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Cubics and Cubicoids
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Abstract

Cubicoids (degree 3 surfaces) always have a parameterization in tenos of rational functions,

(a polynomial divided by another). On the other hand cubics (degree 3 plane curves) do not

always have a rational parameterization. However they always have a parameterization of the

type which allows a single square root of rational functions. [n this paper we describe algorithms

to obtain rational and special parametric equations for the cubics and cubicoids. given the impli­

cit equations. These algorithms have been implemented on a VAX-8600 using VAXIMA.

t Departmr:nt of Mathematics, Purdue University. Research supported in part by grants from ONR and NSF.*Research supported in part by NSF grant ocr 85-21356.
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1. Introduction

Rational curves and surfaces can be represented by implicit or parametric equations. A

rational cubic (degree three) curve has an implicit equation given by C(x,y) = ax3 + by3 + cx2y

+ dxy2 + ex2 + fy2 + gx:y + hz + iy + j = 0, and rational parametric equations given by

x = u(t)lw (I) and y = 11 (t)/w(t), where u, 11 and w are no more than cubic polynomials. Further a

rational cubicoid (degree three) surface has an implicit equation given by C (X,y,Z) = ax3 + by3 +

cz3 + tJx2y + ex2z + fxy2 + gyzz + hxz2 + iyz2 + jx:yz + kx2 + ly2 + mz2 + nxy + oxz +pyz + qx +

ry + sz + t = 0, with corresponding rational parametric equatioI1'i x=u(s,t)lq(s,t),

y = .... (s.t)/q (s,t), and z = W (s,t)/ q(s,t). The rational parametric form of representing a surface

allows greater ease for transformation and shape control, Tiller (1983), Mortenson (1985). The

implicit form is preferred for resting whether a point is above, on, or below the surface, where

above and below is determined relative to the direction of the surface nonnal. As both forms

have their inherent advantages it becomes crucial to be able to go efficiently from one form to the

other. especially when surfaces of an object are automatically generated in one of the two

representations.

Cubicoids (degree 3 surfaces) are rational t , that is, have a parameterization in tenns of

rational functions (ratio of two polynomials). On the other hand cubics (degree 3 plane curves)

are not all rational. However they always have a parameterization of the type which allows a sin~

gle square root of rational functions. In § 2 and § 3 of this paper we describe algorithms to obtain

rational and special parameDic equations for the cubics and cubicoids. given the implicit equa­

tions. Polynomial parameterizations are also obtained whenever they exist for the cubics and

cubicoids. Higher degree curves and surfaces in general are not rational.

The reverse problem of converting from parametric to implicit equations, called implicitiza­

tion has been considered computationally by various authors in the past. see Collins (1971) and

Sederberg et. al., (1985). However as yet no conect closed fonn solution is known for implici­

tizing rational surfaces or in general, implicitizing higher dimension paramettic algebraic

varieties.

t Exccpl possibly the cubic conc and the cubic cylinders with nonsingulllC cubic generoting curvcs.



-3-

2. Cubics

Geometric Viewpoint:

The idea of parametrizing a conic was to fix a point on the conic and take lines through that

point. which intersects the conic in only one additional point, Abhyankar and Bajaj (1986a). The

conic was thus rationally parametrized by a pencil of lines with parameter t corresponding to the

slope of the lines. A cubic curve is a curve which intersect most tines in three points. However if

we consider a singulllr cubic curve then lines through the singular point, (3 double point), give a

rational parameterization for the cubic curve as again these lines of slope t intersect the cubic in

only one additional point Such is Dot the case for non-singular cubic curves and thus they

correspond to the cubics which do not have a rational parameterization.

Algebraic Method

A plane cubic curve is given by

Make it nonregular in y ( by eliminating the y:J teoo through a coordinate transfonnation). If

lhere exists a real point at infinity then linear transformations suffice. Recall that, points at

infinity are given by the degree fonn of C (x;y), (terms of highest degree). For conics, we have

real points at infinity only in the case of parabolas and hyperbolas. However for cubics, we are

lucky as all cubics have a real point at infinity. The reason being: the degree form always has a

real root as it is of degree 3 and complex roots occur in conjugate pairs. The degree fonn on

dehomogenizing (y = 1). gives f (x) = ax3 + bx2 + ex + d which always has a real root (if

a :t:. 0). When a is zero, the cubic C (x, y) is already nonregular in x. Thus to make C (x ,y) non.

regular in y we may use a linear transformation given by

x~cU+~Y

y ->y;<+5Y ..... (2.1)

To make the y3 term to be zero, we set its coefficient to (a ~3 + b p2 + C ~ + d) = 0 by taking

S = I, which we may. Now the transformed cubic, in a somewhat rearranged fashion, is given by

C(x,y) = (za + v)y2 + (px2 + qx + r)y + (li3 +!X2 + mX + n)

which is the usual quadratic equation. Using the old Indian method of Shreedharacharya (5th
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century), of solving the quadratic equation, ("multiply by 4 times the coefficient of the square

term and add the square of the coefficient of the unknown, and the rest follows"), we obtain

4(uX" + V)zy2 + 4(uX' + V)(pi'2 + qi' + r lY" + 4(ui' + v)(a3 + rz2 + mX +n) = 0

which on completing the square becomes

If we let

y' = [2(ui" + vlY + (px2 +qx +s)]

then equation (2.2) becomes of the type

..... (2.2)

deg. g(X) S 4 ..... (2.3)

We only need to analyze if we.can obtain a parametrization for i' and y. for then using transfor­

mations (2.1) and (2.2) we obtain the parameterization for.x and y. To do this we consider

several cases as follows: g (x') has only one distinct root, g (X) has two distinct roots...etc. In the

case of multiple roots, we may use the following genernl method to get rid of memo

Suppose

d
y" = [II (x - ~i )2]Q(X)

i "" 1

d = 1 or 2

so each root Il.: occurs an even number of times and Q(z) has no multiple roots. Then if we let

[ . ]•• y
Y = d

.II (x - ~il
, • I

then equation (2.3) reduces to

y"2 = O(i)

..... (2.4)

..... (2.5)

If deg. Q(x) S 2, then the above equation (2.5) is a conic and a rational parametrization is

always possible, Abhyankar and Bajaj (1986a). This then, together with trnosfonnations (2.1),

(2.2) and (2.4), gives a parameterization for;:t" and y of the original curve. Otherwise, g (.i) has

either 3 or 4 distinct roots, and a rational parametrization is not possible. Funher, it can be proved



-5-

that these are the only cases for which the cubic curve does not have a rational parametrization,

Abhyankar and Bajaj (1986b). However, by solving the above equation (2.5), quadratic in y"••

we always have a parameterization for the cubic of the type that allows a single square root of

rational functions. The rational parameterization obtained is global, and of degree at most 3 with

the parameter t ranging from (-00,00) and spanning the entire curve.

3. Cubicoids

Geometric Viewpoint

If we intersect a cubic surface with a plane we get a cubic curve in general. However if we

intersect it with a tangent plane then something special happens, namely, we get a singular cubic

curve or a reducible curve (either a straight line and a conic, or three straight lines). In general

we obtain a singular cubic curve as there are only a finite number of real straight lines on a cubic

surface, see Henderson (1911). In either case the intersection curve is rational and can be

parameterized by a single parameter, say s .

Now to obtain a rational parametrization of the cubicoid we take a simple point on it The

intersection of the tangent plane at this simple point with the cubicoid gives a singular cubic

curve, which can be rationally parameterized by the method of § 2. Next consider a variable

point s on this singular cubic curve. Then consider the tangent plane to the cubic surface at that

point We again get a singular cubic curve (or a reducible curve) as the intersection, which can

be parametrized by another parameter t. Thus we get a parametrization of the cubic surface by

two parameters s and t. Given values of s and t they uniquely define a point on the surface.

Hence a cubic surface can be parametrized starting with a simple point. However, with s and t as

parameters on singular cubic curves on the cubicoid, any point ex. y • z) on the surface can be

shown to correspond to six pairs of (s. t), giving a 6-fold parameterization or a 610ld covering of

the plane. If reducible curves (conics and straight lines) are obtained as the intersection with the

tangent planes, and parameters s and t are chosen on them, one could obtain a lower fold param­

eterization.

To ensure obtaining say a I-fold parameterization of the cubicoid we need to generate two

different rational curves on its surface. Let t and 't correspond to independent parameterizations
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of the two chosen rational curves. The set ofunique lines defined by endpoints t and t (a variable

point t on one rational cunre and a variable point 't on the other), intersect the cubic surface in

one additional point giving a rational parameterization of the cubicoid. Here a JXlint (x;y ,z) on

the cubic surface can be seen to correspond to a single pair (t ,t) yielding a I-Jold parameteriza­

tion or a I-j'o/d covering of the plane.

One method of obtaining two different rational curves on the cubic surface is to repeat the

above method for two different simple points on the cubicoid thereby obtaining two different

singular rational cubic curves. Alternatively. one can generate two non-intersecting straight lines

from the twenty seven lines on a cubic surface, see Henderson (1911). This using essentially the

above method of intersections with tangent planes to the cubic surface. However, differing with

the second step of the earlier method, the variable point s is now chosen appropriately such that

the tangent plane to the surface at this points yields a reducible intersection with the cubic sur­

face. Each value of s can yield one or three straight lines lying on the same tangent plane. How­

ever two specific values of s are chosen to yield two non-intersecting strnight lines of the

cubicoid lying on different tangent planes.

Algebraic Method

A general cubicoid (degree three) surface has an implicit equation given by

+ kx2.+ ly2+ mz2 + nxy + o:rz + pyz + q:r + ry + sz + t = 0

Take a simple point (xo,yo,zo) on it. Most points on the cubicoid are simple, so this is not a prob­

lem. Bring the simple point to the origin by a simple trnnslation x = Xl + XO, Y = y' + Yo and

z=z'+zo.

C(x
l
, y', z') = a'x l + bly' + c'z' + ... terms of higher degree.

Next rotate the tangent plane to the surface at the origin, given by the order form (terms of

lowest degree). to the z = 0 plane. TItis by using a simple rotation, Xl = x, yl = Y and

I 1 a' b' hi h .'=-'--,x--,yw c gIVes
c' c c

c (x. y. ,) = , + [f ,(x. y) + f ,(x. y), + f OZ']
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wherejj(x;y) and 8j(x;y) are appropriate terms of degree i. Its intersection with the tangent

plane z = 0 is simply.

hex, y) + 8'(x,y) = 0 ..... (3.1)

which is either a reducible curve or a cubic curve with a double point at the origin. In all cases

the curve (3.1) can be rationally parameterized with a single independent parameter sand

rational functions K and L

x = K(x)

y = L(x)

z=O

Now bring a general point specified by parameter s on this parameterized curve to the origin.

TItis by a simple translation

x=x+K(s)

y =y +L(x)

z =z

..... (3.2)

Since this point also lies on the cubic surface C(x,y"z). the surface equation with zero constant

term, is given by

C(i", y. Z) = a(s)X + b(a)y + c(s)z + ... terms of higher degree.

Next a simple rotation

Y=i
_ 1 _ a(x) _ b(x)_
z =--z ---x ---y

c(x) c(x) c(x)

..... (3.3)

makes the tangent plane to the surface at the origin to be the i = 0 plane, resulting again in

C(i,j,f) = z' + rf2(X, i) + i,(i, i)f + i oz-2]

Its intersection with f = 0 plane will give

i2(X, i) + {,(x, i) = 0 ..... (3.4)
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which is a plane curve wilh coefficients involving s. Once again the curve (3.4) can be rationally

parametrized with a single independent parameter t

;< =M(t)

j=N(t)

1=0
..... (35)

with coefficients of rational functions M and N also involving s. Finally using (3.5) and the

transfonnations (3.2) and (3.3) above, gives a rational parameterization of the cubic surface for

the original variables x. y and z in terms of rational functions involving both parameters sand t.

The rational parameterization we obtain is global, with parameters oS and t both ranging from

(-eo,oo) and covering the entire surface.

Alternatively consider the plane curve given by (3.4), with coefficients involving s. For cer­

tain values of oS. the plane curve is reducible which gives the lines on the cubic surface.

Specifically (3.4) is reducible for those values of s for which the two polynomials 12(£. j) and

83(.i. i) have a linear or quadratic common factor. One way of obtaining these s values is as fol­

lows. Consider 12(:£. y) = 0 the homogeneous equation of degree 2 with coefficients involving

8. It has two linear factors i =m 1(8)£ and i =mz(s)£. Substituting either of these into the

homogeneous equation g3(:£, y) = 0 yields a cubic equation of the fonn p (8)£3 = 0 where p (8)

is a function of 8. Specific solutions 8 of the equation p (8) = 0 can easily be obtained by using

known methods for obtaining roots of polynomial equations, see Buchberger et. aI. (1982). With

(3.2) and (3.3) and for two appropriate choices of 8 one obtains the linear parametric equations of

two distinct lines L 1 and L 2 on the cubic surface, viz., xl = t'YI =a1t +b l • z1 =C1t +dl and

X2 = 't, yz = az't + b2" %z = cz't + dz·

Next consider the straight line passing through a point on each of th.e two distinct lines L I

and Lz. 'This in space is given by two equations

..... (3.6)

=
Xz - XI

..... (3.7)

and defines a family of straight lines for varying t and't. Substituting for Y and z in tenus of x in

the equation of the cubic surface C (x.y ,%) = 0 yields a cubic equation in x with coefficients in t
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and 'to viz., g(x,t,'t)=O. However both x =t and x ='t satisfy this equation and thus

g(x,t,<) O' I' . . I·' . lfu . f d T th . 6)
( )( ) = IS mear In x yle wng;r as a rabona nellaD 0 t an 'to age er WIth (3.x-tz-'[

and (3.7) this yields a rational parameterization of the cubic surface in terms of the independent

parameters t and't.

4. Conclusion

For surfaces of degree higher than three no rational p3I3metric forms exist in general,

although parameterizable subclasses can be identified. For low degree curves and surfaces. in

this paper and in Abhyankar and Bajaj (1987a) procedures have been developed and implemented

for parameterizing implicit forms. Various computational issues in extending this approach to

parameterize planar curves of higher degree are discussed in Abhyankar and Bajaj (1987b).

Currendy efforts are being made to obtain explicit parameterizations of special families of quartic

surfaces and surfaces of higher degree which would prove useful for representin~ blending sur­

faces.
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