. See also [Cha90] and [Wat86]
for additional work on the multiprocessing of SACs.

As most scientific/numeric processing is done with Fortran, milch time in symbolic systems is
spent in special functions (e.g. GENTRA N) to gencrate Fortran code. It thus becomes crucial
for performance for such functions to produce code which is, ill SOIll€' sense, optimized. This
topic has receivcd attention, with some systems performing optimizations over code sequences
as well as single expressions. In that way it becomes possible to obtain DO loops suitable for
scheduling on multiprocessors.

Future research should examine how to exploit the PSE's high-level knowledge of the problem
to enhance tlte compilation process and produce better solutions.

2.')

3.4 Supporting Areas

3.4.1 Parallel and Distributed Computation

The capabilities of supercomputers have made possible lIumerical simulations at a fine level of
detail (e.g., using the additional memory and computational power to increase resolution) with
corresponding increases to the sophistication of the models. Parallel and distributed computation
will affect research in most areas, and with true multiprocessing and large memories, it also becomes
possible to attempt the parallelization of symbolic computations [DFS9j.

As we discussed in Sections :3.2.1 and 3.3.2, the lIumerical algorithms to be examined for im
plementation on parallel computers are sparse computations alld adaptive methods for PDEs.
The efficient implementation of such algorithms on parallel architectures causes formidable prob
lems that are very similar to those appearing for parallel arr.:hilectures, so that mreful studies are
needed [BBFS90j, P../lOF89j, [Wij89j. [YM88j. As ma.'iSively parallel architectures mature, studies
of scalability for mathematical and scientific libraries, software tools, and communication and I/O
libraries should also intensify [Leu90j, [SB91J.

As the user searches for the best algorithm for his particular application, he will be faced with
algorithms that tackle the same problem but perform differently, depending on the input data.
Adding computer architecture as a parameter opens the field to many new approaches, augmenting
the algorithmic choices and constraints. The explosive growth in the set of possible solutions makes
expert systems necessary.

3.4.2 Networks

Some PSE components, (e.g., the knowledge base) could be geographically distributed. High
speed networks and electronic mail would enable users to obtain l'esolltces from remote facilities
and post inquiries to electronic bulletin boards. The proposed National Research and Education
Network (NREN) component of the Federal High Performance Computing and Communications
Initiative (HPCC) addresses these areas as it is designed to support the bandwidth required for
interactive visualization, file and image transfers, multi-media database access, teleconferencing,
and collaboration technology [HPC89J, [OOA91], [WuI90j. Some examples relevant to the previous
discussion on SAC and numerical systems are the electronic: dissemination of information (source
code, bibliographies, news) for REDUCE (organized by A. Hearn at RAND), the use of X window
technology and Unix tools for ready access to NETLIB [DR9Il. and the proliferation of resources
accessible via anonymous file transfer over Internet [Ste91J.

26

3.4.C. User Interface

According to {Be9l] the field of user interfaces is expanding rapidly. This ('xpallsion is due to the
increasing expectations of the users availability of generic software platforms for the development
of user interfaces, and the emergence of new input/output technologies.

A great many engineers, scientists, and students are familiar with the sophisticated iconic
interfaces such as that of the Macintosh and various window systems. Thcse users expect such
interfaces to be readily available to engineering and scientific software systcms. Unfortunately the
cost of providing these interfaces is still high; after the user interface code cau be as much as 70%
of the total code of a software system.

The range of technologies available for user interfaces is growing rapidly. Apart from today's
bit-mapped graphics, other, more exotic interface technologies such as virtual reality and multime
dia have been developed. They are already available commercially and shortly they will become
inexpensive enough to be readily available. The interface system requirements for problem expres
sion, automatic programming, visualization, computational steering, and concurrent computing are
discussed in [PWF90j. Similar issues are addressed in (BBPWR921.

It is expected that the future PSEs will not only assist the modeling and simulation of a
particular application but will be used as job simulators or components of process control systems.
In any case single-media interfaces have already begun to show serious shortcomings in effective
information display. It is likely that these shortcomings can be OVE'.rcome by spreading information
processing across different modal channels. There is, therefore, a hope that multimedia technologies
can address the issue of information overload in the user interface of PSEs.

To use these new technologies WE' mnst snpport research and development in the design construc
tion and evaluation of a multi-media tool set which provides facilities ror constructing, executing,
and emulating multimedia interfaces. There are already some examples of such tool sets [AMZ91j
especially for process control applications.

3.5 Domain-Specific Problem Solving Environments

Discussion between users and PSE developers should be an active component of the PSE design
process. The development of PSEs is envisaged as a collaboration between PSE developers and
applications scientists; otherwise one risks building interesting albeit "toy" tools. One way to
achieve this is to build the environment around an area, for example, continuum mechanics or
computational electronics, including as Ulany steps as possible from the method described in the
introduction to Section 3. Specialized PSEs can also have great educational value, allowing students
to experiment with hard problems and sophisticated solution methods [And90].

Environments already exist that incorporate some of the characteristics outlined above, but
which are specialized to particular problem domains: for example, in the areas of industrial en-

27

gineering design [Ton89] and structural mechanics, combining solid modeling, finite element mesh
generation, solution, and postprocessing in [Fie8G], [Per79]. PSEs have also been created for pure
mathematics (e.g., group theory [HC90]); partial differential equations [BGGD89], [MOF89]; gen
eral relativity (SIIEEP [Fri8S]); and numerical analysis and control of precision of arithmetic calcu
lations (ACRITII [KuI8!]' AQUARELS [EP9l]).

Recent efforts have led to the construction of ALPAL, a tool for the generation of Fortran code
from a description of a physics model (CooSS], [Co090]. Similar tools will be essential in the gen
eration and maintenance of large simulation codes. ELLPACK is an environment for elliptic partial
differential equations [RBSS], whereas IMSL's PDE PROTRAN [HdSS9] is primarily oriented toward
time-dependent P DEs. A parallel version of ELLPACIi: [HR92] designed for a hypercube architecture
was recently completed ([HRC+90J). Among othel' things, it allows the user to define the region
Ilsing a monse, to discretize lIsing finite differences or finite ('lemellts, and to apply domain decom
position to distribute the solution phase across processors. See also [KYS+S7], [SRH92), [UK092]
for a similar effort (OEQSOL) and [BoiS9] for comparisons. EVE [OBP+!)2] is an object-centered
knowledge-based PDE solver, constructed around the MOOULEF environment. It is interesting to
study how design decisions are influenced by the underlying architecture.

A system, built on top of Mathematica and automating several problem solving steps from spec
ification to code generation, is SINAPSE [KDMW90]. The primary application domain of SINAPSE:
is seismic wave propagation using finite differences and explicit or implicit time stepping. Another
important effort, spanning many years of development, is in [lIlilding P-FINGER, as system for au
tomating finite element analysis using symbolic and numerical techniques and mapping onto shared
and distributed memory multiprocessors [Sha8S], [SW90), [Wan90J.

It is noted that wide exposure and exercise of PSE systems by the user community will greatly
help their development. Oy circumventing porting problems and making tlte systems available to
the user community it is expected that very useful experience will be gained which will guide the
construction of improved systems.

We believe that the backbone developments, the equally impressive developments in individual
component areas, and most important, the needs of the working scientist, constitute the objective
and subjective conditions necessary for the creation of viable PSEs. The conditions are now ripe
for the integration of these tools into PSE's and specialized workbenches, in order to create a more
productive environment for the scientist.

In conclusion, we note the comment of Michael Dertollzos that too much computing has been of
a "throw the goods over the fence" type. Consider, for example, a team composed of an architect
and a builder, who usually spend a lot of time trying to find out what the occupants of a building
will be doing, and seeking designs that will benefit their work. What olle does not want is a team
that brings truckloads of materials and lets the occupants find ont if they are appropriate (see also
[Den89J, [GWY89]). It is thus an important goal of PSE l'('searr.::h funds to support a constructive

28

dialogue between "builders" and "occupants".

3.6 Professional Infrastructure

The educational infrastructure for scientific problem solving environments is lIot strong. We use
the term Computational Engineering and Science (CES) to denote this discipline and area of work.
Too often we see highly trained engineers and scientists in CBS whose knowledge about computing
is that of a college sophomore and highly trained computer scientists whose knowledge about
engineering and sciences is at that same level; traditional educational programs in each of these
areas stop at the sophomore level (or earlier) in the other area. TIl\ls education in the "other ll area
tends to be ad hoc, on the job, and self-taught. For computer science, this Illeans that it is hard to
find traditionally trained compnter scientists who know enough about engineering and science to
understand CES applications. Faculty working in CBS areas find that their Ph.D. students have
often spent a year either learning about application an'as or a ypar passing (ourses and exams in
topics weakly related to CBS (e.g., abstract algebra for \lIathplllaticians, power systems for electrical
engineers, theoretical CS for computer scientists).

A few CES programs have risen out of a desire to remedy this situation. The common thread of
these programs is that there is both substantial computer science and engineering/science content.
There is a wide variation in the specific nature of the programs because they must be adapted to
local facuIty interests and university political structures. All involve more than one department,
and most involve a computer science department. It is indicative of the situation that at some places
one can create a CES program and find no one in the computer science department interested in
it. Ideally, aile wants the students to learn most of the material from two disciplines. This is an
unreasonable load for the students, so there are hard choices about what material to include. Most
of the CES programs are at the graduate level, where flexibility ill tailoring education programs is
common.

Six academic CES programs are described briefly helmv. These descriptions are adapted from
material provided by Robert Funderlic (North Carolina State), Gene Golub (Stanford), Bill Martin
(University of Michigan), Gary Rodrigue (University of California, Davis), Ahmed Sameh (Uni
versity of lllinois), and Danny Sorensen (Rice University). The descriptions illustrate both the
diversity of the programs and the common purpose of combining computer science, engineering,
science, and applied mathematics in some way.

3.6.1 University of Michigan

The doctoral program in Scientific Computing at the UniVC'rsity of Michigan is a joint degree pro
gram - students pursue doctoral studies ill a home department, typically olle of the traditional

29

engineering, science, or mathematics disciplines, and take additional courses in areas such as numer
ical analysis, scientific computation, applications, or the study of algorithms fOl' advanced computer
architectures. This program is based on the recognition that a firm knowledge of the science is an
essential ingredient for research in scientific computation - students are expected to complete the
normal doctoral requirements for their home departments as well as additional course requirements
in scientific computation, numerical analysis, and algorithms for advanced computer architectures.
The title of the degree has "a11d scientific computing" appended to traditional description, for
example, Ph.D. in aerospace engineering and scientific computing.

The Laboratory for Scientific Computation administers the doctoral program in scientific com
puting, is cooperation with the student's home department. The following list of research topics is
representative of this program:

Computational fluid dynamics
Algorithms for lIew architectures
Computational particle transport
Computational solid mechanics
Simulation of semiconductors
Simulation of AIDS transmission

Simulation of VLSI circuits
Scientific visualization
High pC'rformance materials
Molecular dynamics
Computational chemistry
Computer-aided molecular design

3.6.2 North Carolina State University

Strong local institutional support and excellent faculty from several departments have propelled
CES programs at North Carolina State University. A plethora of sllared memory and message
passing parallel computers is available for researchers and graduate students on campus and at
the North Carolina Supercomputer Center at Research Triangle Park. The Center for Research in
Scientific Computation (joint hetween computer science and mathematics) acts as the focal point
for academic CES programs. The Computer Systems Lab (joint between rOllljluter science and
computer engineering) provides strong computational infrastrllcture support.

Various names and emphases describe the academic programs at North Camline State: Com
]Jldational Mathematics (CMA) within the Mathematics Department, Scientific Computing (SC)
within Computer Science, and Computational Engineering muJ Science (CES). The latter resem
bles a well-structured, expanded, split minor in math and computer science and is available in all
engineering and physical science graduate programs. Computer science is a vital component of the
research and teaching of scientific computing at NC State; for example, of the 23 courses that sup
port the CES program, 18 are computer science, with 8 of these cross listed with mathematics. The
SC and CMA programs are very similar and lead to 1'1.S. and Ph.D. degrees in computer science
and applied mathematics. With the proper advising, a de facto track in scientific computation is
available within the computer science undergraduate program.

:JO

North Caroline State's success in establishing CES progra.ms has been strongly influenced by
the cooperative efforts of their computer science and applied mathema.tic.s faculties even though
they are in different colleges.

3.6.3 Rice University

The Mathematical Sciences Department, ill conjunction with the Computer Science, Chemical En
gineering, and Electrical EnginC!ering Departments, has initiated a new degree program leading to
advanced degrees in Computational Science and Engineering (C5£). The program focuses on mod
ern computational techniques and is designed to provide this training throughollt Rice University at
the M.S. and Ph.D. levels. The program is governed by a r.ommittee of faculty chosen by the Dean
of Engineering, with ultimate oversight by the Provost. This Computational Science Committee
(CSC) is responsible for assisting the student in designing an appropriate course of study, setting
examination requirements, and insuring the integrity of the degree program.

The professional master's degree produces an expert in scientific cOlll)luting who can work as
part of an interdisciplinary research team. A recipient of this degree will be well trained in state-of
the-art numerical methods, high performance computer architectures, software development tools,
and in the application of these techniques to at least one scientific or engineering area. The
curriculum for this degree consists of a variety of topics from mathematical sciences, computer
science, and a selected application area. Requirements include successful completion of 30 semester
hours or more of advanced courses. There is no thesis requirement.

The Ph.D. program starts with advancement to eloctoral candidacy by the successful completion
of a program of approved course work along with satisfactory performance on preliminary and qual
ifying examinations. The foreign language requirements of the student's department are adhered
to, and the student completes an original thesis under the direction of a member of the participating
faculty of the CSE program which is acceptable to the Computational Science Committee.

3.6.4 Stanford University

In 1987 Stanford established a degree program in scientific computing and computational math
ematics. Its purpose is to train students in the lise of modern advanced computer architectures
and software tools in various fields of science and engineering. The main thrust is the fusion of
ideas from computer science and applied mathematics with a ll11mUer of application areas. This
program resides in the School of Engineering, and students are admitted directly into the program
independent of other departments. The program's faculty is made up of faculty from other depart
ments and has three levels of participation. The Core Faculty is responsil>le for administration; the
Associate Faculty consists of people who are heavily involved in computing within their discipline

:ll

and who offer courses within the program; the Affiliated Faculty are those whose disciplines are
peripherally dependent on computing.

The curriculum emphasizes applied mathematics, lIumerical analysis, and computer science and
requires demonstrated expertise in some application area such as fluid mechanics. In addition, there
are working relationships with local research organizations such as RIACS. LLNL, and IBM.

3.6.5 University of California at Davis

A program of computational science has been initiated within the departments of applied science
and chemistry. Questions of science, computational techniques, tomputer science, and mathematics
are inseparable in addressing the large issues in compntational science. A practitioner of compu
tational science must have some skills in each of these areas and he able to interact from each of
them. The computational science program at U.C.-Davis was established with this philosophy in
mind for the graduate student who is interested in the application of compnters to the physical,
chemical, mathematical, and engineering sciences. The pro,l!;l'am involves COllfse work from the tra
ditional areas of physics, chemistry, computational mathematks, and computer science as well as
in the area of the student's specialization. Ph.D. candidates in participating departments declare
a designated emphasis in Computational Science, then proceed to take a special set of core courses
in the department in which the student is enrolled and also a set of core courses in computational
science. For example, in the Department of Applied Science, the core conrses are Mathematical
Physics, Computational Mathematics, and a course called Compntational Science that is designed
especially for physical scientists and which covers such topics as computer architecture with empha·
sis on parallel compnters, algorithms, and numerical methods. After passing an examination, the
student proceeds to their graduate research by taking electives from a variety of available courses
within the department. The degree awarded to the student is: "Doctol' of Philosophy in Interrupt

3.6.6 The University of Illinois, Urbana-Champaign

A new area of specialization in computational science and engineering (CSE) has ueen established
at the University of illinois within the doctoral programs in computer science and electrical and
computer engineering. Unlike what is now regarded as traditional computer science, a CSE program
focuses on the whole computational process. It covers the following topics:

ComputeT'S

• architecture for parallel and pipeline processing,

• simulation from the chip to the system level.

:)2

• hardware to the level of device simulation and packaging,

• reliability and fault tolerance

System Softwm'c

• compilers, especially restructuring source code and code generation,

• programming and problem solving environments,

• operating systems, including interface with compilers, scheduling and dynamic control of
systems;

Applications

• design of robust parallel numerical and nOll-llumerical algOl'ithms,

• specialization in one application area sl\ch as digital circuit simulation, computationaJ fluid
dynamics, or compntational chemistry, and the development of application software that
achieves "performance portability" across a wide class of architectures.

Performance Evaluation

• measuring performance of existing and proposed architectures, compilers, algorithms, and
whole application codes,

• analysis and performance improvement suggestions, and \'ali<lation via measurements.

:33

4 FUTURE RESEARCH DIRECTIONS

It has been predicted that by the beginning of the next centllry the computer technologies of the
HJ90s will allow anyone with access to computers to get elll answer to any question that has an
answer. On the other hand, it has been rightly observed that if someone has only a hammer, then
everything looks like a nail to him. The research directions for PSEs iihould be governed by tlte
desire to make the above prediction a reality and to provide studellts, scientists, and engineers with
problem solving environments and colllputational power that will make them feel that their only
limitation is their imagination.

4.1 Future Problem Solving Environments

The enabling technology for future PSEs is the wide availahility of high-performance computers.
It is expected that in the 1990s we will see on-chip processing performance in excess of 2000 MIPS
and scalable parallel processors containing thousands ofsllch chips. The palmtop (e.g., IfP 95LX!)
and notebook computers will become as powerful as current workstations. The new generations of
workstations will be able to proress heterogeneous information at supercomputer speeds, utilizing
hundreds of megabytes of main memory, large (greater than <15 inches) fiat, high resolution displays,
and very large optical and/or magnetic disks. We will see high Imudwidth local al'ca networks,
wireless communication systems, and laptop computers as routinl' parts of cellular communication
systems. It is widely recognized that the workstations of the 1990s will be able to process multimedia
information (i.e., voice, programmed sound, video, photographs, aD images), which will provide
support for the development of !lew tools that will take advantage of the added value provided
by the combination of the "traditional" computer media, existing information systems, and digital
video and sound technology. It is clear that we have not yet thought of everything we can do with
this technology.

These technological advances are bound to have a significant impact as the way we learn, solve
problems, communicate, and interact professionally and personally. Programming style in such a
hardware environment has to be, at least, rethought. \Ve foresee that some fOI'Ill of programming in
the large will become standard for Illost scientists, engineers, and others and will involve high level,
interactive, visual-object-oriented languages, supported by multimedia libraries of information and
application objects. Problem solving environments will be one form of this methodology; they will
be among the objects available for programming ill the largCl. Traditional algorithmic programming
will be more restricted to specialists and system huilders.

User interfaces for computational science.
The new technologies will definitely change the way W(l. collllllunicate with electronic media

and determine the nature of PSE interfaces. Most of the interfaces today are tool based and user

:l4

directed. We need interfaces that support integrated environments capable of organizing the user's
computational objectives instead of having the user organize computations piece by piece. Future
PSE interfaces will be connected to more than a trillion objects of useful knowledge. It is unclear
whether the current direct human interfaces can handle this workload. Furthermore, future PSE
interfaces will have animation and multimedia processing as a basic capability. The development
of PSEs depends very much on interface technologies, and thus research and development of user
interfaces for computational science applications is essential.

Software infrastructures for "soft" laboratories.
Computational models have augmented, or even replaced, rcal experimentation in many ar

eas and now playa significant role in everyday science and engineering. We foresee as a future
important research direction the development of a "soft" computational science laboratory where
hybrid computational and experimental models interact in a natural way. Tlw goal may he to
create a prototype model of some artifact or process that is still in its infancy, or to "surround"
an experimental physical device with a simulated physical environment, or simply to exploit the
economic advantages of various component types ill a process. Although the need for PSEs for
such soft laboratories has been identified, no specific architecture has been suggested yet. In this
situation one has to face the additional challenge of interfacing software and physical PSEs. Multi
media workstations constitute an initial reasonable step toward the realization of such laboratories
which are certain to have a significant positive impact on education and research in science and
engineering. The design and development of the appropriate software infrastructure to create such
"soft" laboratories is an important future research direction.

Expert systems for problem solving.
Applications will no longer be supported by single-minded, deterministic algorithms that re

quire several parameters to l>e specified by the user. Instead, we will see the development of
metalgorithms, polyalgorithms, and "smart" algorithms capable of adapting themselves to specific
situations. In addition to their computation procedmes, thesc algorithms include knowledge about
their applicability and perception of their algorithmic and computational behavior on various hard·
ware platforms. The creation of this new breed of smart or expert systems for problem solving is
one of the key research directions.

We believe that the algorithmic/hardware/software advances of the 1990s will be able to support
the vision of the 19GOs. The challellge is to create the $oftwaJY: to exploit ami inlegmte these tech
nologies. The goal is to support weU-established educational and problem solving processes. This
challenge requires that advances be made in infrastrllctllfe technologies sllch as domain specific lan
guages and compilers, interfaces to support integrated cnvironments of multimedia objects, libraries
of "smart" objects, transparent use of complex computer architectures, and generic, transportable
kernels of capabilities.

4.2 Generic Problem Solving Environments

We are entering the world of generics - generic entertainment, generic music, and generic software.
The design and implementation of generic PSEs for computational science applications is not only
feasible but will have significant scientific and economic impact.

For many years the brainstorming of scientists and engineers has been supported by a simple
generic tool: a combination of paper notebook, a blackboard, a calcuJatOl', a pencil, and chalk. It is
now possible to dream of replacing this tool with a single electronic medium capable of supporting
small-scale symbolic, numeric. and graphical processing of certain objects, typically mathematical,
while large-scale, detailed computations are deferred to a more powerful computing engine. The
notebook computer is already a reality and soon will hI:! comm('l'cially available. The software
architecture for such PSEs is completely open and the underlying operating systems are still in the
early development stages. Analysis of the design and requirements for notebook PSEs is needed
soon. Given that there is no installed base, we might have a once-in-a-life-time opportunity to
influence the design of these platforms. As one wit said: "God was able to make the world in
seven days, and that was because he didn't have all installed base". The impact of these PSEs
will surpass by many times the revolution caused hy hand calculators. These PSE applications
will push many computer peripheral technologies to the limit. We believe that the algorithmic
infrastructure needed to support the functionality of snch notebook PSEs exists now. The reseal"Ch
challenge is to scale down the existing tooL<; to fit this /utl'(l11la1'C platj01'1/! wlfl inlc1jace them to this
new environment.

Another common problem solving process is the synthesis of a suite of well-understood op
erations applied to a given problem using some programming environment. This process today
is supported by well·defined libraries whose usage usually assumes substantial knowledge of the
methods implemented and the computational infrastructure used. Users often need to integrate
primitive tools to develop a synthetic tool capable of supporting a particular application. A recur
ring dream of the practitioner is a well-organized "workbench" of "smart" software tools capable
of assisting in the selection and synthesis process and of hiding most of the non-application specific
operations from him. Such a workbench would exploit the capabilities of the "smart" algorithms
mentioned previously and would include "smart" organizational tools. Although there is ongoing
research in knowledge base front ends for existing weH-defined libraries, this effort is limited, and
the creation of the "intelligent scientific workbench" is far from reality. It is clear that most users,
including scientists and engineers, are not interested ill programming ill the current conventional
way. Experimentation with various software architectures is a task that requires the collaboration
of experts in computer systems, software engineering, human interfaces and computational science.
The research goal is lo identify the fmmewol'k mul genel'ic tools aIJ11l'Op"iate 101' a broadly applicable
scientisl's workbench thal is broadly appli(lble.

It is clear that there are widely applicable kernels for scientific PSEs. Some of these are easy to
identify, for example, facilities for the visualization of data, symbolic processing of problem solv
ing specifications, manipulation of geometric shapes, and tools to create and use libraries. Other
less-well-developed kernels include object-oriented knowledge base facilities, language translators
geared to scientific and engineering jargon, controllers for complex distributed computational en
vironments, and support facilities for the interface I>etween the computer and the outside world.
What is not easy is to identify the right combination of these kernels and the dividing line be
tween generic and application specific capabilities. Adl1C1IIces ill lllldcrstanding the al'Chitecture and
pmperties oj these kemel facilities is '·efJui,·ed.

4.3 Application Specific Problem Solving Environments

Ken Wilson's dream is that some day engineers will write down a problem 011 an C'lectronic medium,
using a textbook-type language, and a "system" will intelligently respond with a reasonable so
lution. This dream has been regarded by many as science fictioll. We believe that such a goal
should be basic for researchers in scientific PSEs, even if its "full" realization does not appear to be
possible any time soon. The development of sllch technology will change completely the way we do
science and engineering. It will be a breakthrough with enormous and un imagined consequences.
One can argue that the hardware technology to become available in the 1990s can support this
dream. The principal harrier is the lack of application-specific knowledge bases and an appropri
ate integrated infrastrudlll'e of symbolic, numeric, geometrical, artificial intelligence, and natural
languages facilities; it is the lac.k of these ingredients that puts realization of this dream into the
distant future.

The first step towards the realization of this goal should be the demollstraLioll of this idea within
small, specific problem domains. This will require the development of

• Sophisticated expert systems for a few, well-deun('(l application domains. These must be
capable of analyzing user specifications, selecting an appropriate problem solving process,
generating an appropriate computational model, <Lud producing answers in a rapid, natural
form.

• Multime.dia user interfaces providing natural forms of comllluuieation with languages, graph
ics, images, and voice specific to these PSEs,

• Access to auxiliary facilities amI information such as meta-libraries (Hbraries of "smart ll

algorithms), electronic application-books(CD-hooks), and video instrllctors (on line, touch
screen, audio driven help system).

;17

These future PSEs will be supported hy a new breed of information database, a knowledge-base,
and science and engineering electronic encyclopedia systems capabll' of handling or providing het
erogeneous multimedia information. New data structures, storage schemes, and manipulation algo
rithms will be needed for each application domain (Le., rhC'lIlists operate on molecular structures,
and electrical engineers on circuit diagrams).

An application-specific PSE that seems particularly attractive would provide access to classical
mathematical information. This PSE covers retrieval and use of the enorlllous body of information
about mathematical formulas, expansions, and associated techniques. It is a narrow enough area
to be feasible to attack now, there are numerous previous "handbooks" to huild on, and, most
inviting, once completed it would become a generic PSE for Illany areas of science and engineering.
The goal is to produce an encyclopedia PSE fOl> (jpplieri l/!n{!Icl/lnlic$.

4.4 Problem Solving Environments for Education

The use of multimedia technologies can revolutionalize the' educational process in every field, in
cluding computational science and engineering. A ;<video" instructor can be integrated into a
conventional "computational" platform and can monitor ('ach step of the problem solving process,
it can react to pupils' choices and decisions through natural (sight, sound, touch) media. This
has the potential to revolutionalize every aspect of instrnction and learning problem solving pro
cesses. Most of the PSE application developments today lIsing this technology are focused on office,
publishing, and factory environments, primarily be'cause of their high immediate economic impact,
and in some sense, their lower level technical difficulty (or, perhaps, narrower scope). On the other
hand, the edncational institutions today are faced with the rising cost of teaching, reduced financial
resources, and the shortage of qualified instructors in science and mathematics. These institutions
are also, in the view of somt> analysts, less and less effective ill mC'cting their goals. further, they
face a new breed of students who have been exposed almost since infancy to various multimedia
technologies and sophisticated computer games, and who llave u!icd them as learning devices. Thus,
the developmellt of multimedia basc(l pmblem solving educational tcclmology is clilical, yet natural,
to the evolution and improllemenl of the edllcatioll pmccss.

The PSE approach is especially attractive in science and engineering for reasons beyond the
economk and human resources factors. The long-term goal is La develop PSEs that reflect and
mold specific subject areas, just as textbooks and curricululII standards do now in a different way.
Thus, ideally, the PSE learned in elementary school would be mlllptetely compatible with that
used in high school, university, and later life. i"'Iore spel'ifically, the 1I0tation and displays for
simple algebraic equations would remain constant as olle moves through the educational system
and out into the work world. Each subject area would create its own "tree" of compatible PSEs,
starting with the root one for Lhe introductory course at whatever level it might first be offered.

:38

The feasibility of lhis appmach to O1'!Jrmizillg pmblem SOhlillg ('(jpabilitics slwlIhl be demoflslmted
for some subject area.

Unfortunately there is a severe slwrtage of people with backgronnds in hoth computer science
and its applications. There is a Ileed to encourage yOUllg people to acquire interdisciplinary training
through fellowships and postdoctoral positions, coupled with the fostering of computational science
programs. The widespread use of PSEs in education should help to attract students to work in this
area.

4.5 Implementation of Problem Solving Environments

Although the architecture, desi~n, and implemeutatioll methodology for PSEs are open research
issues, it must be recognized that futlll'e PSEs will he charactQl'ized by immense eomplexlty. They
will be capahle of interacting "naturally" with users having different levels of expertise and com
putationalobjectives. They will interact with multiple deviees, each processing or storing its own
gender of information, anel together c.reating a nonhomogeneous collection. They will be supported
by heterogeneolls algorithmic infrastructures, each with its OWII intelligent frontend. They will
execute on a wide variety of machines, over networks, and in complex computing environments.
All this must be integrated to achieve a specific computational goal. TIle implementalion of PSEs
presents formidable soflwal"(~ engineering challenges.

The view of a PSE as a set of collaborating components through some form of a "software bus"
or "software kernel" fits very well to the object-oriented paradigm wldeh can he used as one of the
methodologies for creating PSEs. To support the realization of PSEs, we need to create generic,
object·oriented, knowledge-based, PSE kernels which support programming in the large. These
kernels will have some visual script capabilities for developing PSEs for different applications, in
formation storage systems for multimedia and science objects, and domain-specific languages plus
their associated compilers. Di,'iC01Jeriug and de11eloping aplJ7"Op"iale softw(l7"C cllgineet'ing metlwll
ologics for implementing PSEs is one of the cnticall"c.W:(II'{:h dwllcllflCS for this field.

:39

5 FINDINGS AND RECOMMENDATIONS

To achieve the potential contributions of computers to science and society we must have a col
laborative effort to design and build the problem solving environments that will give the working
scientist and engineer routine access to high-performance computers, to the advanced algorithms,
to the accumulated know-how of computational science. \Ve must answer the challenge of discov
ering how to build PSEs wholesale that are powerful yet fiexible and not limited to a particular
computer, problem solving method, or programming infrastructure.

5.1 Findings

Problem solving environments for computational sr.ienH· is still ill its infanr:.y. It is a field of promise,
one where the technologicaJ infrastructnre has advanced enough to allow Lhe drea.ms of 30 years ago
La be realized. It has great diversity, and potentially enormous srientif1c and economic impact, and
immaturity. To discover how to create all the PSEs needed to exploit high-performance computing
is one of the grand challenges of computer science.

This report offers the following seven findings.

Finding 1. The time is ripe for major efforts to create problem solving environments
for computational science.

Only a vision in the HIGOs, harnessing computers to interact with people on their own terms is
now a possibility. The required high performance computing power is here and much more power
is on the way. The technological infrastructure of operating SystPills, language processors, memory
systems, and networking are much more mature. A massive amonnt of computational problem
solving expertise has accumulated, and many of the best methods are so new or so complex that
few can implement them well. Where PSEs have been introduced in nOIHicientific areas, they
have almost completely replaced programming for the gcneral user community (see the examples
in Section 3). It is time that our scientists and engineers receive tile same level of software support
that their secretaries, school children, and accountants receive.

Finding 2. Problem solving environments for computational science will have an
enormous positive impact on the productivity of scientists and engineers.

The time required for many design, analysis, development, and, eventually, production tasks
will be shortened by one or two orders of magnitude. Further. the resnlts produced will, in many
cases, be better a.nd more reliable. There are many areas of computational science that are well
understood (by some at least) and, in some sense, routillt'. Yet in these areas the implementation
of <L new design analysis or on a new w1llputing environment S('('IllS to take ~ long the tenth time
as the Hrst time. The challenge for PSEs is to encapsnlate lhis problem solving know-how into an

40

easily used, flexible system. Thus the promise of PSEs is to capture what is well known or routine
and not to provide magic bullets for problems at or beyond the frontiers of computational science.
Even so, by raising the level of analysis PSEs will increase the range of individual expertise and
speed up projects to such an extent that, in fact, the frontiers will be expanded greatly.

Finding 3. Problem solving environments require the expertise of many subdisci
plines of computer science as well as that of the application areas involved.

The workshop title lists numerical analysis, symbolic computing, computational geometry, and
artificial intelligence as relevent subdisciplines, but it is clear that others are heavily involved
in creating PSEs. Language processing systems are involved from the level of optimizing code
execution locally through automatic parallelization of computations up to natural language issues.
Larger PSEs in computational science will be self· contained systems with all the responsibilities
of operating systems. And, of course, modern high performance architectures and networks will
greatly influence PSE design and operation. Thus it is obviolls that PSE creation requires a
collaborative effort of several computer scientists as well as ('xperts frolll application areas.

Finding 4. The lack of appropriately trained people is an impediment to progress
in computational science PSEs, and yet these same PSEs will, in turn, greatly alleviate
the shortage of computational scientists.

The designers and architects of PSEs need to have a deep understanding of several subdisciplines
of computer science and to be sophisticated about science and engineering practice. Such people are
rare. Current educational programs tend to produce computer scientists whose understanding of
other sciences is at the sophomore level and to produce scientists whose understanding of computer
science is at the same level. To require students to l('arn both a science or engineering discipline and
computer science is a heavy burden that only a few will accl:lpt. These few are badly needed but we
work toward the time when PSEs will give scientists and engineers acress to sophisticated computing
and modern problem solving methodology withollt becoming either compnter scie-ntists or hackers.
The small numbers of trained computa.tional scientists have the responsibility of bridging the gap
between computing and applic.ations and of building the PSEs for the massive volumes of scientific
computing.

Finding 5. There is a lack of models of computational science problem solving
environments with all the ingredients desired; also lacking are certain generic building
blocks for PSEs.

The PSEs that exist today mostly have their roots in one area and are much less developed
in other areas. This is not unexpected as a large, production-quality PSE that would serve as a
good model would require mallY dozens of man-years of ellort if built with today's methodology.
Thus we must visualize the next gene-ration of PSEs much as the hlind lllen visualize the elephant,

41

we see certain features weil, but we do not yet appreciate the nature of the whole beast. There
are certain PSE components that are dearly generic, which have been implemented well several
times, and yet which are not available for another PSE without a very large reimplementation
effort. Examples here inclu(Je (a) symbolic manipulation for basic mathematical expressions, (b)
visualization packages for two, three or four dimensional phenomena, (c) geometric modelers for a
broad class of shapes,

Finding 6. There is an ample number of basic research issues associated with
building problem solving environments.

As with any complex grand challenge, there are many sllb-challenges where more research IS

needed. Examples of important research issues for PSEs are:

• A1'chitectU7'e: 'What is an appropriate structure for a PSE'! How are its components best
organized? How does one allow for growth and evolution'!

• Kernel: We believe that there is a I>asic kernel of facilities that can he used for many PSEs,
Which components belong to this kernerr How can very large generic facilities be included in
a kernel? Must the kernel allow for easy pruning or expansions'r

• Interface Technology: PSEs will involve very large subsystems that are independently con
structed as stand-alone systems. These include "dusty decks". What are the data structures
and protocols that such components should use to interact with the PSE? What are the limits
on such interfaces?

• Scientific luteljace: What are the best ways for a user to communicate with a PSE? Do
computers provide additional capabilities beyond traditional equations. text, and pictures?

Finding 7. New engineering design and science are hard; it is implausible that
successful PSEs for these purposes can avoid extensive user interaction.

There are many instances in PSEs where expert systems CLnd other CLrtificial intelligence tech
niques will be useful in guiding the IIser or selecting alliong certain alternatives. However, the PSE
concept includes the "well understood" attribute, so that novel ta."iks will require human direction
for the foreseeable future. Care must be taken in PSE design to support the user during a long
term interaction.

5.2 Recommendations

The recommendation for action can he roughly summarized as to support: research in PSE design
for the long term, current "targets of opportunity" in PSE construction. and education in com-

42

putationaJ science. As with tlle workshop findings, these]"('commendatiolls are presented as seven
statements along with some explanations.

Recommendation 1. Provide support for research into the architecture, design,
and methodology of problem solving environments.

The critical aspects of the architecture appear to be: (a) How does OIH" r('prC'sent methods in
a way that they can be compiled into a programming language as machines and systems change?
How does one transform snch representations as methods are interfaced'! How does one modify al
gorithmic constituents of methods as better algorithms are discovered-! (b) What is an appropriate
kernel for PSE construction'! (c) How afe large complex components of l'adirally different designs
incorporated inlo a single PSE? (d) Can the PSE kernel and major components remain computa
tionally efficient if high modularity is enforced? (e) Can a good ;;PSE genl"rator" he constructed?

Recommendation 2. Prototypes of complete problem solving environments for
computational science should be constructed.

A selection of prototype PSEs should be built lIsing "targets of opportunily" involving good
groups of collaborators. Each PSE built should be complex enough to exhibit the principal features
and difficulties of the process but not he so complex that an enormous investment of time and
money is required. Budgets of 8250,000 - SSOO.OOOjyear for three or four years are suggested.
More ambitious projects could be undertaken if the scientific or economic' payoff is high enough
and the probability of success is adequate_

Recommendation 3. Key major components of problem solving environments for
computational science should be constructed.

In addition to complete PSEs, a few particularly importallt and difficult gencric. components
should be constructed. There arc software subsystems that have l>eC'!l implemented several (or
many) times bllt are not yet easily incoqwrated into a largC'f, lllll'elaled system. Examples include:
(I) visualization of functions of two, three, and four variables, (2) symbolic manipulation of common
mathematical expressions, (3) g('ometric modeler in two and three dimensions_ Ideally, projects here
would take an existing compollent and rework it or perhaps put a shell (external interface) around
it.

Recommendation 4. The development of interdisciplinary teams should be encour
aged throughout computational science research.

It is obvious that sevNal disciplines are almost surl"ly needed to huild a complex PSE. Since there
is a severe shortage of people well vNsed in both compnler science and its applications to science
and engineering, this rerolllluendatioll p;enerally applil"d can int'['C'(]..";P this impol'tant pool of talent.

It can be carried out for younger people by reqUlrlng that research assistants and postdoctoral
fellows receive interdisciplinary training.

Recommendation 5. Create "Encyclopedias of Computational Science" which pro
vide quick access to the accumulated formulas, algorithms, and knowhow.

Computational science has a long tradition of handbooks that collect important formulas and
results for convenient use. Computers have made tables offllnction val lies nearly obsolete, but there
still remains an enormous body of knowledge that is han] to accE'SS. fOI" E'xample, the Handbook oj
Mathematical Functions [ASG4] and the three volumes Highel' TnLHscendenlal Ftmctions [EMOT.55]
are mOllumental works of this type whose content should be reorganized and made easily available to
the computational science community. Computational science, like all other sciences, should have
on-line search facilities for the published literature. These E'ncyclopedia should have algorithms
more general than mathematical formulas. How to represent these algorithms is an important
research issue.

Recommendation 6. Foster educational programs in interdisciplinary computa
tional science at the advanced level and use PSEs to teach computational science at
all levels.

There is a shortage of people who have the broad range of computer science knowledge and
application discipline knowledge needed to do computational science. This holds both for specific
applications and for building PSEs. The rew c.omputational science educational programs recently
established show that it is practical to design viable programs in this area. More or these are
needed.

The ideal PSE will accommodate a wide range or sophistication in its IIsers, from young students
to advanced researchers. Until we C<L11 realize the ideal, however, some PSEs for science should be
targeted specifically to science e<Jucation at thejllnior high. senior high, and undergraduate college
levels. These PSEs will introdllce stlld(,lIts to the rULnre pal'adip;m or scicnce iLnd engineering work
and expose them to scientific adivites and phellomena that arE' !lot commonly found in simple
laboratories.

Recommendation 7. Provide support for research on effective techniques for inter
action between computers and computational scientists.

Many important PSE applications will involve sustained interaction with the user as a problem
solution or a design is developed. Compnter graphics opens up new mechanisms for representing
and visualizing the scientific phenomena involved. These mechanisms must he perfected, and novel
approaches explored. Keyboard entry of informatiOIl will SOOll be replaced by voice input and hand
written formulas, which will surely change the natur(' of the us('r interfaces for PSEs. Further, the
PSE should lIliLintiLin a "laboratory notehook" of the prohlem solvinp; proc('ss. both as a means to

verify how a solution was obtained and to back lip the solution process when a dead-end path has
been followed.

References

[Abb92] P. C. Abbott. Problem solving using Mathemalka. In P. Gaffney and E. Houstis,
editors, Pmgramming Erl1lironments fol' High Lellef Scientific Pmblem Soilling. North
Holland, Amsterdam, 1992.

[AEH+89] H. Abelson, 1....1. Eisenberg, ~./I. Halfant, J. Katzenelson, E. Sacks, G. J. Sussman,
J. Wisdom, and K. Yip. Intelligence in scientific computing. Comm. Assoc. Comput.
lv/ae/lin., :32(5):546-562, ivlay 1989.

[Agh90] G. Agha. Concurrent object-oriented programming. Comlll. ACM, 33(9):125-141,
Sept. 1990.

[AR83]

[Alv89]

[Ama85]

[AMZ91]

[And90]

[AS64]

[AS90]

T. J. Aird and J. R. Rice, PROTItAN: Problem solving software, Adv. Engin.
SoftwaI'e, 5:202-206, 19R3.

C. C. Ashcraft, R. G. Grimes, J. G. Lewis, D. W. Peyton, and H. D. Simon. Progres
in sparse matrix methods for large linear systems all vector snpercomputers. [nt'l. J.
Supef-compul. Appl., 1(4):10-:30, Dec. 1987.

F.1. Alvarado. The Sparse Matrix ManipnlatiOll System. Technical Report ECE-89
I, Dept. of Elec. and Compo Eng., Univ. of Wise., ~vradison, 1,.\1[, 1989.

S. Amarel. Problems of representation in helll'istic prohlem solving. In R. Jernigan,
B. W. Hamill, and D. "V. Weintraub, editors, The Role of Language in Problem
Solving, volume I, pages 11-32. North-Holland, Amsterdam, 1985.

J. 1. Alty, C. D. rvlcCartney, and 1'1. Zalloco. A multimedia interface support tool
for process control interface design. Technical Report ESPRIT P2397, University of
Loughborough, November 1991.

J. Anderson. Software and system design techniques for lise in a meteorological mod
elling laboratory based on massively parallel computers. Abstract from a workshop
on Use of Prmdlcl ProCCSS07'S in Meleol'Ology, European Centre for Medium-Range
WeathN Forecasts, Reading, Nov. 1990.

M. Abramowitz and I. Stegun. Handbook of Mathematical Functions, volume 55
Applied Mathc71ullics Series. National Bureau of StaJl(lar<1s, WashiIlgton, D.C., 1964.

S. F. Ashby and M. K. Seager. A proposed standard for iterative linear solvers. Ver
sion 1.0. Technical Report UCRL-I028GO, La,wrence Livermore National Laboratory,
Livermore, CA .Jan. HmO.

[AYWA91] G. Agha, A. Yonezawa, P. Wegner, and S. Abramski. Proc. of the ECOOP-OOPSLA
workshop on "Object-Based Concurrent Programming": Panel on object-based con
current programming. OOPS lvfessenger, 2(2)::3-15, Apr. 1991.

[BangO] R. E. Bank. PLTMG: A Software Package f01' Sohlillg Elliptic Pm·tia! DifJe1'e'~ti(J!

Equations. Use,'s' Gui(!e 6.0. SIAM, Philadelphia. 1990.

[BBPWR92] P. Bara.s, J. Blum, .I.e. Paumier, P. Witomski and F. RecheUlllaUIl. EVE: An object
centered knowledge-based PDE solver. In E.N. Houstis, J.R. Rice and R. Vichn
evetsky, editors, Expel·t Sy.<;tems for Scientific Computing, to appeal', North Holland,
1992.

[Brodlie 91] K.W. Brodlie, P.M. Dew, and r....1. Oerzills, GltASPARC: A visual environment for
numerical computing, Research report 91.2, University of Leeds, .January 1991, 14
pages.

[BBD+92] K.W. Brodlie, M. Bergzins, P.M. Dew, A. Poon, and II. Wrij:!;ht. Visualization and its
use in scientific computations. In P. Gaffn€!y and E. Houstis, editors, Programming
Environments f01' High Level Scientific Problem ,';oilling. North-Holland, 1992.

[BBFS90] M. Benantar, R. Diswas, J. E. Flaherty, and !vl. S. Shephard. Parallel computation
with adaptive methods for elliptic and hyperbolic systems. Complll. Metll. Appl.
Mech. E1lgin., 82:7:3-93, 1090.

[BBP+02] P. Barras, J. Blum, J. C. Paumier, P. WitOlllski, and F. Rechenmann. EVE: An
object-centered knowledge based POE solver. In E. Houstis, J. R. Rice, and R. Vich·
nevetsky, editors, Expc1'l .'iY8tCf1IS for Scientific (.'ollllJ1ding. North Holland, Amster
dam, 1992.

[BC90] G. Butler and .J. Cannon. The design of Cayley - a language for modern algebra. In
A. Miola, editor, DI8CO'90: Design (md Imp!clIIcntrltioll of Symbolic Computation
Systems, number 419 ill Lecture Notes in Computer Science, pages 10-19. Springer
Verlag, Berlin, 1990.

[Beg]]

[BD89]

L. Bass and .1. Coutaz. Dellelol)ing Softwa1'e fOl' the Usel·lntelface. Addison-Wesley,
Reading, MA, 1991.

C. H. Bischof and ,J. J. Dongarl'a. A project for developing a linear algebra library for
high-performance computers. Technical Report MCS-P 105-0989, Math. and Comput.
Sci. Divis., Argollne Nat'l Lab., Argonne, Sell. 1989.

47

[BD92]

[BeI91]

[BF89]

[BG84]

[BGGD89]

[Bij86]

[BI(91]

[BIm+91]

[80189]

[80u85]

[Br087]

[Br092]

J. Bonomo and W. It. Dyksen. XELLPACK: An interactive problem-solving envi
ronment for elliptic partial differential equations. In E. Houstis, J. R. Rice, and
R. Vichnevetsky, editors, Expert Systems J01' Scientific Comp1lting. Elsevier Science
Pub. n. V. (North-Holland), 1992.

A. Bellen. ODE test problems, NA Digest 91(42), Oct. H19l.

N. C. Baker and S..J. Fenves_ Towards a grammar of structmal design. In T. O.
Barnwell, Jr., editor, Computing ill Civil Engineering, pages 17~-185. ASCE, New
York, 1989.

D. Boley and G. Golub. The Lanczos-Al'lIoldi algorithm and controllability. Systems
and Control Let/as, 4:317-:324, HIS4.

D. Balaban, J. Garbarini, W. Greiman, and tl-L Durst. Knowledge representation for
the automatic generation of numerical simulators for PDEs. Malh. Compul. Simul.,
31:383-393, 1989.

A. Bijl. AI ill AIY:hilccluml CAD. Kogan Page, London, 1986.

R. F. Boisvert and D. K. KahaneI'. DEQSOL and ELLPACK: Problem solving en
vironments for partial differential equations. Office of Naval Ih:searcll Asian Office
Scienlific InfonIl(llioll Bulletin (NAVSO P·j580j, 16(1):/-19,1991.

K. A. Broughan, G. Keady, T. D. Rohll, M. G. Richardson, and M. C. Dewar. Some
symbolic computing links to the NAG numeric library. SIGSAM Bulletin, 25(3):28
37, July 1991.

R. F. Boisvert. The guide to available mathematical software advisory system. Malh.
Compui. Simul., ;31:453-463, 1989.

J. C. Boudreaux. Problem solving and the evolution of programming languages. In
R. Jernigan, B. W. Hamill, and D. \V. vVeintraub, editors, The Role of Language in
Problem Solving, volume I, pages 10:1-120. North-Holland, Amsterdam, 1985.

F. P. Brooks, Jr. No silver hullet: Essence and accidents of software engineering.
IEEE Compul., 20:10-19. Apr. 1987.

K. Broughan. SENAC: Lisp as a platform for constructing a problem solving envi
ronment. In P. Gaffney and E. HOlIstis, editors, Pl'Ogmmming Entlironmenls for High
Level SCietltijic Problem SoltJing. North-Holland, Amsterdam, 1992.

48

[CF63]

[CG92]

[Ch.90]

[Cla92]

[Cod84]

[CooS8]

[Coo90]

[Cow84]

[CP92]

[CPB91]

CU. Cldler and B.D. Fried. An on-line mlllputill~ centC'r rot, scjC'lItific problems. Pmc.
IEEE Pacific COlllp. COllf., page 221, 19G:J.

lvV. M. Coughran, Jr. and E. Grosse. Display of fllllc.LiollS of three space variables
and time using shaded polygons and sound. III P. Gaffney and E. Houstis, editors, in
Programming Eutlir'onmellls for High L(otlcl Scientific Problem Sohling. North-Holland,
Amsterdam, Hl92.

B. W. Char, K. 0 Geddes, G. H. Gonnet, 1'1'1. B. l\'[onagan, and S. 1\'1. Watt. MAPLE
Reference Ma1l1wl. Waterloo, 1988.

B. W. Char. Pro~rE'ss report Oil a systC'1ll for general-purpose symbolic algebraic
computation. III Proc. Int'l. Sylllp. Symb. Alg. Camplli., pa)!;C's 9£i-1O:1, ACM Press,
New York. 1990.

M. Clarkson. Expert systems as all intelligent lise]' interface for symbolic algebra.
In P. Gaffney and E. Houstis, editors, Progmmming E7Wil'071711ents Jar High Level
Scientific Problem Sohling. North-Holland, Amsterdam, 1992.

W. J. Cody. Observations on the mathematical software effort. In W. R. Cowell,
editor, S01J.l'CeS and Development oj MathcmatiClll SoftlVa1-e, pages 1-19. Prentice
Hall, Inc., Englewood Cliffs, N,], H.lStl.

G. O. Cook, .Jr. ALP AL: A tool for the developlllcnt of largc·scale simulation codes.
Technical Report UCID-214S2, Lawrence Livel'lllore Nat'l Lab., Aug. 1988.

G. O. Cook, J r. ALPAL: A program to generate physics simulation rodes from natural
descriptions. lllt'l. J. Modern Phys., 1(1):1-51,1990.

W. R. Cowell, editor. SOllrces and Development of M(lthcmatical Software. Prentice·
Hall, Englewood Cliffs, NJ, H.l84.

G.O. Cook and J. Painter. ALPAL: .-\ tool to generate simulation codes from natural
descriptions. In E. N. Houstis, J. R. Rice, and R. Vichnevetsky, editors, Expert
Systems JOl' Scientific COl1lJWtillg. North-Holland, Amsterdam, 1992.

G. Cook, J. Painter, and S. A. Brown. 1I0w symbolic computation boosts productivity
in the simulation of partial differential equations. Technical Report UCRL-JC-I06442,
Lawrence Livermore National Lahoratory, Livermore, Feb. 199 I.

[Cry92)

[CSSY91]

[Dav90J

C.W. Cryer. The ESPRIT project FOCUS. In P. Gaffney and E. Houstis, editors,
p,.ogmmmiug Environlnellis /0'- High Level Scientific Pl'Oblem Solt/ing. North-Holland,
Amsterdam, 1992.

G. Carey, J. Schmidt, V. Singh, and D. Yelton. A scalable, object-oriented finite
element solver for partial differential equations Oil multicomputers. Technical Report
ESL-SPA-3:)9-91, MeC, Austill, Texas, Sep. 1991.

J. H. Davenport. Current problems in computer algebra systems design. In A. Miola,
editor, DISCO'90: Design and Implementation of Symbolic C'ol1t]J1Ilation Systems,
number 429 in Lecture Notes ill Computer Science, pages 1-9. Springer- Verlag, Berlin,
1990.

[DBMS78] J. J. Dongarra, J. R. Bunch, C. B. Moler, and G. W. Stewart. UNPACK User's
Guide. SIAM Pub., Philadelphia, PA, 1978.

[DCG+S9j P. J. Denning, D. E. Comer, D. Gries, r-..-r. C. i\'[ulder, A. Tucker, A. J. Turner, and
P. It. Young. Computing as a discipline. IEEE COI1l]11tt., 22(2):6;]-70, Feb. 19S9.

[Den89]

[DER89]

[Dew89J

[DF89J

[DG87]

[DGL]

[DGR92]

P. J. Denning. Massive parallelism in the future of science. Amc7'ican Scientist,
77(1):16-18, Jan.-Feb. 1989.

I. S. Duff, A. M. Erisman, and J. K. Reid. Di,'cct Methods for Sparse Matrices.
Clarendon Press, Oxford, 1999.

M. C. Dewar. IRENA - an integrated symbolic and numerical computation environ
ment. In Pmc. ISSAC 1989, pages 171-179. ACM Press. 19S9.

J. Della Dora and J. Fitch, editors. Compute,' Algebra (Hul Pamlldism. Academic
Press, London, 19S9.

J. Dongarra and E. Grosse. Distribution of mathematical software via electronic mail.
Comm. ACM, 30:403-407, 1987.

D. S. Dodson, R. G. Grimes, and J. G. Lewis. Sparse extensions to the Fortran
basic linear algebra subprograms. ACM TlYIllsadions on Mathcmatical Softeware,
17(2):253-263, 1991.

W. R. Dyksen, C. R. Griller, and V. Itego. Expert systems for sdentific computation
and tlte algorithm selectiOll problem. In E. Iloustis, .J. R. Rice, and It. Vichnevetsky,
editors, Expc"l Systems /01' Scientific Computinlj. North Holland, Amsterdam, 1992.

50

[DL85aJ D. S. Dodson and .J. G. Lewis. Issues related to extension of the hasic linear algebra
subprograms. II CM SIGNUM Newslcllel" 20(1): ID-22, 1985.

[DL85b] D. S. Dodson and .J. G. Lewis. Proposed sparse e-xtensions to the basic linear algebra
subprograms. ACM SIGNUM NewsieUe1', 20(I):22-25, 1985.

[DR90] M. C. Dewar and M. G. Richardson. Reconciling symbolic and numeric computation
in a practical setting. In A. rvIiola, editor, DIS(.'0'90: De.<;ign (/nd Empicmentation oj
Symbolic Computation Systems, number 429 in Lecture Notes in Computer Science,
pages ID5-204. Springe-r-Verlag, Berlin, 1990.

[DR91] J. Dongarra and T. Rowan. Test version of Xlletlih available', NA Digest 91:49, I99l.

[Dnv92] D. Duval. Examples of problem solving using complItp.r algebra. In P. Gaffney and
E. Houstis, editors, Pmymmmillg Em!imnJJI(,Hts JOI' Hiyh Level Scientific Problem
Solving. North-Holland, Amsterclam, 1992.

[DW90] Y. Doleh al1d P. S. Wang. SUI: A system independent user interface for an integrated
scientific computing environment. In Pmc. lilt 'I. Symp. Symb. Alg. G'ompul., pages
88-95, New York, 1990. ACM Press.

[EHJP90] R. Eigenmann, J. Hoellinger, G. Jaxon, and D. Padua. Cedar Fortran and Its Com
piler. LectmY! Notes ill Computer Science: Pmc. of the JOi1lt Conf. on Vector and
Par'allel Pmeessing, ZIl1i.ch, Switzerland, '-1.57:288-:300, Spl'ingE:"J" Verlag, Berlin, 1990.

[EMOT.55] A. Erd6lyi, W. !vlagnus, F. Oberhettinger, and r. Tricomi. IJiyhcr Tmnscendental
Flmdions, volnme Vol. 1-:3. McGraw Hill, New York, 19!):3-55.

[EP01]

[ES80]

(ES84]

[EwiOO]

J. Erhel and B. PhilippE:". Aquarels: A problem-solving environment for numerical
quality, (R. Vichnevetsky and ,J.J.R. Miller, editors), Proc. IMACS Conf., pages
4.5-46, Dublin, July 1991.

B. Engquist and T. Smedsaas. Automatic computer code generation for hyperbolic
and parabolic differential equations. SEAM J. Sci. Stat. G'ompul., 1:249-259, 1980.

B. Engquist and T. Smedsaas. Automatic analysis in POE software. In B. Engquist
and T. Smedsaas, editors, PDE Softwcu'e: ModlI1e,<;, IntCljaces (l71(1 Systems, pages
399-409, North-Hollan<l. Amsten[am. 1984.

R. E. Ewing. A posteriori error (>stimatioll. Com]Jllt. Ale/h. Appl. Mech. Engin.,
82:.\0-72, 1900.

51

[Farrell 9l] E. J. Farrell(Editor), Visual Interpretation of Complex Data. Special issue of IBM
Journal of Research and Development, Vol. :35, No. 1/2, .January/March 1991.

[Fat89]

[Fat90]

[FCC9!]

[FG90]

[FH87]

[Fie86]

[Fi(89)

[Fit90]

[FK87]

[FM83]

[FMS84]

R. J. Fateman. A review of Macsyma. IEEE Tmlls. I\"nowIclIgc and Data Eng.,
1(1),133-14.5, M.cch 1989.

R. J. Fateman. Advances and trends ill the design a1H1 construction of algebraic
manipulation systems. In Proc. ISSAC'90, pages 60-67, ACM Press, New York,
1990.

Grand challenges: High pClfomw1lce computing fllld comnumicatiolls, Office of Sci
ence and Technology Policy, A report by the committee on Physical, Mathematical,
and Engineering Sciences 1991.

D. E. Foulser and W. D. Gropp. CLAM and CLAtI'IShell: A system for building
user interfaces. In E. N. HOllstis, J. It. Rice, and R. Vichncvetsky, editors, extended
abstract, Pre-lJlYJceedillgs SecontI IHl'I. Conf. Expe1'l Systems Ntl1llC7-. Comput, pages
22-2.5, West Lafayette, March H190.

J. P. Fitch and R. G. Hall. Symbolic computation and the finite element method. In
Proc. EUROCAL '87, Lect1l1"C Noles in C07ll1mte7- Science, volume 378, pages 95-96.
Springer-Verlag, 1987.

D. A. Field. From solid modeling to finite element analysis. In T. L. Kunii, editor,
Application Developmenl Systems, pages 220-249. SpringC'r-Verlag, Tokyo, 1986.

J. P. Fitch. Can REDUCE be run in paraHel'? [n Pmc. of rSSAC' '89, pages 155-162.
ACM Press, New York, 1989.

J. Fitch. A delivery system for REDUCE. In ISSAC'90, pages 76-81. ACM Press,
New York, 1990.

R. J. Fateman and ,V. Kahan. Improving exact integrals from symbolic algebra
systems. Unpublished note, Aug. 1987.

P. Frederickson and J. Mackerle. In A.K. Noor and W.O. Pikley, editors, State a/the
Arl SU1'VCYS on Finite Element Technology, pages :]6:3-403. The American Society of
Mechanical Engineers, 198:~.

s. .I. Fenves, tv!. L. r-,'Iaher, and D. Sriram. Expert systems: C.E. potential. Civil
Enginee7'z"71g, .5'1:<14-48, Oct. 1984.

[FPSV89)

[Fri8.\]

[FVZ90]

[FW90]

[Gar88]

[GC91]

[GFC89]

[GG89]

J. E. Flaherty, P. Paslow, M. S. Shephard, and .J. D. Vasilakis, editors. Adaptive
Methods fOI' Padial DijJe7"f~ntial Equation..;, SIAM, Philadelphia, 1989.

I. Frick. SHEEP al\d classification in general relativity. In Pmc. EuroCal'85, vol. 2,
volume 204 of Lectlll'c Noles OIl Computet Science. pages 161-161, Springer-Verlag,
Berlin, H185.

R. M. Fnrzeland, J. G. Verwel', and P. A. Zegeling. A nUllu'l'ical study of three moving
grid methods for one-dimensional partial differential equations which are hased on the
method of lines. J. COlnlJut. Pilys., 89(2):349-:388, Aug. 1990.

J. E. Flaherty and Y. 'Yang. Experiments with an adaptive h-, P-, and r-refinement
finite element method for parabolic systems. Technical Report 90-27, Dept. Comput.
Sci., Rensellear PolYlechnic lnslitute, Troy, NY, Oct. 1990.

J. Gardiner. Itcmtive alld Pamllel Algorithms /01' the Solution 0/ Algebraic Riecati
Equations. PhD thesis, Univ. California, Santa Darbara, 1988.

A. Griewank and G. F. Corliss, editors. Automatic DijJC1'wtiation 0/ Algorithms:
Thc071j, Implementation and Application. SIA~...I, Philadelphia, 1991.

W. D. Gropp, D. E. Foulser, and S. Chang. CLAM Use1"s GtJille. Scientific Computing
Associates, Inc., New Haven, 1989.

R. Goldman and R. P. Gabriel. Qlisp: Parallel processing in Lisp. IEEE SoftWal'e,
6(4):51-.\9, July 1989.

[GH92] P. Gaffney and E. Houstis, editors. Pl'Ogmmmillg Envil'Onmc1!ts /07' High-Level Sci
entific Problem Solving. North-HolliLIHI, Amsterdam, 1992.

[GHN+90] K. A. Gallivan, M. T. Heath, E. Ng,.J. M. Ortega, n. W. P{'yton, R. J. Plemmons,
C. H. Romine, A. H. Sameh, and R. G. Voigt. Pamllel Algm'ithms for Matrix Com
putations. SIAM, Philadelphia, 1990.

[GJMS88] K. Gallivan, W. JaJby, U. Meier, and A. Sameh. The impact of hierarchical memory
systems on linear algebra algorithm design. lntcmational J. Supe7'(~omputer Applica
tions, 2(1),1988.

(GKK90] M. Garbey, H. G. Kaper, and M. K. Kwong. Symbolic manipulation software and the
study of differential equations. Technical report, !I'lathematics and Computer Science
Division. Argonne National Lab., Argonne, Sept. 1990.

[GLS9J

[GMS91]

[GNP90J

[Gre9!]

[GriS9]

[Gri90]

V. Ganzha and R. Liska. Application of the REDUCE computer algebra system to
stability analysis of difference schemes. In E. i\altofen and S. 1\'1. Watt, editors, Pmc.
C'omputel's and Mathematics '89, pages 119-129. Springer-Verlag, New York, 1989,

A. Genz, Z. Lin, C. Jones, D. Luo, and T. Prenzel. Fast Givens goes slow in matlab.
ACM SIGNUM Newslelt"', 26(21'11-16, Apr. 1991.

J. R. Gilbert, C. Moler, and R. Schreiber. Sparse matrices in MATLAB: Design and
implementation. Technical Report POI·QOD9I, Xerox Corporation, Palo Alto Research
Center, Palo Alto, June 1991.

D. Gelernter, A. Nicolau, and D. Padua, editors. Lrmgll(lgcs (/ful COlllpilel'sfol' PamUel
(.'OT1l1JlIli71g. MIT Press, Cambridge, i'vIA, 1£190.

D. P. Greenberg. Computers and architecture. ,','ciclltific American, pages 104-109,
Feb. 1991.

A. Gl'iewank. On automatic differentiation. In M. Il'i a.nd K. Tanabe, editors, Mathe
matical P1'Ogmmming: Rece'tt Developments (inri Application,'!, pages 83-108. I(luwer
Academic Pub., New York, 1989.

A. Griewank. Newton's method without Jacobians. In T. F. Coleman and Y. Li,
editors, Large Scale Numc1'ical Optimization, pages 11:')-1;37. SIAM, Philadelphia,
1990.

[GSS91] L. Gross, P. Sternercker, and W. SchonauE'r.
VECFEM (version 1.1). Technical Report Tech.
sruhe, 1991.

The finite c!e!ll('nt tool package,
Report 45/91, University of Karl-

[GWYS9]

[Hag92)

[HBCS9]

D. Gries, T. Walker, and P. Young. 1988 Snowbird report: A discipline matures.
IEEE COll!]JUt., 22(2):72-75, Feb. 1989.

S.J. Hagne. Using FOCUS technology to build front ends. In P. Gaffney and
E. Houstis, editors, P1'Ogmmming Entli1'Oumcnt.<; fol' High Lellct Scientific P1'Obiem
Solving. North-Holland, Amster<lam, 1992.

A. C. Hearn, A. Doyle, and B. F Caviness. Symbolic Computation: Directions for
FlItlU'C Research, Report of a H'Ol'ks!top 011 Symbolic (lfltl Algebraic Computation,
SIAM, Philadelphia, 1989.

54

[IICS9]

[IICZ80]

[lIea71]

[lIe>871

[II HI(+92J

[I1op7S]

[I1PS8]

[I1ofB9]

[IIPC89]

[IIPII90J

[111192]

P. N. Hilfinger and P. ColleJa. FIDIL: A language! for scientific programming. In
R. Grossman, editor, Symbolic G01l11JUtalio7!: :lp],licatio1l8 to Scicntific Computing,
pages 97-1:38. SIAM, Philadelphia, 1989,

M. A. Hussain, 1. F. Collin, and K. A. Zaleski. Three-dimensional singular element.
Tedlllical report, Corporate Research and Development, General Electric, Schenec·
tady, NY, Dec. HJ80.

A. C. Hearn. Reduce 2: A system and language for algebraic manipulation. In
S. R. Petrick, editor, Proc. Second Symp. Symb. illy. Mcmip., pages [28-133. ACM
SIGSAM, 1971.

A. C. Hearn. REDUCE U.~·er's Mal11lfll. The Rand Corporation, Los Angeles, 1987.

C. E. HOllstis, E. N. lIollstis, M. Katzouraki, T. S. Papathcodoroll, J. R. Rice, and
P. Varodoglou. ATHENA: A knowledge base system for / /ELLPACK. In E. Houstis,
J. R. Rice, and R. Vichnevetsky, editors, Expel'l SYSICIllIi Jo/' Scientific Computing.
Elsevier Science Puo. B. V. North-Holland, Amstcnlatll, 1992.

M. J. Hopper. HWilJell subl'Olllinc iibml·y. A ca/rlloguc of Sllbrolllincs. HMSO, London,
1978.

W. 1. Harrison III and D. A. Padua. PARCEL: Project for the automatic restruc
turing and concurrent evaluation of Lisp. III Pmc. 1988 Int'l. Conf. Stlpe7·comput.,
pages 527-.538, ACM Press, New York, 1988.

C. Hoffmann, Geometric antl So/itl jl;[otlclillg: An bltl'Ofludion, Morgan Kaufmann,
San jo,'iatco CA, 1989.

The High·Pcljonnrmce Compuling {/lilialillC'.. Executive Office of the President:
Office of Science and Technology Policy, 19,';l9.

E. N. Houstis, T. S. Papatheodorou, and J. R. Riel:!. Parallel ELLPACK: An ex
pert system for the parallel processing fa partial differential equations. In Intelligent
i\J1athematical Software Syslems, pag{'s 63-7:1. North-Holland, Amsterdam, 1990.

E.N. Houstis and .l.R. Rice. Parallel ELLPACK, a development environment and
problem solving environment for high performance computing machines. In P. Gaffney
and E. lIoustis, editors, Pl'Ogmmmill{} EUl1il'Ollllu:lltsfol' High Lct!d Scientific Problem
",oil!ing. North-Holland, Amsterdam, (!)92.

[HRC+90]

[HRV90]

[HRV92]

[IMS87]

[IMS89]

[JBNP91]

[JSW88]

[Kaj90]

[KDMW90]

[KE92]

[KMT91]

E. N. Houstis, J. R. Rice, N. P. Chrisochoides, H. C. Karathanasis, P. N. Papachiou,
M. K. Samartzis, E. A. Vavalis, K.-Y. 'Nang, and S. vVeerawalla. //Ellpack: A
IIumerical simulation programming environment for parallel MIMD machines. In
Proc. 1990 lilt 'I Conf. SU]Jercofn]Jut, pages QG-107, ACM Press, New York, 1990.

E. HOlIstis, J. Rice, and R. Vichnevetsky. Intelligent Mathematical Software Systems.
North-Holland, Amsterdam, 1990.

E. Houstis, J. Rice, ami R. Vichnevetsky. Expel'l Systems f07' Scientific Computing.
North-Holland, Amsterdam, 1992.

IMSL, Houston, TX. Alath/Libm1"y, Slal/Libmry, and SFUN/Libm7"y, 1987.

IMSL, Houston, 'IX. l!.<:e7"'S Jv[a1l1ut/: PDE/PROTRAN, 1989.

R. H. F. Jackson, P. T. Boggs, S. G. Nash, and S. Powell. Guidelines for reporting
results of computational experiments. Report of the 'lei hoc committee. Math. Progr.,
49:413-425,1991.

R. D. Jenks, R. S. Sutor, and S. M. ,",Vatt. Skratchpad II: An abstract datatype system
for mathematical computation. In J. R. Rice, editor, Mathematical Aspects of Scien
tific Software, volume 14 of The IMA Volumes in Mallu;matics and its Applications,
pages 157-182. Springer-Verlag, New York, 1988.

N. Kajler. Building graphic user interfaces for computer algebra systems. In A. Miola,
editor, DISCO '90: Design (J1ul bll]Jlementation of Symbolic Computation Systems,
number 429 in Lecture Notes in Computer Science, pages 235-244. Springer-Verlag,
Berlin, L990.

E. Kant, F. Daube, W. MacGregor, and .1. Wahl. Automated synthesis of finite
difference programs. In A. K. Noor, I. Elishakoff, <wd G. Hulbert, editors, Sym
bolic Computations anrl tllei7' Impact on Mechcmics, rvp-Vol. 20.5, pages 45-61. The
American Soc. Mech. Engr., New York, 1990.

M. Kamel and W. H. Enright. ODEXPERT: A knowledge based system for auto
matic selection of initial value ODE system solvers. In E. Houstis, J. R. Rice, and
R. Vichnevetsky, editors, Exper·t Systems fm' Scientific Computing, North Holland,
Amsterdam, 1992.

K. Kennedy, K. S. McKinley, and C.-W. Tseng. Analysis and transformation in the
parascope editor. In PI·OC. A CM Int 't. Conf. SupeI'Com]Jl/l. held in Cologne, Germany,
June 1991, pages 433-447. ACM Press, New York, 1991.

[KR68]

[KUI090]

[KuI81)

[Lau85]

[Lau91]

[Lea90]

[Leu90]

[LG91]

[LG92]

[MF71]

M. Klerer and J. Reillfelds. lnlemdive System$ [or ExpcI-imcntal Applied Mathemat
ics. Academic Press, New York, 1968.

C. Konno, Y. Umetani, M. Igai, and T. OItta. Interactive/visual DEQSOL: Interactive
creation, debugging, diagnosis, and visualization of numerical simulation. In E.N.
Houstis, J.R. lUee, and R. Vichnevetsky, editors. Intelligent Mathematical Software
Systems, pages 301-:317. North-Holland, Amsterdam, 1990.

u.W. Klllisch. Compute,- Arithmetic in Theory WHl Pmctice. Academic Press, New
York, 1981.

C. Konno, M. Y<tmabe, M. Saji, N. Sagawa, Y. Umetalli, II. Hirayama, and T. Ohta.
Automatic code generation method of DEQSOL. J. /nfomt. Pmc., 11(1): 15-21, 1987.

A. Laub. Numerical linear algebra aspects of control design computations. IEEE
Tran.s. Automat. Gon.tm/, AC-30:97-108, 1985.

A. Lanb. Invariant subspace methods for the numerical solution of lliccati equations.
In S. Bittanti, A. Lallb, and .J. Willems, editors, The Riecati e(!lwtioll, pages 163-196.
Springer-Verlag, Berlin, 1991.

B. Leasure, editor. PCF Fm·tran: LrmglH1gc Definition, vel'sion 3.1. The Parallel
Computing Forum, Champaign, IL, Aug. 1990.

M. R. Leuze, ed. Scalable parallel libraries workshop report. Preproceedings of a
workshop conducted at Oak Ridge, Sept. 1990.

J. K. Lee and D. Gannon. Object-oriented parallel programming experiments and
results. P"oc. Stl]Je7Y:omplltiug'9J, pages 273-282, ACM Press, New York, 1991.

M. Lucks and L Gladwell. Functional representation of software selection expertise.
In E. HOlistis, J. R. Rice, and fL Vichnevetsky, editors, EX]Jcl"i Syt;tems for Scientific
Computing, North Holland, Amsterdam, 1992.

W. A. Martin and R..J. Fateman. The 1'IACSY~'ilA system. In S. R. Petrick, editor,
Proe. Second Symp. Symb. Alg. Manip., pages .59-7.'5. ACM SIGSAM, 1971.

(McCormick 1987} RH. McCormick et al, Visualization in Scientific Computing, Computer Craph
ics, 21(5), 1987.

57

[Mit90]

[MLB90]

[MM91]

[MOF89]

[Mv87]

[Mv90]

[NEH90)

[Nov91]

[Num88]

[Od.9Il

[OJK89]

[OOA90]

[OOA91]

[Par78)

W. J. Mitchell. Afterword: The design studio of the future. Illl'.'I. McCullough, W. J.
Mitchell, and P. Purcell, editors, The. Electronic Design Sltuiio, pages 479-494. MIT
Press, Cambridge, MA, 1990.

C. Moler, J. Little, and S. Bangert. PRO·MATLAB /01' Sun W01'kslalions: User's
Guide. The MathWorks, Inc., Sherborn, 1vIA, 1990.

W. J. Mitchell and M. McCullongh. Digital DesiYll Media. A Handbook for A rcllitecls
& Design P1"Ofessionals. Van Nostrand Reinhold, New York, 1991.

P. K. Moore, C. Oztnran, and J. E. Flaherty. Towards the automatic numerical
solution of partial differE'ntial equations. Math. Campul. SlI1W!., :31:325-:332, 1989.

P. Mehrotra and .J. vall Rosendale. The BLAZE language: A parallel language for
scientific programming. P(lJ'(I/fel COIIlJJ1lt., 5::3;W-;lGl, 1987.

P. Mehrotra and J. van Rosendale. Programming distributed Illemory architectures
llsing kali. Technical Report Report No. 90-69,ICASE, Oct. 1990.

A. K. Noor, 1. Elishakoff, and G. Hulbert, editors. Symbolic Computations and Tlleir
Impact on Mechanics, volume PVP-Vol. 205. Amer. Soc. Mech. Engr., New York,
1990.

B. J. Novitski. CADD holdouts. An:hilectuTl::, 80(8):97-99, Aug. 1991.

Numerical Algorithms Group, Oxford, England. NAG' Libmry Manual, 1988.

J. T. Oden. Smart algorithms and adaptive methods for compressible and incom
pressible fiow: Optimization of the computational process. In J. P. Mesirov, editor,
lien) Large Scale Computation in lhe. :JIst Ccntlll"!!, pages 87-99. SIAM, Philadelphia,
1991.

T. C. Oppe, W. D. Joullert, and D. R. Kincaid. An overview of NSPCG: A non
symmetric preconditioned conjugate gradient package. C'omptlt. Pllys. Commu71.,
.53:283-293,1989.

Special issue: Object-oriented design. COHill/. ACM, Sept. 1990.

Special issue: Collaborative computing. Comm. A GM, Dec. J991.

B. N. Parlett. Progress ill numerical analysis. SIAM Rev., :20(:3):443-4.'55, July 1978.

58

[PC92]

[PdUK83]

[Per79]

[Pes90)

[PWF90]

[Pon88a]

(Pon88h)

[PRG88]

[Pur86]

[Pur92a]

J. F. Painter and G. O. Cook, Jr. ALPAL: A lool to generate simulation codes from
natural descriptiolls. In E. N. Houstis, J. R. Rice, and R. Vichnevetsky, editors,
Expert Systems for Scientific Computing. North-Holland, Amsterdam, 1992.

R. Piessens, E. de Doncker-Kapenga, C. W. Ullerhuber, and D. K. Kahaner. Quad
pack, A submutine package /01' automatic illtegmliof!. Springer-Verlag, Derlin, 1983.

A. Perrounet. MODULEF: A library of subroutines fol' finite element analysis. In
R. Glowinski and J. L. Lions, editors, Compllling kfethods in Applied Sciences and
Engineering, J977, J, volume 704 of Lcctlll'e Notes in Mathematics, pages 127-U:i3.
Springer-Verlag, Berlin, 1979.

R. L. Peskin. Symbolic manipulation in engilleering lIser interface systems. In A. Noar,
I. Elishakoff, and G. Hulbert, editors, Symbolic Computations and their Impact on
Mechanics, PVP-Vol. 205, pages 97-111. The American Society of Mechanical Engi
neers, New York, 1990.

R.L. Peskin, S.S. Walter and A.M. Froncioni. srvlA LLTALK - The next generation
scientific computing interface?, In E.N. HOlistis, .LR. Rice and R. Vichnevetsky,
editors, Intelligent Mathematical Softwlll"C SYb·tellls, ,pages 257-267, North Holland,
Amsterdam, 1990.

C. G. PotHier. Ellltlllation of "Perfo1'llIance Enhancements n in algebraic manipulation
systems. PhD thesis, University of California, Derkeley, August 1988. Also Tech. Rep.
VCB 88(4:38.

C. G. Ponder. Parallel processors and systems for algebraic manipulation: Current
work. ACM-SIGSAM, 22(:3):21,1988.

J. M. Purtilo, D. A. Reed, and D. C. Grullwald. Environments for prototyping parallel
algorithms. J. Paral. Dist. Compul., 5:421--<1:37, 1988.

J. M. Purtilo. A software interconnection technology to support specification of com
putational environmellts. Technical Report R-86-12G9, Department of Computer Sci
ence, University of illinois at Urbana-Champaign, Sept. 1986.

J. M. Purtilo. Dynamic software reconfiguration supports scientific problem solving
activites. In P. Gaffney and E. Houstis, editors, Pmgmmming Euvimnments for High
Letlel Scientific Pmblem Solving. North Holland, Amsterdam, 1992.

59

[Pur92bJ

[PvGS90]

[RIJ85]

[Ilie7l]

[Ilie7G]

[Ilie88]

[Rie90]

[Ilie92]

[RR92]

[RS83]

[RS87)

J. M. PUTtilo. The Polylith software bus. ;\CM Tnms. Pmgt', Lang. Sysl., (to appear),
1992.

E. M. Paalvast, A. J. van Gemund, and H. J. Sips. A method for paralJel program
generation with an aPI)lication to the Booster language. In Pmc. 1990 [nt'l. COllf.
S'uper·comput., pages 4.'j7-4G9, ACM Press, New York, JUlie 1990.

J. R. Rice and R. F. Boisvert. Solving Elliptic P7'Oblcms 11Si1l[} ELLPACK. Springer
Verlag, New York, 1985.

.1. R. Rice. MatltcmatiCflI Softww"e. Academic Press, Npw York, 1971.

J _Rice. The vanguard of the revolution in education. III D.C. Hoaglin and ILE. Welsh,
editors, Ninth Interface Symposium on COI1l]mtCl' Science (lnt! Statistics, pages 1-4.
Prindle, Weber & Schmidt, Ooston, 1976.

J, R. llice. Mathematical aspects of sc.ientillc software. In .J. R. Rice, editor, Matlle
matical Aspects of Scientific So/ttoaf'c, volume 14 of The IMA 1I0lumes ill Matllematics
and its Applications, pages 1-40. Springer-Verlag, New York, 1988.

J. R. Rice. Mathematical software and ACM publications. In S. G. Nash, editor, A
Hist071} of Scientific Computing, pages 217-227. ACM Press, Addison Wesley, Read.
;ng, MA, 1990.

J. R. Rice. Numel'ieal Methods, SoJltow'e mid Analysis. McGraw-Hill, New York,
1985, Second Edition, 1992.

F. Rechenmann and B. Rousseau. A development shell for knowledge based systems
in scientific compnting. In E. Houstis, J. R. Rice, and R. Vichnevetsky, editors, Expel't
Systems /or' Scie71lific Computing. North Holland, Amsterdam, 1992.

J. R. Rice and H. D. Schwetman. Interface issues in a software parts technology. In
ITT Pmc. WOl'ksllop 011 Reus(lbility ill Pmgf'(lmming, pages 129-I:n, 1983. Reprinted
in Sofltoan: Reusability, (P. Freeman, ed.), IEEE Tutorial, Computer Soc. Press, 1987,
pages 96·104. Revised version in Softw(J1'c Rellsability, (T. Diggerstaff and A. J. Perlis,
eds.), pages 125-139, ACM Press, New York, 1989,

M, Rosing and R. Schnabel. An overview of DINQ - a new language for numerical
computation Oil distributed memory multiprocessors. In G. Rodrigue, editor, Pmc.
Thi7u SIA M Conf. PCU'Clllcl Pmce.'Ising f07' Sci. Cotltptd., pages 3l2-:316, Philadelphia,
1987. SIAM.

60

[RS88] A. Radford and G. Stevens. CADD Made Easy: A Compn:hclIb'illc Guide. fOl' Al"{:hi
tecls f:f Dcsignel·s. McGnLw-Jlill Book Co., New York, 19XX.

[RSG92J F.M. Rijnders, H.J.W. Spoelder, and F.e.A. Groell. Distributed visual programming
environment: An attempt-to integrate third generation languages with advanced llser
environments. In P. Gaffney and E. lIoustis, editors, Pl'Ogmmming E1winmmcnts for
High Lelld Scientific Problem Solving. North-Holland, Amstenlam, 1992.

[RVDB91] W. Renes, M. Vanbegill, P. Van Dooren, and .J. Beckers. The MATLAB gateway
compiler. A tool for automatic linking of Fortl'an routines to MATLAB. In IFAC
Symp. on CADeS. pages 9,15-100, Swansea, UK, .July 1991.

[Saa89)

[Saa90a]

[Saa90bJ

[SB91]

[Sch88]

[Sea89]

[Sew85]

[Sha88)

Y. Saad. Krylov subspace Hle-thods for Slljle-I'Comjlllters. SIAM .1. Sci. Stat. Comput.,
10(6),1200-1232, Nov. 19S9.

Y. Saad. An overview ofkrylov suhspace methods with applications to control prob
lems. In !v1. A. Kaashoek, .1. II. van Schuppell, and A. C. Ran, editors, Signal Pm
cessing, Scatteriny, Opcmtol' Thco/'y, uwl Nwnerical ivfellwll,o.:. Proceedings of the in
ternational symposium MTNS-89, vol Ill, pages 401-410, Birkhauser, noston, 1990.

Y. Saad. SPARSKIT: A basic tool kit for sparse matrix computation. Technical
Report 1029, Center for Supercomputing Research and Development, University of
illinois at Urhana-Champaign, August 1990.

A. Skjellllm and C. Baldwin, The multicomputer toolbox: Scalable parallel libraries
for large-seale concurrent applications. Submitted Lo AIChE l!J91 Anuual Meeting,
Nov. 1991.

F. Schwarz. Symmetries of differential equations: From Sophus Lie to Computer
Algebra. SIAM Relliew, :30(:3):450-<181, Sept. 1988.

M. K. Seager. A SLAP for the masses. In G. F. Carey, editor, Pf/m//el SUIJcrcom
]Juting: Methods, Algorithms and Applications, pages 135-155. John Wiley & Sons,
Chichester, 1989.

G. Sewell. Analysis of Finite Element MctllOd·PDE/PROTRAN. Springer-Verlag,
New York, 1985.

N. Sharma. Generating finite element pl'Ograms ror Warp marhinC'. In H. H. Bau,
T. Herbert, and tv!. M. YovfLnovich, editors, S'ymbolic Compulu!.ion ilt Fluid Meehmtics
und Heat Tmllsfcr. Pmc. Willtel' Annual Meeling of thc Ame1'. Soc. Mecll. Engr.,
Chicago, pages 9;3-102, 1!J88.

61

[Shn85]

[Sof89)

[Soi9!]

[SRH92]

[Ste91]

[SW88]

[SW90]

[Tan88]

[TB90)

[Thu86]

[Ton89]

[Ton92]

B. Shneiclennan. Overcoming limitations imposCld I>y l"Ul'rent programming languages.
In R. Jernigan, B. W. Hamill, and D. W. Weintraub, editors, The Rolc of Language
in P7"Oblem Solving, volume I, pages 25:3-275. North-Holland, Amsterdam, 1985.

Soft Warehouse, Inc., Honolulu. Usel- Manual, 31'd edition, 1989.

N. M. Soiffer. The design oj a use" intelfacc for computei' algcbm systems. PhD
thesis, University of California, Berkeley, CA, 1991.

N. Sagawa, D.P. IUnn, and N.J. Hurley. An integrated problem solving environment
for numerical simulation of engineering problems. In P. Gatfney and E. Houstis,
editors, P1'Ogmmmin{J ElIlIironment~Jo7" High Level Scientific Pl'Oblem Solving. North
Holland, Amsterdam, 1992.

G. W. Stewart. FTP· rue transfer program. ACM SIGNUM New!detlel', 26(4):2-3,
Oct. 1991.

Y. Sa.:1.d and H. Wijshoff. Benchmark package for sparse matrix computations. In
Pmc. 1988 Jnt'i. Conj. 5'upacomplli., pages 500-509. ACM Press, New York, 1988.

N. Sharma. and P. S. Wang. Generating finite element programs for shared memory
multiprocessors. In A. K. Noor, l. Elishakoff, and G. Hulbert, editors, Symbolic
Computations and their Impact on Mechanics, PVP-Vol. 20,1), pages 6:l-79. American
Soc. Mech. EngL, New York, 1990.

H. Tan. Symbolic derivation of material property matl'ices in nuite element analysis.
In H. H. Bau, T. Herbert, and M. M. Yovanovic.h, editors, Symbolic Computation in
Fllli([Mechanics and Heat T7YllI$fel', pages 111-116, Amer. Soc. 1'lech. Engr., New
York, 1988.

Allan Tuchman and Michael Derry. !I.'latrix Visualization ill the Design of Numerical
Algorithms. ORSA JOlJl'1wl of Computing, 2(1), pages XXX, 1990.

M. Thune. Automatic GKS stability analysis. SIAM J. Sci. Slat. Comput., 7(3):959
977, July 1986.

S.-S. Tong. Coupling symbolic manipulation aud numerical simulation for complex
engineering designs. Math. Compul. Simui., 31 :41!J-4:l0, 19S9.

S_8. Tong. Integration of symbolic and llumericalmethods for optimizing complex en
gineering systems. In P. Gaffney and E. I1oustis, editOl's, Programming Euvi1'Onments
fol' High Level Sciwtific Problem Solving. North-Holland, Amsterdam. 1992.

62

[UK092] Y. Umetani, C. Konno, and T. Ohta. Visual PDEQSOL: A visnal and interactive
environment for numerical simulation. In P. Gaffney and E. lIol1stis, editors, Pro
gmmming Environments f01" High Letlef Sdentific Problem Solving. North-Holland,
Amsterdam, 1992.

[Van89] G. Vanacek. Protosolid: An inside look. Technical Report CAPO-89-26, Dept. Com
put. Sci., Purdue University, Nov. 1989.

[vBD+91] A. van den Boom, A. Brown, F. DUlllortier, A. Geurts, S. Hammarling, R. Kool,
M. Vanbegin, P. Van Docrell, and S. Van Huffel. SLICOT, a subroutine library for
control and system theory. III IFAC Symp. on CADeS. Swansea. UK, July 1991.

[vdHvHG89] P. van den Heuvel, J. A. van Hulzell, and V. V. Goldman. Automatic generation of
FORTRAN-coded Jacobialls and Hessians. In Pmc. EUROCAL '87, Lecture Notes
irl COIIlJJ1J.ler Science, volume :378, pages 120-1:31. Springer- Ve-flag, Berlin, 1989.

[Wan86] P. Wang. Finger: A symbolic system for automatic generation of numerical programs
in finite element analysis. Symbolic Computation, 2:305-316,1986.

[Wan90) P. S. Wang. Applying advanced computing techniques in finite element analysis.
In A. K. Noor, I. Elishakoff, and G. Hulbert, editors, Symbolic Computations and
their Impact on Mechanics, volume PVP-Vol. 20.5, pages 45-61. American Soc. Mech.
Engr., New York, 1990.

{Wat86] S. M. Watt. Bounded parallelism and computer alyebm. PhD thesis, Ulliv. Waterloo,
1986. Avail. Univ. Waterloo CS dept. tech. rep. CS·86-12.

[Wij89] H. A.G. Wijshoff. Implementing sparse BLAS primitive-s on concurrent/vector pro
cessors: A case study. CSRD Report No. 843, Cellter for Supercomputing Research
and Development, University of lllinois at Urbana-Champaign, Jan. 1989.

[WoI88] S. Wolfram. Mathematica: A System for Doing Mathematics bu Computer. Addison
Wesley, Boston, 1988.

[Wu190] W. Wulf. The Collaboratory: A larger context fOI" support of computational science.
Invited presentation to the 1990 Int'!. Conf. Supercomputing, June 1990.

[YM88] D. M. Young and T. Z. Mai. Iterative algorithms and software fol' solving large sparse
linear systems. Comm. App/. Numa. Methods, 4:4;35-'-156, 1988.

B. Zorn, K. Ho, H. Larus, L. Semenzato, and P. Hilfillger. Muttiprocessing extensions
in Spur Lisp. IEEE SoftwGI'c, 6(4):41-49, July 1989.

63

	Future Research Directions in Problem Solving Environments for Computational Science
	Report Number:
	

	tmp.1307986960.pdf.gL35R

