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Abstract

In this paper we describe the use of integrated symbolic-numeric computing techniques in the
evolving / /ELLPACK1[HRC+90] Problem Solvillg Environment. I/ELLPACK is a problem solving
environment (PSE) for solving partial differential equations (PDEs) using parallel architectures. It
Wall originally developed to use the ELLPACK[RB85] system as the numerical computing engine.
The domain of applicability of ELLPACK is restricted to second order linear elliptic bounda:ry value
problems in two aud three dimensions. We apply hybrid symbolic-numeric techniques to extend the
domaiD. of applicability of the IIELLPACK PSE using both BLLPACK and other numerical PDE
solving systems as numerical engines.

These techniques ha.ve been implemented as an interactive tool using the X Window System[SG86].
Once the PDE problem is specified, it is symbolically manipulated using the MAXIMA'l computer
algebra system to genera.te a. j jELLPACK program to solve the problem using either ELLPACK or
FIDISOL[SSM85], a. finite-dif[erence method PDE solver. The GENCRAY[WW89] code generation
system is used to genera.te the j jELLPACK program.

Several examples of symbolic processing of PDE problems are presented to illustrate the approach.
Finally, we consider the shortfalls of these techniques and discuss our plans for solving some of the
problems.

1 Introduction

The / /ELLPACK problem solving environment consists of several specialized editors and a programming
environment that coordinates these editors.3 Figure 1 shows the hierarchy of editors in / /ELLPACK.
The editors assist the user in developing 8. solution to a PDE problem in a graphical manner, solving it
on 8. parallel computer, and visualizing the solution and performance data. Each editor either defines a
component of the problem (for example, the domain), or specifies a component of the solution process.
The editors coordinate their activities by communicating their results to the programming environment
which maintains them textually in the / /ELLPACK language.4 The program thus developed is trans­
lated by the / /ELLPACK language processor into FORTRAN code for solving the PDE on the target
architecture, and compiled executed (possibly in parallel). An example / /ELLPACK program is shown
in Figure 2.

·This rese.vch was supported in part by AFOSR 88-0234, ARO grlLllt DAAG29-83-K-0026, NSF gr=t CCF-8619817
II.D.d ESPRIT project GENESIS.

lread "parallel ELLPACK"
'lMAXIMA is the Common Lisp port of MACSYMA{TMG77] by Bill Schelter of the University of Texas, Austill.
3 A problem BOlviIlg environment is II BOfLware system that is specific to a certain problem domain and a.ssists the user

in a udomain-intelligcnt" manner. PSEti are uaually interACtive and contain ID.IIoDY BOnWare tooll to aaaiBt the war during
all phasetl or the problem specification and BOlution proce83. For example, a PSE for BOlviIlg PDEa would include geome~ry

editors to specify the domaiIl, capabilitietl to visualiz.e II.D.d edit the discrete domain, II.D.d visualiu II.D.d lI.D.&yz.e the BOlution.
"The !!ELLPACK language is a superset of the ELLPACK PDE 601ving Ill.D.guage; the I!xtensions are in the direction

of parallelBOlution of PDEa.
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Figure 1: Hierarchy of composition editors in / /ELLPACK.
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options.
zplot3d

equation.
llll: + uyy = 0

boundary.
u =1.0 on % =0
U =1.0 on J =1
u =1.0 on % = 1
u =1.0 on J =0

machine.
machine name =ncube2
number of pes =8
topology =hypercube

decompoeition.
read fem decomposition from '/u/u27/sa~/tmp/decomp'

discretization.
bi-linear fem

inde:Eing.
as is

solution.
jacobi si

output.
table (u,10,10)

eud.

Figure 2: An Example //ELLPACK Program. Each component of the problem specification or solution
specification is called a "segment." Each segments corresponds to either a problem component (for ex­
ample, the EQUATIOIl segment defining the PDE operator or the BOUBDAILY segment defining the domain),
a solution component (for example, the DISCRETIZATIOH segment defining the operator discretization
technique) or output specification (OUTPUT segment). In the generated FORTRAN program, each seg­
ment corresponds to a sequence of FORTRAN statement:.s. Therefore, the language also allows one to
insert arbitrary FORTRAN code between modules by placing such code in FORTRAR segments.
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The PDE solvers in / /ELLPACK and ELLPACK are built out of an extensive library of modules that
correspond to the various phases of the numerical processes for linear elliptic second order boundary value
problems. A detailed description of the ELLPACK system for sequential problems is given in [RB85J,
while the / /ELLPACK system is described in [HRC+90]. Since the ELLPACK language allows one to
embed FORTRAN code between segments, one can extend the solution capabilities of ELLPACK by
using constructs such as loops and conditionals to perform Newton iteration on nonlinear problems, and
to 60lve time dependent problems via time stepping. Our first extensions are in this direction; we applied
the symbolic processing capabilities of MAXIMA to symbolically linearize the POE operator and then
generate a / /ELLPACK program that uses Newton iteration to solve the nonlinear problem. Similar
actions are taken in the case of time dependent problems.

We have recently integrated the FIDISOL POE solving package into / /ELLPACK. FIDISOL solves
nonlinear systems of two- or three-dimensional elliptic and parabolic POEs using difference methods
with variable order and step size. However, FIDISOL does not have its own PDE solving language- it
is simply a collection of library routines for which "driver" program(s) must be written by the user.
These driver routines provide information to FIOISOL, such as the Jacobian of the POE operator,
and of course need to be written in the fonn required by FIDISOL. We have greatly simplified this
process by allowing the user to simply change to "FIDISOL mode" and then specify the system of
POE operators. Our tool then generates a FIDISOL mode / /ELLPACK program that contains all the
subroutines that FIDISOL requires. The / /ELLPACK language processor (recognizing the "FIDISOL
mode") then generates the correct FORTRAN program to invoke FIDISOL to solve the problem. Post
processing activities, including output visualization and performance evaluation, is still performed in
exactly the same manner as with vanilla ELLPACK.

In the rest of this document, we first describe our experiences with integrating symbolic computation
to a numerical simulation environment. Then, we discuss some of the difficulties we've observed and
elaborate on what our plans are in this direction.

2 Symbolic-Numeric Computing in / /ELLPACK

We apply symbolic computation at the POE problem level in //ELLPACK. Depending on the target
numerical computing engine, different transformations are done. If the target is ELLPACK, we generate
code to solve nonlinear problems via Newton iteration, and time dependent problems via time stepping.
If the target is FIDISOL, we generate a FIDISOL mode //ELLPACK program along with FORTRAN
functions for computing the Jacobian ofthe POE operators, and the Jacobian of the boundary conditions.
In this section, we will briefly describe the transformations being performed by the symbolic tool to
generate the //ELLPACK program.

We are concerned with PDE problems of the form

au, + fJuu = F(t,z,y,%,U,u." ull ,u:J,u::,ulIlI , uu ,u"lI' u.,.. ,uIIZ) == Fu

including, for example, in a simpler case,

(2.1)

crU,+{JUU = CO+CIU+C~U..,+C3Ull+C4U.. +C5U..,..,+C6Ullll+C7U.u+

Cs U"'l1 + Cg u., .. + CID till" (2.2)
= Lu

Problems (2.1) and (2.2) are defined on (0, T] x n with n c ~ and are subject to boundary conditions

or, again in the simpler case,
Bu == do + dt u+d~u.., +d3UlI = 0

on the boundary of n, and initial conditions at t = 0

u(D, z, y, z) = ¢(z, y, z).

(2.3)

(2.4)

(2.5)

The coefficients c, and d; may depend on (x, y, z) and yet the problem remains in the class oflinear PDEs
that //ELLPACK currently 8S8umes. The coefficients of L and B could be functions of the solution u,
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producing a semi-linear problem which is not in the class that / /ELLPACK currently assumes. The
parameters a and p are chosen to make the equation (2.1) elliptic (a = O,P = 0), parabolic (a = 1, P= 0)
and hyperbolic (P = 1).

2.1 Generating Code for ELLPACK

For nonlinear problems, the PDE i.e symbolically linearized to generate a / /ELLPACK program that
solves the problem using Newton's method. Consider the general PDE problem (2.1), (2.3) with a =
0= p. The idea. of the method is to approximate F(u) = 0 and G(u) = 0 with their linear counterparts

F(uo) + F'(UO)(UI - uo) 0
G(uo) + G'(UO)(UI - uo) 0

and then iteratively solve these linear problems. The linear counterparts are the Frechet derivatives of
the operators F and G with respect the the function U and its derivatives. While the mathematical
foundations of such differentiation is complex, its mechanics are similar to ordinary differentiation. The
corresponding symbolic/numeric process that implements Newton's method can be described as follows:

Compute Fr'echet derivatives L(u),B(u) of F(u) and G(u)
repeat

Solve L(o,)o =-(F(o,) - L(o,)o,), and B(o,)o =-(G(e,) - B(o,)o,)
Set Uo := U

until converged.

For time dependent problems, the time derivatives are replaced by difference quotients and then
solved via time stepping. The procedure can be viewed as opposite to method of lines, since the time
discretization is done first and the original problem is reduced to a sequence of linear or nonlinear time
independent PDEs on the various time levels. In the case of a parabolic PDE (a = l,P = 0) and
Crank-Nicholson discretization, equation (2.1) is reduced to

at
oCt) - o(t- at) = 2" [F(o) Iv=v«) +F(o) Iv=v«-o<j}. (2.6)

Note that we have suppressed the space variables and derivatives ofu in the above equation. Assuming
that the solution and its derivatives are known at the t -1:1. t level, then the nonlinear PDE with respect
to u(t) is solved over the domain n with boundary conditions

G(o(t)) = ~(t). (2.7)

2.2 Generating Code for FIDISOL

FIDISOL's domain ofapplicability is nonlinear systems oftwo- or three-dimensional elliptic and parabolic
PDEs on logically rectangular domains. That is, FIDISOL can solve PDEs of the form (2.1), (2.3) with
P= O. As input, it expects one to specify the PDEs, their Jacobians, the boundary conditions and their
respective Ja.cobians in a discrete form (i.e., on the current grid), and many other parameter settings
that affect the PDE solution process.

The Jacobian matrices of the PDE operators are generated by simple differentiation of each operator
in u with respect to u, U"', uy, .... The other main task performed by the symbolic tool is that of
deriving certa.in properties about u, uxx, and uyy. Such information is also recorded in the generated
ELLPACK program as options.

Also, for time dependent problems and for nonlinear problems, it is necessary to provide an initial
condition or initial guess, respectively, to start off the iteration. This information is also provided in the
form of FORTRAN functions generated by the symbolic tool. The ability to force a certain solution on
the PDE operators is still maintained and is achieved by generating the proper FORTRAN functions
and also changing the PDE operator accordingly.

An example of a. generated FIDISOL program is shown in Appendix A.
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Figure 3: The / /ELLPACK Symbolic Tool

3 The / /ELLPACK Symbolic Tool

The / /ELLPACK symbolic tool is the PDE specification editor in the / /ELLPACK PSE and implements
the functionality described above. It is implemented as a separate X client that communicates to the
/ /ELLPACK environment via sockets[Wan88] using a simple protocol. Figure 3 shows the a view of
the symbolic tool. In this section, we will provide a brief description of its implementation; the first
subsection discusses the connection with MAXIMA, the second discusses the implementation of the
PDE transformations, and the third discusses / /ELLPACK code generation.

3.1 The MAXIM:A Connection

The symbolic tool currently uses MAXIMA as its computer algebra engine. MAXIMA runs as a separate
process (possibly on another machine) and is also connected to the symbolic tool via sockets.

MAXIMA is a closed system. As such, it was not designed to be used by other programs as a compute
engine; it is meant to be used as an end tool by a human user. Thus, when one attempts to connect
MAXIMA to another program, one must dec:ide how to handle input to and output from it. The most
straightforward method would be to write a communication driver that would send input in MAXIMA
syntax and understand the MAXIMA output syntax. However, this implies that one must parse the entire
MAXIMA language, when what is typically needed is the ability to recognize a few key statements.

What we have done is the following. For input to MAXIMA, we use MAXIMA syntax. But, for
MAXIMA output that concerns us, we use a back-door path to the symbolic tool. This is implemented
as follows- before the symbolic tool executes MAXIMA, it sets up three input/output channels with
MAXIMA. The first is for sending input to it, the second is for MAXIMA's output and error messages,
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a.nd the third is for special messages coming from MAXIMA to the symbolic tool. For communication
along this channel, we use the same protocol as the one between the / /ELLPACK environment and the
symbolic tool.

The:tefore, when a. MAXIMA operation that the symbolic tool has initiated needs to communicate
with the symbolic tool, it sends a message via the special channel and then calls a function that waits for
the reply from the symbolic tool. The symbolic tool responds to the message along the MAXIMA input
channel. The VaitFor function called within MAXIMA does the following- if the argument predicate
evaluates to false, then it executes a read-evalloop which loops until that predicate does evaluate to
true. Thus, when the symbolic tool is responds to 8. query, it also signals that it has replied by assigning
a true value to the predicate being checked.

This simple callback mechanism from MAXIMA to the symbolic tool suffices for our needs- it allows
for decisions to be made within MAXIMA about when and where to request user assistance. For example,
when a given PDE is nonlinear, this knowledge is only realized within MAXIMA. At this point, it is
necessary to ask the user to specify additional parameters that are needed to generate a / /ELLPACK
program to solve the problem via. Newton iteration. This is done by sending a message to the symbolic
tool requesting additional information. The symbolic tool then opens a new window and asks the user
to specify the additional information necessary. Thus, this callback mechanism allows us to avoid asking
questions such as "Is this operator linear?", when such information is readily derivable within MAXIMA.

3.2 Linearization, Time Discretization, and FIDISOL Program Generation

The transformations described earlier are implemented as MAXIMA functions that are called by the
symbolic tool. These are written in Lisp and in the MAXIMA language and are loaded in to MAXIMA
upon startup_ Information is sent from the symbolic tool to MAXIMA by calling MAXIMA top-level
functions that define parts of the PDE problem and fill in some data structure.

For linearizing operators, the Frechet derivative is computed by differentiating the PDE operator F(u)
with respect to its independent variable (u) and its derivatives (U." Uy, ... ). To obtain the linearized
PDE, the original operator F(u) is replaced by the following linear PDE (for the two-dimensional elliptic
case):

(Fu~.. (u)lu=ua) u.,., + (Fu.,,,(u)lu=ua) U"'l/ + (Ful/I/(u)lu=ua) ul/Y + (Fu.,(u)lu=ua) u.,+
(F.,(u)I.=.,) u, + (F.(u)I.=.,) u =

-(F(u)lu=uo - (Fu.... (u)lu=ua Uo.,., + Fu.,,,(u)lu:oua uO"'l/ + Fu",,(u)lu=ua UOl/l/+
Fu~(u)lu=ua Uo", + Fu,,(u)lu=ua uOl/ + Fu(u)lu=ua uo))

where UQ represents the solution obtained during the previous iteration of Newton's method.
For time dependent (parabolic) operators, the time derivative U, is replaced by the following difference

quotient
u(t) - u(t - ~ t)

M

Then, the parabolic PDE operator F(u) + U, is replaced by (with the space variables suppressed for
clarity):

)'F(u(t)) + :'1 =()'-l)F(u(t-~t))+ u(t~tt)

where.\ is a pa:tameter of the time discretization (for example, if.\ = !. then this is the Crank-Nicholson
discretization) and u(t-.6. t) is known. The problem is solved by starting with the solution at time t."lart

and time stepping in 6. t size steps until tend is reached.

3.3 / /ELLPACK Code Generation

Once all the transformations are done within MAXIMA, we generate the / /ELLPACK code using the
GENCRAY code generation system.

GENCRAY has a Lisp-like input syntax and generates FORTRAN code as output. Although the
/ /ELLPACK language is not the same as FORTRAN, we find that it is still convenient to use GENCRAY
as the / /ELLPACK--only part of the code (such as the discretization method selection) can easily be
generated using GENCRAY's (literal ... ) construct.
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In typical code generation situations, the code generator is loaded into MAXIMA and then called
with MAXIMA expressions as arguments. However, rather than load GENCRAY into the MAXIMA
image, what we have done is link GENCRAY to the symbolic tool. In MAXIMA, we call a GENCRAY
supplied routine called MACCRAY that converts the MAXIMA representation to GENCRAY syntax.
This program is sent to the symbolic tool via the special channel and the symbolic tool calls GENCRAY
to actually generate the j jELLPACK program.

We find that this two-stage translation process is very convenient for several reasons: firstly, the
MACCRAY package is small (only a few hundred lines of Lisp); hence loads quickly and easily into
MAXIMA. Secondly, having MAXIMA and GENCRAY code to manipulate within the MAXIMA Lisp
environment is much easier than having the j jELLPACK code as the MAXIMAjGENCRAY code is re­
aUy a sequence of Lisp expressions. This allows us to splice together pieces ofgenerated code conveniently
to generate the final program.

4 Limitations of the Current Approach

Although the symbolic tool is reasonably well integrated, we find that there are many difficulties with our
approach. Most difficulties are due to lack of infrastructure in the area of integrated symbolic-numeric
computing. Some are due to the un-object-oriented design of various components of the j jELLPACK
environment. In this section, we will highlight some of the difficulties we experienced.

MAXIMA was designed as a program meant to be used by humans. Therefore, when another program
attempts to use MAXIMA as a tool, it needs to pretend to be human in its behavior. For example, when
one needs to differentiate some expression, one must send the string "ditt (expr, x); " to MAXIMA.
To obtain the result, one must parse the output produced by MAXIMA and then represent it in a usable
manner (for example, as a syntax tree). One obvious difficulty of sending strings is what would happen
if there were a simple syntax error in the input? Or, what if there were a run-time error? How is this
information given to the symbolic tool, which is waiting for the result? We currently ignore the latter
issue as its not a severe problem in our usage (excepting of course a lack of robustness). However, in
other situations, this may be a problem. The section on future plans discusses an example where a
tighter coupling between the symbolic processor (i.e., MAXIMA) and the programming environment is
essential.

As described earlier, we have implemented a simple callback mechanism which allows MAXIMA to
make requests from the symbolic tool. However, this mechanism is rather ad hoc and not robust. The
main reason for it not being robust is that we do not have any control over how MAXIMA behaves when
it needs some information. For example, MAXIMA sometimes asks questions such as "Is A Positive,
Zero, or legative?" In our current implementation, we have no mechanism to relay this query to
the user through the symbolic tool. One option of course is to redirect all of MAXIMA's queries to our
callback routines,S but this is not really feasible due to the changes that must be made to the internals
of MAXIMA.

Another difficulty that we observed is with the placing of the symbolic tool in the j jELLPACK
environment. Currently, the symbolic tool is an independent editor (containing the symbolic processor)
tha.t generates some data for the j jELLPACK environment. Thus, it does not take input from the
environment nor is it used by other editors that may benefit from it. For example, the boundary tools
need access to the symbolic tool as the boundary conditions may need symbolic manipulation (such
as linearization, or Jacobian computation). However, with the symbolic processor being a part of the
symbolic tool, the boundary tool cannot access it. (For the time being, we have implemented an ad hoc
work-around for this problem.) What is needed is for the symbolic processor to be accessible from the
environment directly, rather than only through the symbolic tool.

We have not concerned ourselves with another important issue related to differences in data represen­
tation. We mentioned earlier that we allow the symbolic tool to execute on a machine different from the
one executing the j jELLPACK environment. However, this leads to another set of problems related to
byte-order, datatype sizes etc.. To overcome this, we need an RPC[Man90]-like standard communication
protocol for communicating mathematical objects.6 Our use of ascii as a representation avoids some of

SDuring the implementation of SUI[DW90) at Ken~ State Universily, such redirection W/lII done in order to have better
control oller MAXIMA.

dThc MatbLink protocol of Mathemalica.[Wol8s] is an eJ:8Dlple of such a protocol.
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these issues, but we introduce other problems related to the exact ascii representation of numbers, for
example.

5 The Future

The / /ELLPACK project is a proof-of-concept prototype of an integrated software system for solving
elliptic POEs. We have now embarked on the next phase of this research- the design and implementation
of a truly integrated problem solving environment for solving POE-based problems. In this section, we
briefly discuss the proposed architecture of PSEs for POE solving and then identify other situations
where symbolic computing would be of great benefit.

5.1 Architecture of PSEs for PDE Solving

The concept of problem solving environments evolved due to the need for software systems that assist
the computational scientist in all aspects of his/her work- during the formulation of the problem, the
solution of the problem, and the analysis of the results obtained. Hence, R true PSE is necessarily all
encompassing in the sense that it must support a very wide variety of seemingly unrelated activities.
Building such a software en'Yironment is no simple task, and hence must he approached wjth the correct
'Yision and careful object-oriented thinking.

The paradigm that we are attempting to provide in the PSE is that of a notebook and a calculator.
When solving a simple arithmetic problem, one typically uses a notebook to write down some expressions
and then uses the calculator to evaluate them. This can be viewed as a problem solving environment for
solving simple arithmetic problems. Our vision is to develop a software environment that supports this
notebook-calculator paradigm for POE problem solving. Such an environment would have the software
analog ofa notebook and of course many specialized "calculators" that assist the user in his computations.
The notebook would be an interactive environment which collaborates with the supporting calculators
(editors) to provide an integrated environment where every editor would be aware of the existence and
nature of the other editors.

The organization of the notebook is therefore key to the success of such an en'Yironment. We are
developing the notebook concept on top of a computing kernel that supports many of the necessary
abstractions. A separate report[HR92] discusses this kernel and other issues in the development of
problem solving environments for POE solving.

5.2 Symbolic Computing in a PDE Solving PSE

Symbolic processing is an integral part of a problem solving environment for POE solving. In this section,
we identify several situations where symbolic computing would be used.

We have applied symbolic computing 50 far in the pre-processing phase of the problem. Another
application of symbolic computing in this stage would be in extracting qualitative characteristics (such
as the smoothness of the input data) of the POE problem. This information would be given as input to
an expert system that provides advice on what method to use and what machine to use for solving this
problem. We are currently developing a rule-based expert system called ATHENA[HRH+91] tha.t does
exactly this and also attempts to provide a priori information about the convergence properties of the
problem.

Symbolic computing can also help in the important task of solving the POE problem in parallel.
For example, in the case of domain decomposition,? it is possible to attempt POE operator-dependent
domain decomposition where one would use the "degree of difficulty of solving a sub-problem" as a
criteria in assigning the domains. For example, some problems have the property that they a.re nonlinear
over a certain part of the domain and linear over another. Then, its possible to use a linear solver for
the linear sub-problem and a nonlinear solver for the nonlinear sub-problem. Since the nonlinear solver
is more expensive, the domain decomposer could then use more processors in that region than for other
parts of the domain, thus speeding up the entire solution process.

7Domain dee.ompositionis a. teclmiqueU!led to wIve a. probIeminparalleI. The idea.is to decompose the probIemdomain
into several pieces and then IlOIve the (1lUb-)problemon ea.ch piecc in parallel. or COUI'5e, the amount of efI"ectlveparallcli5ID
is dependent on the amount of communication that needs to takc pla.ce between the processors. However, for the PaI"allei
solution of PDE probl~. this technique is very effective; see {CHENH+ 91].
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Another important use of symbolic computing is in the analysis of the computed solution. Identifying
properties of the computed solution makes it possible to use that information when solving the problem
again (for example, in the case of time dependent problems). Also, this information is useful for expert
systems as they can apply the knowledge in making a priori predictions about similar problems.

Symbolic computing is also necessary at the global level in the proposed notebook-calculator paradigm
PSE. That is, since the notebook manipulates symbolic statements and descriptions, it would have to
be implemented as a symbolic computing system as well. We are currently considering the possibility of
actually building this software on top of an existing symbolic computing system such as MAXIMA or
MAPLE[Gr087]. However, there are certain limitations with this too; mainly due to the closed nature
of these systems.

These applications of symbolic computing in a PDE solving PSE indicate that symbolic computing
is indeed an integral and essential component of such a software system. However, the minimal infras­
tructure that currently exists for integrated symbolic-numeric computing is a severe limitation to this
end.

6 Conclusions

We have described the use of integrated symbolic-numeric computing as it currently stands in the
//ELLPACK environment. Also, we have indicated what our plans are for developing problem solving
environments for solving PDE-based problems and the need for symbolic computing there.

We have found that the lack of infrastructure for integrated symbolic-numeric computing is a severe
restriction when attempting to employ this form of computing. In the following paragraphs, we briefly
identify some of the features that we would like to have in both symbolic and numeric systems.

One major difficulty in integrating symbolic and numeric computing is in the area of communicating
data. We would like to see the development of some syntax and representation scheme that can easily
be translated to/from symbolic and other systems. Such a language would allow computing systems to
collaborate with each other and solve problems more effectively.

The closed-ness of symbolic computing systems is also a severe limitation. Unlike numerical com­
putation facilities, symbolic computing systems have evolved into large user-level systems, rather than
computational kernels. This is also a limitation with respect to integrated symbolic-numeric computing
as this forces the client of a symbolic processor to pretend to be human. What we would like are software
systems that have not only a user interface, but also a functionally equivalent programming interface.

Another difficulty with symbolic computing systems is their large size. It is unfortunate that one must
load in an entire system when one only needs a small subset of its operations. It would be very useful
if only the necessary operations could be loaded into an application program. Furthermore, this ability
to limit what functionality is incorporated into an application could easily lead to the tighter coupling
with the symbolic processor that we desperately need in order to implement some of the functionalities
mentioned in the previous section.

The use of "foreign" systems as compute servers in numerical simulation environments is another
essential feature of future PSEs. What we mean by a foreign system is a software system that exists
outside of the PSE and which must be used as a "black box"j i.e., without having intricate understanding
of its internals. The //ELLPACK environment now uses FIDISOL in this manner. We note tha.t without
the integrated symbolic-numeric computation capability, this would not have been possible due the need
to compute Jacobians.

We patiently await the day when our wish list would be satisfied. But, in the meantime. we will
attempt to build the next generation PDE solving PSE using ad hoc means to get around difficulties
that arise due to the lack of supporting infrastructure.
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A Example FIDISOL Program Generated by the Symbolic
Tool

OPTIONS.
tidisol
iinsys-3
I1para- .falsa.
l1tiae= .true.
xplot3d

EtlUATIOIi.
fidieol

BOUNDARY.
fidieol on %. 0.0

on J:. 1.0
on y = 0.0
on y" 2.0

GRID.
20 l: points
20 Y points

TRIPLE.
fidieol

SUBPROGRAMS. +host

c subroutine to define the pda systell at inner grid points

subroutine fdBuOl (t,x,y,u.ut.ux.uxx,uy,uyy,p,mt,mv,nk,nv)
integer mt,llv,nk,nv
real t
real x(mv),y(mv)
real pellv ,nt) ,uC.v,ok) ,ux(mv,nk) ,uxx(mv,nk) ,UrelllV ,nk) ,uyy(lIlv,ok)
real ut(mt,nk)

integer i

do 1001 i"'l,nv
p(i.l)=uxx(i.l)+uyy(i,l)+uy(i.3)
p(i,2)-uxx(i.2)+uyy(i.2)-uz(i.3)
p(i,3)=u(i,l).ux(i,3)+u(i,2).uy(i,3)-4.(uxx(i,3)+uyy(i.3»

1001 continue

return
.nd

c subroutine to define the boundary conditions

subroutine fdsu02 (irand. t,x,y,u,ut,ux,uxx, uy ,uyy,p,at,mvInk,nb)
integer irand ••t.lllv,nk.nb
real t
real X(IIIV) .Y(JIlv)
real p(IIIV,nk).U(lIIv.nk).ux(lIIv,nk),UXX(IIIV.nk),UY(IIIV.nk),UYY(IIIV,nk)
real Ut(lIIt,nk)
integer i

gota (10.20,30,40) irand

10 do 1002 iA1.nb
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p(i,l)-u(i,l)
p(i,2)-u(i,2)
p(i,3)-uy(i,l)-ux(i,2)+u(i,3)

1002 contillue
return

20 do 1003 i-l,nb
p(i,1)-u(i,1)
p(i,2)""Il(i,2)
p(i,3)=uy(i,1)-ux(i,2)+u(i,3)

1003 continue
return

30 do 1004 i-l,nb
p(i, 1)=u(i, 1)
p(i,2)-u(i,2)
p(i,3)-uy(i,l)-ux(i,2)+u(i,3)

1004 continue
return

40 do 1005 i-l,nb
p(i,1)=u(i,l)
p(i,2)-u(i,2)
p(i,3)=uy(i,1)-ux(i.2)+u(i,3)

1005 continue
return
ond

c subroutine to define the jacobian matrices of the pde
c eystea at inner grid points

subroutine fdsu03 (iequ, icom,t ,lI:,y,u,ut,ux,uxx,uy,uyy,pu,put ,pux,p
.uxx,puy ,puyy ,mt,.v,nk,nv)
integer iequ, iCOll,lIlt,JlV ,nk,nv
real t
real :J:(ll.v) ,y(lIlv) ,pu(lI.v) ,put (mv) ,pux(mv) ,puxx(mv) ,puy(mv) ,puyy(mv)
real u(mY ,nk) ,ut(.v ,nk) ,ux(m.v ,nk) ,uxx(m.v ,nk) ,uy(m.v ,nk), uyy(mv ,nk)
integer i
goto (100,200,300) iequ

100 goto (110,400,130) ico.
110 do 1006 i-l,ny

puxx(i)=1
puyy(i)=l

1006 continue
go to 400

130 do 1007 i-l,nY
puy(i)-l

1007 continue

200 goto (400,220,230) icom.
220 do 1008 i a l,nY

puxx(i)=l
puyy(i)-l

1008 continue
go to 400

230 do 1009 i=l,nY
pw:(i)"-l

1009 continue

300 goto (310,320,330) ico.
310 do 1010 l=l,nY
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pu(i)'9lJ:(i,3)
1010 continue

go to 400
320 do 1011 i-l.nv

pu(i)"'I1y(i,3)
1011 continue

go to 400
330 do 1012 iBl,nv

pux(i}=u(i.1)
puu:(i}=-4
puy(i}=u(i.2)
puyy(i)=-4

1012 continue

400 continue
return
ond

c subroutine to define the jacobian matrices of the boundary
c conditions at boundary grid points

subroutine fdsu04 (irand,iequ,icom, t,x.y ,u,ut ,w:,uu:.uy ,uyy.pu,put
. ,pux.pu:u:,puy .puyy,my .mv ,nk.nb)
integer irand,iequ.icoa,mt.mv,nk.nb
real t
real x(mv) ,Y(IIV) ,pu(.v) ,put(mv) .PW:(D.v) ,pu:u:(mv) .puY(lII.v) ,puyy(mv)
real u(mv,nk) ,Ut(IIV ,nk) ,W:(IIV ,nk) ,u.:r.x(av ,nt) ,UY(IIV ,nk) ,uyy(mv ,nk)

integer i
goto (1000.2000.3000,4000) irand

1000 goto (1100,1200,1300) iequ
1100 goto (1110.5000,5000) ico.
1110 do 1013 i=l.nb

pu(i}-1
1013 continue

go to 5000

1200 goto (5000.1220,5000) ico.
1220 do 1014 i=I,nb

pu(i)=1
1014 continue

go to 5000

1300 goto (1310,1320,1330) icom
1310 do 1015 i-l,nb

puy(i}=1
1015 continue

go to 5000
1320 do 1016 i-l.nb

pw:(i)--l
1016 continue

go to 5000
1330 do 1017 i-l,nb

pu(i)-l
1017 continue

go to 5000

2000 goto (2100,2200,2300) iequ
2100 goto (2110.5000.5000) iccm
2110 do 1018 i=l.nb

pu(i)=l
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1018 continue
go to 5000

2200 goto (5000,2220,5000) icoll
2220 do 1019 i-l,nb

pu(i)-l
1019 continue

go to 5000

2300 goto (2310,2320,2330) icom
2310 do 1020 i-l,nb

puy(i)=l
1020 continue

go to 5000
2320 do 1021 i=1,nb

pllJ:(i)=-l
1021 continue

go to 5000
2330 do 1022 i-l,nb

pu(i)"l
1022 continue

go to 5000

3000 goto (3100,3200,3300) iequ
3100 goto (3110,5000,5000) icoll
3110 do 1023 i"l,nb

pu(i)-l
1023 continue

go to 5000

3200 goto (5000,3220,5000) icoll
3220 do 1024 i-l,nb

pu(i)-l
1024 continue

go to 5000

3300 goto (3310,3320,3330) icoll
3310 do 1025 i=l.nb

puy(i)-l
1025 continue

go to 5000
3320 do 1026 i""l,nb

pux(i)=-l
1026 continue

go to 5000
3330 do 1027 i=l,nb

pu(i)=1
1027 continue

go to 5000

4000 goto (4100,4200,4300) iequ
4100 goto (4110,5000,5000) icom
4110 do 1028 i"l,nb

pu(i)"l
1028 continue

go to 5000

4200 goto (5000,4220,5000) icolD.
4220 do 1029 i=1,nb
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pu(i)-1
1029 continue

go to 5000

4300 goto (4310,4320,4330) icom
4310 do 1030 i=1,nb

puy(i)=1
1030 continue

go to 5000
4320 do 1031 i=1,nb

pllJ:(i)=-1
1031 continue

go to 5000
4330 do 1032 i=1,nb

pu(i)"1
1032 continue

5000 continue
return
=d

EIID.
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