
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1997

Collaborative Environments for Scientific Computing The Task of Collaborative Environments for Scientific Computing The Task of

Algorithm/Software Selection Algorithm/Software Selection

N. Ramakrishnan

Anupam Joshi

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
97-057

Ramakrishnan, N.; Joshi, Anupam; Houstis, Elias N.; and Rice, John R., "Collaborative Environments for
Scientific Computing The Task of Algorithm/Software Selection" (1997). Department of Computer
Science Technical Reports. Paper 1392.
https://docs.lib.purdue.edu/cstech/1392

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COLLABORATIVE ENVIRONMENTS FOR
SCIENTIFIC COMPUTING, THE TASK

OF ALGORITHMISOFTWARE SELECTION

Narcn Ramakrishnan
Anupam Joshi

Elias N. Houstis
John R Rice

CSD-TR #97·057
Dceember 1997

Collaborative Environments for Scientific Computing:
The Task of Algorithm/Software Selection

N. Rarnakrishnan
Department of Computer Science~

Purdue University, IN 47907-1398
email: naren@cs.purdue.cdn

Anupam Joshi
Department of Computer Engineering & Computer Science

University of Missouri, Columbia, MO 65211
email: joshi@csdeca.cs.missouri.edu

Elias N. Houstis and John R. Rice
Department of Computer Sciences
Purdue University, IN 47907-1398

email: {enh,jrr}@cs.purdue.edu

Abstract

The advent of High Performance Computing (HPe) and the Internet has brought forth
a 'net-centric' scenario for scientific computation where important pieces of algorithms and
software arc spread across a(thc) network. The currenL networked computing scenario assumes
that the choice of method to solve a scientific problem is fLx:ed a priori and that appropriate
code, modules are downloaded, compiled and linked to form static programs. However, lhe
selection of an appropriate method is by no means obviolls and suitable methodologies do not
exist to aid in the mapping of problem solution requirements to appropriate algorithms/sofl.ware.
Moreover, the network-based paradigm also allows for a scenario wherein multiple servers can
house appropriate algorithms; this brings up the need for collaborative systems that dynamically
select among competing servers/repositories and advise about algorithms/software. In this
paper, we present a methodology that performs automatic algorithm selection for well-defined
domains in scientific computing. Our approach selects among competing servers to determine
the 'best' resources based on a notion of 'reasonableness'. This is implemented in the context
of distributed I<Bs, i.e., the knowledge bases containing advisory information are themselves
distributed across the network.

1 Introduction

Networked scientific computing representing the future computational paradigm signifies the chang
ing landscape to support engineering and scientific computation. Computing in this paradigm as
sumes a service-oriented view wherein the user obtains vital pieces of soflware ,:LOd information
over the network and these are combined and linked together ;eLt run-time to perform the desired
task. This shift from using soflware as a monolithic soflware product is motivated by (i) changes in
the computing infrastructure (WANs, vBNS, wireless satellite-based networking), (li) the increas
ing complexity of application software, (iii) the multidisciplinary nature of large scale application
research, and (iv) the potential need to combine geographically disparate resources to obtain the
MIPs required to solve grand challenge problems. While this scenario is yet to be realized in its
grand totality, important pieces of its infrasl.ructure are already in place. There exist systems that
(i) provide access to software libraries over the network such as Netlib [6], (ii) enable full-service
problem solving environments (PSEs) to be utilized over the web (WWW) - NetJ JELLPACK [2],
NetSolve [5] etc., (ill) index software modules from repositories according to functionality such as
the Guide to Available Mathematical Software (GAMS) [4] and (iv) automate access to databases
of test problems, data [rom performance evaluation such as NEOS [I] and the Matrix Market [3].

Such exlsting systems, however, assume that the choice of method (algorithm) to solve a given
scientific problem is Iixed a priori (static) and that approprii:Lte code is located, downloaded, com
piled and linked to yield static programs. Thus, scientists are very often faced with the onerous task
of selecting suitable software for the problem at hand in the presence of practical constraints on ac
curacy, time and cost. In other words, it is required to 'adaptively' select software to conform to the
performance requirements set by the user. We refer to this as the algorithm/software selection prob
lem. This also encompasses issues of how a user specifies problem queries, extracts fei:Lture/content
information and infers results. This problem becomes even more critical in a networked scenario
where the computational resources increase several-fold i:Lnd, in general, arc non-homogeneous.
As will be shown, in such a situation we face issues of learning and adaptation in collabomtive
systems and how one determines the most 'reasonable' resource to solve a given problem. The
need for such automatic algorithm/software selection systems is becoming increasingly critical due
to several reasons: (a) PSEs are becoming more ubiquitous and widely accepted in scientilic com
munltiesj automatic algorithm/software systems would serve as advisory/recommender 'agents' for
using PSEs. (b) A rapid increase in the number of online algorithms/methods made available
to the application scientist has provided the impetus for developing such wv.,rw based "Problem
Solving Services" (PSSs). (c) Such systems also aid (indirectly) in the l)erformance evaluation of
scientific software. (d) If successful, they will serve a..<; high level front-ends to software repositories
of numerical algorithms; they can also complement the services of software 'indexlng' systems like
GAMS.

In this paper, we emphasize the need for collaborative multi-agent systems to achieve these
goals and present details from the PYTHIA project at Purdlte which concentmtes on building ad
visory agents for scientific problem solving. The rest of the paper is organized as follows: Section 2
describes the intrinsic difficulties associated with solving the algmithm/soflware selection problem
and in addition, stresses the issues associated with solving this in a netwmked setting. Section 3 de
tails our effort in this direction, namely the collaborative PYTHIA system for automatic algorithm
selection. Early empirical results with this system are provided in Section 4.

2 Algorithm/Software Selection

The problem of algorithm/software selection has its origins in an early paper by Rice [12]. The task
is to decide on a good (enough) algorithm to achieve desired objectives, given a problem in scientific
computation and performance criteria constraints on its solution (such a..<; accuracy, time, cost, etc.).
Ideally, one would like to build automated advisory systems that recommend strategies for problem
solving. Even [or 'routine1 tasks in scientific computing, this can get quite complicated. Part of
the difficulty stems from the unknown and ill-understood factors influencing the applicability (or
lack thereof) of an algorithm in a certain context, the complex mapping from problem features to
better algorithms, and the unstable way in which features could have an influence on algorithm
selection. Further, the huge dimensionality of the problem (and feature) and algorithm spaces, lack
of understanding of how the problem characteristics affect algorith III performance, and the inherent
uncertainty in interpreting and assessing the performance measures of a particular algorithm for
a particular problem compound to the difficulty. In this papC!r, we focus on this problem for the
domain of elliptic partial differential equations (PDEs), in particular problems of the form

Lu ;::: f on ,0, Bu ::::: g on an (1)

where L is a ~econd. ord.er linear operator (elliptic), B is a diI~ereI~tial ope~ato:r invo,lving up to
first order partIal denvatlves of u, and ,0 IS a bounded open regIon III 2- or 3-dimenslOnal space.
Given a problem as above and performance criteria constraints on accuracy and time, it is required
to perform a selection such as: "Use the 5-point star algOl-ithm with a 200 X 200 grid on an
NCubc/2 using 16 processors: Confidence - 0.85". The efficacy of such predictions depends on the
knowledge bases (KBs) utilized for such inference and how such I{Bs are developed. It is recognized
that successful algorithm selection depends on (at least) three factors: (i) Performance evaluation
of scientific software, (il) the feature determination of scicntific computing objects (SeQs) such
as functions, domains, regions, operators, etc. and (iii) the "expert" methodology that provides
domain specific inference to map from problem solution requirements to potential algorithms.

Even when such elaborate KBs arc developcd that take into account the diverse requirements
for algorithm selection, the effectiveness of such schemes are contingent on their 'experience 1 as

brought out by the knowledge acquisition stage of the process. For example, PDEs come in different
flavors and while one algorithm selection system might have been trained on PDEs arising from
heat conduction problems, another could base its expertise on problems from computational fluid
mechanics. In the networked scenario, when tIllS causes a proliferation of such advisory systems,
each with a specialized KB, one naturally thinks of strategies that cOltld allow collaboration between
these systems and capture the knowledge corpus oHhe network in an eIfedive manner. At a different
level, one needs to take into account the confidence that cach system places on its recommendation,
its experience, and how one determlnes the most reasonable systcm to solve a given problem. Ideally,
thus one needs a scheme that maps from a given PDE problem to an appropri<Lte advisory system
on the network. Moreover, the situation can be more dynamic - thc abilities of such individual
systems can be expected to change over Lime (as they add more problems to their KB), more such
systems might corne into existence, etc. Thus any mapping technique utilized should have the
ability to learn on-line and yet perform efficient selections.

3 The Collaborative PYTHIA System

The collaborative PYTHIA methodology [10] recognizes the fad that there are many different
types of PDEs but that most scientists tend to use only from a liullled subset of them encou ntered
in their application domain. Hence, the approach taken is to create several different PYTHIA
'agents', each of which has information about a certain class of PDE problems and can select an
appropriate solver for a given PDE of the class. Each PYTHIA agent ranks various solvers on test
problems involving different constraints on accuracy and time. The slrategy then, is to compare a
given problem to the ones it has seen before, and then use its knowledge about the performance
characteristics of prior problems to estimate those of the given one. Together with a good method
to solve a given problem, a PYTHIA agent also provides a factor of confidence that it has in the
recommended strategy. In its current preliminary implementation, a PYTHIA agenl accepts as
input the description of an elliptic PDE problem, and produces the method(s) appropriate to solve
it.

The PYTHIA project web pages al http://www.cs.purdllc.cdu/rcscarch/csc/pylhia provide in
formation about this collaborative PYTHIA methodology ;:LUt! facilities to invoke it remotely. At the
outset, there is a facility to provide feature information about a PDE problem. In particular, there
arc forms that enable the user to provide details about the operator, function, domain geometry
and boundary conditions. Once these details are given, the information is submitted to a 'central'
PYTHIA agent called 'e·PYTHIA' that performs further processing. It first classifies the given
PDE problem into several categories of problems. These classes arc defined based on the properties
possessed by the solutions of the PDEs and are 'Solution-Singular', 'Solution-Analylic', 'Solution
Oscillatory', 'Solution-Boundary-Layer' and 'Mixed-Boundary-Condilions'. Having classified the
problem into one or more of these classes, lhe PDE is submitted to an appropriate PYTHIA agent
for this class of problems, which in turn selects a good (besl'!) strategy ;:LUd reports back to the
user. The important research issue is how to automatically leaTll llJ.is mapping from a PDE problem
to an appropriate agent and update it suitably with time.

To determine an appropriate agent, we use a concept of 'reasonableness' to ;mtomatically gen
erate exemplars for this purpose. TIllS is needed because the user C<Lnnol be expected to have
information about the most reasonable resource(s) for a given problem in such a dynamic environ
ment. For example, in response to a query from the user about <L p<Lrticular PDE problem, each
PYTHIA agent might suggest a different method with varying levels of confidence in the recom
mended selection. Moreover, each of these agents might have dilferent levels of expertise (such
as the kind of PDEs it knows about) and different 'training' history. The user, thus, cannot be
expected to know which method is most suitable for the problem if all these responses are supplied.
Hence, we propose a measure of reasonableness that allows the automatic (and unsupervised) 'rank
ing' of the PYTHIA agents for a particular problem (class). The trick is to combine two factors,
one willch denotes the probability of a proposition q being true, and the other which denotes its
utility. Specilically, the reasonableness of a proposition q is defined as follows [9]:

where Ul(q) denotes the positive utility of accepting q ifil is lrue, UJ(q) denotes the negative utility

of accepting q if it is false and p(q) be the probability that q is true.
In the case of PYTHIA, each agent produces a number indic<Lting its confidence in its recom

mendation, so p(q) is readily available, and p(...... q) is simply 1- p(q). Fbr the utility, we use the
following definition:

where J is some squashing function mapping the domain (0,00) into (0,1], and Nt: is the number
of exemplars of a given type (that of the problem being considered) tlmt the agent has seen. We
chose J(x) = l+~-1" -1. We chose this expression as the measure of the utility of an agent because
it reILects the number of problems of the present type that it has seen. The value of an utility
function is to measure the amount of knowledge that an agent appears to have. The more the
problems of a certain kind in an agent's KB, the more <Lppropriate will its prediction be for new
problems of the same type. lIenee, we have designed the utility to be a function of N c •

We have worked on several techniques to determine a good mapping from the problem space to
'reasonable' agents using standard statistical methods, gradient descent methods, machine learning
techniques and other classes of algorithms. Our experience has shown that specialized techniques
developed for this domain perform better than conventional off-tlte-shelf <Lpproaches [8]. In partic
ular, we have designed a nemo-fuzzy algorithm that infers efficient mappings, caters to mutually
non---€xclusive classes (i.e., a given PDE problem can belong to more than one class simultaneously)
and learns the classifications in a dynamic manner. For more details about this algorithm, see [l1J.

4 Empirical Results

We have implemented our methodology in a ca.c;e study that involves selecting suitable solvers for
a population of 167 linear, second-order elliptic PDEs. From tltis population, the following six
classes were defined.

(1) SINGULAR: PDE problems whose solutions have at least one singularity (6 exemplars).
(ll) ANALYTIC: PDE problems whose solutions are analytic (35 exemplars).
(ill) OSCILLATORY: rDE problems whose solutions oscillate (34 exemplars).
{lv) BOUNDARY-LAYER: Problems with a boundary layer in their solutions (32 exemplars).
(v) BOUNDARY-CONDITIONS-MIXED : Problems that have mixed boundary conditions in

their solutions (74 exemplars).
(vi) SPECIAL: PDE Problems whose solutions do not fall into any of the classes (i)-(v) (10

problems).

The total number of exemplars is 191, 24 more than Hi7j this is due to the mutually non
exclusive classes. The total set of 167 problems in the PDE population was divided into two parts
- the first part containing 111 exemplars (we refer to this a.c; the larger training seq, and the
second comprising of the remaining 56 exemplars. We created fiVe! cases, with 2, 3, 4, 5 and 6
PYTHIA agents respectively. In each case, each PYTHIA agent knows about a. certain class(es)
of PDE problems. For example, in the case study with G PYTHIA agents, each agent knows
about one class of problems. In the '3-agenL' case, agent 1 knows about problem classes 1 and
2, agent 2 knows about classes 3 and 4 and agent 3 knows about classes 5 and 6. The agents
communicate using the Knowledge Query and Manipulation Language (KQML) [7], using protocol
defined performativcs. All PYTHIA agents understand and utilize <L private language (PYTHIA
Talk) that describes the meaning (content) of the KQML performativcs. We conducted two sets
of experiments: We first trained our technique on the larger training set of {problem, agent} pairs
(using the notion of reasonableness defined earlier) and tested our learning on the smaller training
set of 56 exemplars. In effect, the smaller trajning set forms the test set for litis part of the
experiment. In the second experiment, the roles of these two sets arc reversed. vVe also compared
our technique with two very popular gradient descent techniques for training feedforward neural
networks, namely, Vanilla (Plain) Backpropagation (BProp) and Resilient Propagation (RProp).
Fig. 1 summarizes the results.

It can be easily seen that our method consistently outperforms DProp and RProp on learning the
mapping from problems to agents. Also, performance using the larger training set was expectedly
better than that using the smaller trahting set. Moreover, ollr algorithm opemtes in an on-line

Larger Trg. Set
'00

00

00

'"~
0 00

"00 00
0
<:

'"
~

00

~

'"
" • , •

No. of Agents

'00
• OIJ'Tcehn;~1l<

II ''''''
00

E!I P1:Iin DI'rup W

'"~
0

"'"00 00
0
<:

'"
~

'"
00

'"
" •

Smaller Trg. Set

• OIJrT«hnOlL><

II RPmp

a PbinBPnJp

. ,
No. of Agenls

Figurc 1: Results of Learning. The gmph on the left depicts the rcsults with the larger training
set and the onc on the right shows the values for the smaller training set. In each case, accuracy
ligures for the 5 scenarios (with 2, 3, tl., 5 and 6 agents) aIe pret;ented with all the three algorithms
considered in this paper.

mode; new data do not require retraining on the old. This elli:tbles us to automatically infer the
capabilities of multiple PYTHIA agents. If the ci:tpabilities o[agent 1 were to change, for example,
in the 6-agent case, then our network could infer the new mappings without losing the information
already learnt. This feature is absent in most other methods of classification such as BProp and
RProp. In these the dimensionality of the network is fixed and it is imperative that the old data be
kept around if these networks are to update their learning with new data. Our case study should
thus be viewed in the incremental learning sense where the abilities of each of the six agents are
being used and tracked continually in a dynamic sctting.

References

[1] NEOS. http://www.mcs.an1.gov/home/etc/GuldejTestProblems.

[2] Net j jELLPACK. http://pellpack.cs.purduc.cdu/nctpp.

[3] The Matrix Market. http://math.nist.gov/MatrixMarket.

[4] ItF. Boisvert, S.E. Howe, and D.K. Kahaner. The Guide to Available Mathematical Software
Problem Classification System. Comm. Stat. - Simlll. Comp., voI.20(tl):pp.811-842, 1991.

[5] N. Casanova and J. Dongarra. NetSolve: A Network Server for Solving Computational Science
Problems. Technical Report CS-95-313, Dept. Computer Science, University of Tennessee,
1995.

[6] J. Dongarra, T. Rowan, and R. Wade. Softwarc Distribution Using XNETLIB. ACM Trans
actions on MathematicaL Software, vo1.21(1):pp. 79-88, 1995.

[7J R. Fritzson et. al. KQML- A Language and Protocol [or Knowledge and Information Exchange.
In Proc. 13th Inti. Distributed Artificial Intelligence 'Wor'kshop, July 1994.

[8] A. Joshi, N. Ramakrishnan, E.N. lIoustis, and J.R. Rice. On Neurobiological, Ncuro-Fuzzy,
Machine Learning and Statistical Pattern Recognition Tcchniqucs. IEEE Transactions on
NeuraL Networks: Special Issue on Neural Networks and Pattem Recognition, vo1.8(1):pp.18
31, 1997.

[9] K. Lehrer. Theory of Knowledge. Westview Press, BouMer, CO, USA, 1990.

[10) N. Ramakrishnan, A. .Joshi, E.N. Houstis, and .J.R. IDce. Neuro-Fuzzy Approaches to Collab
orative Scientific Computing. In Proc. IEEE International Conference on Neural Networks'91,
volume VoLl, pages 473-478, 1997.

[11] N. Ramakrishnan, A. Joshi, S. Weerawarana, E.N. lIo11stis, and .J.R. Rice. Neuro-Fuzzy
Systems for Intelligent Scientific Computing. In Intelligent En,gineering thmugh Artificial
Neural Networks. Vol. 5: Puzzy Logic and EvolutioHal'!] P1'Ograrnming (C.I1. Dagli cl.al., cds.,
pages 279-284. ASME Press, 1995.

[12] J,R. Rice. The Algorithm Selection Problem. Advance,s in Computers, voI.l5:pp.65-118, 1976.

	Collaborative Environments for Scientific Computing The Task of Algorithm/Software Selection
	Report Number:
	

	tmp.1307986960.pdf.xa0xv

