
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

The Purdue PSE Kernel: Towards a Kernel for Building PSEs The Purdue PSE Kernel: Towards a Kernel for Building PSEs

Sanjiva Weerawarana

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Ann C. Catlin

Margaret G. Gaitatzes

See next page for additional authors

Report Number:
96-082

Weerawarana, Sanjiva; Houstis, Elias N.; Rice, John R.; Catlin, Ann C.; Gaitatzes, Margaret G.; Markus,
Shahani; and Drashansky, Tzveten T., "The Purdue PSE Kernel: Towards a Kernel for Building PSEs" (1996).
Department of Computer Science Technical Reports. Paper 1336.
https://docs.lib.purdue.edu/cstech/1336

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Authors Authors
Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Ann C. Catlin, Margaret G. Gaitatzes, Shahani
Markus, and Tzveten T. Drashansky

This article is available at Purdue e-Pubs: https://docs.lib.purdue.edu/cstech/1336

https://docs.lib.purdue.edu/cstech/1336

THE PURDUE PSE KERNEL: TOWARDS
A KERNEL FOR BUILDING PSES

SllDjiva Weerawarana, Elias N. Houstis
John R. Rice, Ann C. Catlin, Margaret G. Gaitatzcs,

Cheryl L. Crabill, Shahani Markus & Tzvctan T. Drl"ashansky

Department of Computer Sciences
PUl"due University

West LafayeUe, IN 47907

CSD·TR 96-082
December 1996

PPK: Towards a Kernel for Building PSEs

Sanjiva Weerawarana, Elias N. Houstis, John R. Rice, Ann C. Catlin, Margaret G. Gaitatzes,
Cheryl L Crahill. Shahani Markus and Tzvetan T. Drashansky

Department of Computer Sciences, Purdue University, West Lafayette, IN 47907-1398, USA.

Abstract

Problem Solvillg Environments (PSEs) are vef)' high
level software e/lVironmems that provide all the facilities
for dealing with some class of problems. It is clear that
building PSEs is a costly endeavor bOll! ill tenlls of the
persOII-years required and the diversity of knowledge alld
expertise required. This paper is about the Pllnllle PSE
Kemel (PPK), a softworefrolllework designed to assist ill
Ihe deve/opmem ofPSE.f.

PPK assumes a fairly gel/eral model of PSEs where
PSEs are viewed as a collectio1l of communicating, coop
erating entities. The architecture of PPK is designed to
provide all the infrastructure needed to build app/icatioll
PSEs that adhere to this nwdel. This model is realized ill
terms ofatl electronic notebook for user ill1eractioll with
the PSE. an object mal/ager for storillg all the problem
alld solll1iml cOII/pollellts and a software bus for support
illg the commullication alld illtegration /leeds of the C011l

pOl/ellts of the PSE. An embedded, customizable
programming langl/age is provided within the electronic
notebook to allow users to "program" a problem solving
proceS!i by specifying a high level script. This base arclli
tectllre of PPK is augmented witll a set ofdomain-specific
toolkits which provide the required infrostrtlcmre ill key
areas such as symbolic computa/ioll, computational illtel
ligence, computational geomerry and nl/meric cOlllpllfa
tioll. In addition. a high level composition framework
allows IIsers to compose PSE from existing PSE compo
nellts.

This paper describes the overall design of PPK and a
prototype ofthe basic PPKframework tllOt we have devel
oped. All example PSE built using PPK has demonstrated
it.f viabiliry as a keme/for building PSEs.

1 Introduction

A Problem Solving Environment (PSE) is a compuler
system that provides all the computational facilities neces
sary to solve a target class of problems [I]. These features

include advanced solution melhods. automatic and semi
automatic selection of solulion methods, and ways to eas
ily incorporate novel solution methods. Moreover, PSEs
use the language of the target class of problems. so users
can run them without specialized knowledge of the under
lying computer hardware or software. By exploiting mod
em technologies such as interactive color graphics,
powerful processors, and networks of specialized services.
PSEs can track eXlended problem solving lasks and allow
users lo review them easily.

Overall. they create a framework that is all things to all
people. They solve simple or complex problems, support
rapid prototyping or detailed analysis. and can be used in
introductory education or at the frontiers of science. PSEs
provide users with tools and facilities for "multi fidelity"
simulation. That is. initially one may wish to perfonn con
ceplual. symbolic simulations. Laler a preliminary numer
ical simulation may be performed and even later a detailed
simulation requiring many hours or days of simulation
lime may be performed.

It is obvious that building such software systems is a
monumental task [2]. In addiLion to the sheer quantity of
program code required, the task is further complicated by
the diversily of knowledge required to build complex
PSEs. It is clear that a strong computer science back
ground is needed to build such PSEs. yel it is not computer
scientists who will (or should) be building these PSEs.
Application scientists must be able to build (or compose)
PSEs for lheir work wilhout having to spend person-years
of effort on computing tasks which have basically nOlhing
to do with their problem domain. Clearly, a solid base
infrastructure upon which application scientists can build
their PSEs is needed. The Pllroue PSE Kemef (PPK) is a
software framework (infrastruclure) designed to assist
PSE builders in their lask.

PPK assumes a fairly general model of PSEs where
PSEs are viewed as a collection of communicating, coop
erating entities. The architeclure of PPK is designed to
provide all the infrastructure needed lo build applicalion
PSEs that adhere to this model. This model is realized in

terms of an electronic notebook for user interaction with
the PSE, an object manager for storing all the problem and
solution components and a software bus for supporting the
communication and integration needs of the components
of the PSE. An embedded, customizable programming
language is provided within the electronic notebook to
allow users to "program" a problem solving process by
specifying a high level script. This base architecture of
PPK is augmented with a set of domain-specific toolkits
which provide the required infrastructure in key areas such
as symbolic computation, computational intelligence,
computational geometry and numeric computation. In
addition, a high level composition framework allows users
to compose PSE from existing PSE components.

While PSEs are a special type of software, they do
share many properties with other large scale integrated
software environments such as Microsoft Office. Clearly,
there already exist many software frameworks which sup
port the development of such systems, including Microsofl
OLE [3J, OpenDoc [4], and COREA [5]. There is also a
large body of existing work on dislributed communication
environments such as RPC [6], 11FI [7] and Glish [8].
However, due to a variety of reasons mat will be described
later in detail, none of these systems completely addresses
the somewhat unique infrastructure needs of problem
solving environments. A recent project called PSEWare
[9] by a consonium lead by Indiana University is research
ing kernels for building PSEs as well and appears to be
very similar to the PPK project. PSEWare is also described
later.

In this paper we describe the overall architecture of
PPK and a partial prototype that has been completed. This
paper is organized as follows: the next section describes
the problem solving process used by scientists using com
putation as the primary technique for solving some prob
lem. The goal of PPK is to provide a complete software
framework to support building software that follows this
process. Section 3 provides an overview of PPK. Sections
4 to 10 describe the various components of PPK: the over
all architecture, the software bus, the object manager, the
electronic notebook, the domain specific toolkits, the PSE
component browser and the PSE composer. Section 11
briefly describes a basic PSE built using PPK. Section 12
describes related work and compares it to PPK. Finally,
section 13 draws some conclusions and indicates briefly
our future plans for PPK.

2 Problem Solving Process

In this secLion we consider the problem solving pro
cess used when computation is the primary technique for
solving some problem. We consider activities from both
the user's viewpoint and the "system's" viewpoint. What

we refer to as the system is the sum total of all softwarel
hardware which is involved in computationally solving the
problem.

IniLially, me user must defin~ the problem to the sys
tem. In a PSE, this specification is declarative (i.e., only
indicates the required information and not what to do with
it or how to do something with it), symbolic (i.e., in some
abstract form) and in terms that are natural to the problem
domain. At this level only the essential features of the
problem are specified; there is no indication of how it is to
be solved or any other soluLion scheme related information
provided.

If a PSE already exists for solving this type of prob
lems, then the user must interact directly with the PSE and
solve the problem. Since in this paper we are concerned
wim the situaLion where a PSE is not already available, we
will ignore this case from now on.

Suppose mat while mere is no existing PSE for solving
the specific problem, there does exist a (large) collection
of problem solving components (i.e., a workbench),
including those that are needed to solve the current prob
lem. Then, the user must first combine some of these com
ponents to fonn a custom PSE and then apply it to solve
the problem at hand. In this case, the user must be able to
"browse" the available components, "select" the appropri
ate ones, and "connect" them to fonn a custom PSE. Then,
to solve the problem, the user transfers the declarative
problem specification to the PSE and interacts with the
PSE appropriately.

The final scenario is when only some of the compo
nents needed to solve the problem are already available
from a component database. The other needed compo
nenlS must be custom developed. Thus, the user must
"build" the components by writing program code in some
form and then connect the components together to form
the PSE, as in the previous scenario.

How does the problem solving environment thus
assembled finally solve the problem? The process (Figure
1) involved can typically be decomposed to the following
five stages:

• Declarative problem specification: As described above.

• Computational script: The problem specification must
be transformed to some solution algorimm which
when run will result in solving the problem. The com
putational script can be viewed as a high level, pseudo
code specification of mis algorithm. In some instances.
this script may not be explicit, but it is usually present
nevertheless.

• High-level programming language program: The com
putational script must be executed by either interpret
ing it directly or by translating it to a program in some
traditional high level programming language.

DeClarative Problem Specification I
I

Computational Script I
I

High-level Language Program J
I

Problem Solvers (Libraries, Servers) I
I

OSs, Networks, Utilities

Figure 1 Levels of computation in aPSE.

• Problem solvers (libraries, servers): The problem solv
ers are lhe components that do the real work for solv
ing the problem. These are invoked from the high level
language or by the script interpretation process.

• aSs/networks/utilities: The lowest level is the tradi
tional computing platform on which the problem solv
ers execute.

3 Overview of PPK

The goal of the Purdue P$E Kernel project is to
develop a software kernel that can be used to build PSEs
that support the problem solving process described above.
This goal is realized by the following components:

• PSE architecture: PPK defines and supports a power
ful, extendable PSE architecture. All the components
of PPK and the resulting PSEs assume and support this
architecture.

• PSE component database and browser: The component
database and browser allow users to view existing PSE
components as well as to install new components into
the component database.

• PSE composer: The composer is essentially a very
high-level programming facility where the user pro
grams in a data flow manner. Composing components

selected from the component database is expected to
be the likely approach to building custom PSEs.

• Electronic notebook: The problem solving process typ
ically involves multiple steps and a solution path deter
mined by trial-and-error. The electronic notebook
serves as the central recording and access environment
for monitoring, controlling and steering this process.
An embedded programming environment allows users
to program (or script) a sequence of operations to be
performed during a problem solving process.

• Object manager: The problem solving process involves
many data objects including the problem input objects,
the solution objects and the output objects. The object
manager is the database which manages these compo
nents for the user and for the PSE components.

• PSE component builder: The components ("tools") of
a PSE are what provide the real computing muscle to
it. The component building process involves using the
appropriate data object standards for input and output
and implementing the component's internal functional
ity using whatever toolkits are provided by the envi
ronment.

• Language kernel: The language kernel is a toolkit with
which one can build the application specific language
with which the user may interacl wilh the PSE.

• Software bus: The software bus is the underlying
"glue" that supports the integration and operation of
the PPK framework outlined above.
Figure 2 illustrates the layered organization of these

components in PPK. The PPK prolotype currently built
supports the "lower level" infrastructure of PPK compris
ing of the software bus, the object manager and the note
book. In the following sections we discuss the architecture

PSE Developer APls and Tools

Figure 2 Layered Architecture of PPK.

of PSEs supported by PPK and each of these lower level
components; the "higher level" components (the compo
nent builder, browser and composers) will be described in
a separate document. The language kernel is an intermedi
ate level component of the PPK framework which is
embedded in the notebook. A brief discussion of lhe lan
guage framework will be provided in the notebook sec
tion.

4 PSE Architecture

The architecture of PSEs supponed by PPK is also
based on the levels of computation as Hlustrated in Figure
I. That is, a PSE build with PPK will have roughly the lay
ers present illustrated in Figure 1. Each layer in lhis model
contains a collection of tools. The tools interact within a
level via well-defined object interfaces. For example, at

the high-level programming language level, the word
"tool" may refer LO a function while "object interface"
may refer to some "standard" data structures and function
signaLUres. Interaction across levels occurs in some
abstract specification language or by some automated pro
cess that translates a set of tools and objects from one
layer to the representations used at a different layer.
Clearly the key then is to allow the integration of the vari
ous pieces to form the comprehensive, integrated system
that provides problem solving facilities to the user. Soft
ware that provides such integraLion frameworks is typi
cally called "middleware" and PPK can be viewed at as a
middleware system for PSEs.

Building a PSE using PPK requires one to customize it
by configuring the core componems (soflware bus, note
book and object manager) of PPK appropriately and by
developing any necessary tools. The result is a customized
framework into which application-specific components
can be integrated conveniently.

5 Software Bus

The "software bus" model is used in the lowest level
glue thai binds components of PPK together. The software
bus concept is an anempt to emulate the hardware bus
mechanism that provides a standard hardware interface to
allach additional capabilities to a machine. In the hard
ware bus, new units describe their capabilities to the bus
controller, which then passes the information along to
other units in the bus. In the PSEBus software bus, soft
ware components register their exported services with the
software bus and rely on the software bus to invoke these
services when requested by interested clients. The soft
ware bus is responsible for the application of any represen
tation translators as required for the valid invocation of the
service. The location and instantiation of service providers

is also managed by the software bus, thereby relieving
application components of the need to be aware of the glo
bal application topology. Thus. the software bus provides a
mechanism where two or more tools can intemperate with
each other without having explicit knowledge about each
other and also provides the infrastructure for managing a
set of distributed tools. Other features include security (all
communication can be made fully secure), support for
multiple communication protocols at the lowest level and
compression for dealing with large data objects.

PSEBus is implemented as a fully-distributed, multi
threaded set of libraries that will be linked with the appli
cation components. When PSEBus is instantiated, it cre
ates a set of threads for handling software bus lasks and
supports the communication needs of one or more user
threads. Components (clients) are identified wilh a logical
name (string) which provides a level of indirection by sep
arating the logical identity of the component from its
physical attributes such as executable file name, file path
and host name. The communication facilities available in
PSEBus include both blocking (synchronous) and callback
send/receive facilities for both connection-oriented and
connection-less communication. A component may com
municate in datngrams, objects (data structures) or mes
sages (message header and zero or object arguments).

PSEBus provides all the communication facilities
needed to implement PPK. Specific functionality used by
each tool will be illustrated there.

6 Object Manager

The problem solving process involves many dara
objects including the problem input objects, the solution
objects and the output objects. The object manager is the
persistent database which manages these components for
the user and for the PSE components. Since components
of PPK-based PSEs interact wilh one another via these
objects, the object manager also serves as the shared work
space lhat facilitates component interaction. The PPK
object manager is basically an object oriented database
kernel that supports persistently storing and retrieving of
PPK objects under direct user control or by other compo
nents via the object manager remote interaction API
(application programming interface). In addiLion to the
object manager kernel, a graphical user interface exists for
browsing and manipulating the database of objects.

6.1 PPK Objects

PPK objects are a data abstraction that allows users to
store and retrieve arbitrary types of data. Each data object
has associated with a set of meta-data that describes the
object and its associated propenies:

• flame: a (hierarchical) name is associated wilh each
object and is used to locate an object within an object
manager. The full name of an object is a combination
of the location of the object manager, the object's type
(below), its hierarchical name and its version number
(below). The full name of an object uniquely identifies
and locates it on a network.

• type: each object is tagged with a type name to
describe the content of the data associated with the
object. The type name itself is written using an exten
sion of the MIME (Multipurpose Internet Mail Exten
sions [10]) standard for describing content types on the
Internet. The extension allows us to represent multi
level types rather than just the two-level model sup
ported by MIME. A multilevel (Le., hierarchical) type
name is used to represent the inheritance hierarchy of
an object's type in a string formal. For example, a two
dimensional domain in PDELab would be given the
type name "pdelab/domain/2d."

• immutable: every object is immutable; i.e., cannot be
destroyed once created. This property, along with ver
sioning (below) allows users to record the history of a
problem solving process rather than just the end result,
a very useful capability.

• version: immutability of objects means that when an
object is "changed" and the change committed, a new
object with the same name but a different version num
ber is created. Many versions of an object may exist at
any given time; hence lhe version number is a part of
the object's unique name.

• dependencies: objects typically are dependent on other
objects. The dependencies property of an object
records the full names of other objects that it is depen
dent on. For example, a mesh object may depends on
the domain object over which the mesh is defined.

• parameters: objects typically also have parameters,
which may be typed or umyped depending on the
object. For example, a circular domain may be defined
as a domain object with center at (x,y) with radius r.
This object then has (typed) parameters x, y, and r.
Parameters must be bound to values before parameter
ized objects can be used in most computations.

• bindings: parameters of an object may have pre
defined possible value sets. These are represented as
bindings sets associated with the object.

• mu/tiple represelltarions: an object typically has many
ways in which it may be represented. For example, a
circle of radius r centered at the origin may be repre
sented by the equation x"2+y"2 or be described as the
area enclosed by the boundary defined by x = sin(t), y
=COS(l) for t =0, 2*pi. It may also be described by an

image in some fonnat. Each such representation is
identified by the type name of the data associated with
the representation, where the type name is written
using the (extended) MIME syntax. For example, an
image (in GIF fonnal) representing a domain would be
called the "image/gif' representation of the domain.
The approach PPK follows unifies both presentation
representations of an object (such as "image/gir' and a
computational representation (such as "binary/pdelabf
domain"), allowing us to ueat these two cases uni
fonnly. A c1iem who requests an object "knows" what
possible representations it might require and requests
them. For example, the notebook would request image
or text representations for an object embedded in the
notebook, whereas the domain editor would request a
binary representation for a domain.

The goal of the PPK object model is to support arbi
trary types of data which may have varying requirements
and needs. The approach we have chosen for this allows us
to treat both presentation and computational versions of
the data unifonnly without bias. Each c1iem who requests
an object must know a priori what possible represema
tion(s) it can accept and request one of them. This is not an
unreasonable requirement as an existing client presumably
always know what it needs. To help a clients in their selec
tion. facilities exist for listing the available representations
and also for requesting one of a set of possible representa
tions.

6.2 Object Manager Interface

The (graphical) object manager intcrface allows users
to interactively browse the database of objects in a given
object manager. Users can select between browsing by
name and browsing by type, each of which mode gives
higher priority to the given classification. In addition to
browsing, users can view certain representations of objects
(for example, image/gif representations) and also perform
some operations (such as renaming and copying). Drag
and drop facilities arc supported between the object man
ager interface and the notebook to allow users to conve
niently move objects to the notebook. Instances of the
interface are shown in section 8.

6.3 Implementation

The prototype implementation of the object manager is
on top of lhe Unix file system as the underlying persistent
store. Within an object manager, an object is mapped into
the file system as follows: the object's type is used to
locate the directory in which the object is stored by replac
ing each 'f with a •.'. For example, "pdelabfdomain/2d"

would become "pdelab.domain.2d." Wilhin each type
directory, an object named "/tmp/demolcircle" would be
stored in the subdirectory named "tmp/demo/circle" of the
type directory. Within each object's direclory, a separate
directory is created for each version and is named by the
version number. In addition, a file is created to record the
latest version number associated with this object. Within
each version of an object, each of its representations is
stored in a separate file named by the representation type
name changed as before. This file is generated by serializ
ing the objecting into the file using whatever serialization
was registered wilh the object manager I software bus for
that object. For example, the representaLion "binaryl
pdelab" would be stored in the file "binary.pdelab." A sep
arate file ("representations.config") is used 10 list the cur
rently available representations for an object. Several other
files ("dependencies" and "parameters") are used to store
other information such as the dependencies and parame
ters of an object.

The graphical user interface is implemented using the
XlllMotif window system and basically supports brows
ing through this database. It also allows one to perform
some limited operations on the objects, such as viewing
them.

The object manager API allows remote client pro
grams to perform all their interacLion with the object man
ager via a function call interface. In addition to get/set
type functions for all properties of objects, there are sev
eral quer; functions to query the database for information.

7 Electronic Notebook

The problem solving process typically involves multi
ple steps and a solution path determined by trial-and-error.
The purpose of the electronic notebook is to serve the pur
pose of a notebook for recording and tracking this process.
While most high level problem solving systems have lan
guages for recording the problem and the solution algo
rithm, they lypically do not allow one to record the entire
process. including the various iterations that did not pro
duce correct results. The objective of this approach is to
mimic Ihe physical laboratory notebook (notepad) that sci
entists commonly use in their day-to-day activities. This
notebook records not only what worked, but also the steps
and iterations involved with achieving that success. The
electronic version of the notebook can, and must, of
course extend the capabilities of the physical notebook
that scientists use daily.

The PPK electronic notebook is a free-format multi
media document editor that allows users to record arbi
trary content (including, but not limited to, text, graphic,
audio and video). In addition. the notebook serves as an
intelligent, high-power calculator for the problem domain

by providing the user with a set of tools (Le.• the tools in
the PSE that the notebook is pan ot) 10 create an manipu
late objects that arise naturally in the domain. That is,
from the point of view of the user, the notebook is the
PSE. Since most problem solving processes involve multi
ple algorithmic strategies, an embedded programming lan
guage allows users to program (or script) a sequence of
operations to be performed to solve a problem. In the rest
of this section we describe the multimedia editing func
tionality of the notebook, how PPK objects are included in
the notebook. the embedded programming language, and
how tools interact with the notebook al run-time.

7.1 Multimedia Editor

Note-taking is clearly the first and most fundamental
task of the electronic notebook. In the PPK context, note
taking means being able to record arbitrary PPK objects
which arise in the process of defining and solving prob
lems. and being able to introduce arbitrary notes (either
textual or other) about these objects.

In order to mimic the look-and-feel of the physical
notebook. the notebook is a paged. free-format editor
where one may insert amlOtariolls at any place on any
page. Two types of annotations are supported: embedded
annotations and reference annotations. Embedded annota
tions are annotations whose media content is embedded in
the notebook. For example, a piece of text is an embbed
annotation as could be an image. Reference annotations on
the other hand are annotations whose useful media content
is maintained somewhere else and only referred to by the
notebook. For example, an audio clip and a Web (H'ITP)
reference are reference annotations. An embedded annota
tion is used to indicate the presence of a reference to the
user by using the prior as a label or handle. PPK objects
are included in the notebook as embedded annotations and
are discussed in the following seclion.

The notebook is necessarily a user interface, where
there user is human. However, in cases when a PPK-based
PSE is a part of a larger process, the end-user of the PSE
may not be an end user at all. In order to support these see
nados, the architecture of the notebook allows one to dis
regard the graphical user interface and to treat the balance
as a problem-specific object container and calculator.

7.2 Embedding PPK Objects

The notebook allows one to insert arbitrary PPK
objects into it as embedded annotations. Embedded
objects do not migrate into the notebook; they still live
within the object manager. The notebook simply receives
the name and type of the object to be embedded and

requests appropriate representations for it from the object
manager.

When embedded, objects need a visual (presentatioll)
represelltatioll so that the user may "see" the object inside
the notebook. Each object can define the types of possible
visual representations it wants' (for example, plain text,
image in GIF format, or image in Postscript format) and
the notebook selects one to use based on user preferences
and o!her configuration parameters. It is important to note
that !he object manager does not distinguish between a
visual representation and a data representation of an
object; they are both of equal privilege. The receiver has
the responsibility and option of requesting and using the
appropriate forms.

Object types that can be embedded in the notebook
must be configured into it. This is done by using the note
book Tcl [II] based configuration language to write a
script that indicates the object type, the bitmap to use as an
icon, the possible visual representations, the possible
actions and how to implement each of the actions.

Note that objects are lIoll-editable within the notebook
itself. That is, one must always invoke an external tool by
performing an action on the object to edit or perform any
changes to an object and/or its parameters. This is differ
ent from Microsoft OLE, for example, where embedded
objects may be edited ill sim. These and other issues are
discussed in Section 9.

Objects are rendered within a notebook in a manner
that indicates the objects parameters and dependencies as
well as any bindings to the parameters. When an action is
invoked on an object, its current closure is determined and
sent to !he tool which is receives the action request.

7.3 Programming in the Notebook: PPKScript

Clearly problem solving is not a mailer of invoking a
set of pre-existing tools. The ability to write a script that
invokes tools and performs o!her operations is vital in
large scope problem solving environments. To this end,
the notebook supports an embedded programming lan
guage model that can be used to write problem solving
scripts.

The architecture of this component supports being
dccoupled from !he notebook itself. That is, the embed
ding of the PPK programming language in the notebook is
a special case; the language and the associated functional
ity can be embedded in any containing software system.
This ability is useful as it allows one to integrate the prob
lem solving capabilities of PPK into any system, not just
the PPK notebook which is intended for (human) users.

The goal of the PPK language, PPKScript, is to be
somewhat analogous 10 what JavaScript [12] does for
HTML, the language used to author documents for the

World Wide Web. JavaScript defines an object model that
maps HTML documents into JavaScript object structures
and then provides the "usual" language facilities such as
loops, conditionals. functions and data structures for writ
ing programs that manipulate these objects. PPKScript
allows one to access and manipulate PPK objects embed
ded in the notebook and to write programs with all the
usual language facilities.

This is achieved by defining a clean mapping of PPK
objects to PPKScript. This allows one to access the data
and meta-data fields of PPK objects at a programming
level of PPKScript. Then the other features of PPKScript,
such as variables, block structured scope, loops. condition
als, functions and objects can be used to implement arbi
[Cary problem solving scripts. PPKScript also has a
language level interface to PSEBus to allow problem solv
ers to write scripts that interact with multiple problem
solving tools available in the PSE.

This is the PPK provided language framework. How
ever, for each PSE built with PPK, one can customize
PPKScript by defining a set of "built-in" functions/objects
that are available to the problem solver. This customiza
tion can be done in PPKScript as well as in "foreign" lan
guages which are imported into the runtime environment.

7.4 Implementation

The prototype implementation of the notebook is
based on the Window-Icon-Mouse-Pointer (WIMP)
model. That is, the user navigates and interacts with the
notebook using traditional interaction technologies. An
implementation using novel technologies such as pen
input, tactile manipulation. speech recognition and genera
tion is possible and very much desired.

The notebook is implemented using X and Motif. The
architecture achieves a clean separation between the note
book's core functionality and its graphical user interface
component so !hat it can easily be ported to other Gm
toolkits and also so that it can be used without a am.

The kernel of the notebook manages all the annota
tions in the notebook, including layout, event delivery and
storage. Notebooks are stored by serializing the state of
the notebook to a file. which pennits full recovery of state
upon reactivation. Event delivery is done by locating the
annotation(s) to which the event should be delivered and
then by converting the physical events (such as mouselkey
clicks) to logical events (such as view/edit). The opera
tions to be done by an annotation in response to an event is
configured into the notebook and then activated at this
time. Such activation involves contacting the appropriate
tool and delivering one or more messages.

The PPKScript language kernel is not yet integrated
with the notebook. We are currently experimenting with

flilnal"t: mSUililoca Ian 0 e
SCI pdclab Sell¥(
PDELAB)

re-using an embeddable language kernel (such as from Tel
or Scheme or Java) as the core language to build upon.

The notebook API allows tools to interact with the
notebook via messages. This API allows tools to inform
the notebook when new objects are crealed and also for
the notebook to inform the tools when users request opera
tions on objects.

8 Example: PDELab PSE

-It lind the insl:l111ocmion of ppk
set ppk Sen~(PPK)

slandard 110 Slreams ror a process
SCI ios [[sldin in 0 file fdevfllyl {sldout oul

[slderr OUI 2lilc Idcv/uyl {pdcbLL~·in in
[pdebus-out om 4 pipe pdebusJ I

lfilt:/dev/lly) \
3 pipe pdebus1\

We have started to build a new version of our PDELab
[13J PSE as proof-of-concept for PPK. This system con
sists of PDEBook, PDEOm, PDEBus and various PDE
tools. The first three of these are Ihe PPK notebook, object
manager and software bus customized for the PDELab
problem solving environment. In this section, we will
briefly describe the process used to develop these custom
ized components and also discuss the changes needed to
take an existing PDE tool (such as domain editor or a
mesh editor) and conven it to be a PPK accessible tool.
Note that while the configurations de.scribed below are
mostly static (i.e., done before lhe PPK-based PSE is mn
ning), the architecture fully supports completely dynamic
configurations.

8.1 Configuring the Software Bus

The software bus plays a central role at development
time of a PPK-based problem solving environment. At
run-time, the software bus is responsible for activating the
processes that are the tools of the PSE and also for deliver
ing messages between them. The software bus must hence
be configured with the set of tools that can be activated at
run-time (the configurations can be made dynamically a~

well). This task is fairly simple; one must basically list the
major components (configured notebook and object man
ager) as well as all the tools that are to be used by the PSE
and indicate the path to their program files as well as any
invocalion options. Figure 3 shows part of the configura
tion script for PDELab.

8.2 Configuring the Notebook

To configure the notebook, one must firsl configure the
set of PSE tools thai are available. For each tool, the tool's
textual name (i.e., text label shown 10 the user), its pro
grammatic name (Le., the name by which it is identified in
the software bus) and ils icon (i.e., a bitmap that is dis
played to identify the tool) must be given. The localion of
the program binary for the tool itself and its options etc.
are given in the software bus configuration (above).

The notebook must also be configured for the lypes of
objects it is expected to handle. An object configuration

/I dcbug lc~cl ror the notebook and Ihe am

set debugle~el2
set omdebugle~elSdebuglevel
SCI nbdebugle~el Sdebugle~el

notebook eonfig filc 10cmion
sel nboonfiglile SpdelDbIliblpdebooklconfig

/I om config me localioll
sct omconfigfilc Spdelabmbfpdcom/Offi_config.re

dieD! ·'objecl-manager" Sios \
"X-CliCnl-loc:/llocalhostlSpdelablbinfpdeom" -debug 3 \

-conlig Somconfigfile

dieol "nolebook" Sios \

"x-dient-loc:lllocalhosl/$ppklbinfnOlcbook" \
·debug Snbdcbuglevd -conligliJe Snbconfigli1c

/I regislt:r lIillhe 10015
regisler clienl "meshlooI2D" Sios \

"x-elient-loc:llloc:l1hosrJSpdclablbinfmcshlooI2D"
regisler dieD! "domainlooI2D·' Sios \

Figure 3 Configuring the software bus.

starts with its extended-MIME type. Then, the list of
actions that are possible must be given along wilh how
each action must is to be implemented. Each action imple
mentation indicates what tool is responsible for supponing
that action and what message(s) should be sent to lhatlOol
to implement that action. Finally, the possible visual repre
sentation types for the object type must also be indicated
so that notebook can allow the user to select an appropri
ate one. Figure 4 shows the configuration script use to con
figure the "pdelab/domain/2d" object type in PDELab.

Once PPKScript is implemented, additional configura
tion would be needed to define lhe built-in functions for
PDEScript, the PDELab scripting language.

These are all the configurations that are needed to con
figure the notebook for the PDELab application. Figure 5
shows an instance of lhe PPK/PDELab notebook in action.
The application PSE developer does not need to be aware
of any of lhe internals of the kernel nor to write code in
low level languages. The kernel delivers the notebook as a
pre-compiled executable which loads in a detailed config-

-g-objel: represelililuons I:ommons 0 m05f06jCClS
sel slnndanlreps [lext/pdespel: lext/phrin

lmngclllwd imngeillpm imagelgifimagelxpm}

g sel Up lhe pdelabldomainl2d Iype.
sel actions I

IEdil dom.a.intool2D edit <:OBJECTURL:> <:OBJECITAG> J
IView domainloo12D view <:OBJECTINSTANCE>}
("Define Boundary Conditions" domainloo12D do be \

<:OBJECTINSTANCE> }
["Gener:lle Grid" gridlool2D do grid <:OBJECTINSTANCE> I
["Generale Mesh" mcshlool2D do mesh <:OBJECTlN

STANCE>}

I
ppknb_IYpe "pdelabldomainl2d" domnin.xpm $slnndardrcps
Sactions

Figure 4 Configuring the notebook.

uration fi[e to learn all necessary information about the
too[s and objects of the PSE il is working for.

8.3 Configuring the Object Manager

Unlike in the notebook case, the object manager does
in fact need to be aware of data-structure level knowledge
of the data it is working with. The kernel hence provides
the object manager as a library with hooks to allow the
application-dependent data lYPes etc. to be defined inlO lhe
object manager. This application inilialization function is
responsible for registering and defining the various repre
sentation types that will be used by the various objects. In

Figure 5 PPKlPDELab Notebook in action.

Figure 6 PDELab Object Manager GU!.

addilion, it indicates the function used to serialize data of
lhat type to/from a byte-stream format. This function is
used when data types are transmitted via the soflware bus
to the notebook or any other tool as well as to store objects
persistently in the file system.

In addition to configuring the data management
aspects of the object manager, one must also configure the
browsing features. This is done by indicating the icons to
be used to represent each type of object when browsing
the objecl manager's data space graphically. Figure 6
shows an instance of the object manager's graphical inter
face.

8.4 Configuring the Tools

To incorporate a tool as a PPK-compliant tool, one
must (re-)engineer the tool to invoke several inilialization
functions and then register appropriate event handlers. The
steps involved are the following:

• As soon as the process starts up, invoke the software
bus initialization function to initialize communications
via the software bus.

• Inilialize the notebook and object manager APIs by
invoking the appropriate function.

• Register the lypes of objects that will be communi
cated by this tool by installing the type serializers (as
in the object manager case) to the software bus.

o Write the funclions that will be invoked when the user
requests certain operations on the objecl type(s) this
tool is responsible for (for example, edit or view).

o Register the even handling functions with the software
bus.

o Change the "saving" or "committing" function of the
toollo insert the saved object into the object manager
by using the appropriate functions from the object
manager.

9 Related Work

9.1 Microsoft OLE/COM

Microsoft's Object Linking and Embedding (OLE) l3J
is a set of services lhat provides a powerful means to cre
ate documents consisling of multiple sources of infonna
tion from different applications. Objects can be almost any
type of infonnation, including text, bilmap images, vector
graphics. and even voke annotation and video clips. OLE
associates two major types of dala with an object: presen
talion data and native data. An object's presentation data is
infonnation needed to render the object on a display
device, while its native data is all the infonnation needed
for an application to edit the object.

PPK objecls can also be of any type and can contain
full multimedia infonnation as well. In contrast with OLE,
PPK uses one unified model for object data which does nol
distinguish belween "presentation" and "native"' uses - il is
up lo who requests a specific representation to do use it
appropriatcly. Unlike OLE, PPK does not allow one to
embed an application directly in another applicalion; it
only provides a mcchanism lo link applications together
via the objecls shared between lhem. The linking facilities
in OLE and PPK are comparable.

9.2 CORBA

The Common Object Request Broker Architecture
(CORBA) [5J. is the Object Management Group's answer
to the need for interoperability among the rapidly prolifer
ating number of hardware and software products available
today. Simply stated, CORBA allows applications 10 com
municale with onc another no maHer where they are
localed or who has designcd them. CORBA 1.1 was intro
duced in 1991 by Object Managcment Group (OMG) and
defined the Interface Definition Language (IOL) and the
Application Programming Interfaces (API) that enable c1i
enl/server object interaction within a specific implementa
tion of an ObjcCl Request Broker (ORB). CORBA 2.0.
adopted in December of 1994, defines true interoperability
by specifying how ORBs from different vendors can inler
operate.

The (ORB) is the middleware lhat establishes the c1i
ent-servcr relationships between objecls. Using an ORB, a
client can transparently invoke a method on a server
object. which can be on the same machine or across a net
work. The ORB inlercepts the call and is responsible for
finding an object that can implement the requcst. pass il
the parameters, invoke ils method, and return the results.
The client does not have to be aware of where the object is
located. its programming language, its operating system,
or any other syslem aspects that are not part of an object's
interface. In so doing, the ORB provides interoperability
belween applications on different machines in heteroge
neous distributed environments and seamlessly intercon
necls multiple object systems.

The PPK software bus is an ORB in CORBA lerminol
ogy. While it is currenlly not CORBA compatible. we
expect to make it be so in the future. allowing PPK com
ponents to inleroperate with any component via a
CORBA-compatible ORB. There are no CORBA analo
gies to the other functionality present in PPK.

9.3 PSEWare

PSEWare [9J is a toolkit for building problem solving
environments and hence in closest to the PPK work. Thc
project is just starting and hence is in its early stages. The
descriptions give here are from the project overview as
given in their Web pages and mayor may not be exactly
what is being developed in this work.

The PSEWare project is addressing four major issues
in the general area of building PSE frameworks:

o PSEs that support the transformation of symbolic
problem definitions to parallel object-oriented pro
grams that can be executed efficienlly on a variety of
sequential and parallel architectures

o Object-oriented libraries of parallel program templates
or archetypes that can be refined to obtain specific
applications by using ideas such as inheritance

o User interface archetypes for scientific and engincer
ing PSEs lhat can be refined 10 construct a PSE for a
specific problem domain

o Technologies for collaboration and ubiquitous distrib
uting computing focused on the Internel, the Web and
Java. with the goal of applying lhese technologies to
distributed collaborative PSEs.
PSEWare is a multi-institutional collaboralive project

involving California Instilute of Technology, Indiana Uni
versity, New Mexico Stale Universily, Los Alomos
National Labs. Drexel University and University of Cali
fornia at Irvine.

While PSEWare is similar in mission to PPK, we are
unable to make a direct comparison as PSEWare is yet in
concept stage.

10 Conclusion

Building problem solving environments has long been
recognized as a complex task and hence the need for pow
erful, integrated PSE development frameworks is a high
priority. The PPK project methodically develops aPSE
model and then provides a complete framework consisting
of a soflware bus, an electronic notebook, an object man
ager, a customizable language kernel, a software compo
nent builder, a component browser and an application
composer.

The experience in building the PDELab PSE has illus
trated the power and flexibility of the PPK architecture.
While more implementation is pending, we feel confident
that PPK is a significant step forward towards full func
tional PSE development frameworks.

11 References

[1] l.R. Rice and R.E Boisvert, "From Scientific Software
Libraries 10 Problem Solving Environments," fEEE ComplI
Ia/iona/ Science and Engineerillg, 3 (3), IEEE Computer
Society, CA, USA, 1996.

j2l S. Wecrawarana, "Problem Solving Environmen1.'l for Par
tial Differential Equation Based Applications," Ph.D. The
sis, Dept. of Computer Sciences, Purdue Universily, 1994.

[3] hltp:llwww.microsoft.com/dcvonly/strategy/olclole.htm
[4] hllp:llwww.cilabs.orgl
[5] hltp:llwww.corba.org/
[6] W.R. Stevens, UNIX Network Programming, Prince Hall,

1990.
[7] hllp:llwww.nellib.orglmpi!
[SI V. Pax.son and C. Sallmarsh, "Glish: A User-Level Software

Bus for Loosely-Coupled Distributed Systems." Proc. Win
ler 1993 USENIX Conference, Usenix Association. 1993,
pp. 271-276.

[9] http://www.exlreme.indiana.edufpsewarcl
[10] N. Borenstein and N. Freed, "Multipurpose Internet Mail

Extensions (MIME) Part One: Formal of Internet Message
Bodies," lnreme/ Reqllest for Comments 2045, htlp:1I
www.grnpheomp.com/info/rfclrfc2045.hlml. 1996.

[II] I. Oustcrhaut, "Tel: An Embeddable Command Language,"
Proc. Willler 1990 USENlX Conference, Usenix Associa
tion, 1990, pp. 133-146.

[12J hllp:/lwww.nelscapc.comlcng/javascript!
[13J S. Weerawarana, E.N. Houstis, I.R. Rice ct. al., "PDELab:

An Object-Oriented Framework for Building Problcm Solv
ing Environments for POE Based Applications," Proc. 2nd
Annual Objecl-Orienled Numerics Conference, Rogue
Wave Soflware, OR, USA, 1994, pp. 79-92.

	The Purdue PSE Kernel: Towards a Kernel for Building PSEs
	Report Number:
	
	Authors

	tmp.1307986960.pdf.JQORL

