View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1993

GENCRAY Language Reference Manual, Version 2

Sanjiva Weerawarana
Ann C. Catlin

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
93-058

Weerawarana, Sanjiva; Catlin, Ann C.; Houstis, Elias N.; and Rice, John R., "GENCRAY Language Reference
Manual, Version 2" (1993). Department of Computer Science Technical Reports. Paper 1072.
https://docs.lib.purdue.edu/cstech/1072

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972365?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

GENCRAY LANGUAGE REFERENCE MANUAL,
YLERSION 2

Sanjiva Weerawarana

CSD-TR-93-058
September 1993

GENCRAY Language Reference Manual, Version 2

Sanjiva Weerawarana
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907.

September 6, 1993

Abstract

GENCRAY is a code translator that translates a Lisp-like language to FORTRAN 77. This
manual describes the input language of GENCRAY. The GENCRAY inpul language is very similar
to Common LISP, but contains extensions designed to accomodate the needs of FORTRAN.

We describe each construct by providing its inpul form and then explaining what FORTRAN
output is produced. Several examples are provided at Lthe end of this document to give a cohesive
view of the language.

Contents
1 Imtroduction

2 Declarations

2.1 Type Declarations
2.2 Implicit Declarations
2.3 Common Declarations
24 External Declarations
2.5 Constant (Parameter) Declarations . .
2.6 Initial Value Declarations

3 Expressions
3.1 Arithmetic Expressions
3.2 Comparison Expressions
3.3 Logical Expressions

4 Assignment Statements

5 Looping Constructs

5.1 Simple Iteration
5.2 Conditional Iteration
5.3 General Tteration

6 Conditional Statements

7T Compound Statements

8 Input/Output Constructs

9 New Scope Constructs

10 Declaring Functions and Subroutines

11 FORTRAN Specific Constructs
11.1 Calling Subroutines
11.2 Labels, No—Ops, and Goto Statements
11.3 Pausing and Stopping Execution

12 When All Else Fails

13 Known Bugs/Problems/Limitations
A Example: Matrix Multiplication

B Example: Derivative Calculation

C List of Reserved Strings in GENCRAY

10

10
10
10
11

11
11
13

14

1 Introduction

GENCRAY allows one Lo generale FORTRAN 77 code [rom a LISP-like input syntax. A separate
document describes why GENCRAY is useful and how il can be used; this document only describes Lhe
input language of GENCRAY.

The language is a LISP-style, fully—paranthesised prefix language. As much as possible, Commen
LISP syntax has been used, with extensions to handle the special needs of FORTRAN. For example, we
added consiructs Lo supporl the declaration of commen blocks. All reservered words in the language are
matched case—insensitively.!

In what follows, the following conventions are used:

all reserved words are printed in typewriter font, like this
any optional component is enclosed in ‘[’ and ‘]' characlers.

2 Declarations

There are five types of declarations that are supported: type declarations, implicit declarations (to change
the implicit typing rules), common declarations (to declare global variables), external declarations (to
declare types of external [unctions), and initial value declarations (to initialize variables at compile-time).
Declarations can appear anywhere in the program and are automatically moved to the declarations
section of the closest enclosing scope in the generated program.
All declarations are based on the LISP declare construct. The basic syntax is:

(declare decin; declns .. .deciny,)

where each decln; is one of the five types of declarations. The following describes the syntax of each of
these four declarations.

2.1 Type Declarations

Type declarations are used to declare both simple and array variables. The syntax is:
(type fypename id, id» ...1d,)

where {ypename is the type thal id; are Lo be declared to be of. [yperame can be a simple type or
an array type. The simple types are given in the table below.

Synbax FORTRAN type

integer normal integer type

(integer iconst) integer variables of given integer (tconst) (== 2 or 4) byte length
real normal real type

(real iconst) real variables of given byte length
double normal double Lype

complex normal double type

{(complex iconsi) complex variables of given byte lenglh
logical normal double Lype

(logical ieonsi) logical variables of given byte length
character a single character

(character iconst) | character variables of given byte length
(character #) character variable of unknown length

L'This was done because in many input generation situations, it is painful Lo produce the keywords in lower case.

Arrays are declared using the following syntax:
(array simple_type dims)

where simple_{ype is a simple type (from the previous Lable) and dims are any number ol dimensions,
where each dimension is an expression.

2.2 Implicit Declarations

GENCRAY understands and uses standard FORTRAN implicit typing rules (all variables whose name
starts with either i, j, k,], m, or n {(upper or lower case) are implicitly declared as integers and all other
variables are implicitly declared real). The implicil declaration allows one to change these implicit rules.
Syntax:

(implicit none)
or
(implicit simple_lype arg, args ...argn)

where simple_type is a simple type as before, and arg; is either a single character (meaning that all
variables starting with that letter are to be implicitly declared Lo be of the specified simple type) or
(leiter| letterz) (meaning that all variables starting with any letter in the range letter; to letier; are to
be implicitly declared to be of the specified simple type). The none form is used to instruct GENCRAY
to discard implicit typing and to generate the corresponding FORTRAN statement as well.

Use of implicit none is strongly recommended as this leads to more robust programs. Implicit
typing mechanisms are provided (reluctantly) simply because FORTRAN has such a capability and not
because we approve of or encourage the vse of such a mechanism.

2.3 Common Declarations

The GENCRAY common declaration is used to declare FORTRAN global variables (or common blocks,
as they're called in FORTRAN). The syntax is:

(common [(name)] idy ida ...id,)

where id; are identifiers are name is the optional name of the common block. This basically places
the variables id; in the common block named name (or in the blank common if name is ommitted).

2.4 External Declarations

The exiernal declaration is used to define an identifier as the name of an external procedure. The synlax
is:

(external id; id; ...id,)

where id; are identifiers.

2.5 Constant (Parameter) Declarations

The constant declaration is used to generate FORTRAN paraemeter statements (i.e., statements that
- define constants). The syntax is:

(constant ideniifier expr)

where ideniificr is the name whose constant value is being declared and ezpr is the constant valued
expression. The typing rules thal apply to identifier arc exactly the same as for any other identifier— it
will be implicitly typed unless an explicit type is given. Standard aliases:

parameter for constant.

2.6 Initial Value Declarations

The data declaration is used to initialize variables to values at compile time. The syntax is:

(data
(idiy idy 2 ...) (arg1y argr2 -..)
(idoi id2a ...) (argzy argays ...)

(idn dn 2 ...) (argn,1 argaz -..)

)

where id;; are identifiers (simple or array references) and arg;; are all constani valued expressions
of the form expr or (iconst # expr), where iconst is an integer constant and ezpr is an expression. The
first form of arg says that the value of that expression is to be assigned to the corresponding variable
and the latter says thal the ezpr is to be assigned lo the corresponding iconst variables. (Thus, the
latter form is a short form for the case when the same value is to be assigned to multiple variables, such
as the elements of an array.) in them. Examples:

GENCRAY input:

{(declare
{data {(a b c) (1 2 3))
(data (a) (1) (b) (2) (e) (3))
(data ((aref x 1) (aref x 2) (atref x 3) (aref x 4) (aref x §))
(1.0 (3 # B) 10.9)))

GENCRAY output:

data a,b,c/1,2,3/
data a/i1/, v/2/, c/3/
data x(1),x(2),x(3),x(4),x(5)/1.0,3%5,10.9/

Note: The most general form of the data statement (the form that allows implied loops for identifiers)
is currently not supported by GENCRAY.

3 Expressions

Expressions in GENCRAY are built up using conslants, variables and function calls.
Numeric constants are written in either decimal form or in scientific notation. The regular expressions
for the set of all valid numbers are:

-7[0-9]+

-?[0-9]+. [0-9]=%*
~?[0-9]+. [0-9]*E[0-9]*
-?[0-9]+. [0-9]*D[0-9] *

String constants are basically any sequence of characters enclosed in " (double quole) characters.

Variables can be either simple identifiers or array references. The syntax for array references is:
(aref name suby sub, ...suby)

where name is the name of the array variable and sub; are the subscripts for cach of its dimensions.
Funciion calls are expressed using the usual LISP function call syntax:

(name arg, args ...arg,)

where neme is the name of the function and arg; are the argument expressions.

3.1 Arithmetic Expressions

Arithmetic expressions use exactly the same syntax as in LISP. The table below summarizes arithmetic
operators and the basic mathematical funclions:

Operation Syntax
erxtert... | (+ee..))
)] — €2 (— £] Bg)
C]*&a % ... (*Elc'_g...)
e1/ez (/ e1 e2)
ab (expt a b)
e* (exp z)
\/(a:) (sqrt x)
sin(z) (sin z)
cos(z) (cos z)
tan(z) (tan z)
where €1, 2, ..., a, b, and z are all expressions. Standard aliases:

plus for +

minus for -

times for *

quotient for /.

3.2 Comparison Expressions

These cperators can be used to compare values of numerical variables or expressions.

Operation | Syntax

£] = éa (: 3] Eg)
e1# e (/= e1e2)
ey < es (< ey e2)
e1 < ez (<= e €2)
ey > ep (> el e2)
€1 > e (>= e &)

where ¢ and es are all expressions. Standard aliases:

equalp [or =
neqp for /=
lessp for <
legp [or <=
greaterp for >
gaqp for >=,

3.3 Logical Expressions

Operation Syntax
liandfyand ... [{and & iz ..))
l] 01'!20]'... (Ol‘fl !2...)
not | (not 1)

where [y, la, ..., and { are all logical expressions.

Logical constants true and false are specified using the following syntax:

(true)
(false).

4 Assignment Statements

GENCRAY supports two types of assighment statements: Simple assignments and matrix assignments.

The simple assignment stalemendt, is the usual assignment statement; that is, it is used to assign a
value Lo a variable. A matrix assignment statement is a convenience form used to assign different valucs
to elements of a two—dimensional array. The syntax is:

(setq 51 52 ...)

where s; is one of:
variable ezpression
or

variable (matrix (exp, [exps ...])1 [(exp1 [expz ...])= -..]).

Every row of the matrix (identified by each of ihe list argumenls Lo the matrix function) must have
the same number of elements in them. Standard aliases:

setf for setq.
Examples:

GENCRAY input:

(setq a 12.24)
(setq ¢ (aref foo 34 c¢)
m (matrix (12 m v)
{(a (plus a (aref foo 33 c)) £}))

GENCRAY oulpui:

a=12.24
c=foo(34,c)
n(i,1)=12

n(1,2)=m

m(1,3)=v

m(2,1)=a
m{2,2)=a+foo{33,c)
m{2,3)=%

5 Looping Constructs

GENCRAY provides a construct for generaling FORTRAN do loops as well as more general constructs
that generate loops using if and goto statements in TORTRAN.

5.1 Simple Iteration

The dotimes construct is similar to the LISP construct of the same name, but different. The syntax is;
(dotimes (var stari end [step)) body)

wlere var is the loop variable, start is the starting value, end is the ending value {or more precisely, the
loop will terminate when var > end), and step is an optional increment value. The default increment is
1. body is of course the statements that are to be executed in the loop.

5.2 Conditional Iteration

Tlte while construct is used to generate a loop that will execute as long as some test. is true. The syntax is:
(vhile ezpr body)

where exzpr is the tesl expression and body is the body of the lcop.
This construct can translate into either a statement using the non—standard wh:le construct of FOR-
TRAN or to a loop using if and golo. Which one is generated is a user—settable option.

5.3 GGeneral Iteration

GENCRAY supports the LISP do statement flor general iteration. The semantics supported are those of
the do* construct instead of the do construct; loop variables are updated in order and not in parallel.
The loop variables are “localized” by GENCRAY to ensure that LISP semantics of the do construct
defining its own scope are maintained. The syntax is:

(do ((var [intl; [step,]]) ...(vars [init, [stepa])) (test last) body)

where iest is the expression used for loop control (the loop is executed as long as the test evaluates
lo false), vary, ..., var, are loop variables which are initialized and stepped using inif; and step;, re-
spectively, body is the body of the loop, and last are the statements that arc evaluated when the loop
test evaluates to true (i.e., when the loop is being exited).

6 Conditional Statements

GENCRAY supports the LISP if and cond slatements for conditional execution. The syntax of the if
slalement is:

(if test then-clause [else_clause])

where test is a test expression Lthat must evaluale to a logical value, then_clause is the statement executed
if the test evaluates to true and else_clause is the (optional) stalemenl executed il the test evaluates to

false.
‘The syntax of the cond statement is:

(cond (test; [body1]) (testa [bodys]) ... (Lest, [body,)) [(defanlt body)))

where {esl; are expressions that must evaluate to logical values, body; are statements thal are exe-
culed if tesi; evaluates to true and (if present} body is executed il all the lests [ail. Standard aliases:

otherwise for default.

7 Compound Statements

GENCRAY supports the progn construct for defining compound statements. The syntax is:

(progn body)

where body consists of any number of statements. This is uselul as the then—clause of an {f stalement,
for example.

8 Input/Output Constructs
GENCRAY supports only two simple I/O constructs: read and wriite. The syntax for write is:
(write exp) ezps ...ezp,)
where exp; are expressions. Standard aliases:
print for write.
The syntax for read is:
(read identifier)
where identifier is the identifier into which something is to be read. (It can be either a simple identifier

or an array reference.)
The FORTRAN code generated does free format I/0.

9 New Scope Constructs

GENCRAY supports the LISP fet construct for defining a local scope. The syntax is:
(1et ([locals]) body)

where body consists of the executable statements of the new scope and locals is any number of any
of the following:

(identifier expr)

(identi fier)

tdenti fier
where identifier is an identifier and ezpr is an expression. The latter two forms are exactly the same;
they both define an umnitialized variable. The firsi form defines a variable and also initializes it to the
given value. Standard aliases:

prog for let.

Note: Although we have aliased prog for let, it should be noted that the semantics of prog and lel

are not the same. However, for our purposes, this alias is reasonable as we do not purport to support
the exact semantics of Common LISP.

10 Declaring Functions and Subroutines

FORTRAN Funclions and subroutines are declared using a slight extensioen of the LISP defun macro.
The syntax is:

(defun name [type] (id) idz ...id,) body)
where mame is the name of the function or subroutine, ¢ype is the return lype (if a function is be-
ing declared), id, ..., idy, are the parameters and body is the body of the function or subroutine.
Omitting the return type type generates name as a FORTRAN subroutine. Thus, functions are gen-
erated by including a return type. When type is present, then it must be a simple type (i.c., not an array
type; see the discusston on types earlier for details). Nole: Requiring that a return type be specified in
order to generate a FORTRAN [unction.is a restriction from what FORTRAN requires as FORTRAN
does implicit typing on the name of the [unclion to determine its return type.
A return statement can be included in the body of the function by using the relurn construct:

(return [ezpr])

where the optional argument ezpr is used to specily alternate returns. (The alternate return feature
of FORTRAN is a rarely used construct that should be avoided in almost every casc.)

A special construct is available for declaring the “main” function. This is the program construct:
(program name body)

where name is the name of the program and body is the body of the main function.

11 FORTRAN Specific Constructs

We have defined several constructs expressly for the purpose of generaling various FORTRAN constructs.
This seclion will explain these constructs.

11.1 Calling Subroutines
Subroutines are called using a call statement:
(call name arg) args ...argn)
where name is the name of the subroutine and arg; are the argument expressions.
11.2 Labels, No—Ops, and Goto Statements
Statement labels can be generated using the label construct:
(label iconst)

where iconsl is an integer constant. This label will label whatever the next statement thal is gen-
erated. A no—op statement can be generated using the continue construct:

10

(continue)

A jump to a predefined label is generated using the goto construct:
(goto iconst)
where iconst is the statemeni label to jump to.

11.3 Pausing and Stopping Execution

GENCRAY provides a pause construct that corresponds to the FORTRAN pause stalement. The syntax
is:

(panse [constant))

where constant is a number or a string conslant, the use of which is somewhat dependent on the
FORTRAN compiler that compiles Lhe generated code.

GENCRAY’s stop construct is used to generate the FORTRAN stop statement used to stop execution
of the program:

(stop)

12 When All Else Fails

GENCRAY provides a literal construct thal can be used to generate FORTRAN (or other) cade that
cannot be generated from the GENCRAY language directly. The synlax is:

(literal arg; args ...arg,)

where arg; is any expression. However, if any arg; is a string constant, then it is printed without
the enclosing quotes— this allows one to generate arbitrary FORTRAN code by using string constants ju-
diciously. In addition to expressions, lwo special symbols are allowed as arguments to the literal construct:

$tab
$nl

The first form is used Lo control indentation in the output code— using $nl forces the output to be
tabbed up to the current indentation level. The second is used to insert a newline in the output.

13 Known Bugs/Problems/Limitations
¢ All negative numbers are enclosed in paranthesis.
o The I/O constructs are woelully inadequate.

» Language syntax allows specification (and code generation for) much more than what is valid in
FORTRAN.

11

References

[1) Sanjiva Weerawarana and Paul S. Wang. A portable code generator for CRAY FORTRAN. ACM
Transaclions on Mathematicel Software, 18(3):241-255, 1992.

[2] S. Weerawarana and P. S. Wang. GENCRAY: A portable code gencrator for CRAY FORTRAN. In
Proceedings of the ACM-SIGSAM 1989 Inilernetional Sympostum on Symbolic and Algebraic Com-
putation, pages 186-191. ACM Press, 1989.

12

T

A Example: Matrix Multiplication

This example shows how one would write a matrix—vector multiplication routine using the GENCRAY
language. Here is the code:

(defun matvec (a ldamnr b res)
(declare (type integer lda m n)
(type (azray real 1da 1) a)
(type (array real 1} b res))

(dotimes (i 1 m)
{setq (aref res i) 0.0)
(dotimes (j 1 n)
(setq (aref res i) (+ (aref res i)} (* (aref a i j) (aref b j))))))

This defines a function matvec with six arguments. This [unction multiplies the m x n matrix a
and the n—vector & to produce the m—vector res. The leading declaration dimension of a, Ida, is also
provided.

The arguments lda, 7, and n are declared to be integers. The matrix a is declared to be an ida x 1
array (according to FORTRAN’s needs) and the vectors & and res are declared to be 1-dimensional
arrays of length one.

The computation is specified using the dotimes construct. The ouler loop uses the variable 7 as a
loop counter and leops from 1 to m. The inner loop uses the loop counter 7 and loops from 1 to n. The
code implements a straigtforward matrix—vector multiplication algorithm.

The result of running the above input through GENCRAY is:

subroutine matvec (a,lda,m,n,b,res)
integer 1da,m,n

real a(lda,1)

real b(1),res(1)

do 1001 i=i,m
res(i)=0.0
do 1002 j=1,n
res(i)=res(i)+a(i,j}*b(j)
1002 continue
1001 continue
return
end

13

B Example: Derivative Calculation
Consider the following function:

_ [z¥ssin(z) ifz>0
flz) = { z3 otherwise

Then, its derivative function can be specified as follows in GENCRAY:

(defun deriv real {(x)
(declare (type real x))

(if (= x 0)
(setq deriv (+ (* (cos x) (expt x 2}) (* (* 2 x} (sin x))}))
(setq deriv (* 3 (expt x 2)))
)
)

Alternatively, we could have used the cond construct to define the input as follows:

(defun deriv real (x)
(declare (type zeal x))

{cond
((>= x 0) (setq deriv (+ (* (cos x) (expt x 2)) (* (* 2 x) (sin x))}))
(otherwise (setq deriv (x 3 (expt x 2))))
)
)

In either case, the resulting FORTRAN code is:

real functicn deriv (x)
real x

if (x .ge. Q) then
deriv=cos (x)®x**2+{2%x)+sin(x)
else
deriv=3+x+*2
endif
return
and

14

C List of Reserved Strings in GENCRAY

’ ()
% + - /

/= < <=

= > >= and

aref array call character
COMmMon complex cond constant
continue cos data declare
default defun do dotimes
double equalp expt external
false for Eeqp goto
greaterp if implicit integer
label legp lessp let
literal logical matrix minus

neg neqgp none not

or otherwise parameter pause
plus print Prog progn
program quotient read real
return setf setq sin

sqrt stop tan times
true type while write

e R

	GENCRAY Language Reference Manual, Version 2
	Report Number:
	

	tmp.1307986960.pdf.JT0dc

