
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1994

Science Pad: An Intelligent Electronic Notepad for Ubiquitous Science Pad: An Intelligent Electronic Notepad for Ubiquitous

Scientific Computing Scientific Computing

Anupam Joshi

Sanjiva Weerawarana

Tzvetan T. Drashansky

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Report Number:
94-061

Joshi, Anupam; Weerawarana, Sanjiva; Drashansky, Tzvetan T.; and Houstis, Elias N., "Science Pad: An
Intelligent Electronic Notepad for Ubiquitous Scientific Computing" (1994). Department of Computer
Science Technical Reports. Paper 1161.
https://docs.lib.purdue.edu/cstech/1161

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972353?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SCIENCE PAD: AN INTELLIGENT
ELECTRONIC NOTEPAD FOR

UBIQUITOUS SCIENTIFIC COMPUTING

Anupam Joshi
Sanjiva Weerawarana

Tzvetan T. Drashansky
Elias N. Houstis

CSD-TR-94-061
September 1994

(Revised 12/94)

SciencePad: An Intelligent Electronic Notepad for
Ubiquitous Scientific Computing*

Anupam Joshi Sanjiva Weerawarana Tzvetan T. Drashansky
Elias N. Houstis

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907-1398

email: {joshi,saw,ttd,enh}@cs.purdue.edu
Fax: +1-317-494-0739

December 8, 1994

Abstract

The National Information Infrastructure (NIl) that will evolve in the 1990's and
beyond will impact many institutions of life. These include the way we learn and
do science, self-caring, access to civil/information infrastructure systems & services,
and management & control of manufacturing processes. The future scenario for
the NIl assumes wireless networks used by walkstations realizing the dream of truly
ubiquitous access to the information superhighway. Some of the current obstacles
in building such a ubiquitous access system on mobile high-performance platforms
include the user interface for these walkstations, the ability of sniffing information
across heterogeneous geographically distributed information systems, the ability of
processing sensoring data for monitoring and control, and the dynamic reconfigura­
bility of computations between the mobile unit and the stationary servers. Our effort
in the area of ubiquitous computing involves the design and implementation of intel­
ligent models and techniques to address the aforementioned obstacles. In this paper
we present the architecture of an intelligent electronic notepad, called SciencePad, to
support a scientist in the research environment of the future.

'This work was supported in part by NSF grants CDA-9123592 and ASC 9404859.

1

Figure 1: A Predicted Scenario for the Future National Information Infrastructure

1 Introduction

The National Information Infrastructure (NIl) that will evolve in the fin de siecle and the

early years of the next century has caught the public's imagination, and is popularly referred

to as the information superhighway. The superhighway part of the NIl will involve very

high speed (Gbps and above) connections between major nodal regions. There will also

be many state and regional highways. Yet these highways cannot truly provide ubiquitous

access to the NIl, the kind of access that country roads provide. The "country road"

component of NIl will consist of wireless networks used by walkstations - handheld mobile

hosts - which will realize the dream of truly ubiquitous access. The NIl will impact many

aspects of social and academic life, it will engender a continuous interaction between people

and interconnected computers using wireless devices. Figure 1 illustrates an impression of

a predicted scenario for the NIL

2

This new paradigm, variously referred to as mobile, nomadic or ubiquitous computing,

raises a host of research issues in a variety of areas of computer science [7J. The nature

of the hardware involved in the mobile part of this scenario forces certain restrictions, like

limited amounts of communication bandwidth, memory, and power. Another critical issue

is the nature of the interfaces, the traditional WIMP (Window, Icon, Mouse, Pointer) type

are unlikely to be successful. Still other issues arise because of the interaction and collab­

oration that such a paradigm foresees. The new trend in PC applications is their seamless

integration within a common interface. Unfortunately, this cannot be done easily in sci­

entific and engineering computing, since most of the available tools have been developed

as stand alone systems. This issue must be seriously addressed in the context of mobile

computing, since the physical limitations of the proposed devices determine the "natural"

upper bounds on the facilities.

In this paper we present the design, architecture and implementation of an intelligent

electronic notepad, called SciencePad, and its associated information management system.

2 The SciencePad Paradigm

In this section, we outline the new paradigm for scientific computing that we feel will be

brought about by the advent of ubiquitous computing. The objective is to understand the

needs of the scientist, and then to outline the facilities that we feel should be available to

meet these needs.

One can currently identify three major tools in a scientists work today. Firstly, there

is the traditional pen and paper. This is where most of the creative portion of a scientists

3

work gets done. One writes down ideas, does preliminary designs, plays around with

symbolic equations, etc.. Then there is the (scientific) calculator. This is used for (relatively

simple) numerical and symbolic computation. For more complicated numerical or symbolic

calculations, the scientists uses another tool, the computer. The pen and paper have become

ubiquitous tools over the centuries while the other tools mentioned above are still foci of

attention. They distract the scientist from the thinking process and force him to divert

attention to them in order to put them to proper use. It has been argued [8, 9], and correctly

in our opinion, that the most efficient tools are those that are invisible, in other words tools

that we use without thinking. The objective of SciencePad is to serve as such an invisible

tool. In order to do this, SciencePad provides an interface which enables the scientist to call

on the power of the sophisticated tools like scientific calculators and computers directly and

seamlessly. To give an example, consider a scientist working on a design problem which

requires an integral to be evaluated. Rather than forcing the the use of a calculator or

computer, the interface of SciencePad recognizes when some symbolic/numeric expression

is to be evaluated and it automatically accesses the needed resource, either locally or by

contacting some remote computer.

This pen and paper kind of model of human computer interaction involves the design of

completely new interface mechanisms [7, 9]. Such interfaces will of necessity be multimodal,

as well as be endowed with innate intelligence.

In order to serve as an effective tool, we expect SciencePad to provide certain basic

functionality. Clearly, in the context in which this tool is sought to be created, this would

involve symbolic and numeric computing abilities. In addition, we expect SciencePad to

be able to take pen and voice inputs. It should have the ability to understand basic shapes

4

and manipulate them. We would also want to have a miniature camera that would allow

SciencePad to acquire images, and software that would allow it to do some amount of

image processing. Besides these computation related capabilities, SciencePad should also

be able to handle information. An important requirement for a scientist is the ability

to access technical information. This information, though available, could be in anyone

of various distributed, heterogeneous databases. Also, the user may pose an extremely

structured query (Jane Doe, "Some new developments in underwater basket weaving",

J. UWBW Vo15, #1, pp 201-255), or an extremely unstructured one (Wasn't there an

article on basketweaving by Jane Doe in the late 80's?). To address this issue, we exploit

two existing systems. Much of the information available on the network today is linked

together as the World Wide Web (WWW). It has associated with it a language in which

to keep the information (HTML), and protocols on how to transfer it (HTTP, Gopher,

ftp). SciencePad is equipped with a browser for such information. This will incorporate

the ability to search the web for information pertaining to given parameters. To take into

account the heterogeneous nature of the databases, we exploit InterBase, a technology

being developed at Purdue [2].

These are the basic functionalities that we feel will allow a scientist sufficient power to do

his work. The hardware to support these facilities is available today. What is missing is the

software that provides users with integrated platforms to apply these facilities effectively.

SciencePad aspires to fill this void.

5

2.1 Intelligence in Mobile Computing

In this section, we shall illustrate how AI helps in realizing the architecture proposed

above, coping with the constraints imposed by mobile computing. Intelligence here refers

to domain specific knowledge and information which would be available to the system.

This knowledge is exploited by the various artificial/computational intelligence strate­

gies to address the problems in designing a ubiquitous information management system.

Intelligence is needed for the ability to take most decisions regarding the solution process

automatically. That is, once a problem is specified by the user with some basic direction on

how to solve it, SciencePad should be able to infer a solution strategy, as well as fill in any

parameters the user has left unspecified. In the case of scientific computing, this involves,

for instance, choosing the right numerical algorithm, the discretization parameters and the

time steps, the machine on which to solve the problem and it's configuration inter alia.

The ability of the system to make such decisions helps in making it more accessible to the

non expert in the area, which is of extreme importance if scientific computing is to become

truly ubiquitous (in the sense of access by persons who are not specialists in the area).

Most current systems cannot be used as is by application scientists or students, but require

users to develop some expertise in parallel and numerical programming. Further, in the

ubiquitous scenario that we are considering for SciencePad, an important objective is to

minimize the communication between the mobile device and the static hardware. Intelli­

gence is needed to achieve this. For instance, the ability of the software intelligently infer

parameter values saves much valued communication bandwidth. Traditional keyboard or

mouse interfaces are not always available or useful for handheld devices; new pen-based,

intelligent, multimodal interfaces are being designed. The user interacts with this inter-

6

face using a "natural like" language. This language is domain specific. To illustrate, the

user should be able to say solve modified Laplace equation, alpha = 2.1, identify region of

maxima. The system parses this input, generates the mathematical equation to be solved,

chose an appropriate solution approach and returns the answer.

2.2 An Application Scenario

We now illustrate a scenario where SciencePad will be used. A researcher usually does

some experiments in his/her lab, then evaluates the presumed theoretical model, or builds

a new one, and schedules new experiments to refine the model. SciencePad attempts to

aid the scientist in the thinking process, which is usually done using a notepad. A sci­

entist could run an experiment for which s/he has a model involving Partial Differential

Equations (PDEs) by controlling the equipments from SciencePad. The experiment can be

monitored, and SciencePad can display the results of the experiment in some appropriate

form necessary. Then the scientist can make some remarks about the model, change a

parameter or just compare the run of the experiment with the results expected from the

model. SciencePad can make sense of user remarks (in some constrained and domain spe­

cific language) on the basis of previous experience and suggest an action (say, solving PDE

with the new parameters). Even if a task requires very detailed algorithmic description

when it is done the first time, chances are that when it is done again, it will require at most

minor changes in the parameters. SciencePad provides a framework where such previously

defined tasks can be invoked from the scientist's notes. We believe that integrating the

problem solving environment interface (in this case, the interface to a PDE solver) with the

data from a knowledge base (for example, of results from similar experiments or of theoreti-

7

cal models for the studied event) into a notebook-like form will enhance the availability, the

acceptability, and the usability of high performance computing facilities. The intelligent

static host solving the PDE can take into account the context sent by the mobile host to

display only the relevant parts of the computed results. Ubiquity by nature of space allows

the computations to proceed at any place - in the front-end of the experimental machine,

at a discussion table with other colleagues, at a conference far from the lab (for instance,

checking how the results reported by the speaker match ours), etc.

After outlining a vision of SciencePad and a possible application scenano, we next

describe the software architecture that we propose for such a system.

3 The Software Architecture of SciencePad

The software architecture of SciencePad is shown in Figure 2 and is based on clean lay­

ering. The lowest layer comprises the data and knowledge communication infrastructure

for SciencePad. This layer contains a generic communication facility based on the soft­

ware bus model and various knowledge communication facilities. SciencePad supports the

ARPA Knowledge and Query Manipulation Language [3] and SciencePad Knowledge In­

terchange Format (SKIF), a SciencePad-specific knowledge communication format based

on PDESpec [6].

The next level is the software infrastructure supporting user interfaces building and

component cooperation. Software components are viewed as agents and this layer provides

the infrastructure for building the agents needed for SciencePad. This layer is composed

of an object manager supporting persistency for managing data objects, a notebook and

8

I~~ I Sci&1cePadC'mmunl,ollon S"vl",

Knowledge

.,..n~mlllll~~..~:..-~tii'e.o_Iii KQ.,.Ic:::J IL"-=......

Figure 2: The SciencePad software architecture.

user interface manager for managing the overall working environment. The other managers

(collaboration, template and agent) provide appropriate overall management functionality

for their particular subsystems.

The development frameworks layer provides a collection of agents and other tools for

building various intelligent information management tools. SciencePad is itself built using

these agents and the services provided by the lower layers. The highest-layer represents

specializations of SciencePad to domain-specific instantiations. For example, a SciencePad

for nonlinear chromatography systems used for component separation in chemical engineer-

ing [1].

We expect that the hardware platform supporting SciencePad will not be able to execute

most scientific computing applications. Hence, any such application is logically viewed as

having two parts, a proxy and a scion. The proxy executes on the SciencePad platform

and intelligently uses its scion to implement that application's functionality. This approach

9

allows us to make transparent the details of the location of and communication with any

application to the interface systems which always interacts with locally executing tools.

4 Prototype Implementation

We have currently implemented a prototype of SciencePad. The mobile host is an NEC

Versa notebook running Windows for Workgroups modified for pen support. The static

backend runs on a variety of unix boxes, mostly Suns. The wireless link is a 2Mbps

AirLan Ethernet on top of which we run TCP lIP. The domain of the intelligent information

management system is chosen as partial differential equations (PDEs). The core application

in the scion is IIELLPACK [4], a system to solve elliptic PDEs. SciencePad can be

logically viewed as consisting of three subsystems, the notebook interface, the applications

and supporting agents, and the means of communication between them. In the presents

instance, the user interacts with SciencePad using the notebook. The users inputs are

"semantically interpreted", by the application proxy, and communicated to its scion. The

scion invokes various agents to fill in the sparse input provided by the user, and then invokes

the applications. When the results are available, it sends them over to the proxy which

uses the notebook to display them appropriately. We next describe these subsystems.

4.1 The Notebook Subsystem

The electronic notebook concept is an attempt to emulate the physical notebook that we

use ubiquitously. It provides an unrestricted editing environment where users can record

their problem and solution specifications, computed solutions, results of various analyses,

10

commentary text as well as handwritten comments. The notebook interface is multimodal

and synergetic, it integrates text, handwriting, graphics, audio and video in its input and

output modes. It functions not only as a central recording mechanism, it also acts as the

access mechanism for all the tools that support the user's problem solving activities.

The current SciencePad notebook is implemented using NCSA Mosaic. It uses the un­

derlying data and knowledge communication infrastructure, as well as the Interface and

Cooperation infrastructure to invoke the tools requested by the user and is implemented

in an application-independent manner via an indirect referencing scheme. Basically, every

object that is visually or textually represented in the notebook is physically located else­

where in the object manager. The application defines the possible representations for each

object. When a tool places an object in the object manager, it must also define various

representations for it. The notebook then uses a reference to the object to request the

representation from the object manager and includes it in the current document. Figure 3

shows an instance of this notebook.

4.2 Templates

The notebook, as well as the various agents communicate with each other using templates.

We use the term template here in a somewhat broader sense than it has been used in

the literature dealing with the user interfaces. Our templates include not only data re­

quested/supplied by the user but also actions and abilities to deduce parts of the missing

data in order to complete the user's requests. The templates aid the proxy to match words

and phrases from some restricted natural language into applications, their parameters, lo­

cations (files), requests, etc. For example, if the user writes "solve PDE", the notebook

11

Figure 3: An instance of the SciencePad notebook.

manager invokes the PDE-solver proxy. This fills in the corresponding templates from the

rest of the user's notes. If the user wishes to use, say, as a right-hand side of the equation

the values from some experiment, he will identify the experiment (the lab, equipment, time,

etc.) and the proxy will figure out where (in which file) the results are stored, approximate

them if necessary, and incorporate the function into the equation to be solved. We call such

an approach "template-driven" in the sense that the system tries to extract the maximum

possible information from the input by identifying and filling in the appropriate template.

From the users point of view, interaction with the system is like a sequence of high level

instructions (natural language pseudocode, for instance). Although the templates will con­

tain a lot of information, large parts of it could be considered default values. Then by using

the templates at both (mobile and static) ends of the applications, we can significantly re­

duce the traffic over the wireless link by transmitting only those entries which are supplied

by the user. In other words, templates also provide a well-defined interface between the

12

front-end (proxy) and the back-end of an application's interface.

4.3 PYTHIA- An Intelligent Agent to Guide PDE Solving

PYTHIA attempts to solve the problem of determining an optimal strategy (i.e., a solution

method and its parameters) for solving a given PDE problem within user specified resource

(i.e., limits on execution time and memory usage) and accuracy requirements (i.e., level

of accuracy). PYTHIA uses the performance behavior of solution methods on previously

solved problems as a basis for predicting a solution strategy for solving a given problem. The

basic premise in PYTHIA's reasoning strategy is that performance data gathered during

the solution of a set of problems using different solution methods can be used to predict the

performance of these methods on a new problem. Of course, for this strategy to be correct,

the new problem must be "similar" (i.e., have similar characteristics) to the problems that

have been solved before. However, many of the steps involved in the process described

above do not lend themselves to the kind of crisp decision making that a conventional

strong AI approaches provide. More recent approaches, covered under the broad ambit

of computational intelligence, may be used to give better results in such situations. With

this in view, attempts are now on to incorporate techniques like neural networks into the

PYTHIA framework. Connectionist techniques also learn from exemplars, but exhibit

properties like generalization which are of singular interest in this situation. In other

words, they seem to internally extract characteristics of the examples that they are seeing

to group them into classes. This enables them to perform very well in classifying novel

inputs. They also lend themselves to easy parallelization on SIMD architectures. This

means that once their training phase is over, their classification is virtually instantaneous.

13

Some preliminary work done in this connection has produced very encouraging results.

Specifically, backpropagation based networks have been used to identify the class to which

a novel problem belongs [5]. Results from this experiment have been very encouraging,

with both the learning and generalization abilities of the network clearly coming through.

PYTHIA is now being extended to decide machine choice and configuration, as well as the

parameters of the numerical methods using connectionist & fuzzy techniques.

5 Conclusion

In this paper, the authors describe SciencePad, a mobile platform to provide scientific

computing power. The need for an intelligent information management system to achieve

ubiquity is discussed, and the scenario for mobile computing is presented. We describe

the software architecture of SciencePad and show how this architecture, with the use of

AI techniques, addresses the problems that arise in designing a system that is mobile and

accessible to the layperson. We also provide details of a prototype implementation of

SciencePad.

References

[1] J.A. Berninger, R.D. Whitley, X. Zhang, and N.-H.L. Wang, A Versatile model for sim­

ulation of reaction and nonequlibrium dynamics in multicomponent fixed-bed adsorption

processes, Computers in Chemical Engineering 15 (1991), no. 11, 749-768.

[2] Ahmed K. Elmagarmid, Jiansan Chen, Du Weimin, Omran Bukhres, and Rob Pez-

14

zoli, Interbase: an execution environment for global applications over distributed, au­

tonomous and heterogeneous software systems, Tech. Report CSD-TR-92-016, Depart­

ment of Computer Sciences, Purdue University, 1992.

[3] R. Fritzson, T. Finin, D. McKay, and R. McEntire, J(qml- a language and protocol for

knowledge and information exchange, Proc. 13th International Distributed Artificial

Intelligence Workshop, July 1994.

[4] E. N. Houstis and J. R. Rice, Parallel ELLPACJ(: A development and problem solving

environment for high performance computing machines, Programming Environments

for High-Level Scientific Problem Solving (P. W. Gaffney and E. N. Houstis, eds.),

North-Holland, 1992, pp. 229-243.

[5] Anupam Joshi, Sanjiva Weerawarana, and Elias N. Houstis, Using neural networks to

support intelligent scientific computing, International Conference on Neural Networks,

IEEE, 1994.

[6] Sanjiva Weerawarana, Problem solving environments for partial differential equation

based applications, Ph.D. thesis, Department of Computer Sciences, Purdue University,

August 1994.

[7] Mark Weiser, The computer for the twenty-first century, Sci. Am. (1991), 94-104.

[8] , Some computer science issues in ubiquitous computing, Communications of the

ACM 36 (1993), no. 7, 75-85.

[9] , The world is not a desktop, ACM Interations (1994), 7-8, personal communi-

cation.

15

	Science Pad: An Intelligent Electronic Notepad for Ubiquitous Scientific Computing
	Report Number:
	

	tmp.1307986960.pdf.R___n

