
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Parallel ELLPACK 3-D Problem Solving Environment Parallel ELLPACK 3-D Problem Solving Environment

Vassilios Verykios

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Report Number:
97-028

Verykios, Vassilios and Houstis, Elias N., "Parallel ELLPACK 3-D Problem Solving Environment" (1997).
Department of Computer Science Technical Reports. Paper 1365.
https://docs.lib.purdue.edu/cstech/1365

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLEL ELLPACK 3-D PROBLEM
SOLVING ENVIRONMENT

Vassilios Verykios
Elias N. Houstis

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD·TR 97-028
May 1997

Parallel ELLPACK 3-D Problem Solving
Environment

Vassilios Verykios Elias N. Houstis

May 16, 1997

Abstract

Parallel ELLPACK (//ELLPACK) is a problem solving environment
(PSE) that supports the solution of field and flow partial differential equa
tion (PDE) problems on sequential and parallel MIMD computational
platforms. In this system the parallel processing of steady-state PDE
problems is supported by three domain decomposition schemes. These
schemes diller with respect to parallclization of the PDE discretization
phase adopted and axe based on the partitioning of the associated geomet
ric data structures (i.e., meshes and grids) into balanced subdomains. In
this report, we review the general issues related to PSEs for scientific com
puting and discuss the available software technologies for designing and
implementing their graphical user interfaces. In particular, we present the
fundional specifications of the 3-D pre- and posl-processing user interface
of the / /ELLPACK system and its implement.at.ion. To support the do
main decomposition metllOdologics of / /ELLPACK, we have integrated
a number of well known mesh/grid part.itioning libraries in this system
including CHACO 2.0 and METIS. We review the basic partitioning al
gorithms involved and altempt a preliminary performance evaluation of
their software implementation in t.he context of an off-line parallel reuse
methodology available in / /ELLPACK. To model their performance we
estimate the execution time and fixed speedup of the underlying PDE
computations on two clusters of workstations with different interconnec
tion technologies (e.g., Ethernet and ATM) and an nCUBE/2 parallel ma
chine. The numerical results indicate the cost effectiveness of the parallel
ELLPACK methodologies and infrastructure for the solution of steady
state field PDE problems on distributed memory platforms.

1 Introduction

Partial differential equation (PDE) models are used often to model the physical
behavior of many artifacts. For this there are many libraries of well written
PDE software. Unfortunately, each of this software is based on proprielary

1

data structures and assumcs non-standard I/O specifications. Moreover, these
libraries require several pre- and post-processing steps that are usually left to the
user. These processing steps involve the solution of very difficult problems and
require geometric, symbolic, and numerical computing. Tn the case of parallel
simulation codes additional pre-processing steps are required such as partition
ing of geometric and algebraic data structures. In addition the characteristics
of parallel execution environments must be integrated in the associated problem
solving process. In this report we address the integration of PDE software at
the graphical user interface level over a variety of sequential and parallel compu
tational environments. Specifically, we extend the design and implementation
of the / /ELLPACK user interface for 3-D PDE problems and pre- and post
processing tools, their user interfaces, and algorithmic infrastructure needed for
3-D mathematical models associated with the applicability of / /ELLPACK PSE
[HRW+96]. These tools include the visualization of a polygonal representation
of the POE domain, its finite element discretization, the specification of the
PDE boundary conditions, and the mesh/grid decomposition in load balanced
subdomains with semi-optimal interface length. The mesh decomposition tool
is used to support three different parallelization approaches depending on the
parallelization procedure applied to the POE discretization phase. They arc
briefly described in Section 5. The 3-0 domain decomposition tool is supported
by three libraries of mesh partitioning heuristics, the "native" / /ELLPACK
[WH93] and the integrated ''foreign'' libraries CHACO [HL95cJ and METIS
[KK95c]. To assess the effectiveness of these heuristics in solving steady-state
field POE problems on distributed memory machines, we have utilized a parallel
reuse methodology referred throughout as MPlus [MH96]. In this framework the
POE discretization is generated sequentially and the system obtained is block
partitioned based on a p-way mesh decomposition, where p denotes the machine
configuration to be used. The matrix blocks are downloaded on each processor
of the targeted machine. The advantage of the method is that we reuse the
highly knowledge intensive part of the PDE solver (usually 90% of the code)
while solving in parallel the computationally intensive part.

This report is organized as follows. Section 2 reviews the graphical user in
terface technologies for multi-platforms and summarize the future trends in this
area. The / /ELLPACK pre- and post-processing tools supporting its GUI inter
face and the software infrastructures used to implement it, are reported in Sec
tion 3. In Section 4, we review a number of basic graph partitioning algorithms.
These algorithms are used to implement the "native" and "foreign" mesh/grid
decomposition libraries available in / /ELLPACK. We have conducted several
numerical experiments on two clusters of Sun workstations and an nCUBE/2
parallel machine to test the effectiveness of the data partitioning algorithms
and the parallel methodologies supported in / /ELLPACK. The performance
data obtained and our observations are presented in Section 5.

2

2 Graphical User Interfaces (GUI) for PSEs

The trend in every application domain today, inc:luding scientific computing, is
to encapsulate the computing power (i.e., libraries and machine environments)
within a software environment that allows the user to exploit it in some "natu
ral" form. This trend led recently to the concept of problem solving environment
that has become very popular in the area of scientific computing. PSEs are rec
ognized to be systems that provide all the computational facilities necessary to
solve a target class of problems by communicating in the user's own terms with
the domain of the target area [GHR92]. It has been widely accepted that at a
minimum, a PSE consists of a library of solvers and a user interface. One of the
objectives of this report is the design and implementation of the user interface
of / /ELLPACK PSE and the algorithmic infrastructure supporting it.

Very often user interface software is large, complex and difficult to imple
ment, debug, and modify. A HJ92 survey [MR92J found that an average of
48% of the application codes is devoted to the user interface and that about
50% of the implementation time is spent to implement the user interface por
tion. These numbers are probably much higher today. As interfaces become
easier to use, they become harder to create [Mye94]. According to another
study [Inc94] almost 97% of all software development on Unix platforms in
volves the implementation of a aUI. The challenge in interface development
is that 1t requires programmers to deal with elaborate graphics, multiple ways
for giving the same command, multiple asynchronous input devices (usually a
keyboard and a pointing device such as a mouse), virtual time, and "semantic
feedback". It is predicted that tomorrow's user interfaces will provide speech
and gesture recognition, intelligent agents, and integrated multi-media. These
additional functional specifications undoubtedly will increase significantly the
difficulty and effort of such interface developments.

The objective of this section is to review the current software technologies
for building user interfaces. Following, we present this review in terms of the
three layers of software usually involved in a user interface. These are the
windowing system, the toolkit, and higher level tools. The windowing system
supports the separation oftbe screen into different (usually rectangular) regions,
called windows. On top of the windowing system is the toolkit, which contains
many common widgets such as menus, buttons, scroll bars, and text input fields.
Above the toolkit one might find higher-level tools, which help the designer use
the toolkit widgets.

2.1 Windowing System

A windowing system is a software package that helps the user monitor and
control different contexts by separating them physically onto different parts of
one or more display screens. When the programmer wants to draw application
specific parts of the interface and allow the user to manipulate them, the window

3

system interface must be used directly.
The first windowing systems were implemented as part of a single program

or system. Later systems implemented the windowing system as an integral part
of the operating system, such as SunView for Suns, Macintosh and Microsoft
Windows systems. In order to allow different windowing systems to operate
on the same operating system, some windowing systems, such as X and Sun's
NeWS, operate as a separate process, and use the operating system's inter
process communication mechanism to connect to applications.

A windowing system can be logically divided into two layers, each of which
has two parts. The window system or base layer, which implements the ,basic
functionality of the windowing system and the window manager or user inter
face. The base layer consists of the output model which handle the disp~ay of
graphics in windows and the input model which coordinate the access to various
input devices like keyboard and mouse. The primary interface of the base layer
is procedural and it is called the windowing system's Application Programming
Interface. (API). The window manager includes all aspects that are visible to
the user. The two parts of the user interface layer are the presentation and the
commands. The first involves the pictures that the window manager displays,
while the second supports the manipulation of windows and their contents.

Very often the development of a PSE requires the support for 3-D graphics.
All of the standard output models only contain drawing operations for two di
mensional objects. Two extensions to support 3·D objects are PEX [Wom92]
and OpenGL [SA92]. The current version of the Silicon Graphics, Inc. (SGI) X
Server supports both these standards. OpenGL is an Application Programming
Interface (API) for 3-D interactive graphics developed by SGI and now admin
istered by the OpenGL Architecture Review Board. OpenGL is the successor to
the proprietary IRIS GL graphics interface (the GL stands for graphics library).
OpenGL supports the X Window System via the GLX extension and it provides
machine independence, for 3-D since it is available for various X platforms (SGI,
Sun, etc.) and it is included as a standard part of Microsoft Windows NT. PEX
is an X protocol extension developed by the X Consortium to support 3-D graph
ics for X. PEX's rendering functionality and style are largely influenced by the
PRIGS (Programmer's Hierarchical Interactive Graphics System) and PRIGS
PLVS 3-D graphics ANSI (American National Standards Institute) standards.

The earlier windowing systems assumed that a graphics package would be
implemented using the windowing system. All newer systems, including the
Macintosh, X, NeWS, NeXT, and Microsoft Windows, have implemented a so
phisticated graphics system as part of the windowing system.

2.2 Toolkits

A toolkit is a library of "widgets" that can be called by application programs.
Using a toolkit has the advantage that the final VI will look and act similarly
to other VIs created using the same toolkit, and each application does not have

to re-write the standard functions, such as menus. A problem with toolkits is
that the styles of interaction are limited to those provided. Also, the toolkits
themselves are often expensive to create and difficult to usc, since they may
contain hundreds of procedures. It is often not clear how to use these procedures
to create a desired interface.

As with the graphics package, the toolkit can be implemented either using or
being used by the windowing system. When the X system was being developed,
the developers could not agree on a single toolkit, so they left the toolkit to
be on top of the windowing system. In X, programmers can use a variety of
toolkits (for example, the Motif, OpenLook, InterViews, or tk toolkits can be
used on top of X), but the window manager must usually implement its user
interface from scratch.

Because the designers of X could not agree on a single look-and·feel, they
created an intrinsics layer on which to build different widget sets, which they
called xt. This layer provides the common services, such as techniques for
objecf;...oriented programming and layout control. The widget set layer is the
collection of widgets that is implemented using the intrinsics.

Although there are many small differences among the various toolkits, people
are still spending a lot of effort to convert software from Motif to the Macintosh
and to Microsoft Windows. Therefore, a number of systems have been developed
that try to hide the differences among the various toolkits, by providing virtual
widgets which can be mapped into the widgets of each toolkit. Another name
for these tools is cross·platform development systems. The programmer writes
the code once using the virtual toolkit and the code will run without change on
different platforms preserving the original design.

There are two styles of virtual toolkits. In one, the virtual toolkit links to
the different actual toolkits on the host machine. The second style of virtual
toolkit re-implements the widgets in each style. All of the toolkits that work
on multiple platforms can be considered virtual toolkits of the second type.
However, these use the same look-and-feel on all platforms and therefore do not
look the same as the other applications on that platform.

The AWT (Abstract Windowing Toolkit) that comes with the Java program
ming language also can be classified as a Virtual Toolkit, since the programmer
can write code once independently of the targeted platform. Java programs can
be run locally in a conventional fashion, or can be downloaded dynamically over
the World Wide Web into a browser such as Netscape.

2.3 Higher Level Tools

Since programming at the toolkit level is quite difficult, there is a significant
interest in higher level tools that will make the user interface software production
process easier.

High-level user interface tools come in a large variety of forms. One impor
tant way that they can be classified is by how the designer specifies the interface

5

design. Some tools require the programmer to program in a special-purpose lan
guage, some provide an applicati.on framework to guide the programming, some
automatically generate the interface from a high-level model or specification,
and others allow the interface to he designed interactively.

In the last category, which is also the easier for the designer to use, the
tools allow the user interface to be defined by placing objects on the screen
using a pointing device. This is motivated by the observation that the visual
presentation of the user interface is of primary importance, and a graphical tool
seems to be the most appropriate way to specify the graphical appearance. In
the tools that support graphical specification, prototyping tools and interface
buildcrs are also included. The goal of prototyping tools is to allow the designer
to qui.ckly mock up some examples of what the screens in the program will look
like. Often, these tools cannot be used to create the real user interface of the
program; they just show how some aspects will look. An interface builder allows
the designer to create dialog boxes, menus and windows that arc to be part of
a larger user interface. These are called Interface Development Tools (JDTs).
Interface builders allow the designer to select from a pre-defined library of wid"
gets, and place them on the screen using the mouse. They use the actual widgets
from a toolkit, so they can be used to build parts of real applications. Most
will generale C code templates that can be compiled along with the application
code.

2.4 Interactive GUI Development Tools

Almost fifteen years ago, professional software engineers werc the only people
capable of developing graphical applications. The toolkits available at that time
- the Macintosh toolbox, Digital Research's GEM, Microsoft Windows 1.0, or
the VAX-based X window system - were primitive and required mastery of a
very complex GUI API. Worsc still, applications had to be written in C, a lan
guage infamous for being difficult to learn and very unforgiving Qfprogrammer
mistakes.

A few years later, some bright engineers at Apple CorpQration decided that
what "the cQmputer fQr the rest of us" needed was a GUI development envi
ronmenl. The result of this project was the HypcrCard, the first full-featured
development environmcnt designed for non-programmers (first released in 1989).
Since then, many other end user programming tools have been developed includ
ing such HyperCard-like tools as SuperCard and ToolBook, and independently
involved tools such as Visual Basic (VB) and Visual Basic fQr Applications
(VBA).

Such tools have been developed finally for the Unix/XlI market too. Prod
ucts like Tcl/Tk, the CaSE Desktop KornShell (dtksh) and MetaCard make it
pQssible ror non-programmers to develop GUI applications withQut putting the
massive effQrt required to master C/C++ and the Xt/Motif toolkit.

6

Fortunately end users are nDt the only Dnes to benefit from the develop
ment Df these tools. By Dffering a higher-level language for GUI development,
these tools are much more productive development tools for almost all develDp.
ers. In fact these tools wiII eventually replace conventional GUI development
environments for nearly all application development.

Just as C compilers replaced assemblers as the standard development tools
in the early 80's, and languages like Perl and the shell languages have replaced
C programming fDr most system administration tasks, it would not be long
before developing an application in C or C++ with a low-level GUI API like
Xt/Motif will be about as popular as programming in assembly language is
today. This transition is already largely complete on the Microsoft Windows
platform where the vast majority of applications are developed with tools like
VB, PowerBuilder, Borland's Delphi and a wide variety of fourth generation
languages 4GL's and other high-level languages.

The primary advantage of a VHLL (Very High Level Language) also com
monly called scripting language, over a third generation language like C or C++
is that fewer lines of code must be written to complete a given task. Fewer state
ments take less time to write, and can be understood and modified more easily.
The bottom line is increased developer productivity, better quality, and higher
functionality applications.

A second benefit arises from the fact that VHLLs are usually interpreted,
which means you do not have to wait for compile-link-run cycles. This also
greatly improves developer productivity since more time is spent developing and
less time waiting. While one might guess that choosing a high-level language
might require sacrificing performance, benchmarking shows that in many cases
screen update performance of applications developed with these tools is even
faster than comparable applications developed in C with Xt/Motif due to the
greater overhead of that toolkit. Furthermore, most VHLLs can be extended
by adding commands written in C to improve performance where needed or to
take advantage of libraries that are only available for C or C++. Certainly
performance concerns aren't a reason to choose a third-generation environment
over one based on a VHLL.

Some certain features of a scripting language include:

• interpreted execution

• simple syntax

• untyped variables

• no pointers or memory allocation

Many of the above features are also common to the fourth-generation lan
guages uscd with many database front-end toolkits. The various shell languages
and UNIX pattern-matching languages like awk and Perl also have many of

7

these characteristics. Even some older languages like Lisp could be classified as
scripting languages based on these criteria, though perhaps the simple syntax
requirement cannot be met. New-generation 3GLs like Java nave some of these
characteristics, but the complex syntax, requirement to compile as a separate
step, and the need to type all variables means that Java should not be grouped
with true scripting languages.

While it might be tempting to equate these interactive GUI tools with C and
XtjMotifbased User Interface Management Systems (UIMSs), there are several
important distinctions that should be made. First, the interpreted languages
used in these systems are designed to supplement the third generation (~GL)

code used to build the bulk of the application code, not to replace it. These
tools are also not complete environments since they must use compilers and
other tools to build applications. This increases development costs and results
in applications that are not as easily portable as those built with the interactive
GUI tools. Finally, these tools are targeted at professional software developers,
so they are much more expensive and usually mllch more difficult to learn and
use.

2.5 Future Trends in User Interfaces

The rapid development of 3-D hardware and sortware has brought revolution
ary changes in 3"D technology. Expensive supercomputers and state-of-the-art
workstations, which were absolutety required in the early days of 3-D comput
ing, have been substituted by low-cost 3-D workstations and powerful personal
computers. Tremendous progress in stereoscopic output devices initiated the
transfer of Virtual Reality from research laboratories to industry, arcades, and
the home. All these have significantly expanded the user base of 3-D computing
from limited groups of technological "outfits" - elite groups of scientists and
engineers - to an enormous audience of researchers and practitioners in such
areas as CAD/CAM, medicine, engineering, and others.

Software vendors have responded to the new opportunities in this market by
developing interactive 3-D applications oriented towards end-users. However,
this new orientation towards a broad and rather heterogeneous user base imposes
extremely high requirements on the user interface. The user should be able to
start using applications with a minimal background in 3-D computing, without
qualified assistance, optimally even without reading the manuals. Therefore,
the usability of 3-D applications and the development of effective 3-D interfaces
has become one of the most important directions of research and development
in 3-D user interfaces.

It appears, the present development of 3-D computer graphics software is
suffering from the lack of well accepted standards. Most of the developments in
this area follow artistic guidelines.

Another serious problem is the lack of software tools and programming en
vironments for developing 3-D user interfaces across platofrms. Most of the

8

I

present 3-D applications were developed for particular GUI environments, such
as X Windows and Microsoft Windows. The reason being the availability of
powerful interface developing tools for X Windows. The usage of such tools
increases the performance of developers a great deal and provides a guaranteed
quality of the interface. However, these toolkits do not provide any specialized
3-D widgets for interaction techniques specific for 3-D interfaces, such as se
lecting in 3-0, moving in 3-D, etc. Each developer implements his or her own
techniques, which violates one of the most attractive advantages of windowing
environments - consistency between interfaces of different applications devel
oped for the same windOWIng system. Generally speaking, the applicability of
these tools, and more generally the whole WIMP paradigm (Windows, Icons,
Menu and Pointers), for 3-D interfaces is still an open research problem.

3 Parallel ELLPACK Graphical User Interface

The / /ELLPACK GUI consists of a main session editor that allows the user to
specify the PDE problem, the PDE solver and its parameters, and the output
specifications at very high level language or utilizing a number of graphical in
teractive tools. The tools that are made available to the user within a session are
dependent on the dimensionality of the POE problem to be solved (Le., l·D, 2
D, 3-D) and the discretization methodology applied (Le., finite difference/finite
element). Different tools support a different part of the problem specification
or the solution framework specification.

While the graphical tools are active, the current / /ELLPACK program is
internally represented by a set of parsed data structures. In addition, it is
represented as text within the session editor as the user's session log. Each
tool manipulates one or more pieces of this data structure and is responsible for
leaving them in a consistent state. In some cases, a tool is actually a separate
process. Then, the appropriate data structures are communicated to the other
process via inter-process communication and made consistent when the changes
are "committed". The tools also have a dependency relationship; for example,
the mesh tool cannot be invoked until a domain has been specified. This is
supported by having the tools themselves be aware of their position in the chain
ofoperation and having them do the appropriate tests to ensure that the proper
order is maintained.

As the PDE problem and solution framework are being defined, the session
editor reflects the current status of specification by displaying the interactivity
log in the / /ELLPACK language. The user may choose to edit the / /ELL
PACK program directly as well, hut in order to maintain consistency, the user
must not be running any of the graphical tools at the same time. For solution
and performance visualization and analysis, the user specifies where to save the
appropriate data at problem specification time. Then, the visualization envi
ronment loads this data at post-processing time to visualize the results.

9

In this section we present the implementation of the 3-D / /ELLPACK user
interface and the functional/software specification of the / /ELLPACK tools.

3.1 Interface Software Infrastructure Utilized in / /ELL
PACK

The OpenGL graphics system is a powerful software interface for graphics hard
ware that allows graphics programmers to produce high-quality color images of
2-D and 3-D objects. The technology was developed by Silicon Graphics Inc.
(SGI) and is the result of ten years of experience designing production software
interfaces for a full spectrum of graphics hardware. .

OpenGL is now controlled by an industry consortium known as the OpenGL
Architectural Review Board (ARB) currently composed of Digital Equipment,
IBM, Intel, Microsoft, and SGI. The interface is licensed to a large number
of computer software and hardware vendors and OpenGL implementations are
now appearing on the market.

OpenGL provides a layer of abstraction between graphics hardware and an
application program. It is visible to the programmer as a set of routines con
sisting of about 120 distinct commands. Together these routines make up the
OpenGL application programming interface (API). The routines allow graphics
primitives (points, lines, polygons, bitmaps, and images) to be rendered to a
frame buffer. Using the available primitives and the operations that control their
rendering, high-quality color graphics images of 3-D objects can be rendered.

The model used for integration of OpenG L commands is client-server. This
is an abstract model and does not demand OpenGL be implemented as dis
tind client and server processes. A client-server approach means the boundary
between a program and the OpenGL implementation is well-defined to clearly
specify how data is passed between the program and the OpenGL. This allows
OpenGL to operate over a wire protocol much as the X protocol operates but
does not mandate such an approach.

The OpenGL specification is window system independent meaning it provides
rendering functionality but does not specify how to manipulate windows or
receive events from the window system. This allows the OpenGL interface to
be implemented for distinct window systems. For example, OpenGL has been
implemented for both the X Window System and Windows NT.

The specification which describes how OpenGL integrates with the X Win
dow System is known as GLX [KiI93, Ki194a]. It is an extension to the core X
protocol for communicatingOpenGL commands to the X server. It also supports
window system specific operations such as creating rendering context, binding
those contexts to windows, and other window system specific operations.

GLX does not demand OpenGL commands be executed by the X server.
The GLX specification explicitly allows OpenGL to render directly to the hard
ware if supported by the implementation. This is possible when the program is
running on the same machine as the graphics hardware. This potentially allows

10

extremely high performance rendering because OpenGL commands do not need
to be sent through the X server to get to the graphics software.

Graphics systems are often classified as one of two types: procedural or de
scriptive. Procedural means the programmer is determining what to draw by
issuing a specific sequence of commands. Descriptive means the programmer
sets up a model of the scene to be rendered and leaves how to draw the scene
up to the graphics system. OpenGL is procedural. In a descriptive system, the
programmer gives up control of exactly how the scene is to rendered. Being
procedural allows the programmer a high degree of control to achieve the best
performance. It is expected that descriptive graphics systems will be imple
mented using OpenGL as a low level interface. SGI's Inventor toolkit is one
example of such a descriptive graphics system.

OSF/Motif is the X Window System's industry-standard programming in
terface for user interface construction. Motif programmers writing 3-D appli
cations have to understand how to integrate Motif with the OpenGL graphics
system. Most 3-D applications end up using 3-D graphics primarily in one or
more "viewing" windows. For the most part, the graphical user interface aspects
of such programs use standard 2-D user interface objects like pulldown menus,
sliders, and dialog boxes. Creating and managing such common user interface
objecls is what Motif does well. The "viewing" windows used fOf 3-D are where
OpenGL rendering happens. These windows for OpenGL rendering can be con
structed with standard Motif drawing area widgets or OpenGL-specific drawing
area widgets. After binding an OpenGL rendering context to the window of a
drawing area widget the environment is ready for 3-D rendering [KiI94b].

This is the approach which has been adopted in the case of the develop
ment of the 3-D mesh tools in the latest version of j jELLPACK. In particular,
OpenGL-specific drawing area widgets have been used for 3-D rendering.

Programming OpenGL with Motifhas numerous advantages over using "Xlib
only". First and most important, Motif provides a well-documented, standard
widget set that gives in the application a consistent look and feel. Second,
Motif and the X Toolkit take care of routine but complicated issues such as
cut and paste and window manager conventions. Third, the X Toolkit's work
procedure and time-out mechanisms make it easy to animate a 3-D window
without blocking out user interaction with the application.

Furthermore, a Tk OpenGL widget called Togl [PB96] has been developed for
OpenGL rendering. Togl allows one to create and manage a special TkjOpenGL
widget with Tel and render into it with a C program. That is, a typical Togl
program will have Tel code for managing the user interface and a C program
for computations and OpenGL rendering.

Mesa [Pau96a] is a free 3-D graphics library which uses the OpenGL API
and semantics. It works on most modern computers allowing people without
OpenGL to write and use OpenGL-style applications.

Mesa began as an experiment in writing a 3-D graphics library. After about
a year of "spare time" development it was released on the Internet. It has since

11

evolved with the help of many contributors to the point where it is a viable and
popular alternative to OpenGL.

While Mesa uses the OpenGL API and follows the OpenGL specification
very closely, it is important to note that Mesa is not true implementation of
OpenGL. Official OpenGL products are licensed and must completely imple
ment the OpenGL specification and pass a suite of conformance tests. Mesa
meets none of these requirements.

At first, Mesa may seem to be a competitor to official OpenGL products.
Actually, Mesa has helped to promote the OpenGL API by expanding the range
of computers which may execute OpenGL programs. There are many systems
which are not supported by OpenGL vendors but can run Mesa instead. Peo
ple who are curious about OpenGL may try Mesa at no cost and later pur
chase a commercial OpenGL implementation which utilizes graphics hardware.
Students may learn 3-D programming using Mesa and later develop OpenGL
applications on the job.

The Mesa distribution includes implementations of the core OpenGL library
functions, the aux and tk toolkits, Xt/Motif widgets, drivers for Xll, Microsoft
Windows '9S/NT, NeXTStep, AmigaDOS, and many demonstration programs.
A Macintosh driver is distributed separately. Mesa compiles easily, requiring
only an ANSI C compiler and the development resources (header files and li
braries) for the target platform.

Mesa does not. implement the full OpenGL specification. Also does not
typically perform as well as commercial OpenGL implementations for several
reasons. First, portability to a wide range of computers is considered more
important than optimizing for a particular architecture. Second, the features
of the underlying hardware can't be directly accessed since Mesa exists as a
software library above the operating system and window system programming
interfaces. And finally, Mesa's development is not supported by any sort of
development team. Only so much can be accomplished by people working in
their spare time.

Some of the applications that already use the Mesa library [Pau96bj are:

• General Mesh Viewer (GMV), an easy to lise 3-D scientific visualization
tool designed to view simulation data from any type of structured or un·
structured mesh.

• gOpenMol, is the graphical interface into the OpenMol set of computa
tional chemistry programs. OpenMol is an integrated program for elec
tronic structure and property calculations of molecules.

• Hydra, a distributed Multi-User Computer Aided Physics and Engineering
Package that can be used to setup physics simulations of any size with any
of the simulation codes developed in X Division.

• LinkWinds, is a visual data exploration system resulting from a program
of research into the application of computer graphics to rapidly and inter-

12

actively accessing, displaying, exploring and analyzing large multivariate
multidisciplinary data sets.

• Vis5D is a system for interactive visualization of large 5D gridded data
such as those made by numeric weather models. One can make isosurfaccs,
contour line slices, colored slices, volume renderings, etc. of data in 3-D
grid then rotate and animate the image in real time.

• The Visualization ToolKit (vtk) which is a software system for 3-D Com
puter Graphics and Visualization.

3.2 j jELLPACK Graphical User Interface

/ jELLPACK [HRW+96, Wee94j allows the solution of single linear and non
linear elliptic and parabolic PDE equations defined on I-D, 2-D, and 3-D di
mensional domains. In this PSE, the user can specify a solution method by
naming selected library modules corresponding to the phases of the PDE solu
tion process.

The process of specifying, solving, and analyzing a PDE problem occurs
within a j /ELLPACK session. In the j jELLPACK PSE, a PDE problem is
defined by the components (or objects) that specify:

• the PDE equations,

• the domain of definitions,

• the boundary and initial conditions,

• the solution strategy,

• the output requirements.

Each session consists of a text window and an attached toolbox of editors.
The editors are used to create or modify the PDE objects which specify the
PDE problem and describe how to solve it. These include equation editors,
geometry editors, mesh generators, and algorithm selection menus. Each editor
is a graphical, interactive tool which creates or edits a specific POE object, and
then writes a textual representation of the object to the text window using the
/ jELLPACK language.

In this context, we shall concentrate on the tools used by the j jELLPACK
for visualization purposes and more specifically in 3 dimensions. Namely, we
shall discuss the 3-D Mesh Editor, the 3-D Boundary Condition Editor, the 3-D
Decomposition Editor and the Visual3D tool which is used to visualize 2-D and
3·D meshes, 2-D and 3-D structured (non-orthogonal) grids, 2·D and 3-D poly
files, and 2-D and 3-D solution files.

13

Figure 1: j /ELLPACK System Icon

3.2.1 3·D Mesh Editor

The 3-D Mesh Editor is available in the j jELLPACK (Figure 1) from the tool
box of the 3-D Finite Element Session Figure 2.

To access the 3-D Mesh Editor, the icon in Figure 3 in the session toolbox
must be clicked. The editor is used to display and edit 3-D meshes which have
been saved in the j jELLPACIC format or in the neutral format.

3.2.2 3-D Mesh Editor Areas

The 3-D Mesh Editor consists of three windows: a Command Panel, a Display
Window, and a Palette. The Command Panel contains buttons and scrollbars
for loading, saving, and manipulating the mesh. The Display Window is used
as a canvas for viewing the mesh, and the Palet.te displays the colors associated
with the surface patches which are currently defined for the mesh.

Surface patches are groups of nodes on the surface where boundary condi
tions may be defined. These nodes will be colored according to their surface
patch grouping, and there are as many colors as there are surface patches. The
grouping of surface nodes into patches has already been specified in the mesh
file, but this specification may be changed within the 3-D Mesh Editor.

3.2.3 3-D Mesh Palette Window

The Palette Window in Figure 4 is used to identify the surface patches of the
3-D mesh. All surface nodes are assigned to a specific patch where boundary
conditions can later be assigned. The patch identifications in the mesh file are
shown on the canvas via color assignments. The number and color of the patches
are also shown in the Paletle. The number of patches can be changed through
the Command Panel.

3.2.4 3-D Mesh Display Window

The Display Window is the canvas (Figure 5) for viewing the mesh. Meshes that
are loaded in are displayed in the canvas, and the effect of all transformations

14

Figure 2: 3-D FEM Session Toolbox

15

Figure 3: 3-D Mesh Tool Icon

Figure 1: 3-D Mesh Pale~te Window

specified through the Command Panel can be viewed here.

3.2.5 3-D Mesh Command Panel

The Command Panel (Figure 6) consists of two sections: the top level butlons
and ~he ~ransformationscrollbars. The ~op level bu~~on panel con~ains buttons
to load, edit, save, and display the 3-D mesh. The scrollbars control the view
of the mesh in ~he Display Window. The Command Panel Bu~tons are ~he

following:

Quit Exits ~he 3-D Mesh Editor without saving

Load Loads a mesh da~a file. Selecting Load causes ~he File selection dialog
(Figure 7) ~o appear so ~ha~ users may en~er a file type and filename
for loading. Two file formats are suppor~ed by ~he 3-D Mesh Editor:
j jELLPACK's internal forma~ and ~he neu~ral file format. Conversions
be~ween these ~wo ~ypes are also suppor~ed by ~he 3-D Mesh Edi~or, since
the selection ofa discretization module for the solution scheme may require
that the mesh file has a specific format.

Save Saves the generated mesh to the session using the j jELLPACK language.
A File dialog appears so that users may specify a filename for the saved
mesh. This dialog operates exactly as the Load File dialog. Mesh files
that have been loaded as I jELLPACK format files may he saved in either
format; neutral format files loaded into this editor may also be saved in
either format.

16

Figure 5: 3-D Mesh Canvas Window

Reset Resets to the original mesh.

Redisplay Redisplays the generated mesh.

Axis Displays the coordinate axes in the Display Window in the correct orien
tation.

Edges • All edges: displays the entire mesh, including the edges of all ele
ments, both interior and on the surface.

• Boundary edges: shows edges of only the boundary edges of the ele
ments on the surface of the mesh.

Vertices Displays only the vertices of the mesh.

Node/Patch Allows the user to redefine the patch definition of the surface
node. Selecting Node allows users to assign a patch (color) to that specific
node; selecting Patch allows users to assign a new patch (color) to an entire
patch.

Undo Undoes the previous operation.

Apply Applies the selected patch operation, specified by node/patch assign
ments.

17

Figure 6: 3-D Mesh Command Panel Window

18

Figure 7: 3-D Mesh File Selection Dialog Window

Set Num Patches Sets the number of patches. When this button is selected,
the user is requested to enter the number of desired patches. The current
number of patches is listed below the button panel. Increasing the number
of patches allows users to define more surface patches by assigning nodes
to the new patches. This allows users to assign more boundary conditions
on the surface patches of the mesh.

Change Object Changes the object into a mesh without showing points on
the surface.

Patches by Poly Allows users to load the poly format file that was used to
generate the mesh (if the mesh was generated from a poly definition of the
3-D object). This poly filc is then used to define the surface node patches
of the mesh for the future assignment of boundary conditions. This assists
users in grouping the surface nodes by setting up an initial configuration
of patches.

Information about the mesh is contained in the Command Panel, and is updated
whcn new meshes are loaded, new patches are selected, or the total number of
patches is changed. The Command Panel provides the following information:

Number of Patches Lists the current number of patches defined for this mesh.

Number of Boundary Nodes Lists the total number of surface nodes for
this mesh.

19

Current Selection shows the current patch (color) selection. The currently
selected patch affects the assignment of nodes to patches.

The transformation scrollbars allow users to enlarge or shrink, rotate or translate
the mesh object in ~he canvas area as is depicted in Figure 8.

New values in the scrollbar are se~ by holding the left mouse button down
on the scrollbar indicator and moving it to the left or to the right.

Front Clipping Plane, Back. Clipping Plane Changes the location of the
clipping plane in the foreground/background of ~he mesh displayed in the
canvas.

Rotate X, Rotate Y, Rotate Z Rotates the object in the X/Y/Z direction
by the amount specified in the scroll bar. The initial rotation value is zero.
Rotational amounts are in degrees.

Move X, Move Y Translates the object in the X/Y direction by the amount
specified in the scroll bar. The initial translation value is zero.

Scaling Resizes the object in the canvas. The initial scale value is 1. Values
greater than one enlarge the object; values less than one shrink the object.

Reset Transformation Reinitializes all transformation parameters to their
original values and rcdisplays the objec~ in the canvas.

3.2.6 3-D Boundary Condition Editor

The 3-D Boundary Condition Editor is available also from the toolbox of the
3-D Finite Element Session. To access the 3-D Boundary Condition Edi~or, the
icon in Figure 9 in the Session Toolbox must be clicked. This editor is used to
display 3-D meshes which has been saved in the / /ELLPACK format or in the
neutral format and to assign boundary conditions to the surface nodes which
have been grouped together into surface patches. Modification of the surface
patches is handled by the 3-D Mesh Editor. When the mesh is loaded into
the Boundary Condition Editor, the surface patches are fixed, and only the
boundary conditions may be set or modified.

The 3-D Boundary Condition Editor consists of three windows: a Com
mand Panel, a Display Window, and a Palette. The Command Panel contains
buttons and scrollbars for loading, saving and manipulating the mesh and its
associated boundary conditions. The Display and the Palette window has the
same functionality as in the 3-D Mesh Editor.

If a mesh file exists in the current / /ELLPACK session, this mesh will au
tomatically be displayed. Otherwise, the editor will display the file selection
dialogue (Figure 7) so that users may select a mesh file to load. / /ELLPACK
and neutral file formats are supported by the Boundary Condition Editor.

20

Cal

Cel

Cb)

Cd)

Figure 8: (a), (b), (c), (d): Various Transformations of the Original Object

Figure 9: 3-D Boundary Condition Tool Icon

21

3.2.7 3-D Boundary Condition Display Window

The Display Window is the canvas (Figure 5) for viewing the mesh. Meshes that
are loaded in are displayed in the canvas, and the effect of all transformations
specified through the Command Panel can be viewed here.

3.2.8 3-D Boundary Condition Palette Window

The Palette Window in Figure 4 is used to identify the surface patches of the
3-D mesh. All surface nodes are assigned to a specific patch where boundary
conditions can be assigned. The patch identifications in the mesh file are shown
on the canvas via color assignments. The number and color of the patches are
also shown in the Palette. The number of patches cannot be changed with the
Boundary Condition Editor.

3.2.9 3-D Boundary Condition Command Panel

The Control Panel (Figure 10) consists of two sections: the top level buttons
and the transformations scrollbars. The top level button panel contains buttons
to load, edit, save, and display the 3-D mesh. Activate a button by clicking on
it with the left mouse button. Boundary conditions can be set or modified. The
scrollbars control the view of the mesh in the Display Window.

Quit Exits the 3-D Boundary Condition Editor.

Load Load a mesh file. This butlon causes the file selection dialogue to appear
which allows the users to specify the path, the filetype and the filename
of the file to be loaded.

Save Saves the boundary conditions to the session using the / jELLPACK lan-
guage.

Reset Resets to the original mesh.

Redisplay Redisplays the generated mesh.

Axis Displays the coordinates axes in the Display Window in the appropriate
orientation, according to the objects position in the display window.

Edges • All edges: displays the entire mesh, including the edges of all ele
ments, both interior and on the surface.

• Boundary edges: shows only the boundary edges of the elements on
the surface of the mesh.

Vertices Displays only the vertices of the mesh.

22

Figure 10: 3~D Boundary Condition Command Panel Window

Define By pressing the Define buHon, the window in Figure 11 will be ap
peared for defining or editing the boundary conditions for each patch.
The patches are numbered, and the color code in the palette defines the
mapping between the colors of the surface nodes and the patch number of
the associated boundary condition.

The rest of the information contained in the Command Panel has already been
described previously, in the corresponding area of the 3-D Mesh Editor.

3.2.10 3-D Decomposition Editor

The 3-D Decomposition Editor (FEM session only) is used to define a decom
position on the currently defined discrete 3-D domain. The 3-D Decomposition
Editor loads in a mesh file and produces a file containing a description of the
domain decomposition, and generates a I jELLPACK language description of

23

Figure 11: 3-D Boundary Condition Definition Window

Figure 12: 3-D Decomposition Tool Icon

the decomposition that is saved in the j jELLPACK session. The 3-D Decom"
position Editor can also be used to read in the decomposed file and display
it.

The 3-D Decomposition Editor is available from the toolbox of the 3-D Finite
Element Session in the j jELLPACK (Figure 12).

It consists of three windows: a Display Window, a Palette and a Command
Panel.

3.2.11 3-D Decomposition Display Window

The Display Window is the canvas (Figure 13) for viewing the mesh or decompo
sition. Meshes and decompositions that are loaded are displayed in the canvas,
and the effect of all transformations specified through the Command Panel can
be viewed here.

3.2.12 3-D Decomposition Palette Window

The Palette Window (Figure 14) is used to identify the subdomains for the 3-D
mesh. Each node is assigned to a specific subdomain and the correspondence is

24

Figure 13: 3-D Decomposition Canvas Window

shown on the canvas via color assignments. The number of subdomains can be
changed through the Command Panel.

3.2.13 3-D Decomposition Command Panel

The Command Panel (Figure 15) consists of two parts: the top level buttons
and the transformation scroll bars. The top level button panel contains buttons
to load, edit, save, and display the 3-D mesh or decomposition. The scrollbars
control the view of the mesh and its decomposition in the Display Window. The
Command Panel Buttons are the following:

Figure 14: 3-D Decomposition Palette Window

25

Figure 15: 3-D Decomposition Command Panel Window

26

Quit Exits the 3-D Decomposition Editor. The current decomposition will not
be saved to the session unless the Save button is clicked.

Load Loads a mesh or decomposition data file. Selecting Load causes the
File Dialog (Figure 16) to appear so that users may enter a file type and
filename for loading. Users may either load a mesh file for decomposing
it, or load a decomposition file for viewing or modifying.

Save Saves the generated decomposition to the session using the jjELLPACK
language. A File dialog appears so that users may specify a filename for
the saved decomposition. This dialog operates exactly as the Load File
Dialog.

Reset Resets to the original decomposition.

Redisplay Redisplays the generated decomposition on the current mesh.

Axis Displays the coordinate axes in the Display Window in the correct orien-
tation.

Edges • All edges: displays the entire mesh, including the edges of all ele
ments, both interior and on the surface.

• Boundary edges: shows only the boundary edges of the elements on
the surface of the mesh.

Vertices Displays only the vertices of the mesh.

Get Decomposition Applies the selected decomposition algorithm with its
current parameter settings and currently specified number of subdomains
to the mesh. The result is shown in the Display Window.

Set Num Domains Brings up a dialog box so that a new number of subdo
mains can be specified. The next three buttons apply to the subdomain
display windows which can be used to view each subdomain separately.
These "views" are useful for assessing the results of the decomposition
algorithm.

Split View Displays each subdomain in a separate window.

Quit Split View Closes the subdomain display windows.

Select Window Allows the user to select a subdomain display window so that
subsequent object transformation input applies to that window.

The particular algorithms offered through jjELLPACK will be described
in the next section where further information will be provided for this subject
matter.

27

Figure 16: 3-D Decomposition File Selection Dialog Window

3.2.14 Visual3D

As mentioned before, Visual3D is used to visualize 2-D/3-D meshes, structured
grids, poly files, and solution data. Data files are loaded directly into Visual3D
(Figure 17) from its own menu, so files should not be loaded into the OutputTool
before selecting this tool. When Visual3D has been invoked, the window in
Figure 17 is displayed.

Use "load mesh" under the File Menu option to load 2-D or 3-D / /ELLPACK
format mesh files, 2-D/3-D poly files, or neutral format files by using the dialog
window depicted in Figure 18.

Use "load solution" under the File Menu option to load / /ELLPACK for
mat solution files or component files by using the dialog window depicted in
Figure 19. For each of the above File dialogs, the file type must be selected. be
fore the file name is specified. In addition, the mesh file must be specified before
the solution file can be loaded. When the mesh file is loaded, it is immediately
shown in the Display Window. After the solution is loaded, the Rendering menu
option should be used for plotting the solution.

28

Figure 17: Visual3D Tool

4 / /ELLPACK Domain Decomposition Library

Identifying the parallelism in a problem by partitioning its data and tasks among
the processors of a parallel computer is a fundamental issue in parallel comput
ing. This problem very often is reduced to a graph partitioning (GP) problem
[CHR94] in which the vertices of a graph are divided into a specified number
of subsets such that a minimum number of edges join two vertices in different
subsets. A partition of the graph into subgraphs leads to a decomposition of the
data and/or tasks associated with a computational problem and the subgraphs
can then be mapped to the processors of the target multiprocessor.

Graph partitioning has an important role to play in the design of many
parallel algorithms by means of the divide and conquer paradigm. In the case
of IIELLPACK three parallel paradigms are supported based on the so-called
non-overlapping domain decomposition approach.

Following, we survey several classes of graph partitioning algorithms whose
various software implementations are included in IIELLPACK for the parti
tioning of meshes and grids. These mesh/grid partitions are used to decompose
the underlying computations and map them to target parallel machines.

4.1 Terminology - Background

A graph G will be denoted by means of its set of vertices V, and the set of
edges E. An edge in E is a pair of vertices (u, v); the vertices u and v are the
endpoints of the edge. The number of elements in a set S will be indicated by
lSI. Often, the number of vertices in a graph will be equal to n, and so the
equation IVI = n holds.

A partition of a connected graph G = (V, E) is a division of its vertices into
two sets A and B. The set of edges joining vertices in A to vertices in B is
an edge separator, that will be denoted by 6 (A, B); the removal of these edges

29

Figure 18: Loading a Mesh/Poly or Neutral file in Visual3D Tool

disconnects the graph into two or more connected components. In applications
such as domain decomposition, the set of vertices A would be mapped to one set
of processors and the set of vertices B to another, and 16 (A, B)j is a measure of
the amount of communication necessary between the two groups of processors.
Hence one goal in partitioning a graph in these applications is to minimize the
number of edges cut by the partition so as to keep communication costs in the
algorithm minimal.

A second goal is to balance the computational work (load) between the two
sets of processors. This is achieved by prescribing the number of vertices in A
and B to within a tolerance. If A and B are equal in size, then the partition is
called a bisection and 16 (A, B)I is the bisection width.

In other applications, such as nested dissection, a vertex separator is desired;
this 1s a set of vertices S whose removal disconnects the graph into two parts
with no edge joining a vertex in one part to a vertex in the other. Here the goals
are that the separator should have a small number of vertices, and as above,
the two parts should not differ by too many vertices.

4.2 A survey of early and recent partitioning algorithms

In this section a brief description of the most important algorithms for par
titioning graphs is given. The software implementation of these algorithms is
available in / /ELLPACK.

30

Figure 19: Loading Solution Files in Visual3D Tool

4.2.1 The Kernighan-Lin algorithm

The Kernighan-Lin algorithm is one of the earliest algorithms for partitioning
graphs [KL70]. A graph is to be partitioned into k subsets so as to minimize the
number of edges joining vertices in different subsets. The algorithm begins with
an initial partition into two sets, obtained by a random partition or from some
initial information available about the problem. H is an iterative algorithm,
in which the basic operation consists of swapping subsets of vertices of equal
number between the two sets to reduce the number of edges joining the two
sets. The algorithm terminates when it is no longer possible to reduce the
number of edges by swapping subsets, or when a specified number of swaps
have been made. The algorithm chooses subsets of vertices to swap based on
the fundamental concept of the gain associated with moving a vertex u belonging
to one set A to the other set B. This gain is the net reduction in the number
of edges cut by the partition. An important idea in the Kernighan-Lin (KL)
algorithm is to continue to move vertices with negative gains for a preset number
of steps, in the hope that such a sequence of moves might create vertices with
positive gains later on, and thus reduce the number of edges cut overall. This
enables the algorithm to climb out of local minima in partition space. Also we
can partition a graph into more than two subsets by recursively applying the
bipartition algorithm.

The quality of a partition generated by this algorithm depends strongly on

31

the initial partition. There are poor initial partitions for the regular grid graph
that cannot be improved by the KL algorithm. This is the reason, that KL is
the most widely used local refinement algorithm for GP. That is, I<L can be
applied in a post-processing phase, to further reduce the number of edges cut,
after another "global" algorithm is used to compute a good initial partition.

4.2.2 Level-structure Partitioning

Another early algorithm [CGLN84] for computing vertex separators is the one
that finds a pseudo-peripheral vertex v in the graph (one of a pair of vertices
that are approximately at the greatest distance from each other in the g£aph)
and then a breadth-first search from v is used to partition the vertices into levels:
the vertex v belongs to the zeroth level, and all neighbors of vertices in the ith
level belong to the (i + l)th level, for i = 0, 1, Some algorithms choose the
vertices in the median level as the vertex separator. A slight variant chooses the
separator to be the vertices in the smallest level k such that the levels 0, 1, ... , k
together contain more than half the vertices. This variant partitions the vertices
into roughly equal sets. Another improvement is to remove from the separator
those vertices in level k that arc adjacent to vertices in level (k - 1) but not to
vertices in level (k + 1). The algorithms can easily be modified to compute edge
separators, and are quite fast, requiring only (9 (lEI) time, since they employ
only a few breadth-first searches to compute the pseudo-peripheral vertex and
the level structures. Unfortunately, the quality of the separators is quite poor,
relative to the other algorithms described here.

4.2.3 Inertial Algorithm

The inertial algorithm [NORL86] employs the geometrical coordinates of the
vertices of a graph embedded in two or three dimensions to compute a partition.
We view the set of vertices of the mesh as a discrete point set, and compute
the center of gravity of this set (xc, Ye, xc). Then we compute the 3 x 3 inertia
matrix

where

32

The eigenvector lh associated with the smallest eigenvalue of I represents the
axis of minimum angular momentum. Following this, the orthogonal projection
of the coordinates of the vertices onto this eigenvector :!l1 is computed and the
median value of these projections can be used to partition the vertices into two
sets. The intuitive idea behind this algorithm is that the rotational angular
momentum is minimum about the principal axis of inertia. If the domain is
nearly convex, then this axis will align itself with the overall shape of the grid,
and the grid will have a small spatial extent in a direction orthogonal to this
axis. The virtue of the inertial algorithm is that it is fast, though the quality
of the partitions may be poor. The quality can be improved by the use of a
Kernighan-Lin post-processing phase. The algorithm also requires a geometric
embedding of the graph.

4.2.4 The Spectral Partitioning Algorithm

The bisection problem requires the partitioning of the vertices of a graph G =
(V, E) into two sets A and B such that the number of "cut-edges" is minimized.
The sizes of the two parts should be the same after partitioning if the graph has
an even number of vertices.

The bisection problem can be formulated as the minimization of a quadratic
objective function by means of the Laplacian matrix Q = Q (G) of the graph
G. Let d(i) denote the degree of the vertex i, that is the number of vertices
adjacent to i. The Laplacian matrix Q has as elements

{

-I

q;j ~ ~(i)

ifi¢j and (i,j) EE,
ifi¢j and (i,j) 'I. E,
ifi=j.

The Laplacian matrix Q is symmetric and has row and column sums equal to
zero. It can also be expressed in terms of two other matrices associated with a
graph, as Q = D - A, where A is the adjacency matrix of a graph, and the D
is the n x n diagonal matrix of the degrees of the vertices of G.

Let,!. be an n-vector with component Xi = 1 if i E A and Xi = -1 if i E B.
Then

L (x;-Xj)'= L (x;-xj)'=41 6 (A,B)I·
(i,j)eE ,'eA,jeB,(i,j)eE

On the other hand,

"
,!.TQ~ = ,!.TD,!. -l:i?A,!. = 2::: diXl- 2 2::: XiXj = 2::: (Xi _ Xj)2 .

•=1 (i,j)eE (i,iJeE

Thus the bisection problem is equivalent to the problem of minimizing the
quadratic form ~TD,!. over n-vectors ~ with components x, = ±1 and I:?=1 Xi =
O. Formally,

33

Since the bisection problem is NP-complete, it cannot be solved exactly, ex
cept if the constraint that Xi = ±1 is relaxed and each component can vary
continuously in value between +..;n and -..;n.

The minimizer of the relaxed problem is the second eigenvector of the Lapla
cian matrix. Thus the algorithm is constructed as follows: compute a second
eigenvector of the Laplacian of the graph, and then partition the vertices into
two sets by the median eigenvector component. It should be noted that if a
partition into subsets of size k and n - k are desired, then the kth most pos
itive component (or kth most negative component) could be used to obtain a
partition. In [PSL90] the spectral partitioning algorithm is used to compute sep
arators for parallel computing, to prove additional lower bounds on separators,
and to describe computational results.

4.2.5 The Geometric Algorithm

Finite element or finite difference meshes embedded in space contain geometric
information about the coordinates of the mesh points. Algorithms for partition
ing meshes by bisecting along coordinate axes have been considered by many
authors (see for example [Wu9S]). They are fast and easy to implement in par
allel, but the quality of the separators obtained by such straight-line cuts arc
not good relative to other algorithms, especially for adapted meshes.

Another family of algorithms used for geometric partitioning, compule a
separator by using a circle rather than a straight-line to cut the mesh. Given a
graph embedded in d-dimensional space, the edges of the graph arc disregarded
and the graph is viewed as a collection of vertices. Since the graph is embedded
in d-dimcnsional space, each vertex has a set of geometric coordinates attached
to it.

A centerpoint, which is of major importance for such kind of algorithms, is
a point such that every hyperplane through it divides the given set of points
approximately evenly in two subsets. "Approximately evenly" in this case means
that the worst-case ratio of the sizes of the two subsets is d -+- 1. It can be
proved that every finite point set in 1ld has a centerpoint, and the proof yields
a polynomial time algorithm that employs linear programming to compute the
centerpoint. However, this algorithm is too slow to be practical, and heuristics
to compute approximate centerpoints arc used instead.

The geometric algorithm has several advantages. It examines only the ver
tices of the graph, and makes no use of the edges except to compute the quality
of the generated separators. The computations involved, are simple operations
on the points. However, the feature that the algorithm makes no use of the edge
information in the graph is also a weakness in the partitioning of edge-weighted
meshes where the weight of the cut edges needs to be minimized. Another dis
advantage is that graphs arising in many areas, such as econometric modeling,
do not have coordinate information since they are not embedded in space.

34

4.2.6 A Multilevel Algorithm

Multilevel algorithms (see for example [KK95b]) for graph partitioning are sim
ilar in spirit to multigrid algorithms for solving linear systems of equations. In
this case, the given graph can be viewed as the finest graph in a sequence of
coarse graphs to be computed. Given a ''fine'' graph, we obtain a "coarse"
graph with fewer vertices by a suitable shrinking procedure. We construct a
sequence of "coarse" graphs until the coarsest graph computed thus far is small
enough. A high-quality partitioning algorithm such as the spectral algorithm or
Kernighan-Lin algorithm is used to partition the coarsest graph. A partition of
a coarse graph is then used to partition the fine graph immediately preceding it
in the sequence of graphs by reversing the shrinking step used to coarsen (this
is an "uncoarsening" step). Next, this "rough" partition of the fine graph is
refined by means of a vertex.swapping algorithm that moves vertices between
the parts to reduce the number of edges cut by the partitioning algorithm (this
is a "refinement" step). The uncoarsening and refinement steps are repeated for
each successive pair of fine and coarse graphs in the sequence until a partition
of the given graph is computed.

After the description of the various ideas of the partitioning algorithms pro
posed, we give an extended description and some comparisons of the imple
mented algorithms in the / /ELLPACK environment. Specifically, we list three
groups of partitioning libraries: the / /ELLPACK [HRW+96], CHACO [HL95c]
and METIS [KK95c].

4.3 Native / /ELLPACK Decomposition Software

The native / /ELLPACK decomposition algorithms are described extensively in
[Wu95, WH96]. They include the following:

PxQxS The PxQxS algorithm splits the domain along the main axis (Cartesian
or Polar) after sorting the coordinates of the nodes (FD mode) or the
center of mass of the elements (FEM mode).

Inertia Axis The Inertia Axis algorithm keeps splitting the domain into sub
domains along the symmetry axis defined by the coordinates of the nodes
(FD) or the center of mass of the elements (FEM), until the specified
number of subdomains is reached.

RSB The Recursive Spectral Bisection algorithm uses eigenvector spectral search.
Nodes are visited in order of increasing eigenvector values of the Laplacian
matrix of the graph.

Neighborhood Search The Neighborhood Search algorithm splits the initial
mesh based on the neighborhood traversal scheme. That is, the subdo
mains are gathered on the basis of the searching order defined.

35

Figure 20: Graphical Interface for the CHACO Package

Clustering The objective of a data clustering algorithm is to group the mesh
points into clusters such that the points within a cluster have a high
degree or "natural association" among themselves, while the clusters are
"relatively distinct" from each other.

The interface controlling these algorithms is depicted in Figure 15.

4.4 CHACO Graph Partitioning Software

We have incorporated the CHACO 2.0 version ofCRACO [HL95c, HL93, HL95a,
IIL95b] into //ELLPACK.

Broadly speaking, CHACO addresses three classes of problems. First and
foremost, it partitions graphs using a variety of approaches with different prop
erties. Second, it intelligently embeds the partitions it generates into several
different topologies. The topologies the code knows about are those matching
the common architectures of parallel machines, namely hypercubes and meshes.
Third, it can use spectral methods to sequence graphs in a manner that preserves
locality. This capability has been used, for example, in data base organization,
sparse matrix envelope reduction and DNA sequencing. The graphical user
interface to the CHACO software package is displayed in Figure 20.

The five classes of partitioning algorithms currently implemented in CHACO
are simple, spectral, inertial, Kernighan-Lin(KL) and multilevel-KL. In the first
row of the user interface, the global partitioning algorithms can be selected.
CHACO includes three very simple global partitioning schemes. The linear
scheme, the random scheme and the scattered scheme. One global method for

36

large problems in which high quality partitions are sought is the multilevel
KL. Also a spectral method is available, where eigenvectors of the matrix con
structed by the graph, are used to decide how to partition the graph. The
inertial method is a relatively simple and fast partitioner that uses geometric
information. CHACO also allows a partition to be read from a file (RFF) and be
refined with a local method or with one of the various post-processing methods.
In the second row, the user can select a local partitioning scheme, where only
Kernighan-Lin is considered as such in this version. Since KL does not find very
good partitions of large graphs unless it is given a good initial partition, in the
context of CHACO, it is used in conjunction with one of the global partitioners.
In the sequel the user can select an eigen solver, between the two offered by
CHACO: a Lanczos based solver and a multilevel RQIjSymmlq (this algorithm
combines a graph coarsening strategy with Rayleigh Quotient Iteration using
the linear solver Symmlq to refine approximate eigenvectors projected from a
coarse graph onto a finer graph). In the next line the user can specify the
size of the parallel machine for which the partitioning is used. CHACO knows
the topology of hypercube and mesh parallel machines. Finally, the user will
choose whether to apply the partitioning method, in bisection, quadrisection,
or octasection form.

4.5 METIS Unstructured Graph Partitioning

Another system for graph partitioning that has been integrated into j JELL
PACK is the Version 2.0 of the METIS [KK95c] system. METIS is a set of
programs that implement the various algorithms described in [KK95a, KK95b].
The basic idea behind the multilevel graph partitioning algorithms implemented
in METIS is that the graph G is first coarsened down to a few hundred vertices,
a bisection of this much smaller graph is computed, and then this partition is
projected back towards the original graph (finer graph), by periodically refin
ing the partition. The coarsening phase is accomplished by finding a maximal
matching and collapsing together the vertices that are incident on each edge
of the matching. The next phase of the multilevel algorithm is to compute a
minimum edge-cut bisection of the coarse graph, such that each part contains
roughly half of the vertices of the original graph. Since during coarsening, the
weights of the vertices and edges of the coarser graph were set to reflect the
weights of the vertices and edges of the finer graph, the graph resulted from
the coarsening process contains sufficient information to intelligently enforce
the balanced partition and the minimum edge-cut requirements. During the
last phase, the partition of the coarsest graph is projected back to the original
graph by going through the sequence of graphs created during the coarsening
process. Furthermore, even if the partition of a graph is at a local minimum, the
projected partition may not be at a local minimum. Since the projected graph
is finer, it has more degrees of freedom that can be used to further improve
the partition and thus decrease the edge-cut. Hence, it may still be possible to

37

Figure 21: Graphical Interface for the METIS Package

improve the projected partition by local refinement heuristics. The graphical
user interface to the METIS software package is displayed in Figure 21. The
default values displayed in the window arc the ones used for the algorithm which
is compared with the other algorithms (from I jELLPACK and CHACO) in the
various experiments.

5 Performance Evaluation of Domain Decom
position Software

In I jELLPACK there are three parallel methodologies for solving steady-state
field POE models on distributed machines. All are based on the decomposition
of the associated finite clement mesh or grid. In the first approach, a parallel
POE discretization module is assumed based on a decomposition of the geomet
ric data structure involved. The second approach is based on a decomposition of
the continuous PDE domain obtained from a semi-optimal mesh partitioning.
Then in each subdomainjprocessor the sequential POE discretizer is invoked
to generate the algebraic equations. In some instances, the coefficients of the
unknowns at the interface might need to be communicated among the neighbor
subdomains. Finally, the decomposed system of PDE discretization equations
is stored on each processor of the target machine. The third and last approach,
assumes that the PDE model is discretized sequentially. Then, using the mesh
decomposition data, the matrix is partitioned into blocks which arc downloaded
on each processor of the parallel platform selected with the execution tool. In
all three methodologies, the decomposed system is solved in parallel using any
of the j jELLPACK linear solvers. For the performance evaluation of the parti
tioning heuristics listed in Table 1, we have applied the last approach, referred

38

I Acronym I DCBcriptioD I Reference I
HACO hnenr Lmear scheme from CHACO ",0

CHACO memal Inertial method from CHACO L95c
CHACO Gpectral Spectral partltlomn from CHACO L95c

CHACO MKL Multllevel KL from CHACO ",0
II ELLPA\;K pIO;ql<S P::r.rtltJOllmg of the mesh IIlto a spcclfied H"

number of roWs and columns
I I/ELLPACK inm1:>aJ PartItIoning of the mesh by L\ H93)

Inertia Axis Splittinst
METiS default Mult, evel graph partLhonms LI~l<95cJ

(PMETIS) with dernult values
chosen by implementOI"8 from METIS

Table 1: The selected mesh par~i~ioning algorithms for their performance eval
uation in the context of MPlus parallel reuse methodology

throughout as MPlus, for two elliptic model PDE problems and several domains.
Following, we give a detailed description of the MPlus approach, the hardware
and PDE solvers used, the numerical experiments carried out to evaluate the
partitioning algorithms listed in Table 5.1, and present the numerical results
obtained with an analysis.

5.1 MPlus (M+): An Off-line Parallel Reuse Methodol-
ogy for Solving PDEs

M+ is a parallel framework that allows the "reuse" of the discretization part of
sequential general elliptic PDE solvers. This reuse methodology is based on the
"divide and conquer" computational paradigm and uses an off-line approach.
It assumes that the discretization of the PDE model is realized by an existing
sequential PDE solver, and it goes off-line to a parallel machine to solve the
resulting system of discrete equations. For the parallel solution of the discrete
equations, a partitioning of the linear system is required. This is obtained
implicitly through a decomposition of the corresponding discrete PDE problem
domain. The partitioned linear system is then downloaded onto the parallel
machine.

The M+ [MH96] software package has a self-contained, interactive, graphical
interface which can be used to obtain a domain decomposition based partition
of the discrete algebraic equations generated by PDE software. Input to the
tool consists of the linear system and a corresponding non-overlapping domain
decomposition. In addition to the linear system partitioning module, M+ also
provides modules for linear system visualization, parallel solver specification,
and template-based parallel driver program generation.

The linear system input is represented in a tagged, self-identifying format
which is generated by the save linear system output specification in / JELL
PACK. The domain decomposition input is accepted in the current j jELLPACK
decomposition file format. The visualization module supports the display of the
original and partitioned linear systems and provides a facility to permute a par-

39

titioned system and visualize it in arrowhead format. Based on the parallel
solver specification, the parallel solution module generates the parallel solver
driver program from a template and the requisite input data files for the node
processors of the MIMD platform. The current version of M+ supports the
entire library of parallel ITPACK linear solvers.

5.2 Parallel Linear Solvers and Hardware Platforms

The experiments for this study were performed on two different hardware plat
forms: an nCUBE/2 and a network of workstations. The nCUBE/2, is a 64
node system with 4MB memory per node. The network of Sun workstations
consists of 8 Sparc Station 20s with 32MB memory running 50laris 2.4. The
5S20's (Model 61), are connected to both a lOMbps Ethernet, and an ATM
switch running at speeds up to 155 Mbps. The / /ELLPACK PSE is supported
by a parallel library of PDE modules for the numerical simulation of station
ary and time dependent PDE models on two and three dimensional regions.
The parallel PDE solver libraries are based on the "divide and conquer" com
putational paradigm and utilize the discrete domain decomposition approach
for problem partitioning and load balancing. Thc parallel implementation of
the ITPACK [KRG82] linear solver library is integrated in the / /ELLPACK
PSE and is applicable to any linear system stored in / /ELLPACK's distributed
storage scheme. It consists of seven modules implementing Successive Over
Relaxation (SOR) with Red/Black (RB) ordering, Jacobi Conjugate Gradient.
(CG) with Natural and RB ordering, Jacobi with Chebyshev Accelaration (SI)
and N/RB ordering, Reduced System CG (RSCG) with RB ordering, Reduced
System SI (RSSI) with RB ordering, Symmetric SOR CG (SSOR-CG) with RB
ordering, and Symmetric SOR SI (SSOR-SI) with RB ordering [Kim93]. The
code is based on the sequential version of ITPACK which was parallelized by
utilizing a subset of level two sparse BLAS routines. The communication mod
ules of the parallel ITPACK library have been implemented for several MIMD
platforms using different native and portable communication libraries. The im
plementations utilize standard send/receivc, reduction, barrier synchronization
and broadcast communication primitives from these message passing commu
nication libraries. No particular machine configuration topology is assumed in
the implementation. In the context of our measurements we are using the MPI
[GLS94] portable communication library of the parallel ITPACK implementa
tion.

5.3 Experimental Results

For the evaluation of the integrated mesh decomposition libraries, we have se
lected two simple 3-D ellipt.ic PDE models:

U",,,, +U yy + u~~

40

o (1)

I procll I fern solve I speedup I veereDl solve I llpeedup I decODlposition I, 3ll.55 1.00 330.95 LOll -, 16.63 l.84 136,36 2.39 A mear
16.11 1.90 140.12 2.36 CHACO inertial
16,02 1.91 143,04 2.31 CHACO spcctI"llI
15.99 1.92 133.34 2.018 CHACO MKL
15.78 1.94 128,33 2.57 ELLPACK " ,.
16.90 1.93 133.81 2.47 METIS default, 8.51 3.60 66.99 4.94 CHACO hnea.
8.12 3.77 66.51 4.97 CHACO menial
8.17 3.75 6'1.52 5.12 CHACO spectral
8.41 3.64 66.88 4.94 CHACOMKL
8.23 3.72 63.39 5.22 BLLPACK pxqxa
8.41 3.64 67.08 4.93 METIS "fault

8 5.37 5.70 36.03 9.18 CHACO linear
4.93 6.21 33.025 10.02 CHACO ;n"rtiBI
5.00 6.13 35.65 9.28 CHA o spectral
5.00 6.13 31.26 10.58 CHACOM L
5.43 5.64 33.98 9.73 ELLPA pxqxs
"l.76 6.43 33.24 9.95 METIS default

Table 2: The parallel ITPACK Jacobi CG time (seconds) and flxed speedups for
j jELLPACK FEM and VECFEM discretization systems with different parti
tioning schemes on an ethernet based cluster of SS20 workstations. The system
of equations was generated using FEM and VECFEM modules applied to PDE
problem (5.1) defined on the union of a cube and a cylinder. The mesh used
had 16198 nodes and 72028 elements.

U",,,,+Uyy +Uu (2)

with Dirichlet boundary conditions defined on a cylinder, a union of a cube with
a cylinder, a cube with a hole, and an airplane (Figure 22).

For the discretization of (5.1) and (5.2), we are applying two different j fELL
PACK software modules implementing the linear finite element method, known
as VECFEM [GS91] and FEM. The generated PDE discretization systems
are partitioned and downloaded on the selected hardware platforms, using the
MPlus approach. The corresponding algebraic systems obtained are solved in
parallel, using the j jITPACK Jacobi CG solver. The mesh partitioning requi.red
were obtained using the software modules listed in Table 1. The parallel solu
tion times and the sequential mesh partitioning times are measured and listed
in the following tables.

In Table 2, we observe that for the linear FEM discretization module, the
fixed speedup is smaller than the VECFEM module. This is due to the difference
of the number of equations per processor. In the case of FEM module the
boundary degrees of freedom are eliminated during the discretization process.
The super linear speedup observed for the VECFEM discretization, is due to
paging since the large system cannot be stored in core memory.

The data of Table 2 and Table 3 suggest that the optimality of all partition
ing algorithms of Table 1, with respect to parallel execution of the linear system
or fixed speedup, is almost equivalent on the two clusters of workstations con-

41

(a)

(oj

(b)

(d)

Figure 22: (a) Cylinder, (b) Cube with a Cylinder, (e) Cube with a Hole (d)
Airplane

42

I prOCli I f'ew. "olve I speedup I vedem lIo1ve I speedup I decolDpoliitioll I, 31.096 1.00 330.95 1.00, 16.49 1.88 136.93 2.41 CHACO hnear
15.93 1.95 139.96 2.11 CHACO mertlal
18.88 1.61 143.45 2.30 CHACO IIpectrnl
16.04 1.93 133.07 2.'18 CHACOMKL
15.67 1.98 126.91 2.60 ELLPACK , "
15.96 1.94 134.68 20'15 METIS der..ult, 12.25 2.53 66.63 4,95 CHACO linear
7.98 3.89 66,1i3 4.96 CHACO Inertial
8.00 '" 64.17 5.10 CHACO IIpedrai
9.10 3.41 66,91 4.94 CHACO MKL
8.24 3.77 63.24 5.23 ELLPACK p"qxII
10.18 3.05 67,95 4.87 E "fault

• 7.63 4.07 35.88 9.22 CHACO linell.r
6,11 5.08 32.70 10.12 CHACO inertial
5,79 5.37 35.26 '" liA spectral
5.58 5.57 <lUi:! 10.49 CHACO MKL
6.09 5,10 33.92 9.75 ELLPACK pXqKII

6.17 5.03 33,30 9.93 METIS defllull

Table 3: The parallellTPACK Jacobi CG time (seconds) and fixed speedups
for j jELLPACK FEM and VECFEM discretization systems with different par
titioning schemes on an ATM based cluster of 5S20 workstations. The system
of equations was generated using FEM and VECFEM modules applied to PDE
problem (5.1) defined on the union of a cube and a cylinder. The mesh used
had 16198 nodes and 72028 elements.

sidered. If we add the time to generate the decomposition (see Table 5), then
we observe that PxQxS algorithm performs the best with METIS default and
CHACO MKL and Inertial following very closely (see Figure 23 for the FEM
case). CHACO spectral is not competitive due to its large computational cost.

Table 4 lists the nCUBEj2 times in seconds and fixed speedups of parallel
ITPACK Jacobi CG solver for the FEM module applied to the Poisson problem
(5.1) defined on the union of a cube and a cylinder. The mesh used has 16198
nodes and 72028 elements. Table 4 and Table 5, suggest that METIS default, is
performing the best for large number of processors (n > 8) with j jELLPACK
PxQxS and CHACO MKL and Inertial sufficiently close. For n < 16 , PxQxS
performs the best.

The data in Table 6 include timings of parallel ITPACK Jacobi CG on the
nCUBEj2 for the FEM discretizer, fixed speedups, and sequential decomposi
tion time on a SS20. The FEM module is applied to the model PDE problem
defined on the cube with a hole (Figure 22 (b») using a mesh with 16198 nodes
and 72028 elements. In this case METIS performs the best for n > 16, while
CHACO outperforms the rest for n < 32. It's worth noticing that the fixed
speedup does not improve in the case of 64 processors. Table 7 lists the se
quential times of a part of the partitioning algorithms listed in Table 1 for the
domain depicted in Figure 22 (d). The data suggest, the expected behavior,
that the simpler algorithms are the less costly.

43

I proCII I r"lll solve I speedup I decompositioll I, 169.82 1.00 -, 97.07 1.74 CHACO hnenr
90,0.1 1.88 CHACO inerti,,]

106.98 1.58 CHA.CO s edl'lll
91.06 1.86 CHACO MKL
85.05 1.99 E L AC pxqJCs
91.02 1.86 MBTIS default, 71.12 2.29 CHAGO lmear
47.22 3.59 CHACO Inertial
46.51 3.65 CHACO spectral
52.20 3,25 CHACOMKL
44.70 3.80 ELLPACK ".
68.91 ,.'" METIS dernult, 38.58 4AO CHACO hne....
31.71 5.35 CHACO inerti"l
28.94 5.86 CHACO spectral
28.97 5,86 CHACO MKL
30.82 5.51 ELLPACK .~
32.50 5.22 METIS default

16 18.91 8.98 CHACO MKL
26.14 6.49 E A pxql<S
18.27 9.29 MBTIS default

" 12_07 1'1,06 HA OMKL
20.46 8.30 ELLPACK pxqxs
11.76 14.4'1 METIS default

" 11.80 H,39 CHACOMKL
19.50 8.70 ELLPACK px)cs
12.70 13.37 METIS default

Table 4: The parallel TTPACK Jacobi CG time (seconds) and fixed speedups
for //ELLPACK FEM discretization system with different partitioning schemes
on the nCUBE/2. The system of equations was generated using FEM module
applied to PDE problem (5.1) defined on the union of a cube with a cylinder.
The mesh used had 16198 nodes and 72028 elements.

44

I proclI I time I dccompollition I, 2.85 CHACO hnear
'2.04 CHACO .nertlBl

407.93 CHACO Bpect.aJ
2.51 CHACO MKL
0.69 ELLPACK , ..
2.09 METiS default, 4.31 CHACO lin"ar
2.76 CHACO Inert!
- A spectral

3.94 CHA MK
loll AC p1<qxlI
2.73 METI "fall t, 5.60 A o linear
3.55 CHACO inertial
- CHACO II e<:tral

'1.62 HACOMKL
1.58 ELLPACK pxqxlI
3,33 METIS default

" 6.75 CHACO MKL
1.80 ELLPACK pxqx.
4.01 METIS default

" 8.49 CHACOMKL
2.11 ELLPACK pXqX5
01.81 METiS derault

" 10.57 CHACOMKL
2.42 B LPACK pxqxs
5.65 METIS dau t

Table 5: Sequential time of the various decomposition algorithms and Dumber
ofsubdomains on a 8820 workstation for the decomposition of the finite element
mesh of domain depicted in Figure S.1b with 16198 nodes and 72028 clements.

45

o

,.
,.
"'FC",",,","~,","==========""

-~~~~~E~iiillililli~~~m~fj;~~j~~~~~~t;'~~~~'~~~;;::::~:~

mm~fm~~l~i;:,~;}imm .C~ACO mrid ::"
,;::::::::::::::::~:::::::::::: OCHACO MKL

~;t!~~1im~~ltj;t~~~h I3UEL lPACKp~ ~;\
~~\;?~~~~;~~~;~~~g~;~i~ .MEllS Dc:tllJl1 ",
",:.:::: ,:::'::" "':";~'~:,0::::::,",:::::::,::0:,;,,::-:=::.0::-:,0::

2

2 •
Number of !Jl'OOC!mors

•
Figure 23: The FEM data of Table 5.2 combined with the data from Table 5.5
presented in a bar graph.

6 Conclusions

We have presented a detailed description of the 3"D pre-processing and post
processing user interface of the / /ELLPACK PSE and the infrastructure llsed
to implement it. In addition we have started an extensive evaluation of finite
element partitioning algorithms within the / jELLPACK environment. The re
sults suggest that the coordinate based heuristics (PxQxS and Inertial), the
CHACO MKL, and METIS default algorithms, can produce partitionings with
very small cost that lead to significant speedups of the underlying computations
even for moderate size PDE discretization models.

References

[BDG+92] Adam Beguelin, Jack Dongarra, Al Geist., Robert Manchek, and
Vaidy Sunderam. A User's Guide to PVM: Parallel Virtual Ma
chine. Technical Report ORNLfTM-11826, Oak Ridge National
Laboratory, Engineering Physics and Mathematics Division, Math
emat.ical Sciences Section, 1992.

46

[BHK85] R. F. Boisvert, S. E. Howe, and D. K. Kahaner. GAMS ~ A Frame
work for the Management of Scientific Software. ACM Trans. Math.
Soft., 110313-355, 1985.

[BLCL+94] Tim Bemers-Lee, Robert Cailliau, Ari Luotonen, Henrik Frystyk
Nielsen, and Arthur Secret. The World-Wide Web. Communica
tions of the ACM, 37(8):76-82, August 1994.

[CGLN84] C. Chu, J. A. George, J. W. Liu, and E. G. Ng. User's Guide for
SPARSPAK-A: Waterloo Sparse Linear Equations Package. Tech
nical Report CS-84-36, Computer Science, University of Waterloo,
Ontario, Canada, 1984.

[CHR94] N. P. Chrisochoides, E. N. IIoustis, and J. R. Rice. Mapping Algo
rithms and Software Environments for Data Parallel PDE Solvers.
Special issue of the Journal of Parallel and Distributed Computing
on Data-Parallel Algorithms and Programming, 21(1):75-95, April
199<.

[GHR92] E. Gallopoulos, E. Houstis, and J. R. Rice. Future Research Direc
tions in Problem Solving Environments, for Computational Science.
Technical Report CSD-TR-92-0032, Department of Computer Sci
ences, Purdue University, 1992.

[GLS94] W. Gropp, E. Lusk, and A. Skjellum. Using MPI: Portable Paral·
lel Programming with the Message Passing Interface. MIT Press,
October 1994.

[Gro77] The MATHLAB Group. MACSYMA Reference Manual, Version
9. Laboratory for Computer Science, M.LT., Cambridge, 1977.

[GroS7] Symbolic Computation Group. Maple User's Guide. University
of Waterloo, Department of Computer Science, Waterloo, Canada,
1987.

(GS9l] L. Gross and P. Sternecker. The Finite Element Tool Package
VECFEM. University of Karlsruhe, 1991.

[HL93] B. Hendrickson and R. Leland. An Improved Spectral Load Bal
ancing Method. In Proc. 6th SIAM Con]' Parallel Processing for
Scientific Computing, pages 953-961, March 1993.

[IlL95a] B. Hendrickson and R. Leland. An Improved Spectral Graph Par
titioning Algorithm for Mapping Parallel Computations. SIAM J.
Sci. Computing, 16, 1995.

47

[HL95b] B. Hendrickson and R. Leland. A Multilevel Algorithm for Par
titioning Graphs. In Proc. Supercomputing '95. ACM, December
1995.

[HL95c] B. Hendrickson and R. Leland. The Chaco User's Guide, Version
2.0. Sandia National Laboratories, July 1995.

[HRW+96] E. N. Houstis, J. R. Rice, S. Weerawarana, A. C. Catlin, P. Pa
pachiou, K. Y. Wang, and M. Gaitatzes. Parallel (/f) ELLPACK:
A Problem Solving Environment for PDE Based Applications on
Multicomputer Platforms. Technical Report CSD·TR·96·070, De
partment of Computer Sciences, Purdue University, 1996.

[Inc94] X Business Group Tnc. Interface Development Technology. 3155
Kearney Street, Suite 160, Fremont, CA, 1994.

[Kil93] Mark Kilgard. OpenGL and X, Part I: An Introduction. The X
Journal, SIGS Publications, November/December 1993.

(Kil94a] Mark Kilgard. OpenGL and X, Part 2: Using OpenGL with Xlib.
The X Journal, SIGS Publications, January/February 1994.

[Kil94b] Mark Kilgard. OpenGL and X, Part 3: Using OpenGL with Motif.
The X Journal, SIGS Publications, July/August 1994.

[Kim93] S. B. Kim. Parallel Numerical Methods for Partial DiffeTCntial
Equations. PhD tnesis, Department of Computer Sciences, Pur
due University, 1993.

[I(K95a] G. Karypis and V. Kumar. Analysis of Multilevel Graph Parti
tioning. Technical Report TR 95-037, Department of Computer
Science, University of Minnesota, 1995.

[KK95b] G. Karypis and V. Kumar. A Fast and High Quality Multilevel
Scheme for Partitioning Irregular Graphs. Technical Report TR
95·035, Department of Computer Science, University of Minnesota,
1995.

[KK95c] George Karypis and Vipin Kumar. METIS UnstructuTCd Graph
Partitioning and Sparse Matrix Ordering. University of Minnesota,
Department of Computer Science, August 26, 1995.

[KL70] B. Kernighan and S. Lin. An Efficient Heuristic Procedure for
Partitioning Graphs. Bell System Technical Journal, 29:291-307,
1970.

48

[KRG82] D. Kinkaid, J. Respess, and R. Grimes. Algorithm 586: Itpack 2c:
A Fortran Package for Solving Large Linear Systems by Adaptive
Accelerated Iterative Methods. ACM Trans. Math. Soft., 8(0):302
322, 1982.

[MH96] S. Markus and E. N. Houstis. Parallel Reuse Methodologies for
Elliptic Boundary Value Problems. Technical Report CSD-TR-96
056, Department of Computer Sciences, Purdue University, 1996.

[MLB90J C. Moler, J. Little, and S. Bangert. PRO MATLAB for Sun Work
stations: User's Guide. The MathWorks, Inc., Sherborn, 1990.

[MR92] Brad A. Myers and Mary Beth Rosson. Survey on User Interface
Programming. In Proc. of SIGCHI'92, Human Factors in Comput.
ing Systems, pages 195-202, Monterey, May 1992.

[Mye94] Brad A. Myers. Challenges of HeI Design and Implementation.
ACM Interactions, 1(1):73-83, January 1994.

[NORL86] B. Nour-Omid, A. Raefsky, and G. Lyzenga. Solving Finite Element
Equations on Concurrent Computers. Parallel Computations and
their Impact on Mechanics, A. J(. Noor, ed., pages 209-227, New
York, American Soc. of Mech. Eng. 1986.

[Ous90] J. Ousterhout. An Embeddable Command Language. In Proc. of
the USENIX Winter Conference, pages 133-146, January 1990.

[Pau96aJ Brian Paul. The Mesa 3-D Graphics Library. University of
Winsconsin-Space Science and Engineering Center, May 1996.

[Pau96b] Brian Paul. The Mesa 3-D Graphics Library.
http://www.ssec.wisc.edu/-brianp/Mesa.html, 1996.

[PB96] Brian Paul and Ben Bederson. Togl - a Tk OpenGL Widget.
http://www.ssec.wisc.edu/-brianp/Togl.html, 1996.

[PSL90] A. Pothen, H. D. Simon, and K. P. Liou. Partitioning Sparse Ma
trices with Eigenvectors of Graphs. SIAM J. Matrix Anal. Appl.,
11:430-452,1990.

[Ric89] J .R. Rice. Libraries, Software Parts and Problem Solving Systems.
In Cai, Fosdick and Huang (Eds.) Symposium on Scientific Soft
ware, 191-203, Tsinghua Univ. Press, 1989.

[Ric96] John R. Rice. Scalable Scientific Software Libraries and Problem
Solving Environments. Technical Report CSD-TR-96-001, Depart
ment of Computer Sciences, Purdue University, 1996.

49

[SA92] Mark Segal and Kurt Akeley. The OpenGL Graphics System: A
Specification. Technical report, Silicon Graphics Computer Sys
tems, Mountain View, 1992.

[Wee94] Sanjiva Weerawarana. Problem Solving Environment for Paralfc.l
Differential Equation based Applications. PhD thesis, Department
of Computer Sciences, Purdue University, August 1994.

[WH93] Poting Wu and E. N. Houstis. Parallel Dynamic Mesh Generation
and Domain Decomposition. Technical Report CSD-TR-93-075,
Department of Computer Sciences, Purdue University, 1993.

[WH96) P. Wu and E. N. Houstis. Parallel Adaptive Mesh Generation -and
Decomposition. Engineering with Computers, 1(12):155-167, !f196.

[WoI96] Stephen Wolrram. The MATHEMATICA Book. Wolfram Media,
Inc., February 1996.

[Wom92J Paula Womack. PEX Protocol Specification and Encoding, Version
5.1p. The X Resource, Special Issue A, May 1992.

[Wu95] Poting Wu. Parallel Electronic Prolotyping of Physical Objects.
PhD thesis, Department or Computer Sciences, Purdue University,
1995.

50

I proCH I rem ..olve I .lIpccdup I decornpo9ltlon tilne I decompo9ition typo I, IG8,91 1.00 . -, 86.45 1.95 0.61 ELLPACK ".84.89 1.99 0.44 ELLPACK Inertia]
85.20 1.98 1.16 CHACO MKL
84.88 1,99 0.95 CHACO mertial
87.81 1.92 1.4.0 METIS default, 57_53 2.93 0,76 ELLPI\CK pxqx.
45.52 3.71 0.36 ELLI'ACI(merlioJ
401,72 3.77 2.42 CHACO MKL
44.19 3.82 1,62 CHACO inerti"l
45.57 3.70 1.70 METIS der"ult

8 37.75 4 ..47 0.92 ELLPACK Pl<qxs
29.10 5.80 0.36 ELLPACK Inertial
25.63 6,59 3.11 CHA o MKL
28.81 7.09 2.03 CHACO mertJ
24,96 6.76 2.'13 METIS default

" 26.60 6.35 0.98 ELLPACK ".
18.58 9.09 0.38 ELLPACK mCI"t,aJ
16.85 10.02 4.5[1 CHACOMKL
15.67 10.64 2.78 CHACO mertml
16.54 10.21 2.78 METIS der"ult

" 19.20 8.79 2.41 ELLPACK pxqxs
17.23 9.80 0." ELLPACI(merti,,1
101,60 11.56 5.73 CHACO MKL
12.72 13,29 3.63 CHACO inertial
12.24 13.80 3.41 METIS default

" 18.15 9.30 1.51 ELLPACK pxqxs
17.73 9.52 0.36 ELLPACK mertlal
15.13 10.94 6.83 CHACOMKL
12.70 13.30 4.50 HA o InertIa!
12_37 13.65 J,58 METIS defau t

Table 6: The parallel ITPACK Jacobi CG ~ime (seconds), fixed speedups, and
sequential time of the various decomposition algorithms for j jELLPACK FEM
discrel.ization system with different parti~ioning schemes on the nCUBEj2 for
t.he finite element. mesh of t.he domain n depicted in Figure 5.lc with 10169
nodes and 45873 elements.

51

I P~QC9 I time I decomposition I, 0.67 A pKqX.
0.81 ELLPACK men,,,l
2.19 CHACO MKL
l.58 CHACO inertial
2.85 METIS defnult

< 1.06 ELLPACK pJq".
0.75 ELLPACK Inert",l
3.'19 CHACO MKL
2.65 CHACO inertin!
3,13 METIS default, 1.63 ELLPACK ""'0.73 ELLPACK inertial
5,20 CHACO MKL
3,81 CHACO inertIal
3.85 METIS dd"uJt

" 1.91 ELLPACK pxqxs
0.68 ELLPAC inertial
6,58 HAeC MKL
5.12 CHACO inertin]
Hi7 METIS ddaull

" 2.10 ELLPACK pK'I""
0.73 ELLPACI{ me.t",]
8.53 CHACO MKL
6.39 CHACO mertial
5.35 METIS default

" 2.38 BLLPACK , "
0.74- ELLPACK inertial
11,02 CHACO MKL
8.23 CHACO Inert,El.!
6.29 METIS default

Table 7: Sequential time of the various decompositi.on algorithms and number
of subdomains on a 5520 workstation for the decomposition of a finite element
mesh domain n depicted in Figure 5.1d wit.h 18924 nodes and 86448 elements.

52

	Parallel ELLPACK 3-D Problem Solving Environment
	Report Number:
	

	tmp.1307986960.pdf.vCr1r

