
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

2000 

GasTurbnLab: A Problem solving Environment for simulating Gas GasTurbnLab: A Problem solving Environment for simulating Gas 

Turbines Turbines 

Sanford Fleeter 

Elias N. Houstis 
Purdue University, enh@cs.purdue.edu 

Report Number: 
00-005 

Fleeter, Sanford and Houstis, Elias N., "GasTurbnLab: A Problem solving Environment for simulating Gas 
Turbines" (2000). Department of Computer Science Technical Reports. Paper 1483. 
https://docs.lib.purdue.edu/cstech/1483 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


GASTURBNLAB: A PROBLEM SOLVING
ENVIRONMENT FOR SIMULATING GAS TURBINES

Sanford Fleeter
John R. Rice

Ann C. Callin
Elias N. Houstis

Chen Zhou

CSD TR #llO·OOS
February 2000



GasTurbnLab: A Problem Solving Environment for Simulating Gas
Turbines

Sanford Fleeter­
John Ricet

Ann Catlinf

Elias HOlistist

Chen Zhout

Abstract

GasTurbnLab is a problem solving environment which, someday, could evolve into a complete simulation of
a gas turbine engine. The initial PSE involves only the principal power producing components: the compressor,
combustor and high pressure turbine. Even this piece stretches the capabilities of current computer and simulation
technology. The general design is based on agents which can solve the relevant PDEs or mediate interface conditions
betwccn PDE solving agents. This collaborating PDE solvers approach has the potential for (a) allowing the reuse
of legacy simulation code, (b) providing parallelization of these codes without a complete rewrite, (c) flexibility in
using and load balancing networks ofmachincs. \Ve describe how we make two large legacy Fortran codes (ALE3D
and KIVA) collaborate to carry out the simulation. This is done ns a parallel computation without rewriting
or parallelizing these codes. The GasTurbnLab user interface is based on the geometry of the engine and allows
an engineer to carry out a simulation without knowing the details of the PSE software architecture or how the
parallc1ization is achieved.

Key words: gas turbines, problem solving environments, simulation, surge, rotating stall, high cycle fatigue, interface
relaxation, software architecture, agent based computing, combustion, unsteady Bows.

AMS subject dassiflcations:

1 Gas Turbines

The GasTurbnLab project is to develop a problem solving environment (PSE) for studying gas turbines. They have
about 30,000 parts (1600 of which rotate very rapidly) and extreme operating conditions (10-50,000 rpm, 500-1000°,
20-50 atmospheres pressure). Important physical phenomena takes place on scales from 10 microns to 10 meters. An
accurate simulation of an entire engine is beyond the capability of software systems or computers likely to be available
in this decade. This project thus focuses on the "power train" of an engine: the compressor, combustor and turbines.
The goals of the project are to advance PSE technology and understand better the phenomena of stall, surge and
turbine blade failure. These phenomena involve the unsteady interaction of the fluids, combustion and structures in
the main gas Bow. These interactions produce stress loadings on blades resulting in high cycle fatigue failures. They
can also produce stall and surge which almost instantaneously shut down the engine. The hope is to understand the
interaction mechanisms and processes well enough to design instrumentation that can detect the approach of failures
and allow corrective actions to prevent engine failure before it happens.

"Dept. or Mechanical Engineering, Purdue Uuiver.lity, ,'t. LarayetLe, IN 47907, U.S.A., llcctcr@cs.ecn.purdue.edu
IDept. or Computcr Scicncc.~, Purdue University, W. LafayeLLe, IN 1\7907, U.S.A., {enh, jer, acc)«ks.purduc.edu
1Dept. or Engineering, Purdue University, Calumet, IN 46322, U.S.A., gzholl@call1met.purduc.edu

16th IMACS World Congress (@ 2000 IMACS)

1



Ga.."n,rbnLab: A Problem Solving Environment for Simulating Gas n,rbi1Jes

Fan f-- CompressorI- Combustor f- Turbine 1 I- Turbine 2

ALE3D ALE3D KIVA ALE3D ALE3D

Figure 1; Cross section of an engine in GasTurbnLab. Only the gas Row "power train" of the engine is considered.

2

The user interface of GasTurbnLab is based on the geometry of the gas Row part of an engine as diagrammed in
Figure L Conceptually there are five "active" components: fan, compressor, combustor, high pressure turbine, and
low pressure turbine separated by "passive" areas of gas mbdng. There are mechanical couplings between the fan and
low pressure turbine and between the compressor and high pressure turbine, which are not simulated directly; the
total force is simply balanced between the component pairs. The software and simulation components also use this
geometry modularity, any particular simulation consists of a set of objects (geometry plus simulator) which partition
the engine. The simulation of the fan, compressor and turbines use a tailored version ALE3D [2], the simulations
of the combustor use a tailored version of KIVA [11] and the simulation of the gas mixing use a CFD solver from
PELLPACK [3]. GasTurbnLab has three partial differential equation (PDE) solvers collaborate to find a solution to
the overall composite multi-physics PDE problem. Different simulations may involve different subsets of the turbine.

2 The Numerical Simulation

The basis for the simulation consists of three POE solvers; ALE30, KIVA and PELLPACK. ALE30 (Arbitrary
Lagrangian - Eulerian/3D) is a finite element solver able to handle both Bu.ids and solids simultaneously. This code
developed by Lawrence Livermore National Laboratories is able to model the three-dimensional, time dependent
coupled Buid·structure interactions of turbo-machinery blade rows that occur in the Bow regimes of gas turbines.
This is done without phase-lagging errors. The approach uses the Lagrangian perspective for the solid structure and
the Eulerian perspective for the fluid; the numerical method is analyzed by Bendiksen [1]. The current version has
about 200,000 lines of Fortran code. ALE3D has been tailored for turbines and validated in [2]; this version is used
in GasTurbnLab and is sometimes called the Turbo-machinery Aero-Mechanics code (TAM-ALE3D), we refer to this
version as ALE30 also here.

KIVA is a widely used code to simulate combustion, especially in diesel engines. It was developed at Los Alamos
National Laboratories and currently has about 50,000 lines of code. The GasTurbnLab group has adapted it to use
the geometry of a simple gas turbine and will further enhance it to handle more realistic geometries. A current weak
point of KIVA is its very simplified model of the fuel spray and Bame front; these are modeled on a phenomenological
basis, rather than by a direc~ simulation of the physical and chemical processes. KIVA does simulate the fluid Bow
adequately and allows for a wide variety of chemical reactions within the combus~ion chamber.

There are two CFD codes within PELLPACK that can be used within GasTurbnLab: NPARC3·0 [4] and ITGFS
[7]. They use finite volume techniques to model compressible Bows.

These PDE solvers collaborate together to model the gas flows, blade interactions and combustion with a turbine.
The method of interface relaxation [5] is quite simple to describe:

Step 1: Guess at the solution values, derivatives, etc., on all the interfaces between subdomains of the
simulation.

Step 2: Solve each POE exactly on its subdomain using boundary conditions selected from the guesses.
There are more interface values available than can be used in solve the POEs.

Step 3: Compare the solution values across each interface and improve them (using a relaxation formula)
so as to better satisfy all the interfam conditions.

Iterate: Steps 2 and 3 until convergence

A variety of relaxation formulas have been proposed in the past 10-12 years and some of them have performed
quite well in experiments. This method is extremely difficult to analyze mathematically. The overview by Rice [6]
gives reference to the mathematical analysis and experiments with interface relaxation. Figure 2 gives a simplified
schematic of the subdomains and solvers used in GasTurbnLab. The interface conditions between the subdomains are
the continuity of the gas flow proper~ies (velocities, pressure, mass, ...).

The GasTurbnLab simulations are intractable without parallel computing. Current runs of KIVA or ALE30 on
a single current fast processor take several days, or weeks even, for one subdomain, e.g., two blades of a compressor



GasThrbnLab: A Problem Solving Environment (or Simulating Gas Thrbines- 3

FAN

LOW·PRESSURE
TURBINE

LOW-PRESSURE
__..:1U:;:,R" NE

HIGH·PRESSURE
TURBINE

Figure 2: Schematic of the networks of PDE solvers in GasThrbnLab. The PELLPACK solvers may be used to connect
these components and the mechanical connection between the Fan and Turbine 2 and between the Compressor and
Turbine 2 are not shown.

or a single simplified combustor (real engines may have 5 or 6 of these). The collaborating PDE solvers method used
in GasThrbnLab leads naturally to parallelism without rewriting the PDE codes. Suppose, for example, one has a
compressor fan with 8 rows of blades. If one uses cylindrical symmetry then the 8 x 17 blades can be simulated with
8 copies of ALE3D, one for each blade row. These can execute on 8 different machines with a relatively low overhead
cost for communication. Simulations of unsteady interactions are the principal goal of GasThrbnLab and for these
the assumption of cylindrical symmetry does not hold. Thus, with 136 different machines working in parallel, one can
execute 136 copies of ALE3D, again with low communication overhead. The software architecture of GasThrbnLab is
explicitly designed to accommodate such parallel execution.

The similar approach can be used with the combustors and KIVA. It is straightforward to use 5 copies of KIVA if
there are 5 combustors, but this does not provide enough parallelism. However, one can slice a combustor into, say,
10 pieces along planes perpendicular (approximately) to the flow. Such planes already are defined by the mesh KIVA
uses in the simulation of a single combustor and a single copy of KIVA can easily use pairs of such planes as its gas
inlet and outlet. A simple calculation shows that this approach, applied to ALE3D, KIVA and PELLPACK, allows
one to use 500 to 1000 processors in parallel for the simulation of a gas turbine. And this can be done with minimal
communication overhead provided the underlying computing facility is able to handle a set of, say, 1000 processors
where each communicates with a few others once in awhile. The hardware infrastructure available to GasThrbnLab is
much smaller, it consists of computational grid with a IBM SP-2 (28 processors), an SGI Origin (32 processors), an
Intel PC cluster running Solaris (128 processors) and a few workstations. This is enough to test the effectiveness of
this approach to parallel computation, but not enough for a full engine simulation in parallel.

A deeper analysis of the physics and these codes suggests that another factor of 5 in parallelism or so can be obtained
this way. For example, ALE3D actually creates internally 5 submeshes to simulate one blade. One subdomain is inside
the blade and the other four surround it. A similar e;,<ploitation of the natural geometry appears practical inside a
combustor. Thus the collaborating PDE solvers approach might allow as many as 5000 processors (copies of KIVA,
ALE3D or PELLPACK) to be e.xecuted in parallel.

This gain in parallelism is certainly worthwhile, but it might not be enough. First, much of the gain is by making
the problem bigger rather than by making the computation faster. That is, instead of simulating two blades, one is
simulating the gas flow through a whole engine. This means that the parallelism in the computation remains coarse
grained. Second, this partition of the computation is entirely in the spatial variables and unsteady interactions require
relatively long times (dO'.l.ens to hundreds to thousands of turbine revolutions). Third, the above discussion ignores
that the time steps natural for KIVA are about 1/6 to 1/4 those for ALE3D. While we know how to handle this
difference now, we do not know whether this difference might grow as more turbine components are simulated, more
accuracy is needed, or more realistic chemistry models are used in the combustion.



GasThrbnLab: A Problem Solving EnvironmeIlt for Simulating Gas Turbines

Canpute Module

G.rnphical
Usel
Interf:!ce

Computational
L<o/e[

Enabling
Serviees
Layel

-~::..:_~--,:--=.::..:...:.",~.:.•:.:.:':-=====-=-=~~,:-..:,
r ...' >B.

Fteblem Speci:6cationModuie ~:':<X::

f------,---,-------------111
Dis-patchel Module I 0

S ~

,:c~,:>

Figure 3: The architecture of the GasTurbnLab PSE. The two main components in the ffiIS Explorer and Grasshopper
Agent Platform. Within theses components there are further layers of the PSE software.

3 The Problem Solving Environment

The PSE interface is based on the turbine geometry. At the top level one sees all or part of Figure 1. At any level
one sees the current domain and its subdomains. One can visualize the current solution on this domain (if there is
one yet) and related information, e.g., ranges of physical variables. In the future we plan to provide this visualization
dynamically during a simulation. At the bottom level one can also examine many aspects of the simulation model, e.g.,
the mesh, the time step, key software parameters, etc. Similarly, information about the computational environment and
performance are available for the components at various levels, e.g., machines used, machine utilization, communication
connections and traffic, numerical convergence measures, etc.

The software architecture is one of software agents collaborating to solve the overall composite PDE that models the
turbine behavior. Some agents are PDE solvers with one solver from among ALE3D, KIVA or PELLPACK. Others
handle the communication between solvers and implement the interface relaxation. This architecture is a natura!
adoption of the PELLPACK (3] and SciAgents [6J architectures for collaborating PSEs. This architecture is shown in
Figure 3. The problem specification module contains the user interface components. The dispatch module processes
the subdomain structure and selects processors from the computational grid for the compute agents which contain
the PDE solvers. It has algorithms to optimize performance based on network and processor properties. This module
displays its selection to the user who can override the automatic selections. The compute module chooses mediator
agents based on the interface conditions and connectivity of the problem subdomains. It then launches the simulation
computation and controls the execution. Simulation results are connected to the visualization module (IRIS Explorer)
where they may be viewed, plotted or saved.

The Explorer interface provides user access to all PSE components that interact with the user (problem specifi­
cation, processor allocation, simulation control, and solution visualization). The Grasshopper [8] distributed agent
environment facilitates the agent based simulation paradigm. It is implemented in Java, supports a range of commu­
nication protocols and is compliant with OMG standard MASIF for mobile agents.

The legacy Fortran codes (ALE3D, KIVA and PELLPACI{) are made into Grasshopper agents by a series of
wrappers. The core is a Fortran PDE solver which is wrapped by C code. This is then wrapped by Java code which,
in turn, is wrapped to become a Grasshopper agent. A simpler alternation is to take the C code and create a server
which can be accessed by client agents of the Grasshopper system. Both approaches are practical and the best choice
depends on the nature of the legacy code; if it has a multitude of e.'(ternal interactions, the the client-server approach
is better.

A similar PSE architecture is described in a companion paper [10] in the proceedings.



GasTurbnLab: A Problem Solving Environment for Simulating Gas 1hrbines

4 Engineering Design

5

To better understand the transient performance of gas turbine engines, the GasTurbnLab simulation will model the
fan, compressor, combustor and turbine. This will capture the compressor-combustor interactions that occur during
rotating stall and surge. This simulation includes the effects of three-dimensional, turbulent viscous flows and their
interactions with combustion and the engine structure. Note that peak power performance occurs very near to unstable
flow, so the move from "normal" operation to stall and then surge is not far. The key question is to identify quantities
that indicate a turbine is moving toward an unstable flow regime. The best current experiments show measurable
affects predicting unstable flow about 20 revolutions before the instability starts. A 50,000 rpm, that is about 2 or
3 hundreths of a second warning. It is believed that smaller, more localized precursors to unstable !low exist and,
if they could be identified, one can visualize sensors that detect these precursors and initiate some corrective action
automatically.

Small and very short term excursions into the unsteady flow regime are believed to occur frequently in high
performance turbines. These events do not cause the engine to actually stall, but they do produce transients that
reduce performance and, more importantly, produce extreme load on the turb machinery blades. These events, in
turn, produce high cycle fatigue failure (a blade breaks off) due to blade vibrations.

References

[1] 0.0. Bendiksen, A new approach to computational aeroelasticity, AIAA-91-0939, (1991), pp. 00-00.

[2] D.A. Gottfried and S. Fleeter, Prediction of unsteady cascade aerodynamics by an arbitrary Lagrangian-Eulerian
finite element method, AIAA-98-3746, (1991), pp. 00.00.

[3] J.R Rice, S. Weerawarana, A.C. Catlin, P. Papachiou, KY. Wang, and M. Gaitatzes, PELLPACK: A problem
solving environment for PDE based applications on multicomputer platforms, ACM Trans. Math. Software, 24
(1998), pp. 20-73.

[4] G.K Cooper, RR. Jones, G.D. Power, J.R Sirbaugh, C.F. Smith, and C.E. Towne, A user's guide to NPARC,
Version 2.0, NASA Lewis Res. Ctr. and Arnold Engr. Dev. Ctr., (1994).

[5J J.R. Rice, P. Tsompanopoulou, and E.A. Vavalis, Interface relaxation for elliptic partial differential equations,
(2000), to appear.

[6] J.R Rice, An agent based architecture for solving partial differential equations, SIAM News, 31(6), (1998), pp.
1-7.

[7] S. Zhang, Molecular-mixing measurements and turbulent-structure visualizations in a round jet with tabs, Ph.D.
Thesis, School of Aero. Astro., Purdue Univ., (1995).

[8] The Grasshopper agent platform, IKV++, http://www.ikv.dc, GmBH, Kurfurstendamm, (1998).

[9] S. Markus, E.N. Houstis, A.C. Catlin, J.R. Rice, P. Tsompanopoulou, E.A. Va\'alis, D. Gottfried, and K. Su, An
agent based netcentric /rnmework for multidisciplinary problem soltJing environments (MPSE).

[10] E.N. Houstis, N. Dhanjani, J.R. Rice, and A.C. Catlin, The WebPDELab seroer: A problem solving environment
for partial differential equation applications, Proc. 16th WACS World Congress, (2000) to appear.

[11] A.A. Amsden, KIVA-SV, A block-structured KIVA program for engines with vertical or canted valves, Tech. Rpt.
LA-13313-MS, Los Alamos Nat. Lab., (1997).


	GasTurbnLab: A Problem solving Environment for simulating Gas Turbines
	Report Number:
	

	tmp.1307986960.pdf.EZAZE

