
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1993

GENCRAY Language Reference Manual, Version 2 GENCRAY Language Reference Manual, Version 2

Sanjiva Weerawarana

Ann C. Catlin

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
93-058

Weerawarana, Sanjiva; Catlin, Ann C.; Houstis, Elias N.; and Rice, John R., "GENCRAY Language Reference
Manual, Version 2" (1993). Department of Computer Science Technical Reports. Paper 1072.
https://docs.lib.purdue.edu/cstech/1072

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GENCRAY LANGUAGE REFERENCE MANUAL,
VERSION 2

Sanjiva Weerawarana

CSD·TR·93·0S8
September 1993

GENCRAY Language Reference Manual, Version 2

Sanjiva Weerawarana
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907.

September 6, 1993

Abstract

GENCRAY is a code translator that translates a Lisp-like language to FORTRAN 77. TIlls
manual describes the input language of GENCRAY. The GENCRAY input language is very similar
to Common LISP, but contains extensions designed to accomoda.te the needs of FOH.,'l'HAN.

We describe each construct by providing its input form and then explaining what FORTRAN
output is produced. Several examples axc provided at the end of this docllrnenl to give a cohesive
view of the language.

1

Contents

1 Introduction

2 Decl81'ations
2.1 Type Declarations
2.2 Implicit Declarations
2.3 Common Declarations
2J1 External Declarations
2.5 Constant (Parameter) Declarations
2.6 Initial Value Declarations

3 Expressions
3.1 Arithmetic Expressions
3.2 Comparison Expressions
3.3 Logical Expressions ..

4 Assignment Statements

5 Looping Constructs
5.1 Simple Iteration.
5.2 Conditionallteratioll
5.3 General Iteration . .

6 Conditional StateIuents

7 Compound Statements

S Input/Output Constructs

9 New Scope Constructs

10 Declaring Functions and Subroutines

11 FORTRAN Specific Constructs
11.1 Calling Subroutines .
11.2 Labels, No-Dps, and Gota Statements
11.3 Pausing and Stopping Execution

12 When All Else Fails

13 Known Bugs/Problems/Limitations

A Example: Matrix Multiplication

B Example: Derivative Calculation

C List of Reserved Strings ill GENCRAY

2

3

3
3
4
4
4
4
5

6
6
7

7

8
8
8
8

8

9

9

9

10

10
10
10
11

11

11

13

14

15

1 Introduction

GENCRAY allows one to generate FORTRAN 77 code from a LISP-like input syntax. A separate
document describes why GENCRAY is useful and how it can be used; this document only describes the
input language of GENCRAY.

The language is a LISP-style, fully-paranthesised prefix language. As much as possible, Common
LISP syntax has been used, with extensions to handle the special needs of FORTRAN. For example, we
added constructs to support the declaration of common blocks. All reservered words in the language are
matched case--insensitively.l

In what follows, the following conventions arc used:
all reserved words are printed in typewriter font, like this
any optional component is enclosed in '[' and']' characters.

2 Declarations

There are five types of declarations that are supported: type declarations, implicit declarations (to change
the implicit typing rules), common declarations (to declare global variables), external declarations (to
declare types ofexternal functions), and initial value declarations (to initialize variables at compile-time).

Declarations can appear anywhere in the program and are automatically moved to the declarations
section of the closest enclosing scope in the generated program.

All declarations are based on the LISP declare construct. The basic syntax is:

(declare declo l declo:? .. . declnn)

where each decln; is one of the five types of declarations. The following describes the syntax of each of
these four declarations.

2.1 Type Declarations

Type declarations are used to declare both simple and array variables. The syntax is:

(type typename id1 id2 •• • idn)

where typename is the type that id,' are to be declared to be of. lypename can be a simple type or
an array type. The simple types are given in the table below.

Syntax FORTRAN type
integer normal integer type
(integer iconst) integer variables of given integer (iconst) (== 2 or 4) byte length
real normal real type
(real iconst) real variables of given byte length
double normal double type
complex normal double type
(complex iconsl) complex variables of given byte length
logical normal double type
(logical iconsl) logical variables of given byte length
character a single character
(character iconst) character variables of given byte length
(character #) character variable of unknown length

. .ITh,s Was done because m ronny Input generation SituatiOns, It IS pamfullo produce the keywords In lower case.

3

Arrays are declared using the following syntax:

(array simple_type dims)

where simple_lype is a simple type (from the previous table) and dims are any number of dimensions,
where each dimension is an expression.

2.2 Implicit Declarations

GENCRAY understands and uses standard FORTRAN implicit typing rules (all variables whose name
starts with either i, j, k, I, m, or n (upper or lower case) are implicitly declared as integers and all other
variables are implicitly declared real). The implicit declaration allows one to change these implicit rules.
Syntax.:

(implicit none)

(implicit simple_lype arYl arg2 . .. arYII)

where simple_type is a simple type as before, and al'g; is either a single character (meaning that all
variables starting with that leller are to be implicilly declared to be of the specified simple type) or
(lcttel'l Icttcr2) (meaning that all variables starting with any letter in the range fctterl to letter2 are to
be implicitly declared to be of the specified simple type). The none form is used to instruct GENCRAY
to discard implicit typing and to generate the corresponding FORTRAN statement as well.

Use of implicit none is strongly recommended as this leads to more robust programs. Implicit
typing mechanisms are provided (reluctantly) simply because FORTRAN has such a capability and lIot
because we approve of or encourage the use of such a mechanism.

2.3 Common Declarations

The GENCRAY common declaration is llsed to declare FORTRAN global variables (or common blocks,
as they're called in FORTRAN). The syntax is:

(common [(name)] idl id2 .. . idll)

where id; are identifiers are name is the optional name of the common block. This basically places
the variables id; in the common block named name (or in the blank common if name is ommiUed).

2.4 External Declarations

The exte1'na/ declaration is used to define an identifier as the name of an external procedure. The synlax
IS:

(external idl id2 •• • idll)

where id; are identifiers.

2,5 Constant (Parameter) Declarations

The constant declaration is used to generate FORTRAN parameter statements (i.e., statements that
define constants). The syntax is:

(constant identifier expr)

4

where identifier is the name whose constant value is being declared and exp" is the constant valued
expression. The typing rules that apply to identifier arc exactly the same as for any other identifier- it
will be implicitly typed unless an explicit type is given. Standard aliases:

parameter for constant.

2.6 Initial Value Declarations

The data declaration is used to initialize variables to values at compile time. The syntax is:

(data

(idl,l id],2) (arYI,1 a1'gl,2)

(id2,1 id2,2) (a1'Y2,1 arg2,2)

(idn,l idn,2 ...) (argn,l argn,2 ...)
)

where idi,j are identifiers (simple or array references) and U!'gi,j are all constant valued expressions
of the form expr or (ieonst # expr), where iconst is an integer constant and expr is an expression. The
first fOfm of ary says that the value of that expression is to be assigned to the corresponding variable
and the latter says that the expr is to be assigned to the corresponding iconst variables. (Thus, the
latter form is a short form for the case when the same value is to be assigned to multiple variables, such
as the elements of an array.) in them. Examples:

GENCRAY input:

(declare
(data (a b c) (1 2 3))
(data (a) (1) (b) (2) (c) (3))
(data «aref x i) (aref x 2) (aref x 3) (aref x 4) (aref x 5»

(i.O (3 # 5) 10.9)))

GENCRAYoutput:

data a,b,c/1,2,31
data alii, b/2/, c/31
data x(1) ,x(2) ,x(3) ,x(4) ,x(5)/i. 0,3.5 ,10.91

Note: The most general form of the data statement (the form that allows implied loops for identifiers)
is currently not supported by GENCRAY.

3 Expressions

Expressions in GENCRAY are built up using constants, variables and function calls.
Numeric constants are written in either decimal form or in scientific notation. The regular expressions

for the sel. of all valid numbers are:

-? [0-9] +
-? [0-9] +. [0-9].
-? [0-9] +. [0-9] *E[0-9h

-?[0-9]+. [0-9]*0[0-9]*

String constants are basically any sequence of characters enclosed in " (double quote) characters.

5

Variables can be either simple identifiers or array references. The syntax for array references is:

(aref name sub j sub2 .. . subn)

where name is the name of the array variable and sub; are the subscripts for each of its dimensions.
Function calls are expressed using the usual LISP function call syntax:

(name a/'gl al'g2 ... arg,,)

where name is the name of the function and arg; are the argument expressions.

3.1 Arithmetic Expressions

Arithmetic expressions use exactly the same syntax as in LISP. The table below summarizes arithmetic
operators and the basic mathematical functions:

Operation Syntax
el+e2+··· (+ej e2 ...)
e, - C2 (- ej C2)

el * C2 * ... (*CjCz·· .)
CdC2 C/ a, a,)
a' (expt a b)
a" (exp x)
vex) (sqrt x)
sin(x) (sin x)
cos(:c) (cos x)
tan(:c) (tan x)

where Cl, C2, .•. , a, b, and x are all expressions. Standard aliases:

plus for +
minus for­
times for *
quotient for /.

3.2 Comparison Expressions

These operators can be used to compare values of numerical variables or expressions.

Operation Syntax
CI _ e2 (- el (2)
CI i:- C2 C/= CI C2)

CI < C2 « CI cz)
CI ::; C2 «= Cl (2)

CI > C2 (> Cj C2)

el > C2 (>= Cj C2)

where Cl and e2 are all expressions. Standard aliases:

equalp for =
neqp for /=
lessp for <
leqp for <=
greaterp for>
geqp for >=.

6

3.3 Logical Expressions

Opera~ion Syn~ax

II and /2 and ... (and i I /2 ...J
f 1 0rf2 0r ... (or II 12 ...)
no~ I (noll)

where ft, f2 , ... , and / are all logical expressions.
Logical constants true and false are specified using the following syntax:

(true)
(false).

4 Assignment Statements

GENCRAY supports two types of assignment statements: Simple assignments and matrix assignments.
The simple assignment statement is the usual assignment statement; that is, it is used to assign a

value to a variable. A matrix assignment statement is a convenience form used to assign different values
to elements of a two-dimensional array. The syntax is:

(setq 51 52 ...)

where Si is one of:
vUl'iabfc cxprcs.~ion

variable (matrix (exPI [exP2 .. '])1 [(exPI [exP2 .. ·]h ... J).

Every row of the matrix (identified by each of the list arguments to the matrix function) must have
the same number of elements in them. Standard aliases:

setf for setq.

Examples:

GENCRAY input:

(setq a 12.24)
{setq c (aref faa 34 c)

m (matrix (12 m v)
{a {plus a (aref faa 33 c» f»)

GENCRAYoutput:

a=12.24
c=foo(34,c)
m(1,1)=12
m(1,2)=m
m(1,3)=v
m(2,1)=a
m{2,2)=a+foo{33,c)
m{2,3)=f

7

5 Looping Constructs

GENCRAY provides a construct for generating FORTRAN do loops as well as more general construcls
that generate loops using if and gate statements in FORTRAN.

5.1 Simple Iteration

The dotimes construct is similar to the LISP construct of the same name, but different. The syntax is:

(dotimes (var slart end [step]) body)

where var is the loop variable, stUl"t is the starting value, end is the ending value (or more precisely, the
loop wm terminate when var > end), and step is an optional increment value. The default increment is
1. body is of course the statements that are to he executed in the loop.

5.2 Conditional Iteration

The while construct is used to generate a loop that will execute as long as some lest is true. The syntax is:

(lihile expr body)

where exp" is the test expression and body is the body of the loop.
This construct can translate into either a statement using the non-standard while construct of FOR­

TRAN or to a loop using if and goto. Which one is generated is a user-settable option.

5.3 General Iteration

GENCRAY supports the LISP do statement for general iteration. The semantics supported are those of
the do* construct instead of the do construct; loop variables arc updated in order and not in parallel.
The loop variables are "localized" by GENCRAY to ensure that LISP semantics of the do construct
defining its own scope are maintained. The syntax is:

(do ((va,'] [init] [stepd]) ... (val'n [init n [stepn])) (lesl lasl) body)

where test is the expression used for loop control (the loop is executed as long as the test evaluates
to false), Va1'l, ... , varn are loop variables which are initialized and stepped using inil; and step;, re­
spectively, body is the body of the loop, and lasl are the statements that arc evaluated when the loop
test evaluates to true (i.e., when the loop is being exited).

6 Conditional Statements

GENCRAY supports the LISP if and cond statements for conditional execution. The syntax of the if
statement is:

(if test then_clause [else_clause])

where test is a test expression that must evaluate to a logical value, then_clause is the statement executed
if the test evaluates to true and else_clause is the (optional) statement executed if the test evaluates to
false.

The syntax of the cond statement is:

(cond (testl (bodYl]) (test2 [bodY2]) ... (testn [bodYn]) [(default body)])

8

where test; are expressions that must evaluate to logical values, body; are statements that are exe­
culed if test,· evaluates to true and (if present) body is executed if all the tests fail. Standard aliases:

other'll'ise for default.

7 Compound Statements

GENCRAY supports the progn construct for defining compound statements. The syntax is:

(progn body)

where body consists of any number of statements. This is useful as the then-clause of an if statement,
for example.

8 Input/Output Constructs

GENCRAY supports only two simple I/O constructs: read and write. The syntax for write is:

(write eXPl exp2 ... eXPn)

where exp; are expressions. Standard aliases:

print forrite.

The syntax Cor read is:

(read identifier)

where identifier is the identifier into which something is to be read. (It can be either a simple identifier
or an array reCerence.)

The FORTRAN code generated does free format I/O.

9 New Scope Constructs

GENCRAY supports the LISP let construct for defining a local scope. The syntax is:

(let ([locals]) body)

where body consists oC the executable statements of the new scope and locals is any number of any
of the following:

(identifie1' expr)
(identifier)
identifier

where identifier is an identifier and expr is an expression. The latter two forms arc exactly the same;
they both define an uninitialized variable. The first form defines a variable and also initializes it to the
given value. Standard aliases:

prog for let.

Note: Although we have aliased prog for let, it should be noted that the semantics of prog and let

9

are not thc samc. However, for our purposes, this alias is reasonable as we do not purport to support
the exact semantics of Common LISP.

10 Declaring Functions and Subroutines

FORTRAN Functions and subroutines are dcclared using a slight extension of the LISP de/un macro.
The syntax is:

(de:fun name [type] (id l id2 •• • idn) body)

where name is the name of the function or subroutine, type is the return type (if a function is be­
ing declared), id1 , ... , id" are the parameters and body is the body of the function or subroutine.

Omitting the return type type generates name as a FORTRAN subroutine. Thus, functions arc gen­
erated by including a return type. When type is present, then it must be a simple type (i.e., not an array
type; see the discussion on types earlier for details). Note: Requiring that a return type be specified in
order to generate a FORTRAN function-is a restriction from what FORTRAN requires as FORTRAN
docs implicit typing on the name of the function to determine its return type.

A return statemeut call be included in the body of the function by using the return construct:

(return [c.:rPI'])

where the optional argument expr is used to specify alternate returns. (The alternate return feature
of FORTRAN is a rarely used construct that should be avoided in almost every case.)

A special construct is available for declaring the "main" function. This is the program construct:

(program name body)

where name is the name of the program and body is the body of the main function.

11 FORTRAN Specific Constructs

We have defined several constructs expressly for the purpose of generaling various FORTRAN constructs.
This section will explain these constructs.

11.1 Calling Subroutines

Subroutines are called using a call statement:

(call name argl arg2 ... al'g,,)

where name is the name of the subroutine and arg,' are the argument expressions.

11.2 Labels, No-Ops, and Goto Statements

Statement labels can be generated using the label construct:

(label iconst)

where iconst is an integer constant. This label will label whatever the next statement that IS gen­
erated. A no-op statement can be generated using the continue construct:

10

(continue)

A jump to a predefined label is generated using the goto construct:

(goto iconst)

where iconst is the statement label to jump to.

11.3 Pausing and Stopping Execution

GENCRAY provides a pause construct that corresponds to the FORTRAN pause statement. The syntax
IS:

(pause [constant])

where constant is a number or a string constant, the use of which is somewhat dependent on the
FORTRAN compiler that compiles the generated code.

GENCRAY's stop construct is used to generate the FORTRAN stop statement used to stop execution
of the program:

(s'top)

12 When All Else Fails

GENCRAY provides a liteml construct that can be used to generate FORTRAN (or other) code that
cannot be generated from the GENCRAY language directly. The syntax is:

(literal Gl'gl arg2 ... arg,,)

where ary, is any expression. However, if any argi is a string constant, then it is printed without
the enclosing quotes- this allows one to generate arbitrary FORTRAN code by using string constants ju­
diciously. In addition to expressions, two special symbols are allowed as arguments to the literal construct:

$tab
$n1

The first form is used to control indentation in the output code-- using $nl forces the output to he
tabbed up to the current indentation level. The second is used to insert a newline in the output.

13 Known Bugs/Problems/Limitations

• All negative numbers are enclosed in paranthesis.

• The I/O constructs are woefully inadequate.

• Language syntax allows specification (and code generation for) much more than what is valid in
FORTRAN.

11

References

[IJ Sanjiva, Weerawarana and Paul S. Wang. A portable code generator for CRAY FORTRAN. ACM
Transactions on Mathematical Software, 18(3):241-255, 1992.

[2] S. Weerawarana and P. S. Wang. GENCRAY: A portable code generator for CRAY FORTRAN. In
Proceedings of the ACM-SIGSAM 1989 International Symposium on Symbolic and Algebraic Com­
putation, pages 186-191. ACM Press, 1989.

12

A Example: Matrix Multiplication

This example shows how one would write a matrix-vector multiplication routine using the GENCRAY
language. Here is the code:

(defun matvec (a Ida m n b res)

(declare (type integer Ida m n)
(type (array real Ida 1) a)
(type (array real 1) b res»

(dotimes (i 1 m)

(setq (aref res i) 0.0)
(dotimes (j 1 n)

(setq (aref res i) (+ (aret res i) (* (aref a i j) Caret b j»»»
)

This defines a function matvee with six arguments. This function multiplies the m x n matrix a
and the n-vector b to produce the m-vector 1"I;S. The leading declaration dimension of a, Ida, is also
provided.

The arguments fda, m, and n are declared to be integers. The maLrix a is declared to be an fda x 1
array (according to FORTRAN's needs) and the vectors b and res are declared to be I-dimensional
arrays of length one.

The computation is specified using the dotimcs construct. The outer loop uses the variable i as a
loop counter and loops from 1 to m. The inner loop uses the loop counter j and loops from 1 to n. The
code implements a straigtforward matrix-vector multiplication algorithm.

The result or running the above input through GENCRAY is:

subroutine matvec (a,lda,m,n,b,res)
integer lda,m,n
real a(lda,1)
real b(1),res(1)

1002
1001

do 1001 i=1,m
res(i)=O.O
do 1002 j=1,n

res(i)=res(i)+a(i,j)*b(j)
continue

continue
return
ond

13

",

B Example: Derivative Calculation

Consider the following function:

[(x) = { x
2 *sin (x) if x?: ~

:z:3 otherwIse

Then, its derivative function can be specified as follows in GENCRAY:

(defun deriv real ex)
(declare (type real x»

(if (>= x 0)

(setq deriv (+ (. (cos x) Cexpt x 2» C* (* 2 x) (sin x»»
(setq deriv (* 3 Cexpt x 2»)

)
)

Alternatively, we could have used the cond construct to define the input as follows:

(defun deriv real (x)
(declare (type real x»

(cond

«>= x 0) (setq deriv (+ (* (cos x) (expt x 2» (* (* 2 x) (sin x»»)
(other~ise (setq deriv (* 3 (expt x 2»»

)
)

In either case, the resulting FORTRAN code is:

real function deriv (x)
real x

if (x .ga. 0) then
deriv=cos(x)*x*.2+(2*x)*sin(x)

else

deriv=3*x**2
andit
return

.nd

14

C List of Reserved Strings III GENCRAY

, ()

• + - /

/= , < <=

= > >= and

aref array call character

common complex cond constant

continue cos data declare

default defun do dotimes

double equalp expt external

false for geqp gate

greaterp if implicit integer

label leqp lessp let

literal logical matrix m~nU5

neg neqp none not

or otherwise parameter pause

plus print prog progn

program quotient read real

return setf setq S1n

sqrt stop tan times

true type while write

15

	GENCRAY Language Reference Manual, Version 2
	Report Number:
	

	tmp.1307986960.pdf.JT0dc

