
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Parallel Iterative Methods Parallel Iterative Methods

N. P. Christochoides

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

S. B. Kim

M. K. Samartzis

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
92-035

Christochoides, N. P.; Houstis, Elias N.; Kim, S. B.; Samartzis, M. K.; and Rice, John R., "Parallel Iterative
Methods" (1992). Department of Computer Science Technical Reports. Paper 957.
https://docs.lib.purdue.edu/cstech/957

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972378?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL ITERATIVE METHODS

N. P. Chrisochoides
Elias N. Houstis

S. B. Kim
M. K. Samartzis

J. R. Rice

CSD-TR 92-035
JUDe 1992

Parallel Iterative Methods

N.P. Chrisochoides,
E.N. Houstis, S.B. Kim, M.K. Samartzis and J.R. Rice'

Department of Computer Science
Purdue University

West Lafayette, IN 47907

June 12, 1992

Abstract

In this paper we discuss the implementation of the ITPACK library [Kine 82] in the parallel (//)ELL­
PACK environment [Holls 92] and report on its performance on the nCUBE II parallel machine. In this
study we are concerned with the numerical solution of second order elliptic partial diITerential equations
(PDEs) on rectangular regions with mixed boundary conditions using finite difference approximations.
The parallelization methodology applied is based on the domain decomposition of discrete geometric data
structures (grids) associated with the numerical solution of the PDE problem[Chri 91]. The implementa­
tion of I jITPACK for boundary value problems defined on general 2·0 and 3-D domains for both finite
element and difference methods is reported in [Kim 93]. The performance results obtained so far indicate
almost optimal computational and space efficiency of the / /ITPACK modules.

1 Introduction

This paper presents some preliminary results related to the development of parallel iterative methods for
solving large linear systems of algebraic equations derived from the discretization of elliptic partial differential
equations. Specifically, we discuss the implementation and performance of a set of parallel iterative methods
included in the ITPACK library [Kine 82] for 5-point difference equations obtained by the discretization of
second order elliptic PDE on rectangular regions on the nCUBE II. The extension of this library for non­
rectangular regions in 2-D and 3-D domains for both finite difference and finite element methods is discussed
in [Kim 931· This library is currently part of the parallel Uj)ELLPACK system [Hous 92J and consists of 7
modules listed in Table 1.

"This work was supported in part by AFSOR 92-J-0069, NSF grant CCF-8619817 and ESPRIT project 2702

//ITPACK module
SOR
Jacobi-CG
Jacobi-S1
RSCG
RSS!
SSOR-CG
SSOR-CG

Indexing
Red/Black
Natural
Natural
Red/Black
Red/Black
Red/Black
Red/Black

Method
Successive Over-Relaxation
Jacobi conjugate gradient
Jacobi with Chebyshev acceleration
Reduced system CG
Reduced system SI
Symmetric SOR CG
Symmetric CG

Table 1. Parallel iterative methods in the j jITPACK library.

The parallel implementation of the / jITPACK library reported is based on the p x q (checkerboard)
decomposition of the orthogonal grid of the 5-point finite difference discretization method. Section 2 of this
paper contains a discussion about the parallel implementation of the ITPACK library in the / /ELLPACK
environment and in Section 3, we present the performance of the various / jITPACK modules on the nCUBE
II parallel machine.

2 Parallel ITPACK Library

Throughout we assume that the reader is familiar with the theoretical aspects of the methods included in the
sequential ITPACK library. A detail description of each ITPACK module can be found in (Kine 82) and [Rice
85]. In this section, we discuss the parallelization of this library within the / /ELLPACK environment based
on the domain decomposition approach{Chri 91]. In this paper we consider only the case of parallel iterative
solution of 5-point finite difference equations obtained by the discretization of second order elliptic PDEs on
rectangular domains.

The ELLPACK environment supports modular programming through predefined data structures and mod­
ule interfaces. Specifically, the discrete algebraic data structures are stored in a sparse mode using two arrays:
coef (',.) containing the non-zero coefficients, idcoef (.,.) containing their column indices. The indexing of
the unknowns and its inverse are stored in arrays ilundx (.) and ilendx ('), respectively. Various control
parameters are stored in the ipasm (.) and rpasm (.) arrays.

In the case of parallel ELLPACK the above data structures are local to each subdomain. Furthermore, a
new set of data structures has been introduced that hold the communication information related to where to
find values that are non-local and where to send values that needed elsewhere. This information is organized
into two groups. The first group, named communication workspace buffers, contains data indicating where
the incoming values are stored. The second group, called decomposition data structures, provides all the
information needed in order for each processor (subdomain) to know which values to expect from other
processors, where these values are coming from, where are they going to be stored locally, how many values
are coming, how many values are to be sent, and where to send these values. In the case of the Red/Black
(RB) ordering, we need all the above data separately for the red and black points.

Next we describe one of the / /ITPACK modules in terms of various subtasks and discuss their paralleliza­
tion. The same observations apply to the other modules.

2.1 Parallel SOR-CG method with RB ordering

This module, called g5ibml (we use the ITPACK names for routines), is currently implemented to solve the
finite difference equations obtained by the 5-point approximation of second order elliptic PDEs defined on
rectangular domains with mixed boundary conditions on message-passing machines. Its parallel implementa­
tion is based on checkerboard decomposition of the rectangular grid. All modules are capable of computing
adaptively the optimal iteration parameters involved.

Basic Subtasks of the g5i6ml Module:

1. Initialization

2. Check dimension

3. Compute some of the information needed for the communication to be performed

4. Scale the system

5. Remove rows and cells when the off diagonal elements are very "small"

6. Initialize workspace pointers

7. Select indexing scheme and determine appropriate information (this module must use the Red/Black
ordering)

8. Permute the system according to the Red/Black information

9. Rearrange system according to the ASIS ordering

10. Check for sufficient workspace and initialize it

-- start iterative process --

11. Initial setups for the iterative process and some more setups for the communication

12. Iterations

-- post processing of solution --

13. Check convergence

14. Put solution in place (a trick is used here)

15. Reverse the permutation of the system

16. Perform error analysis and accuracy estimates

17. Unscale the system

18. Setup return parameters

The modifications of the sequential codes made for parallelization are minimal. We have added two
new routines q5i9cv, q5i9cr that set up the information needed for the communication and initialize the
communication work space, q5i9cv is for natural ordering and q5i9cr for RB ordering. In subtask 11 where
the iteration starts, we need to send the black values of the current approximation, as well as to compute the
total number of equations in our problem. This is done by the routine rbdex for RB ordered systems and
bdex for natural (ASrS) ordered systems. Both routines use bidirectional exchange to send the data. Apart of
these new routines the rest of the code is the same. The values that need to be communicated can be found by
looking at the arguments of the mesg, mesgl subroutines (these routines are defined later). These are mainly,
unknowns and pseudo-residuals.

The code for the iteration routine q5iBi6 is in general the same. We had to insert calls to mesg or mesgl
that handle the communication when data from other nodes are needed. Also, we had to insert calls to
routines like rlbdod that performs the dot product for a vector distributed over the processors. The new

routines needed to support the parallelization of this part of the computation are: rbdex, rbcast, clpsadd,
r5brd, rlbdod. Specifically, in the sequential q5i8i6 we have changed the calls to rlbldo to calls to rlbdod
and added two calls to mesg1. The first mesgl call is just before a call to r5i9pb, where we need to have the
black backward pseudo residual values and the second one is just before a call to r5ibrd. There we need to
have .all the backward pseudo residual values, but since the black ones are already in place, we send only the
red ones. These values are also used by q5i9p5.

Communication also takes place when matrix-vector operations appear in the method. The routines q5i9pf
and q5i9bs also contain calls to mesg1. Other routines like q5i9st and r5i9pb contain calls to rlbdod. It
is worth pointing out that calls to mesg, mesgl are used when the method is about to perform some kind of
matrix-vector multiplication.

2.2 Implementation of message-passing for / /ITPACK modules

The communication requirements of the various / /ITPACK modules are independent of the particular method
considered but depend on the ordering assumed. Their implementation requires that correct data are sent to
neighbors and stored in predetermined locations from where they can be retrieved using q5i9gr (we discuss
this routine separately since it is an essential part of the parallel implementation).

The communication information is implemented by the routines mesg and mesg1. These two routines are
similar. The routine mesgl is the one that can handle the case of a color-ordered (e.g., red/black) system.
Specifically, each of these routines gets as input (argument) the data to be sent to neighboring processors
(subdomains) and then receives the values these processors send for this subdomain. The incoming data from
other processors are stored in the communication buffer rcomb. We have set up 5 pointers into this buffer:

lpwe --Jo

Ipea --Jo

Ipso --Jo

lpno --Jo

lpwo --Jo

points to the first value received from
points to the first value received from
points to the first value received from
points to the first value received from
points to the first value of the rest of the buffer
which is used as scratch space for copying

west
east
south
north

The values are stored in the following order: West, East, South, North, Work. The routines q5i9cv, q5i9cr set
the values for the variables nptor(4), nptos(4), nrptor(4), nbptor(4), nbptos(4), nrptos(4), which indicate:

nptor --Jo

nptos --Jo

nrptor --Jo

nrptos --Jo

nbptos --Jo

nbptor --Jo

number of values to receive
number of values to send
number of RED values to receive
number of RED values to send
number of BLACK values to send
number of BLACK values to receive

Each of these variables is a four element vector with each element containing the specific number for one of
the four neighbors of the subdomain. For example, the elements of nrptos are:

(I)
(2)
(3)
(4)

of RED values to send
of RED values to send
of RED values to send
of RED values to send

west
east
south
north

The routines first send all the local data that need to be sent and then receive the appropriate data. To send
the local data is not straightforward. We use routines gather (for mesg) and gath for (mesg1) that collect
the appropriate values to be sent in a continuous buffer (rcomb (lpwo)). The routines gather and gath work
similarly, but gath also has to use some coloring information. Both get as an argument, the matrix numunk
prod1,lced by 5pstar, that contains the local numbering of the grid points (equations). The argument idir
contains the direction where the data collected by gather or gath is to be sent.

In the routine gather, since the assumed geometry is simple, we only have to traverse the correct side of the
grid, get the number of the equations from the numunk matrix, check that these points are active (indicated by
numunk(.,.) > 0), and collect the value. For non-active points we get a value of 0 for numunk. In the routine
gath we also have to use the ordering information provided by vector 11undx. We traverse the side that is
indicated by idir and first discard non-active points (numunk(.,.) <= 0). Then we check if the point is of
the correct color by comparing its number with the number of the red points in the subdomain. The values
collected are put in consecutive spaces in the workspace. It is the responsibility of the receiver to unpack the
message correctly. This is done by the routine scat which uses information from a mask vector ip(·). This
vector is set up by the routine q5i9cr and has the color information for the incoming data.

After collecting the data to send, we send them out and start receiving data. In the case of mesg, the
incoming data are in the correct format and can be put directly into the correct locations of the communication
buffer rcomb. mesg1 has to use routine scat that scatters incoming data into the correct positions of the rcomb
vector.

Another important operation needed for the implementation of the communication among subdomains is
getting values out afthe communication bnffers. An interesting thing about ITPACK is the way matrix vector
multiplications are performed using the coef, idcoef structures. The usual code looks like the following (also
see the diagram):

20
call
do

do jj=2. maxn2
q5i9gr(n,u,jcoef(1,jj), work())
10 = 1.n

v(ll) = v(ll) - coeff(ll,jj)*work(ll)
10 continue
20 continue

coef jcoef

values ----- coluIIUl indices

We perform the multiplication columnwise, with respect to the columns jcoef of coef. (In loop 20 column
I never takes part, since it is the diagonal which we know that contains La's). The routine q5i9gr collects
the unknowns tt that are to be multiplied with the coefficients in the jj column of coef into the work vector.
Then loop 10 performs the multiplication. For the parallel implementation, we know that some values of the
unknown are not local and are sent by neighboring processors. These values are stored somewhere (for OUf

case in the communication buffer rcomb). If q5i9gr has the ability to know which values are local and which
are non~local and where to find these non-local values; nothing from the above loop should be changed. The
only thing we need is to add, before the beginning, a call to mesg, so ta ensure that the correct values of u are
indeed stored in the communication buffer. So q5i9gr is the complement of the mesg, mesg1 routines which
send and receive non-local data and place it in the correct positions in the buffers; the routine g5i9gr collects
the values it needs from these buffers to rearrange them in order for the multiplication to be performed. For
the case of rectangular domains and the checkerboard decomposition, we have set up a scheme that does just

that. It provides q5i9gr the information whether a value it seeks is local or non-local. If the value is non-local,
then there is also available the position in the communication buffer where the value should be. Since the call
to mesg is before the loop, we know that the correct values have to be in place (thanks to the mesg and mesgl
routines). Below we explain how this is done, but notice that this scheme is specific to the rectangular case
when_ we number the equations, the unknowns and generate the equations. In the discretization, we number
non-local unknowns with special numbers. These special numbers encode 3 pieces of information:

1. that this unknown is non-local,

2. where this unknown is local, i.e., which neighbor owns this unknown, and

3. where it is placed by mesg in the communication buffer when it is received.

Let n be the index of an unknown in the subdomain which has (local) dimension ngrx by ngn). Then 1 ~ n ~

ngrx * ng7'y if the unknown is local and n > ngrx * ngry if the unknown is non-local. If n is non-local its
value is computed as follows:

n = (ngrx * ngry * 10)* direction + position

=
direction

position

2 if the unknown is local to the subdomain to the west
3 if the unknown is local to the subdomain to the east

- 4 if the unknown is local to the subdomain to the south
5 if the unknown is local to the subdomain to the north
is the position in the buffer, the correct part of the buffer
given by the respective pointer (ipil8 J ipsa, etc.)

3 Performance Results

In this section we present some performance data of the j jITPACK modules listed in Table 1 for 5-point
star finite difference equations on the nCUBE II parallel machine. The parallel 5-point star discretization
module used for obtaining the algebraic data computes the "optimal" decomposition for the given machine
configuration and grid size or accepts values for the p x q decomposition from the user. Table 2 presents
raw time and error data for all phases of the numerical solution of a given PDE problem with the Jacobi-CG
parallel iterative solver.

Number of processors
Time and error measures 1 2 4 8 16 32 64

Discretization (% of total) 3.433 3.498 3.563 3.661 3.852 3.912 4.032
Indexing (% of total) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Solution (% of total) 96.566 96.500 96.437 96.333 96.136 96.041 95.878
Communication (% of total) 0.000 0.114 0.205 0.606 1.039 1.746 2.710
Discretization (sec) 17.227 8.801 4.496 2.352 1.266 0.656 0.352
Indexing (sec) 0.000 0.000 0.000 0.000 0.000 0.000 0.000
Solution (sec) 484.602 242.781 121.695 61.875 31.590 16.109 8.359
Total solve time(sec) 501.836 251.586 126.191 64.230 32.859 16.773 8.719
Communication (sec) 0.008 0.281 0.254 0.379 0.332 .281 0.227
Per iteration (sec) 4.846 2.428 1.217 0.619 0.316 0.161 0.084
max abs error 7.97E-2 8.90E-2 9.16E-2 9.03E-2 8.96E-2 8.94E-02 8.94E-2
of iterations 100 100 100 100 100 100 100

Table 2. The performance of a. single precision parallel implementation of Jacobi-CG for a model elliptic PDE
problem defined on the unit square. A fixed 200 x 200 grid is used and the process is terminated after 100
iterations.

It is worth observing that the communication cost is a small percentage of the entire computation cost (smaller
than' 3% for a 200x200 grid on a 64 processor configuration) for all / /ITPACK modules. Table 3 indicates
a very impressive fixed speedup and Table 4 shows almost 96% scaled speedup for the SOR module. The
data is similar for all the / /ITPACK modules. Our data indicate that the communication cost peeks at small
configurations. This is due to the contention problem, since the connectivity of the decomposition does not
match the connectivity of the hypercube for a small number of processors. The speedups computed with
respect to the time of the / /ITPACK modules on a single processor. It has been observed by Mo Mu that
the original sequential modules are a little faster for the PDE model problem considered here. This is due
primarily to the selection of the data structures used for storing communication and domain decomposition
information. The more general version of / /ITPACK performs as well as the sequential ITPACK on a single
processor [Kim 93J. We believe that the results presented here prove both the scalability of parallel iterative
methods and the almost optimal behavior of the parallel implementation.

Processors Jacobi-CG Jacobi-SI RSCG RSSI SSOR CG SSOR SI
2 1.99 1.99 1.99 1.99 1.99 1.99
4 3.98 4.00 3.93 3.94 3.96 3.97
8 7.81 7.86 7.65 7.67 7.73 7.72
16 15.27 15.36 14.72 14.79 15.01 14.96
32 29.92 30.25 28.32 28.59 29.14 29.08
64 57.56 58.69 52.89 54.06 55.62 55.52

Table 3. The fixed speedup obtained on nCUBE II by each / /ITPACK module for a model PDE problem and
grid size 200 X 200 after 100 iterations.

Processors Grid Size Per Iteration Time
1 102 x 52 .573
2 102 x 102 .574
4 202 x 102 .578
8 202 x 202 .584
16 402 x 202 .590
32 402 x 402 .592
64 802 x 402 .599

Table 4. The scaled speedup for the SOR module. The table gives the time for one iteration when the number
of equations per processor is held constant.

References

[Chri 91] Chrisochoides, N.P., HOllstis, E.N., Houstis, C.E., Papachiou, P.N., Kortesis, S.K., and Rice, J.R.,
"Domain Decomposer: A software tool for mapping PDE computations to parallel architectures" I Fourth
International Symposium on Domain Decomposition Methods for Partial Differential Equations, (Edited

"by R. Glowinski, Y.A. Kuznetsov, G., Meurant, J. Periaux, a.B. Widlund), SIAM, pp. 341-357, (1991).

[Hadj 89] Hadjidimos, A., Houstis, E.N., Rice, J.R., Samartzis, K.M., and Vavalis, E.A., "Semi-iterative
methods on distributed memory multiprocessor architecture::;", Proceedings of International Conference
on Supercomputing, (Edited by E.N. Houstis and D. Gannon), ACM press I pp. 82-90, (1989).

[Haus 92] HOllstis, E.N., and Rice, J.R., "Parallel ELLPACK: A development and problem solving environ­
ment for high performance computing machines", Programming Environments for High-Level Scientific
Problem Solving, (Edited by P.W. Gaffney and E.N. Houstis), Elsevier Science Publishers B.V. (North­
Holland), pp. 229-241, (1992).

[Kim 93] Sang Ban Kim, Parallel Numerical Methods for Partial Differential Equations, Ph.D. Thesis, Purdue
University, to appear.

[Kinc 82] Kincaid, D.J., Respess, J., Young, D.M., and Grimes, R., "Algorithm 586: ITPACK 2c: A Fortran
package for solving large sparse linear systems by adaptive accelerated iterative methods", ACM Trans.
Math. Soft. 8, pp. 302-322, (1982).

[Rice 85] Rice, J.R., and Boisvert, R.F., Solving Elliptic Problems using ELLPACK, Springer-Verlag, New
York (1985).

	Parallel Iterative Methods
	Report Number:
	

	tmp.1307986960.pdf.We9s0

