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Abstract

This paper 1s concerned with the numerical solution of the American
option valuation problem formulated as a parabolic free boundary/initial
value madel. Tor this we introduce and analyze several front-iracking
finite diflerence methods and compare Lhem with the commonly used
binomial and linecar complementarity techniques. The numerical expes-
iments performed indicate that the front-tracking methods considered are
efficient alternatives for approximaling simultaneously ile oplion value
and optimal exercise boundary [unctions associated wilth the valuation
problem.

1 Introduction

The semiral work of Black and Scholes {2] has contributed significantly to
the mathematical formulation and solution of the option valuation problem.
Throughout we employ the Black-Scholes model to formulate the American op-
tion valuation problem. Assuming that the price of the option is a [unction of
the underlying asset and the time to the expiration, and under the condition
that there exists a risk free replicating portofolio which duplicates the returns
of the option, the Black-Scholes partial differential equation (PDE) model is as
follows

AV(S,7) 1 4,.8°V(S 1)

W(Sir) 1, PG _
a7 +20'S 552 (r—8)5 38 rV(5,7) =10 .

Sebo0), and TE€[0,7]

where V(S5, 7) is the price of the option at Lime 7, § is the price of the underlying
asset, 7 is the time from the initiation ol the option, T is the duration of the
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and ARPA grant DA AH04-94-G-0010.




oplion, o is the volatility of the underlying asset, é is the continuous dividend
yield, and » is the risk free interest rate. One other parameter that does not
appear directly in the equalion is the strike price denoted by £. Depending on
the boundary conditions and the terminal valuc of the option (i.e. the option
payoff) both call and put options as well as a variety of other more complicated
option products can be priced. A rigorous and detailed presentation as well as a
thorough analysis of the assumptions inherent in this mathematical mode] and
its derivation can be found in [5]. In this paper we are particulacly interested in
the numecrical valuation of the American call on 2 dividend paying asset modeled
by (1.1). For this we consider 2 number of the so-called front-tracking finite dif-
ference methods to approximate the above Black-Scholes model. These methods
can be differentiated with respect to the finile dilference discretizations used for
Lhe Lime derivatives. Front-tracking techniques have been successfully employed
in the context of the Stefan problem [4]. They are characterized by the fact that
they simultaneously find the value and [ree boundary functions. For compari-
son purposes we have implemented Lwo commonly used solution approaches to
the American valuation problem, the binemial [3] and linear complementarity
methods [6]. A rumber of numerical experiments were performed under different
input values and discrelization parameters. The numerical data obtained indi-
cate that the froni-iracking approach to the American option valuation problem
preserves its qualitalive and quantitative characteristics and that it is an efficient
alternative to solving the problem in single and multi-dimensional settings.

The paper is organized in seven sections. Section 2 presents ithe mathemat-
ical model governing the valuation of an American call on a dividend paying
asset. Section 3 defines 2 front-tracking model for the American call problem,
Sectlion 4 [ormulates several explictt and imphicit finite difference schemes for
approximating the front-tracking model. The skeleton of the [roni-tracking al-
gorithm implemented is defined in Section 5. Section 6 lists the results of the
numerical experiments performed for all the [ronl-tracking schemes introduced
and their comparison with the binomial and linear complementarity algorithms.
I'inally, Section 7 summarizes the contribution of this paper.

2 American Call on a dividend paying asset

The pricing of an American call on a dividend paying asset with explicit reference
to the free boundary can be described by the parabolic initial /boundary value
problem [7]

Fc(S,t) 1 5 28%(S1) dc(S, 1)
T—QJES "W-F(T—é)s—a-s——"-?‘c, (2.1)
Se [01 fs(t)), te [OIT]
with initial condition
¢(5,0) = max(§ — E,0), Se€l0,fs(0)) (2.2)




and boundary conditions

¢(0,1) =0, (2.3)
s =fs0 -5, LD (2.4)

where ¢ denotes the value of the American call option and fg the optimal exercise
boundary.

Notice that we have converled (1.1) into a forward parabolic PDE by apply-
ing the transformation { = T — 1. Thus, the payoff of the option is taken as the
initial value of the problem. For S € [fs(t), c0) the value of the call is equal to
the payoll function. Moreover, the complete call value is given as

C(S, t) if Se [0! fS(t)):

Ceomplete (5, 1) = {max(s - E,0) if S € [fs(t),c0) &9

Equation (2.5) makes explicit that the American call has an optimal exercise
boundary, fs(i), which indicates whether the option should be held or exercised
at time 2.

A number of researchers have proposed numerical solutions to the above
problem, most of which are based on the linear complementarity formulation
of the free boundary problem [6]. This formulation makes no explicit reference
Lo the free boundary which can be obtained in a postmoriem fashion. Front-
tracking methods on the other hand are based on the explicit approximation
of the free boundary during the numerical solution of the problem and simul-
taneously provide the pair of functions satisfying the complete free boundary
problem without any need for postprocessing.

3 A Front-Tracking Model for the American Call
Problem

The challenge in a front-tracking method for the free boundary problem is to
come up with an auxiliary equation that will help in “tracking” the free bound-
ary at each marching step through time. In [1] and [6] the behavior of the free
boundary close to the expiration date is analyzed and some approximations are
suggested. In this paper, we are introducing a procedure io estimate the free
boundary for the complete duralion ol the option.

In order to develop this procedure we first formulate the American call model
(2.1) onto a rectangular domain [0,1] x [0,7] by introducing the new space
variable

s = S
Is(t)
This “front-fixing” transformation was first introduced by Landau and applied

in the context of finite difference methods by Crank [4]. If we denote the trans-
formed value function by C and apply the transformation to equation (2.1) and

. (3.1)




the corresponding initial/boundary conditions, we obtain

ac _ 1 dfs(®)\ 0C 1 , ,8°C
e ((r—6)+ @ )26:: + 57T 33 rC (3.2)
subject to initial condition
C(z,0) = max(z fs(0) — E,0), =z € [0, fs(0)) (3.3)

and boundary conditions
(0,5 =0, (3.4)

CUDlsmrar = Ss - B, ZELDy = 50

Notice that the above PDE model is defined in terms of the unknown frec
boundary lunction fs{¢). For its determination we observe thatatz =1 (§=
fs(1)) the following relations hold

gc%lz:l = f_;(i), (35)
C(znt)|z=l =f5(i)—E, (36)
8¢, Afs(t) = E) _ dis(t)
5 le=1= 5 == (3.7)
Morcover, if we evaluate (3.2) at z =1 (S = fg(t)) then we obtain
2
%t(-i)' =rl - 6f3(i) + %0’26762'|z=1- (38)

Nolice that equation (3.8) is an ordinary dilferential equation (ODE) that iracks
the free boundary and it is coupled with equation (3.2) with respect to the free
boundary. In order to solve (3.8) we need an initial condition. It can be obtained
by evaluating (2.1) at £ =0, S = f5(0) so as to be consistent with the payoff
function and the given boundary conditions. It can be shown that fs(0) = Z£.
In fact, a more detailed analysis presented in [6] demonstrates that this condition
is true asymptotically as we get closer to the expiration. Specifically, the free
boundary satisfies this initial condition as time approaches the expiration. At
exactly the expiration {f = 0) it equals the strike price of the call. This is true
since (3.2) holds with ¢ € (0, 7], while at £ = 0 the price is given by the payofl
function. Our numerical results indicate that the jump of the free boundary,
very close to expiration, does not affect the numerical solution.

4 Finite Difference Approximations to the Amer-
ican Call Model

In the following we develop several finite difference (FD) schemes to approximate
the solution of the free boundary problem (3.2) to (3.4) and the corresponding




front-tracking equation (3.8). These schemes differ with respect to the approx-
imations used for the time derivatives. We assume that the space domain is
discretized in intervals of length & = &, where N is the resolution of the space
discretization, and the time slep is of length At = —;f?, where M is the reso-
lution of the time discretization. A superscript n indicates that the value of
the superscripted [unction is taken at time step nAt, for n = 1(1){:—1} and a
subscript j indicates that the value of the subscripted function is taken at the
point jk, for j = 1(1){#}. Following we describe the selected approximations
for the American call problem.

4.1 Approximations of the free boundary

Using a three poinl Lagrange formula we can approximate the second order
parlial derivalive at the right boundary

g2 = 3f(n) 4”"‘"’I1_h+"§i"]|1_gh 4.1)
822 T 2k ' '

A first order approximation to the free boundary is defined by the relation
(ﬂ)

(n+1) _ d
fs f )y A dt

(4.2)

(n+1)

A fourth order approximation of fg can be obtained by using the Runge-

Kutta method
JoED = gl (Ll + 2o + 2z + ka)
where
ky = AF(FMY), k= AR + 2 .L 1)),
ks = AFGE) + ko)), ka= Ai(F(f("} + k3)),

1 ,82C()

P(f§7) = rE= DI + 50* =55 o1, (4.3)

Finally, the boundary condition can be evalualed by

Co)| = f) _ g (4.4)

4.2 Approximation of the American call value

Having determined the {ree boundary condition ai each time step, the problem
reduces o a standard boundary value problem which can be solved by either
an explicit or an implicit difference scheme. The explicit methods considered
include a fourth order Runge—Kutta approximation and a first order backward

(1)




difference method. The implicit methods applied are based on a second or-
der Crank—Nicolson scheme and a fully implicit first order backward difference
method. Below we define the various approximations to the boundary value
problem. Throughout, we approximate the partial derivatives with respect to
the space variable involved in {3.2) as follows

ac() 0}11 o e o) — 20! + o)

i
Oz 2h ’ P A

(4.5)

4.2.1 First Order Backward Difference Explicit Scheme

In this scheme we approximate (3.2) by the difference equation

crt oM g Ldf
——ar =9

MroNr )(c}ﬂ-c}?l) (4.6)

_,, FHCE, ~ 208 4 M) — i) (4.7)

41
and obtain the explicit cquation
ntl n n
OO = 4G, 15,68 4 6680 (18)
where
1. /1 1 df{)
= _Aif =¢? .
2 (2’ (tr- Q) ya )" (4.9)
by = 1— Al(o?j* —r), (4.10)
1 1 df
5&(203 + (-8 + o de )). (4.11)

Equations (4.8) can be solved for each peint in space to determine the call value
al Lime step n+ 1.

4.2.2 Fourth Order Runge-Kutta Explicit Scheme
In this scheme we replace (3.2) by

(m) 20(n)
v(Cct) = (( —6) + f""dfs ) 9T 122 @00 o)

2
aﬂ: 2 3:: (4‘12)
and apply a fourlh order Runge—Kutta scheme
1
clntl) = o) 4 5 (kL + 2ka + 26 + ko), (4.13)




where
ky = AHV(C™)), &y = AUV(CE + %kl)),
ke = AV (C™ + %kg)), ks = AV(C™ + k),

Equations (4.13) can be solved for each point in space to determine the call
value al Lime step n + 1.

4.2.3 First Order Implicit Backward Difference Scheme
In this scheme we replace {3.2) by

(n+1) {n)

; ( L gD (n+1) _ ~(n+1)
=il (r=8)+ —05 (Cia1 C;17)
At 2 ( +1) di 3 J (414)

1 (n+1) _ {n+1) n+l {n-41)
+ 507 (CT - 207 + o2 — o]

and obtain the linear system ol equations

aJC{"'H) +b; C(n+1) e C(ﬂ+1) C(") (4.15)
where
1 ) 1 df{ﬂ+l) i
4 = gt (J =9+ o D &) 6232)’ 19
5
b_f - 1+At((a’2_f2 +‘I‘), (‘117)
1 - 1 d_f(n+1)
6 = —5 AL (J ((r =)+ —5 7D ——) +o%j ) (4.18)

which can be solved directly or lieratively.

4.2.4 Second Order Implicit Crank-Nicolson Scheme
In this case (3.2) is approximaled by

crt_c™ g, 1 aft .
GG (o0 5T ey )
£
1 2 .7 n n n
+§or'_1“(C() 2C( J+C( ) = rC}")]
11, 1 df(nH] n+1 ntl
+§[§_}((r—6)+ f[n+l.] T (CJ('I‘l ) CJ!—I ])
i

+ 50'2}2(0}1]'1) C'J("H) + C}?_Tl}) - rC_E"'H)]




which leads to the linear system of equations

ﬂjcj(ri-ll.l)"‘bjc}n-l-l}‘l‘ C{“+1) d: C(n)l'f'e_;c[n]"l‘f_r

(4.20)
with
1, /. 1 et
aj = 7AL (3 ((r—68)+ [n+1} )7 ==} - O"J'), (4.21)
b =1+ %At(asz + ), (4.22)
1 /. 1 dflrtD 2
¢ = —7 At (;((:- -8+ -5 R di —<—)+ 0'23“), (4.23)
5
t. ./, 1™,
dj = _ZAt (J((‘.l" -8+ o) );St o"‘_',f“) , (4.24)
fs
eg=1-— %At(azjz +r), (4.25)
1,.{. 1 gty ,
= o3l -8)+ )+057). (4.26)
4 fé +1) gt
(4.27)

We can solve the linear system of equations (4.20) by using either an appropriale
sparse direct method or an iterative solver.

5 Front-Tracking Algorithm for the American
Call Problem

In this section we present an outline of a front-tracking algorithm for the solution
of the American call on a dividend paying asset problem. The algorithm can be
described in terms of the following steps:

o INPUT-E, 0,68, 7, T
e COMPUTATION.:

— Set up Initial and Boundary conditions

_ _ T
—forn=1ton=4f

1. compute the free boundary at step n utilizing cne ol the two
explicit schemes identified,

2. compute the value function at step n utilizing any of the explicit
or implicit schemes identified,

— repeat steps 1 and 2, until termination criteria are satisfied




o QUTPUT: optimal exercise boundary fs and option price ¢

It is worth noticing that the [ront-tracking algorithm provides to the user the
option price on the complete domain for all possible asset prices and time [rames.
This should be compared te the binomial method which, in general, must be
repealed for each assel price, and the linear complementarity approach which
compules the optimal exercise boundary in a postmortem [ashion.

6 Numerical Results

In this section we present a series of numerical data for the front-tracking,
binomial, and linear complementarity solutions to the American call problem.
The corresponding algorithms were implemented in €+ and executed on a Sun
SPARCstation 20 using single precision.

Table 1 lists the call option value obtained by the front-tracking algorithm
for the several time discretization schemes and asset prices. Table 2 lists the

|| Asset Price || Euler | Runge—Kutta | TFully Implicit | Crank-Nicolson ||

2.0 0.00000 0.00000 0.00000 0.00000
3.0 0.00000 0.00000 0.00000 0.00000
4.0 0.00031 0.00031 0.00031 0.00031
5.0 0.00493 0.00495 0.00493 0.00496
6.0 0.03190 0.03196 0.03209 0.03199
7.0 0.11940 0.11552 0.11975 0.11957
8.0 0.31309 0.31315 0.31352 0.31331
8.0 0.64520 0.64493 0.64561 0.64540
10.0 1.12397 1.12310 1.12429 1.12413
11.0 1.73707 1.735837 1.73728 1.73717
12.0 2.46123 2.15866 2.46134 2.46128
13.0 3.27106 3.26765 3.27111 3.27109
14.0 4.14427 4.14012 4.14428 4.14428
15.0 5.06352 5.06884 5.06352 5.06352
16.0 6.01642 6.01149 6.01642 6.01642
17.0 7.00000 7.00000 7.00000 7.00000

Table 1: The American call option value obtained by the front-tracking method
for four FD discretization schemes. In all cases the free boundary is approx-
imated with a Runge-Kutta method. The time step size and the input pa-
rameters used are: Af = 1.5 x 10~%, £ = 10.0, ¢ = 04, § = 0.08, r = 0.1,
T =0.5.

European and American call values for a set of input values, utilizing the bino-
mial and the Crank-Nicolson based front-tracking algorithms respectively. As
was expected, the American call is more valuable than the European equiv-
alent. A comparison of the front-tracking algorithm with the Lwo commonly




|| Asset Price || European Call [ American Gall ||

2.0 0.02588 0.02647
3.0 0.10984 0.11202
4.0 0.27233 0.27760
5.0 0.51425 0.52708
6.0 0.83190 0.85565
7.0 1.21850 1.25201
8.0 1.66037 1.72682
9.0 2.15123 2.25220
10.0 2.68620 2.82857
11.0 3.25966 3.45010
12.0 3.86564 411181
13.0 4.49824 4.80944
14.0 5.15200 9.53929
15.0 5.82215 6.29818
16.0 6.51598 7.08358
17.0 7.22127 7.88321

Table 2: The Buropean and American call values for ¥ = 10.0, ¢ = 0.8, § = 0.2,
r = 0.25, T = 1. The European price has been calculated using the binomial
method for 256 time steps while the American call price was obtained by ap-
plying the froni-iracking algorithm with the Crank-Nicolson approximation for
Al =3.9x 1075,

used American option pricing algorithms, namely the binomial and the linear
complementarity, is presented in Table 3. The results obtained agree to at least
two decimal digits. Table 4 presents the optimal exercise boundary for two dif-
ferent sets of input data, testing the variability of the front-tracking solution
with respect to the input data. Table 5 lists the American cail option prices
obtained with the front-tracking algorithm [or various times and asset prices.
The results indicate that the call option price is decreasing with time and in-
creasing with asset price, which is in agreement with its theoretical behavior.
The efliciency of the methods implemented measured in seconds is reported in
Table 6. The front-tracking algorithim used is based on the Crank-Nicolson
approximation with A¢ = 1.5 x 10~%. The binomial method is taken for 256
time steps. The linear complementarity method is based on the Crank—Nicolson
approximation with At = 7.5 x 1073, The data indicate that for our implemen-
tation the front-tracking algorithm is several Limes faster than the binomial and
more than two times faster than the linear complementarity methods. Figure 1
depicts the optimal exercise boundary for an American call option as calculated
by the front-tracking algorithm based on the Crank—Nicolson approximation.
Figure 2 gives the plot of the soluiion in the complete domain for an American
call as calculated by the [ront-tracking algorithm.
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| Asset Price || Binomial | Complementarity | Front-Tracking ||
2.0 0.00000 0.00000 0.00000
3.0 0.00022 0.00024 0.00026
4.0 0.00448 0.00454 0.00465
5.0 0.02996 0.03005 0.03031
6.0 0.11088 0.11070 0.11113
7.0 0.28442 0.28493 0.28538
8.0 0.57892 0.57953 0.57996
9.0 1.00452 1.00325 1.00359
10.0 1.54806 1.54890 1.54934
11.0 2.20103 2.20073 2.20090
12.0 2.93843 2.93839 2.93854
13.0 3.74255 3.74208 3.74305
14.0 4.59862 4.59789 4.59783
15.0 5.48953 5.48064 5.48947
16.0 6.40822 6.40779 6.40765
17.0 7.34447 7.34510 7.34474

Table 3: The binomial, linear complementarity and front-tracking solutions to
the pricing of an American call problem for £ = 10.0, ¢ = 0.5, § = 0.04, r =
0.12, T = 0.5. The price has been calculated using the binomial method for 256
time steps, the Crank-Nicolson implementation of the linear complementarity
method with A? = 0.8 x 10~%, and the Crank—Nicolson implementation of the
front-tracking method for At = 1.0 x 10~4.

7 Conclusions

This paper has introduced and analyzed a class of front-tracking FID methods
for solving the free boundary model governing the American option valuation
problem. These techniques are characterized by the fact that they simultane-
ously compute both the price and the optimal exercise boundary functions. A
number of numerical experiments perlormed indicate that they exhibit similar
quantitative and qualitative behavior with the commonly used binomial and
linear complementarity techniques. In addition, the front-tracking methods are
computationally more efficient than Lthe other two and can be easily generalized
to multi-dimensional option valuation problems. The stability and convergence
analysis ol the front-tracking methods considered will be reported elsewhere.

11




[Tine | CallA | GallB ||

0.00 || 33.10738 | 23.93899
0.05 | 32.66230 | 23.33682
0.10 || 32.22852 | 22.66658
0.15 || 31.81007 | 21.91206
0.20 || 31.41223 | 21.05184
0.25 || 31.04194 | 20.05814
0.30 [ 30.70821 | 18.89629
0.35 || 30.42245 {1 17.52438
040 [| 30.19844 | 15.89122
0.45 || 30.05208 | 13.93527
0.50 [ 30.00000 | 12.50000

Table 4: The approximate optimal exercise boundary as calculated by the
Crank-Nicolson implementation of the front-tracking algorithm with At =
1.0x 1074 forcall A: E=10,0 = 05,6 = 0.04, r = 0.12 and T = 0.5
and with Af = 3.9 x 107%, for call B: £ =10, 0 = 0.8, § = 0.2, r = 0.25 and
T = 0.5.

| Asset Price [ =00 [£=025]t=05 [¢=075] t=1.0 |
2.0 0.02645 | 0.01011 | 0.00169 [ 0.00001 | 0.00000
3.0 0.11199 [ 0.05876 | 0.01819 | 0.00085 | 0.00000
4.0 0.27754 | 0.17468 | 0.07672 | 0.00973 | 0.00000
5.0 0.52702 | 0.37228 | 0.20381 [ 0.04801 { 0.00000
6.0 0.85648 | 0.65529 | 0.41627 | 0.14742 | 0.00000
7.0 1.25906 | 1.01991 | 0.72014 | 0.33731 | 0.00000
8.0 1.72674 | 1.45055 | 1.11324 | 0.63544 | 0.00000
9.0 2.25212 | 1.96674 | 1.58936 | 1.04614 | 0.00000
10.0 2.82849 | 2.53348 | 2.13997 | 1.56350 | 0.00000
11.0 3.45003 | 3.15292 | 2.75595 | 2.17566 | 1.00000
12.0 4.11174 | 3.81866 | 3.42898 | 2.86853 | 2.00000
13.0 4.80937 | 4.52513 | 4.15119 | 3.62815 | 3.00000
14.0 5.53920 | 5.26787 | 4.91580 [ 4.44200 | 4.00000
15.0 6.29813 | 6.04265 | 5.71723 | 5.29954 | 5.00000
16.0 7.08353 | 6.84615 | 6.55048 | 6.19221 | 6.00000
17.0 7.89316 | 7.67554 | 7.41154 | 7.11328 | 7.00000

Table 5. The American call option prices as obtained by the front-tracking
algorithm with the Crank-Nicolson approximation for At = 3.9 x 10~%, for
various times before expiralion, and for £ =10, ¢ = 0.8, § = 0.2, r = 0.25 and
T=1.
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Binomial | Complementarity | Front-tracking

1.41 sec 0.41 sec 0.16 sec

Table 6: Time taken by the three indicated methods to compute the price of
an American call with K =10, =0.8,6=0.2, r=0.25and T'=0.25, and a
similar level of accuracy.

QOplimal Exercise Boundary

Asaol Prico

16}

14}

0.1 62 03 04 05 06 O0F 08 03 1
Time

2 1 1 L
[

Figure 1: The optimal exercise boundary [or an American call option for E = 10,
c=08,6=02r=0.25and T = 1 oblained with the front-tracking Crank-
Nicolson method for At = 3.9 x 10-5.
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Figure 2: Plot of the American call price for the duration of its lifetime with
EL=10,¢=08,6 =0.2, r = 0.25 and T = 1 obtained by the [ront-tracking
Crank—Nicolson method for Af = 3.9 x 10-5.
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