
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Scientific Computing via the World Wide Web: The Net//ELLPACK Scientific Computing via the World Wide Web: The Net//ELLPACK

PSE Server PSE Server

Shahani Markus

Sanjiva Weerawarana

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
97-022

Markus, Shahani; Weerawarana, Sanjiva; Houstis, Elias N.; and Rice, John R., "Scientific Computing via the
World Wide Web: The Net//ELLPACK PSE Server" (1997). Department of Computer Science Technical
Reports. Paper 1359.
https://docs.lib.purdue.edu/cstech/1359

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972325?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SCIENTIFIC COMPUTING VIA THE WORLD WIDE WEB:
THE NETIIELLPACK PSE SERVER

Shahani Markus, Sanjiva Weerawarana
Elias N. Hous{is & John R. Rice

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD-TR 97-022
March 1997

(Revised June 1997)

Scientific Computing via the World Wide Web:
The Net llELLPACK PSE Server

Shahani Markus, Sanjiv8 Weerowarana, Elias N. Houstis and John R. Rice
Department of Computer Sciences

Purdue University
West Larayette,lN 47907-1396, USA.

{markus,saw,enh,jrr}@cs.purdue.edu

Abstract

The World Wide Web is now lhe de/acto environment for providing (electronic) informa
lion 10 the worldwide user community. With the availability of programming languages
like Java, Web browsers now can handle documents with programs embedded in them.
This new functionality presents opportunities for scientific computing on the World Wide
Web while its realization requires addressing several new research issues including user
inteiface alld prorocol design, legacy software encapsulation, security, software delivery
in directly usable form, alld networked compll1ationo{ servers. In this paper we address
these issues in the context ofPDE (panial Differential Equation) network computing sup
ported by the well known problem solving environment (PSE) IIELLPACK and its net
worked, Web accessible, counterpart which is referred throughout as the Net /IELLPACK
PSE. Using Net IIELLPACK one can solve complex PDE problems using any Web
browser thal supports Java applets. The design of Net IIELLPACK includes a Java applet
that serves as the graphical user interface, a stateful text-based protocol, and Net IIELL
PACK server(s) running on some machine(s) anywhere on the network. In addition to its
native protocol, the Net IIELLPACK servers also support the Web HyperText Transfer
Protocol (HITP). This approach allows the reuse of existing public domain or proprietary
applets to visualize or post-process the computation results. We present and justify the
overall design of the system and present some data on solving a partial differential equa
tion problem via the Web to illustrate the effectiveness of the Net IIELLPACK architec
ture.

1.0 Introduction

High performance computing and the Internet make it possible to greatly increase the problem solving power that a
scientist or engineer has at his finger tips. Examples of this are reusable software components, monolithic problem
solving systems, software testing systems, and widely disbibuled compute servers. This power is not easily accessi
ble now to the application scientist or engineer because using these resources requires skills and knowledge that most
do not have.

Enabled by advances in hardware, networking infraslructure and algorithms, highly compute intensive problems in
many areas can now be successfully attacked using networked scientific computing. In the network-based paradigm,
vital pieces of software and information used by a computing process are spread across the network, and are identi
fied and linked together only at run time. This paradigm is in contrast to the current software usage model where one
purchases a copy (or copies) of a general-purpose, monolithic software package for use on local hosts, possibly dis
lributed on a collection of local hosts. With network-accessible software repositories and networked computing, the
view of software changes from a product to a service. A network-accessible repository provides access to up-to-date
copies of software components on an as-needed basis, so called "disposable software." With networked computing,
the software developer provides a computing service to interested parties over the network. The raw computing

power to run this service may be purchased from the software service provider, provided by lhe end user, or even pur
chased from a third party computing service provider. The information needed to use this service might be available
only from disparate sources.

The disposable software and networked computing models do not apply to all computing services; basic operating
system and network access software, as well as low-level mathematical routines that are luned for the panicular
machine architecture, will be permanently resident on the user machine. One advantage of the networked computing
model is lhat as software is improved upon by the software provider, there is no need to release new versions and
upgrades. The user simply sees an improved service. The analogy could be to the phone system - changes in the soft
ware of lhe local switch are completely transparent to the user, save for the availability of additional or enhanced
functionality. Similarly, the service provider can upgrade the hardware without affecting the user. We envision that
the network-based paradigm of software usage will eventually become fully automated and effectively transparenlto
the user. It is the aim of this research effort to demonstrate this in the context of PDE computing and problem solving
environments (PSEs) utilizing the existing Web technologies and infrastructure.

Realizing Web based computing involves several research issues including user interface and prolOcol design, legacy
software encapsulation, security, software delivery in directly usable form, and network computational servers. In this
paper we address these issues in the context of the well known PSE IIELLPACK [I] and its Web enabled counterpart
referred throughout as Net/IELLPACK.

A PSE is a computer system that provides all the computational facilities necessary to solve a target class of problems
[2]. It uses the language of the target class of problems and provides a "natural" user interface, so users can run them
without specialized knowledge of the underlying computer hardware or software. A PSE exploits modern technolo
gies such as interactive color graphics, powerful processors, and networks of specialized services. The main design
objective in Net IIELLPACK is to provide the IIELLPACK interface to remote IIELLPACK users in an effective,
secure and efficient manner.

Once the Net IIELLPACK user has selected a solution path through interactions with IIELLPACK, one or more
library software modules need to be downloaded from a repository and used locally, or the problem is sent to a com
putational server wilh an implementation of that algorithm. In both cases, there is a high-level interface between the
PSE user interface and the library routines it invokes. In the case of downloaded software modules, there is also a
low-level interface between the library routines and the low-level machine-dependent math and (in the case of a par
allel machine) communications facilities that are resident in the user's local computing environment. In order for the
network-based computing paradigm to succeed, both low-level and high-level library interfaces must be standard
ized. Standards permit the effort of developing and maintaining bodies of mathematical software to be leveraged over
as many different computer systems as possible. This issue is addressed in the context of IIELLPACK interfaces [I].

One of the biggesl obstacles that applications programmers face in using library routines downloaded from software
repositories is the correct installation of these roulines. These routines lypically need to be compiled and linked with
the user's program and with local libraries before they can be executed. Users often spend hours to days trying to run
down unresolved references or name conflicts that occur during the compile and link process.

When software is to be used only occasionally, or when a software library needs the performance or specialized facil
ities provided by a specific platform that is not available to the user locally, it is advantageous for the user to send his
problem and data to a remote computational server that can perform the computations and return the result over lhe
nelwork. Remote computational servers are also useful for software that is difficult to install or is frequently updated,
or that authors do not wish to distribute for other reasons. Users may also find paying for time on remote computa
tional servers to be more economical than purchasing one or more high performance platforms themselves.

In the work reported here, we concentrate on the compute server approach: once the solution algorithm is determined,
lhe solution computation is performed on a remote server. The user interaction with the compute server is entirely via
existing Web based technologies. In an on-going collaboration with the National Institute of Standards and Technol
ogy and the University of Tennessee-Knoxville, the problem of transporting code from software repositories on to the
user's machine in directly usable form is investigated.

2

I

"

There are many other projects that attempt to address the issues related to scientific computing under the network
based or network-centric paradigm. The NEOS optimization system [3] provides electronic mail, Web or customized
X-based tools as interfaces for its NEOS server, providing compulational resources and access to state-of-the-an opti
mization software. Utilization of the graphical user interface for NEOS requires the explicit downloading and instal
lation of the submission tool. The computational results are available via the Web or electronic mail. There are many
sites that provide access via the Web to servers running specialized mathematical software systems such as Mathe
mal..ica [4], Maxima [5J and Maple [6]. However, at these sites the user can internct only in a non-session oriented,
request-response manner, making it difficult to accomplish any complex problem solving tasks. The Web IIELL
PACK system [7] provides a session-oriented interface to a remote flELLPACK computational server. However the
performance of the remote user interface over a wide area network is poor. In the Net flELLPACK system, we attempt
to address all these problems and provide viable solutions utilizing currently available Web technologies and infra
structure.

This paper is organized in 6 sections. The software architecture of flELLPACK is presented in Section 2. In section 3
we present four different scenarios for building Web-based PSEs by Web enabling legacy components of existing
PDE software. Section 4 presents an overview of the Web technologies needed to design and implement Web-based
PSEs, particularly Net fIELLPACK. Section 5 defines the Web computing research issues associated with the realiza
tion of Web based PSEs. The software architecture and components of Net flELLPACK are presented in Section 6. Its
accessibility together with some examples is outlined in Section 7. The justification of network computing is summa
rized in Seclion 8.

2.0 IIELLPACK: A Distributed PDE Problem Solving Environment

flELLPACK is a problem solving environment for solving PDE problems on high performance computing platforms
as well as a development environment for building new PDE solvers or PDE solver components. It currently supports
the solution of steady-state and time dependentfield alldjluid mechanics 2-D and 3-D POE problems.

The main design objective of IfELLPACK is to create an intelligent software environment where both sequential and
parallel PDE solvers can be implemented in a reasonable time. IIELLPACK presents application users with a high
level environment to abstractly specify POE problems and build solvers for them using intrinsic solver components.
Knowledgeable users apply ffELLPACK's solver development facilities to build new solvers which are then available
as inlrinsic solver components for application users.

The software architecture of the system is depicted in Figure 1. It consists of four layers of software. The top layer is
a collection of graphical tools supponing the POE problem and solution specification and all the required pre- and
pOSl- processing phases. Each tool consists of a GUI editor and some are supported by appropriate libraries to sup
port their computational objective. The outcome of the usage of these tools is saved in the IfELLPACK main session
editor in some predefined high level language. This language can be used to specify both the PDE problem and algo
rithm including the pre- and post- processing computations required by the PDE solvers. The third layer consist~ of
the scripting code required to make and execute the specified POE computation and define the exec/lfioll plaljorm
which can be any machine or a cluster of workstations in a LAN facility. An instance of the user interface to this soft
ware layer, called execution tool, is depicted in Figure 4. This tool supports the execution of ffELLPACK programs on
MPI and PVM virtual parallel machines running on clusters of workstations, nCUBE II, and Paragon.

The fourth layer in Figure I suppons well-defined data structures, functions, and file formats on which the fIELL
PACK library has been implemented. This layer allows users to easily integrate their own specialized solvers and
solver parts into the environment and "foreign" PDE solvers. The new code must be modified to access the required
data from ffELLPACK data structures. Its name and any user-specifiable parameters are then placed in the IIELL
PACK software repository, and the modified code is installed in the flELLPACK library system. In this way, "soft
ware pans" such as mesh generators, discretizers, and solvers can be added to the system with minimal effort. Some
software parts with complex input requirements take significantly more effort to integrate. For example, some are
defined through FORTRAN functions. flELLPACK can generate these functions through the graphical interface,
using its symbolic manipulation capabilities which are available through the equation specification tool.

3

Visualization
Tools

Data Analysis
Tools

Performance
Analysis Tools

Post-I?rocessing
EnVironment

:::'::E~ecUtlorC;:;:: ;' '
;:: Envlronemnt'·,

Execute
Tool••~ .

~ •...........~

Algonthm
Editors

Very High Level POE Language Layer

PDE
Solution

Specification

I PYTHIA I·.....
~~ i

Solulion
Framework

Specification

Equation
Editor

Geometry
Edilrors

HI

.. POE Framework
Specification

.. Inilial &Boundary .::
Condition Edilors ...

IIELLPACK
Pcoiiramming
EnvIronment

IIELLPACK
Infrastructure

I...-_JI

Domain
Discretizalion

Libraries

Geometry
Decomposition

Ubraries

Procedural Language layer

..
::: Pellpack Solver

Libraries
Knowledge

Bases
.. Foreign Interface
,- libraries

System
Infrastructure

...--

[~IMAX===--=iIMAI·
Geometry
Modeling
Ubraries

:1

·Foreign~

System
Lioraries

::; Parallel
Communication

Libraries

XToolkit, Motif, Mesa Libraries

Data
Visualization

Ubraries

FIGURE 1. The software architecture of IIELLPACK.

The libraries of solvers available in IIELLPACK include both finite difference and finite element solution schemes. In
addition 10 the solver components that we have developed locally, several publicly available PDE solvers have been
integrated into IIELLPACK. Some of the "foreign" systems we have integrated, include VECFEM [8], FIDISOL [9],
PDECOL [10], PARC [II}. For solving the PDE discrete system of algebraic equations, IIELLPACK includes several
of the widely used linear system solvers including ITPACK, UNPACK, SPARSKIT and NSPCG. IIELLPACK sup
pons three different parallel domain decomposition methodologies [12]. One of the domain decomposition
approaches, including a tool for controlling it, allows the user 10 reuse the sequential discretization solvers and to
compute in parallel the PDE discretization systems. For this we have parallelized the ITPACK library and imple
mented it using VERTEX, MPI, PVM, PICL and PARMACS communciation libraries [12]. These parallel libraries
have been implemented for distributed memory parallel machines as well as networks of workstations. The code has
been ported to and tested on an nCUBFJ2, an Intel iPSC/860, an Intel Paragon and on Ethernet and ATM based work
station networks. In addition we have integrated the MGGXX [13] library running on the nCUBE II and the integra
tion of several other parallel linear solvers is underway.

,

I
.I
I

,

;-;,;: -.,.- ,_ _.-:":./ -..-u...-:"=="::;;~,-',,., .. ," "~ .
•

lill
FIGURE 2. The IIELLPACK session editor and the equation specification edilor..

FIGURE 3. The IIELLPACK boundary specification editor, mesh generator and solution visualizer.

5

l

FIGURE 4. The IJELLPACK Execute Tool

3.0 Web-based Problem Solving Environments

While many of the issues and solutions discussed above are applicable to general Web computing systems, there are
some thaI need to be addressed in panicular towards the realization of scientific PSEs on the Web. We consider PSEs
with the following slructure: A GUI for pre-processing, a run-time syslem consisting of a driver program which
invokes various libraries for the scientific problem "solution" and a GUI for post-processing. Since both the pre- and
post-processing Gills are similar in structure, we consider those to be all part of one Gill environment (Figure 5).
The driver program consisrs of a collection of calls to library routines with data passed belween the routines via the
software bus in the driver. For the simplest case, the software bus is the global and local variables (memories) of the
driver program. Based on this model for PSEs. we identify four different scenarios for building Web-based PSEs by
Web enabling legacy components of existing PSEs.

The first approach is 10 take the PSE and make it available over the Web in its entirety (Figure 6). Web IIELLPACK
[7] is an instance of this scenario. The Web IIELLPACK service allows remote users to access and use the IIELL
PACK PSE in a safe and secure manner. The re-engineering required was mainly in building a suitable security mech
anism to implement a user account based system for remote access. Feedback from this project has led us to conclude
thaI while Ihis approach is feasible on a high speed local area network, it is not practically viable due to very slow
response speeds of graphical software operating over the Internet.

GUI

Driver Program

./
Da~liiiiiiiiiibraries

FIGURE 5. Model for Scientific PSEs

6

Service orovider

GUT

Driver Program

~b ... ranes Dajiii

FIGURE 6. Distributed users accessing a central senrice

The second approach is to use a networked software bus to distribute the libraries to multiple service provider sites.
We call such libraries virtllallibraries. This scenario is illustrated in Figure 7. A networked software bus could be
implemented by using either standard network communication technologies such as RPC [14] or COREA [15] or by
incorporating a proprietary or custom built network communication system such as DCOM [16] or the PSEBus soft
ware bus [17]. The realization of virtual libraries would also require the use of intelligent software agents. They
would be aware of the functionalities, characteristics and interfaces of the remote libraries and would provide assis
tance in accessing and linking these virtual library modules. High perfonnance computation servers would be utilized
to remotely execute specialized library modules. This approach can also encompass the goal of software delivery in
directly usable form. The directly usable software in this case would be virtual1ibrary modules that may be either
statically or dynamically linked to a program on the remote user's machine. These modules may be dowloaded onto
the user's machine during compilation or at runtime. The NetSolve project [18] which is being jointly developed by
University of Tennessee and Oak Ridge National Laboratory is an instance of this scenario.

The lhird approach is to distribute components of the PSE GUI to multiple service provider sites. GUI components
may include PSE tools such as domain builders, mesh generators and scientific data visualizers. This approach may
involve the distribution of parts of the driver program to these sites as well. The remote user would access the distrib
uted GUIs for problem specification andlor post-processing. A driver program at the central service site would coor
dinate and gather the problem specification data, solve the problem, and provide access for distributed post
processing of the solution data. The problem solving computations may be done on high performance parallel

Service provider

GUT

Driver Program

~braries ~brarieS -:...:.'-V

Service Provider Service Provider

FIGURE 7. Distributed useI'S accessing a cenlral seI"Vice which uses virtual libraries.

7

Service nrovider

Gill

Driver Program

';jc:lillfillf!~l~~t~~~~~~ill;3Gill I
I Driver Ila \. User I Driver I;a

Service Provider Service Provider

FIGURE 8. Distributed users accessing distributed PSE GUI component services coordinated by a
central service.

machines or may be distributed over a virtual nelwork of cooperating compute servers. This scenario is illustrated in
Figure 8. This approach would also require lhe use of inlelligentsoftware agents. They would assist the user in select
ing and locating the appropriate Gill component sites for problem specification and post-processing as well as nego
tiate communication protocols between components. They would also intelligently provide any data filtering
necessitated by various legacy components adhering to different formatting standards and would transparently move
the pertinent data to the target compute servers. The Net IIELLPACK system described in this paper is an instance of
this scenario.

The final approach is a fully distributed, fully collaborative, multi-user, virtual library based, networked, Web acces
sible intelligem PSE environment where one can freely combine components from participating service providers to
analyze and solve the problem at hand. On-going work at Purdue and elsewhere is moving in this direction.

4.0 Web Infrastructure

The World Wide Web is a distributed information system build on a hypertext model where pieces of information are
linked to one another in a nalural way. Information is provided to lhe Web by Web servers which communicate with
clients seeking information (browsers) using the Hyper Text Transfer Protocol (HTIP). Information (documents) on
the Web is identified I addressed by Uniform Resource Locators CURLs). The Web also now subsumes other informa
tion sources such as files made available to the network via the File Transfer Protocol and lhe Usenel news system.

The World Wide Web has now firmly established itself as the defacto standard for publishing (electronic) information
to lhe global community. Web browsers, the software that provide point-and-c1ick type graphical inlerfaces for navi
gating the Web, have evolved recently to go beyond being just Web browsers: they now seamlessly integrate other
networked communication I interaction protocols and media such as file transfer, Usenet news and electronic mail. In
addition 10 slatic content, the Web also supports dynamically generaled conlent; Le., information in a "document" that
is generated just when someone requests such a virtual document. In a separate dimension, the evolution of execut
able content has brought forth a new sense of dynamism to the Web: documents can now have programs embedded in
them. Executable content allows a document author to embed a program written in some portable language under·
stood or supponed by the client browser in the document itself. When a client visits the document, the program is
transparently downloaded into the client's browser and executed by the browser. Obviously security considerations
are the primary issue here: blindly downloading and running others' programs is clearly a high-risk activity. How-

8

ever, barring security implications, such programs allow users to perform useful computations on the Web by down
loading pre-compiled programs into their Web browser and running them with appropriate input.

In 1995 Sun Microsystems announced the release of the Java programming language [19], a language designed spe
cifically for writing executable content so that someone can safely download it and execute it. Java has since gained
wide acceptance and is now available on most hardware and software platforms. While Java does not solve all the
security problems, it provides a solid foundation upon which applications and client browsers can build the level of
security they desire.

4.1 HTIP: The Web Communication Protocol

The primary protocol that drives the Web, HlTP, is a simple, text-based, request-response type stateless protocol. A
browser requests a documem from an HTIP server by giving a URL and the server responds to that request by pro
viding the document. The document is typed using the Multipurpose Internet Mail Extensions (MIME) type system
and browsers use this type to invoke the appropriate handler for the infonnation received from the server. The request
made by a browser may result in a program being executed on the server to generate the infonnation requested - this
allows a degree of dynamicism where the requested information may be generated dynamically. Programs executed
by the server interact with the server via the Common Gateway Interface (CGl), a standard which specifies how the
server provides input to it and how the program should provide output to the server.

HITP has a flexible challenge-response type security model to control access to documents on the Web. When an
access comrolled document is requested, the server refuses the document and requests that the browser provide a
response to a given challenge and resubmit the query. Multiple security schemes can be provided with the core
requirement being that both the client and the server must suppon them. The protocol itself defines a security scheme
called "Basic" where the server issues a challenge to which the client must respond by providing a user name and a
password as the authorization for a document. Some servers also suppon other fonns of access control, such as
(dis)allowing requests from cenain domain names I IF addresses, but these are server specific and nm part of the
HTIP protocoL

4.2 Executable Content

While the ability to have the server run programs in response to a client query is a fonn of Web computing, the pri
mary enabling technology for truly interactive Web computing is executable content. The idea behind executable con
tent is simple: embed a program within a document and when a client browser visits that page the program will be run
automaLically by the browser on the client's machine.

Many issues must however be resolved to fully realize executable content in an efficient, safe and secure manner.
Given that browsers may be running on a variety of hardware I software platfonns, the programs must be wriHen in
an extremely portable language in order for them to be useful to a wide audience. Interpreting high level languages is
a common solution to portability questions, but efficiency is a primary concern too: if the language is not run very
efficiently, then the usefulness of the language to write non-trivial applications will be limited. Security is a crucial
issue: if a program is run automatically by just visiting some Web page, how can the client ensure the program will
not perform any malicious activities? Several languages I environments for executable content have been developed
recently [19][20][21][22][23J, but the Java programming language and environment stands out both in tenns of the
language itself and in tenns of the wide support it has received in a very short time.

4.3 The Java Programming Language and Environment

Java is a new programming language developed by Sun Microsystems, Inc. and was first released to the public in the
summer of 1995. Sun describes Java as a simple, object-oriented, distributed, interpreted, robust, safe, architecture
neutral, portable, high performance, multithreaded, dynamic language. Syntactically it is very similar to C++ and
hence immediately familiar to many users. Java programs are executed by compiling the source into bytecodes which
are then interpreted by the Java vinual machine. Since Java bytecodes are defined in a portable, architecture-neutral
manner, any Java program is immediately and automatically ported to any platform to which the Java virtual machine

9

I
I

has been ported. The bytecodes and me virtual machine provide a fairly efficient execution environment for Java pro
grams. The language includes support for distributed computing and for graphics and graphical user interfaces.
Object-oriented and multithreadedness as well as the ability to dynamically extend the run-time system makes Java
powerful environment for Web computing.

Most Web browsers now have the Java vinual machine embedded in them. Barring implementation bugs, the embed
ded Java vinual machine enforces a set of strict security rules which prevent a downloaded program (applet) from
adveThely affecting the client's machine or from communicating with Internet hosts randomly. Some of the security
measures enforced include disallowing file JiG on the client machine and disallowing network access to any host
other than the host the applet was downloaded from. Downloaded programs (bytecode) are also checked for correct
ness to ensure thaI they follow the language rules before they are executed by the virtual machine.

5.0 Web Computing: Issues and Solutions

As described in lhe above section, the Web infrastructure and the advent of executable content provide a mechanism
to develop Web computing systems. We have chosen Java as the means of realizing executable content, mainly due to
its current popularity within the Web community. In this section we consider the research issues in designing new
software and re-engineering legacy software to make them available as Web computing systems. While some of the
solutions to these issues are dependent on the features and restrictions of the Java environment, most are general.
Since security is an underlying concern in all of the other issues, we do not treat it separately but treat it along with
the others. Also, while some of the issues and solutions are targetted towards scientific problem solving in particular,
others are of general scope.

5.1 Architecture of Java-based Web Computing Systems

Java and Java-enabled Web browsers provide a mechanism to write programs that users anywhere in the world could
execute safely using any hardware platfonn. However, what is not clear is how to architecture new software and how
to re-engineer existing software to make them available in this fonn. The Java-based Web computing environment is
basically a client-server world where the client is a Java applet that is downloaded into a Java-enabled Web browser
and run within it. The Java securilY framework constrains the client (applet) to interact only wilh the Web server host
from which it was downloaded.

The simplest design for a Web computing system is to fe-write the entire system as an applet. However, there are
many reasons for this being a bad idea. The applets cannot perform file JiO on the local host. Hence, while the applet
can run and do many computations, it cannot save any state or load any state. Clearly for non-trivial applications this
is an unrealistic conslraint. In addition to applets being JiO constrained, if an entire system were to be rewritten as an
applet then the latency in downloading the system into the browser would be prohibitive. However, browser caching
will all but eliminate this problem after the first time, so the initial latency may be somewhat acceptable. On the other
hand, for all the advantages of Java and Java-like languages, litere is a significant performance hit in even the most
optimized Java code; typically a factor of at least 2 when compared to compiled imperative languages such as C and
FORTRAN. In non-trivial applications a faclor of 2 performance loss in the compute intensive parts of the application
would be unacceptable. Hence, it is clear that one generally should not have compute-intensive components of a sys
tem be downloaded and run directly within the browser; some separation of user interface from the compute-intensive
portions of an application is needed. Web computing systems must therefore follow a client-server architecture with
an appropriate protocol for communication between them.

5.2 Client-Server Communication Protocol

There are both advantages and disadvantages in choosing the Web protocol, HTI'P, as me communication protocol
for a client-server Web compuling system. A significant advantage is in the ease of use of me system across a Web
traffic compliant computer network firewall. In the case of a customized communication protocol, additional soft
ware would have to be installed on the gateway to facilitate communication across the firewall or a suitable method of
bundling lite custom protocol within the HTI'P protocol would have to be devised. On the other hand, since the client

10

(applet) cannot maintain any state, all application state must be maintained by the server. Because HTrP is a stateless
protocol, if one were to use the HTTPserverand HTTP for communication then state would have to be encapsulated
into the messages themselves. Also, since HTrP is a request-response model, each communication between the client
and server would effectively be a different connection, which also requires that significant state be transferred in each
message. Messages would be acted upon in this scheme by the HTrP server invoking programs on the server
machine. While this approach is a feasible one to implement a Web computing system, it is clear that all client-server
communication will need to be shoehorned to fit the HTTP mold. The security model in HTrP also does not fit very
well with the needs of applications. The alternative is to use a custom server and a private protocol between the client
and the server along with a custom security model.

When designing a private protocol for communication between the user interface and the remote computational com
ponents, many issues need to be carefully considered. For instance, both stateless and stateful protocols have their
merits and demerits and must be evaluated on a case-by-case basis based on the frequency and granularity of commu
nication between the two entities as well as olher factors. For the Net IJELLPACK case, assuming that all compute
intensive components are found on the server and that the entire user interface is the client, the communication
between client and server would occur when defining a problem, when defining a solution scheme and when analyz
ing a computed solution. Some of the problem specification components involve heavy computing, and hence would
require server communication. Some problem components are small (a short string) while some are quite large (sev
eral hundred kilobytes). Also, problem components may depend on one another. Based on these observations, we
chose a stateful protocol for the Net IIELLPACK system.

Another consideration is whether to use a text-based protocol or a binary protocol. Text protocols (for example,
HTfP) have several benefits including human readability, hardware platform independence and ease of testing (using
telnet). The cons for text protocols include cost of parsing (messages must be parsed), inaccuracy of representing
numerical quantities (printing numbers to ASCII and reading them back may change some bits in the number) and
inefficiency of space usage for numerical data (for better number representation numbers must be printed using a
large number of digits (bytes)). The pros for binary protocols include fast parsing and efficient and accurate number
representations while cons include debugging difficulties and ponabilily problems (differences in binary representa
tions between heterogenous hardware). This design choice must also be evaluated on a case-by-case basis. For the
Net IJELLPACK case we chose a text-based protocol as we felt that the benefits outweighed the costs. The biggest
negative (cost and inaccuracy of representing numbers) was not a real concern since many of the existing pieces of
software we wanted to reuse required a text representation of the data.

Protocol security is a very important issue: the communication protocol must allow applications to provide the
desired level of security to users. Since in our architecture state is maintained at the server which may be simulta
neously accessed by different users throughout the world, it is important that users be separated from one another.
The server uses an account model with a login identifier and a password to separate one user from another and also to
provide security. We use an Internet-unique string (such as one's e-mail address) as a login identification for each
user. The user is allowed to specify a password when the account is first created. Later accesses require this password.
Authentication is once per session; i.e., after a user authenticates himself or herself, the authentication is valid for the
duration of the session. A session is defined as the duration of a computation and may be named so that it can be
returned to later (with valid authentication). To improve security we will eventually use authentication certificates in
conjunction with some standard certificates server.

While an ad-hoc communication scheme such as this is certainly a feasible approach for implementing large scale
Web computing systems like Net IJELLPACK, the approach that best utilizes today's technologies would be to use a
Common Object Request Broker Architecture (CORBA [xxx-corba]) compliant Object Request Broker (ORB) for
the client-server communication. Using such ORBs (which intrinsically use standard binary protocols) would elimi
nate some of the negatives of binary protocols (since CORBA defines a machine independent type system with which
types and interfaces may be defined) and also significantly ease the development effon. 1\vo Java-based CORBA
compliant ORBs are currently available (HORB [xxx-horb] and JOE [xxx-joel). A related feature of Java, the Java
Distributed Object Method (IDOM) [xxx-jdomJ and the Remote Melhod Invocation (RMI) [xxx-rmi] scheme, is also
available. However, as these systems are still in their early stages of evolution we have chosen not to use them in the
current version of Net/JELLPACK.

II

5.3 Designing Applet User Interfaces

Large scale software systems lend to have large, complex Gills for controlling and manipulating them. In addition to
the cosl of downloading such large GUIs, it is not clear that the original GUI design would be appropriate for Web
applications. The Gill building facilities in Java (and similar languages) do allow one to build user interfaces that are
comparable to ones built using X or Microsoft Windows. But OUf intuition is that an applet downloaded from the Web
should not have the same look and feel as an installed application on one's machine. Due to the dearth of large scale
Web computing systems today, it is difficult to evaluate the validity of this intuition. We expect to use the NeIIIELL
PACK system as a testbed for user interface design ideas after it is fully deployed.

5.4 Reusing Existing Components

An important feature of systems such as NetllELLPACK that build Web compuling systems from existing software is
reuse of legacy code from the original system. Since in the Web enabled version the user interface will run on lhe cli
ent end, that part must clearly be re-engineered and re-developed using the GUI capabilities of the language I envi
ronment used. For computational components, the custom server must be able to invoke legacy code components,
eilher locally via subroutine calls or remotely via remote invocation techniques. This requires lhat the server be aware
of the interfaces (0 these legacy components.

Similarly, there are hundred and perhaps lhousands of applets being produced by developers the world over that one
must not preclude a Web computing system from using. The most useful of these from a scientific computing stand
point are probably scientific data visualization applets. Such applets typically display a given data set and support
interactive manipulation as well. The data sets are given to these applets as URLs, rather than as files in the typical
application scenario. However. in the design of Web computing systems we advocated in Section 4.1, allihe state is
maintained by the server which used a custom protocol to communicate with the applet. This would preclude using
any applets which require lhe data to be available on the Web unless the server supported the HITP protocol as well;
i.e., the server must have a facility for exporting some or all of its data 10 the Web.

6.0 Net IIELLPACK

Net IIELLPACK is a Web compuling system based on the IIELLPACK PDE problem solving environment. This Web
computing system was designed along the guidelines discussed earlier. The design incorporales lhe security and other
constraints of the Java programming environment. The current prototype implementation allows the user to graphi
cally define a PDE problem domain, textually specify symbolic equations for the PDE operator, boundary condition
and true solution, define the mesh/grid generator parameters and select an appropriate discretizer, indexer and linear
solver. In lerms of functionality, the version of Net IIELLPACK described here supports solving 2-dimensional, ellip
tic problems sequentially using available solvers only. The java based IIELLPACK graphical inlerface applet pre
sented to the user, consists of the minimum functionality necessary to define a PDE problem 10 the flELLPACK
compute server. This minimizes the size of the java classes that the client applet needs to download from the server.

Our on-going work is addressing issues in using multiple Net IIELLPACK servers 10 form a virtual parallel machine
to run parallel solvers as well as issues in allowing users to introduce their own solvers to the system as is possible
with the IIELLPACK PSE. The limitations on the types of problems solved (i.e., restricting to only 2D problems) is
not a lechnical one but a practical one; we do not have the person-power to produce a complelely general version of
NetIIELLPACK.

The architeclure of lhis syslem includes Java-enabled Web browsers, Net flELLPACK servers (NetPPDs), a custom
communication protocol (NetPP) and a slandard communication protocol (HTTP). When a user initially visits a Web
site offering the Net IIELLPACK service, a Java applel with a choice of NetPPDs at various geographic locations is
downloaded and presenled to the user. The user can either select a preferred server, or the applet may suggest a selec
tion based on the network connectivity distance between the client and a potential server. Once a NetPPD is selected,
the Net flELLPACK interface applets are downloaded to the Web client from the selected server's HTTP compliant
component. The Net IIELLPACK interface (GUI components) use the NETPP protocol 10 communicate with the Net
PPD server during the problem specificalion and solulion stages. The user's solution data is made available via an

"

HTfP compliant NetPPD component, pennitting for instance, the use of foreign data visualization applets for solu
tion analysis. In the rest of this section we describe each componem of this architecture in more detail.

6.1 The Net IIELLPACK Web Server

The Net JIELLPACK Web server offers users a selection of Net flELLPACK servers located at many sites worldwide.
This selection is dynamically configurable to permit the addition of new servers and the deletion of out-of-service or
inaccessible servers.

When a user visits this website and selects a NetPPD location, il invokes a cm script on the Net JfELLPACK Web
server. The script sends an HITP redirect response which forces the client Web browser to contact the selected Net
PPD server using the HTIP protocol. When initially contacted by a client, the HITP compliant NetPPD component
responds with a NelPP login applet. The NelPP client applet and NetPPD establish a reliable stream connection and
communicate using the NetPP protocol.

6.2 NetPP: The Net IIELLPACK Communication Protocol

The NetPP communication protocol is a simple, text-based, request-reponse type, session-oriemed, stateful protocol.
Although it is broadly similar to the HTIP protocol, il is designed for communication over a single reliable byte
slream connection. The protocol is based on the interaction pattern between a user and a PSE. It is designed to shield
the user as much as possible from some of the inherent problems associated with remote applications: slow response
time, bandwidth limitations, loss of connectivity and client memory limitations. It is also designed to protect the
server host from any potentially malicious intrusions.

Each authenticated user is assigned a non-hierarchical directory space on the NetPPD server host. After successfully
logging in, the remote user's client applet generates a NetPP request-response sequence with the NetPPD server to
setup a computation session. The user specifies a session name to either start a new problem solving session or to
restart a previously saved session. A subdirectory within the user's space on the NetPPD server host is associated
with each session.

For security purposes, the NetPP protocol does not permit any indiscriminate browsing of the user spaces on the
server host. The protocol also prevents any downloading or uploading of files between the client and user space on
the NetPPD server host. However for solution analysis, remote users are allowed to download solution data files via
an HTfP compliant NetPPD server component. Supporting the HITP protocol in this manner requires precautionary
security measures. Web security protocols are meant for human interaction and are not designed for Web computing
system client interactions. 1l is also unintuitive for a client applet to request HTfP security information solely for the
solution analysis phase while the other problem solving phases interact with a different security model. Our solution
to this security concern is to use the private. secure NelPP protocol to leverage the security in the HTTP protocol
compliant NetPPD server components. To this end, the NetPPD server creates a random path containing the solution
data and communicates this path (URL) to the client applet using the NetPP protocol. The client may then supply this
URL to foreign data visualization and analysis applets and assume that the supplied data is safe. The user's solution
data is made available in this manner only as long as the user is logged on to the NetPPD server. Onee the user logs
out, this temporary location is made inaccessible. The NetPP protocol also provides users with the capability of
selecting and specifying the format of the solution files that are to be made Web accessible. For instance, when a cli
ent sends a NeLPP request for a solution file in a panicular format, the NetPPD server performs the requisite conver
sion, makes the file Web accessible and sends a response message back to the remote NetPP client with the
corresponding temporarily accessible URL.

To address the problem ofslow response time, the NetPP communication protocol has been designed to minimize the
interactions between the remote client and the server. For instance in the PDE problem specification phase, communi
cation between the client and server occurs only when the user presses a submit bunon after each definition stage.
The user can request periodic checkpointing to allow for easy recovery in the event of a network failure. If requested,
checkpointing occurs after each client-server communication stage and the client's current state is saved on the Net
PPD server host in the architecture-independent XDR format (xxx). PDE problem specifications often result in a
large amount of data. Due to possible bandwidth limitations and slow connectivity, the NetPP protocol has been

13

I

designed to refrain from the movement of large data files to and from the client and server. For example, when the
server generates a mesh for a user-defined PDE domain, it exlracls and transmits only the control points neccessary
for visualization back to the client. The client applet then reconstructs the mesh structure and displays it to the remote
user.

6.3 NetPPD: The Net IIELLPACK Daemon

The IIELLPACK compute server (NetPPD) is a stateful, concurrent server with the ability to handle muh.iple NetPP
clients simultaneously. NetPPD provides the imponant interface between remole NetPP OUI clients and the IIELL
PACK PSE hackend. It is connected to the IIELLPACK PSE components and the IIELLPACK libraries via a software
bus. NetPPD has two communication components operating on separate ports; a NetPP request handler and a limited
HTIP request handler. The HTTP handler is restricted to honor only the HTTP GETIHEAD requesls. In addition to
ils communication components. NetPPD also has logging and security modules. Figure 9 illustrates the overall soft
ware architecture of the NetPPD server. Due to the compute intensive nature of its operation, NetPPD was designed
to be lightweight. It is even possible to run multiple copies of NetPPD on a single machine with each communkaLion
handler listening on different ports. This design feature has been useful in our on-going research on using Net IIELL
PACK in a distributed. collaborative scientific agent system.

The compute server requires a fairly large disk space allocation. It provides non-hierarchical, session-based directory
spaces for each user. All intermediate files generated during the problem specification and execution stages are stored
in these locations. This includes potentially large mesh files that are generated during the session. The user's check
pointing data is also stored in this location, enabling the user to restan a computation or problem specification after a
break in connectivity. NetPPD provides randomly named, temporary, Web accessible locations for the solution data.
This space is reclaimed at the end of each session. The GU! client applet class files are stored in the Web accessible
area in NetPPD. These Java class files are archived to minimize the initial class download time. Archived Java classes
are downloaded in a single HTTPrequest-responsesequenceunlikeregularclass files which result in multiple HTTP
request-response sequences.

The intrinsic problem specifications that NetPPD receives from the remole GUI client are stored in specialized PDE
data structures [xxx-PDELab paper]. For optimum performance, these data structures are kept in-core. However, they
may be serialized and saved if the user requests checkpointing. Some problem specificaLions require the invocation of
external programs incorporated within the IIELLPACK system. For instance, the IIELLPACK PSE includes several
finite element mesh generators. When the remote client requesls a mesh to be generated for its domain specification,
NetPPD's IJELLPACK interface component invokes the external mesh generation library module with the necessary

.. --.- ------------ _. -_._.-- ..

diELtPACj(FSE:~
--C<!JDp0J?~nl,s:_ - -'-'

'User .. ,
J!PIl~.~_~;;

:':_':..'::~

FIGURE 9. NetPPD Software Archifecture

14

parameters. NetPPD then extracts the mesh display points from the generated mesh specification and transmits them
to the c1iem GUI. The generated mesh is saved in a file for future reference. To reduce the communication cost, some
problem specification tasks are performed entirely by the Gill client which transmits just the resulting pertinent infor
mation back to NetPPD. For instance, if the remote user requests a grid based domain decomposition, the grid is gen
erated and displayed by the GUI c1iem applet and only the grid parameters are transmitted to the compute server.

Once the user has completed the PDE problem specification and requests the problem be solved, NetPPD converts
and saves the specification data from either the latest checkpointed memory state or from its current memory state
into the IIELLPACK natural PDE specification language. This PDE language specification is saved in a text file
known as the .e file. NetPPD then invokes IIELLPACK compute engine with this problem specification file (.e file) as
input. If requested by the user, NetPPD transmits the IIELLPACK compute engine execution status messages via the
NetPP protocol, to be displayed on the remote clients log window.

The IIELLPACK PSE includes a comprehensive, graphical execution tool (Figure 3) to assist in the program compila
tion, execution and post-processing. This execution tool does the necessary access and availabilily checks for all the
dam files required during the computation. In the case of parallel execution, the execute toollransparently starn thc
program execution on the user specified parallel architecture using a user defined communication library. NetPPD
has the necessary intelligence built in to handle this complex execution process. NetPPD has the capability to initiate
a parallel execution on a high speed local area nelwork using a communication library such as MPI or PVM, or on a
parallel machine using a native communication library. At the end of the parallel or sequential computation, the PDE
problem solution and the execution timing information are stored in the user's session specific storage space.
Depending on the remote user's selection, this solution is filtered into a particular visualization fonnat and moved
into a temporary Web accessible location for analysis and visualization. NetPPD sends the solution URL to the GUI
client which then accesses it via the specified foreign scientific visualization applet or a Web browser helper or plug
in applicalion such as a VRML viewer (xxx).

The design of NetPPD is not dependem on the communication channel between itself and the remole GUI client. IL
would be possible to incorporate an emerging Web technology to substitute the current connection-oriented TCP
level communication. For instance the Castenet channel lransmiUer system (xxx) along with its evenlual Web
browser bundled tuner could be used to provide the communication layer. The Net IIELLPACK GUI client could then
be stored on the remote client machine and transparently updated via the Castenet update mechanism, greatly reduc
ing the initial start-up communication cost. It would also provide the added benefit of an existing proxy server to
enable NelllELLPACK access to remote clients behind firewalls. The automatic update mechanism within the Casta
nel system could be extended to the solution anaysis process also by transparently downloading the computed solu
tion in a user specified format onto the remote client's machine. Any foreign visualization applets or applications
could also be downloaded at the same lime.

The ease of seamlessly and effectively Web enabling the IIELLPACK PSE via the IIELLPACK interface component
of NetPPD can be attributed to IIELLPACK's loosely coupled component architecture. On tests conducted so far, the
design and implemenlation of NetPPD has proven to be fast, effective, safe, secure and scalable. NetPPD itself was
designed with inherent characteristics of a pSE and is extensible and loosely coupled. Its overall architecture and
framework could be used to effectively Web enable any other sciemific PSE with suitable modifications to the private
communication protocol.

6.4 The Net IIELLPACK Gill Components

The IIELLPACK system has a complex graphical user interface (Figures 2, 3 and 4 show an instances of it). The
design used for the IIELLPACK Gill is along the lines of a graphical editor per PDE problem I solution component.
For example, one editor allows users to specify the differential equation to be solver. Another editor allows the user to
specify the domain on which the equation holds. Using the IIELLPACK language, a separate editor shows the prob
lem components that have so far been specified. While this is a powerful organization of a GUI of a PDE computing
system, this structure results in a large amount of code being used to provide this interface. In a separate issue, the /I
ELLPACK GUI is designed with the intention that the user is willing to use most of hislher screen real estate for the I
IELLPACK environment's operation.

IS

FIGURE 10. The Net /IELLPACK Web server homepage and a NetPPD login applet

In the case of applications run from the Web. both of these issues must be re-evaluated. First, the structure of user
interfaces must be designed so that they consist of many small pieces which can be brought over on demand. Having
such a modular structure allows the GUI to become operational quickly and also to only bring over just the pieces of
code that the user is using in the current session. For example. the /IELLPACK equation editor has several templates
for specifying the equation. The user selects one of these based on some properties of the problem at hand and on the
solution scheme to be applied. In the applet case, rather than downloading all the functionality initially, we have
restructured the interface so that only the framework of the user interface (the part that allows the user to select a tem
plate) is initially downloaded. The code for a certain template is downloaded only when that is selected by the user. A
similar example is present in the domain editor: the editor has many options for how boundary pieces will be con
structed. The algorithm and code for interpolating control points for each of these options will be downloaded only
when that option is selected. In addition to the micro-structure issues, we also restructure the macro organization of
the GUI in a similar manner: a basic framework which provides the user with the ability to bring over the needed
functionality on demand. From the user's point-of-view. this has resulted in our changing the interface model to one
that follows the object being constructructed rather than the process being used to construct that object. The entire
GUI is now built around a graphical monitor/editor that shows the problem and solution being defined. The function
alily available at any point (in terms of menu actions and buttons etc.) is based on the activity in progress (defining
the equation, drawing the domain etc.) and is changed by a set of controls that select the current activity. Since in our
system design the state is maintained at the server. once an activity is completed it must be "committed" to the server
before one is allowed to change the activity.

This approach of having the GUI be based on a framework that follows the current activity implicity addresses the
second issue we listed above of screen real estate usage. The new design uses exactly one top-level window for the
entire GUI. The /IELLPACK Gill in comparison uses many windows.

16

The design of GUIs for Web computing system is very much of an open research issue. Due to the lack of real appli
cations that operate in this form, there have been very few lessons learnt as yet. We expect to use the Net IIELLPACK
system's GUI as a testbed to test various GUI design approaches in order to develop the most natural and effective
interfaces for such Web computing systems.

7.0 Example: Solving a PDE Problem with Net IIELLPACK

In this section we present a typical PDE problem solving session within Net IIELLPACK. A sample set of response
timings and computation timings for remote access via the internet from several geographical locations is presented
in Table 1.

In [his example, we use the widely available Netscape Web browser to access the NelllELLPACK Web server. The
initial NetPPD selection page and the subsequent login page from the selected NerPPD are shown in Figure 11.

When the remote user is succefully authenticated and logged in, the NetPP client applet is displayed. The user may
then begin by selecting the "new session" option within the file menu and entering a new session name. Once the new
session has been succesfully negotiated, the Nel/lELLPACK PDE problem specification applet is displayed to the
remote user. The user first defines the domain of the PDE problem by clicking the control points counterclockwise on
the canvas and completes the last edge by <shift> clicking (Figure 11). Similar to the IIELLPACK PSE domain editor,
the Net IIELLPACK domain specification editor also allows the user to enter the desired X and Y direction ranges.

The user then decides on the general solution strategy by selecting the domain discretization scheme. If a grid discret
ization is selected, then the subsequent templates presented to the user by the GUI client will he restricted to finite
difference operator discretization methods. If a mesh discretization scheme is selected, then the user will be presented

FIGURE n. The NetPP startup client, session applet and the domain specification edHor

17

FIGURE 12. Net IIELLPACK mesh generator interface

with templates for finite element discretization melhods. Figure 12 shows an instance of a mesh generation for lhe
given domain definition. The mesh generator interface presented to the user has most of the options available within
the standard IIELLPACK PSE mesh generator.

Figure 15 shows the equation and true solution specification interface and the algorilhm specification editor. For this
example, we have chosen a simple Laplace PDE problem with dirichlet boundary conditions and we force the true
solution, Sill(4x)Cos(4x). At each stage the user has to commit the problem specification component. Figure 13

shows the boundary condition specification interface. The true solution is specified as the boundary condition for
each boundary piece since this is a PDE problem with Dirichlet boundary conditions. The boundary condition speci
fication editor is tailored for the current boundary definition (in this example, a boundary with seven pieces).

Once the problem specification is complete, the remote user submits the problem for solution by the IIELLPACK PSE
via the solve interface. When the problem solution is completed, a message is displayed on the remote client's log
window. The remote user can then use the output specification interface to selectlhe output format for solution visu
alization. Depending on the output fonnat type, the remote client will display the problem solution either within the
remote user's Web browser or as a Web browser helper or plug-in application. Figure 14 shows the output specifica
tion interface and the problem solution (in othe off [xxx] format) displayed within the remote user's Web browser.
The solution visualization applet used in this case is a foreign scientific data visualization applet [xxx].

8.0 Conclusion

Internet and Intranet based servers have already become the common way of delivery services in many economical
and govennem sectors today. The scenario of scientific computing servers and services updated and maintained
transperantly and accessible through the internet has just appeared as a future research goal in many scientific circles.
Our experience in building Netl/ELLPACK, a Web-based PSE, has shown that net-centric scenario for scientific com
puting is feasible even with current technologies and bandwidths. The challenge of preserving the high level interac
tive user interfaces during remote computations has been overcome using the technology of applets and Java. Other
(and maybe even better) solutions may be possible using upcoming net·centric computing platfonns (e.g., inferno).
We have not seen the beginning of the revolution yet!

18

FIGURE IS. Net I/ELLPACK equation & true solution specification interface and algorithm editor

FIGURE 13. Net I/ELLPACK boundary condition specification editor

19

FIGURE 14. Net /IELLPACK solution specification interface and a foreign solution data visualization
applet

9.0 References

[1] Houstis, E.N., Rice, J.R., Weerawarana, S., Catlin, A.C., Papchiou, P.N., Wang, K.-Y., Gaitatzes, M.G. 1996,
Parallel (If) ELLPACK: A Problem Solving Environments for POE Based Applications on Multicomputer Plat
fonns. CSD-TR-96-070. Department ofComputer Sciences. Purdue University.

[2] Gallopoulos, E., HOUSlis, E.N., and Rice, J. R. 1994. Computer os thinker/doer: Problem solving environments
for computational science. IEEE Compo Sci. Engr., J, 11-23

[3] http://www.mcs.anl.govlhomelotciServer/.

[4] Mathematica network server

[5] Maxima network server

[6] Maple network server

[7] Weerawarana, S., Houstis, E.N., Rice, J. R., Gaitarzes, M.G., Markus, S., and Joshi, A. 1996. Web /IELL
PACK: A Networked Computing Service on lhe World Wide Web. CSD-TR-95-0J J. Depanmem of Computer
Science, Purdue University.

20

[8] Gross, L., Roll, c., and Schoenauer, W. 1993. VECFEM for mixed finite e1emenls. Tee/mica/ Report Intemer
Bericht Nr. 5019. Rechenzentrum der Universitat Karlsruhe.

[91 FIDISOL ref

[10] Madsen, N.K. and Sincovec, R.F. 1979. Algorithm 540: PDECOL, general collocation software for partial dif
ferential equations, ACM TrailS. Math. Software. 5, 326-351.

[11] PARC reference?

[12] Kim, S. B., Housus, E. N., and Rice, J. R. 1994. Parallel stauonary iterative methods and their performance.
Marinescu, D. and Frost, R. (Eds.), INTEL Supercomputer Users Group COliferellce.

[13] MGGXX (?)

[14] Stevens, W.R., Unix Nenvork Programming, Prentice Hall, 1990.

[15J COREA

[16J DCOM

[171 Weerawarana, S., Houstis, E.N., Rice, J. R, Catlin, A.C., Gailalzes, M.G., Crabill, C.L., Markus, S., and Dras
hansky, T.T. 1996. The Purdue PSE Kernel. CSD-TR-96-082. Department of Computer Science, Purdue Uni
versity.

[18] http://www.cs.ulk.edulnelsolvel.

[[9J hup:llwww.javasoft.comJ.

[20J http://surfit.anu.edu.aulSurfItI.

[21] oblels

[221 inferno

[231 javascript

[24] http://ring.etl.go.jp/openlablhorb/

[25J joe

[26J java-idl

[27] RMI

[28J pdelab

[29J VRML

[3D] http://www.marimba.comJ

[31J off format

[32J off visualization applet uri

21

	Scientific Computing via the World Wide Web: The Net//ELLPACK PSE Server
	Report Number:
	

	tmp.1307986960.pdf.SdIZw

