
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1994 

An Open Structure for PDE Solving Systems An Open Structure for PDE Solving Systems 

Elias N. Houstis 
Purdue University, enh@cs.purdue.edu 

John R. Rice 
Purdue University, jrr@cs.purdue.edu 

Sanjiva Weerawarana 

Report Number: 
94-035 

Houstis, Elias N.; Rice, John R.; and Weerawarana, Sanjiva, "An Open Structure for PDE Solving Systems" 
(1994). Department of Computer Science Technical Reports. Paper 1135. 
https://docs.lib.purdue.edu/cstech/1135 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972357?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


AN OPEN STRUCTURE FOR
PDE SOLVING SYSTEMS

Elias N. Houstis
John R. Rice

Sanjiva Weerawarlllla

CSD TR-94-035
May 1994



Proc. 14th IMACS World Congress
July, 1994
Atlanta GA

AN OPEN STRUCTURE FOR PDE SOLVING
SYSTEMS

Elias Houstis, John R. Rice, and Sanjiva Weerawarana1

Department of Computer Sciences, Purdue University
West Lafayette, IN 47907, USA

Tel: 317-494-6003, Fax: 317-494-0739, email: (enh,jrr,saw)@cs.purdue.edu

Most PDE solving systems have a closed structure. That is, they use a certain set of problems, methods, data
structures, etc., that they support and all the software must adhere to the resulting standards. Of course there are
systems which allow usc of a general purpose programming language (e.g., Fortran) which means anything can be
done. We exclude this form of open structure in this discussion even l.hough this feature is a useful one. Even the
j jELLPACI{ ''foreign system" approach gives only limited openness, the new module must accept a complete PDE
problem and return its solution. IIere we consider a structure of high level PDE solving modules which is as open
ended as possible. The purpose of this open structure is to allow the problem solving software structure to directly
reflect the problem solving process.

We define the structure in terms of data objects and operators on them. There are five standard data objects
which we call problem objects; the descriptions of them are at a high level and complete details are yet to be
given.

1. PDE PROBLEM. This is the abstract or mathematical problem expressed in continuous, symbolic terms. Its
data is organized as follows:

PDE: The partial differential equation (operator).

Domain-Interior: Where the PDE is satisfied, -Boundary: The boundary of l.he interior.

Be: The boundary conditions equations, including initial and global conditions.

FRAME:

- coordinates system and names
- solution name

- problem parameters
- data: constants, fixed functions.

2. NUMERICAL PDE PROBLEM. This is a finite problem, there arc a finite number of numerical variables and
equations to be satisfied. Every function and operator involved can be evaluated exactly (to within round-off)
in a finite computation. Its data is organized as follows:

Coefficients: The unknowns to be determined.

Discrete Domain: The geometry.

Equations: The equations to be satisfied.

Evaluaior: The function that uses the coefficients and PDE PROBLEM information to produce approximate
solution values.

lWork 5upporledin purl by ARPA conlrad DAAH04-94-G-OOIO



3. SPECIFICATIONS. This data gives the requirements for solving a PDE PROBLEM.

Accuracy: The allowed error in solving the PDE problem.

Paramelers: Actual values for parameters of t.he PDE problem.

Output: The results to be ret.urned at the end, e.g., plots, derived functions, special values.

Resources-Time: Limits on elapsed or computer time used.

-Money: Limits on the cost. of the solution process.

-Computer: Constraints on the computers to be used.

4. COMPUTER. This describes the computational environment for solving the PDE problem.

Architecture: The list. and configuration of computers available.

Software: The libraries, systems, etc., available on the computers.

Resources: Any limits on t.he resource capacit.ies used.

5. SOLUTION. This is the out.put of the evaluator part of the NUMERICAL PDE PROBLEM. It includes
evaluation of

PDE Solution: Given any point in the PDE domain, the evaluator produces a value for the true PDE solution
which is within the accuracy specification.

Derivatives: Same as PDE solution except values may be lcss accurate.

The solution of a PDE is accomplished by applying a sequence of operators to t.he problem data. We identify
two types of operators:

TRANSFORM. This class is exact (within round-off) on the data of one of the problem objects. Examples are
changes of coordinates, changes of names, substitution of variables, specificat.ion of values (accuracy, parameters,
machi.ne, etc.), factorization or reordering of matrices.

METHOD. This class either approximates in some way the dat.a of one of the problem objects or does not apply
to them. Examples are replacing a domain by a mesh, replacing an accuracy by a number of grid lines, using
first terms of Taylor's expansion of functions, guesses at or improvements of data values, replacing derivatives
by differences, replacing money limits by time limits.

It follows that in most PDE solutions there are intermediate data objects besides the problem objects, there usually
are many of them. These operators are implemented as modules in t.he object oriented sense, they have certain input
and output which is "advertised" externally and available for use. The met.hods are chained together to move from
the PDE PROBLEM + SPECIFICATIONS + COMPUTER to the NUMERlCAL PDE PROBLEM and then to
the SOLUTION. The only constraints on the solving process 1s that the methods be compatible, that is, the output
of one met.hod is acceptable input for the next method in the chain.

There are two observations to be made. First, and not so important, this structure easily allows transforms that
create or merge problem objects. That is, a single PDE can be replaced by many. Similarly, methods can create
multiple NUMERICAL PDE PROBLEMS [rom a single PDE PROBLEM.

Second, and more important, is that this structure does not require a unique representat.ion of particular data
items. It merely requires that methods be compatible wit.h one another in their application. This is implemented by
modules specifying not only t.heir input/output but t.he types (representations) they assume for them. If multiple
and incompatible representations are used for cerlain data items, then the PDE solving system must be rich enough
in methods to make t.his useful. Note that incompat.ible representations can be used in the early parts of two solution
chains (say, finite differences on a rectangular grid and finite elements on a triangular grid) and yet both chains can
use the same method later (say, an iterat.ive method for linear systems).

We illustrate this structure with a complex solution process involving three types of domain partitioning (see
Figure 1) and multiple PDE problems being created and solved. The original problem on a rectangular domain has
a singularity at the lower right corner and a sharp boundary layer along a curve across the domain. The subregions
associated with parallel methods to solve the problem are also shown. The solution approach starts with



• Create region B by a quarter disk around the singularity. Change POE to polar coordinates, expand solution in
an asymptotic series, then discretize with a singular function basis using collocation, finally solve for coefficients
with direct, fuJi matrix solver.

• Create region C along the boundary layer and introduce an adaptive, curve oriented mesh In the region.
Oiscretized the POE using second order, boundary layer type finite elements.

• Oefine region A as the rectangle minus the quarter disk. Region C overlays A and solutions are transferred
between them by

(a) interpolating region A solutions to obtain boundary conditions [or region C.

(b) interpolating region C solution to obtain grid values for region A. Note that this partitions region A into
two subregions, but this is not an essential fact.

The overall computations for the POE solving process is outlined below.

1. Solve POE on region A+13 using a coarse grid and nothing special for the singularity or boundary layer.

2. Use this trial solution as initial guess for values along the boundaries of regions Band C.

3. Solve the POE on region C. Break the matrix solution into 3 blocks to use a block parallel band solver for
strip-like domains.

4. Interpolate solution C to the region A mesh.

5. Partition A into 12 domains and use collaborating POE solver approach in parallel on them (plus region B).
Use high order finite differences on rectangular mesh in aU sub-regions except the one that touches region B.
Use a special mesh there with collocation and IIermite bicubics. Solve then 12 numerical POE problems with
fL'{ed values at the grid points in region C.

6. Solve numerical POE problem on region B.

7. Smooth solutions along all subregion interfaces (between A+C, A+B, and subregions of A).

8. Go to Step 3.

If a How chart (Figure 2) is made of this fairly natural process one finds about 40 boxes: there are 11 POE
PROBLEMS, l3 NUMERICAL POE PROBLEMS, 7 subproblem SOLUTIONS, 1 final SOLUTION and many hybrid
intermediate data structures/objects.

Consideration of other examples like the one above shows that this approach provides the flexibility to build the
powerful POE solving systems of the future. The next step of specification of this approach is to (a) provide the
next level of objects (e.g., what are the component subobjects of the POE operator or the computer architecture
objects) and (b) give precise definitions of the interfaces between objects. It is the second step that actually defines
whether the structure of the system is open or not. It is natural, especially for theoretical analyses, to specify the
interfaces exactly and have the system enforce compatibility between objects. This essentially provides a global type
mechanism for the system with all of its attendant advantages. However, this effectively closes the structure of the
system because adding new types (data structures, problem solving capabilities, domains of applicability, etc.) has a
global impact on the system and becomes too expensive to actually carry out. Further, an examination of technology
outside computing shows that global typing is not used and is not necessary [1]. In programming language jargon,
in other technologies one has run-time type checking and if types do not match or if objects do not recognize types
presented to them, then the system proceeds to a higher level to resolve the incompatibility. The most common
resolution mechanism is a TRANSFORM operator that changes types (e.g., coordinate systems, matrix formats,
geometry representations). Some type conflicts are, of course, unresolvable and due to either intrinsic errors is the
proposed computation (e.g., one attempts to apply a method that is not applicable) or to incomplete solving power
of the POE system. These must be resolved by the user.



Figure 1: The application domain showing the subregions defined to (a) handle the singularity and boundary layer,
(b) use 16 processors on the problem: 12 for Region A, 3 for Region C and 1 for Region B.

Figure 2: Flow chart of solving the application, the box shadings indicate the objects types. (The unshaded
boxes are hybrid objects, very light shading is for NUMERICAL PDE PROBLEMS, medium shading is for PDE
PROBLEMS, and black is for intermediate SOLUTIONS. The lines indicate the application of TRANSFORM and
METHOD operators, the heavy lines the main iteration path.)



References

1. J.R. Rice and H.D. Schwetman, "Interface issues in a software parts technology," Software Reusability, Com
puter Society Press, 1987, pp. 96-104. Revised version in Software Reusability, ACM Press, 1989, pp. 125-139.


	An Open Structure for PDE Solving Systems
	Report Number:
	

	tmp.1307986960.pdf.2sIwR

