Purdue University Purdue e-Pubs

Publications of the Ray W. Herrick Laboratories

School of Mechanical Engineering

12-2006

Experimental Relationship Between Tire's Structural Wave Propagation and Sound Radiation

J Stuart Bolton *Purdue University*, bolton@purdue.edu

Kwanwoo Hong

Kiho Yum Hyundai Motor Company

Follow this and additional works at: http://docs.lib.purdue.edu/herrick

Bolton, J Stuart; Hong, Kwanwoo; and Yum, Kiho, "Experimental Relationship Between Tire's Structural Wave Propagation and Sound Radiation" (2006). *Publications of the Ray W. Herrick Laboratories*. Paper 38. http://docs.lib.purdue.edu/herrick/38

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

INTER-NOISE 2006 3-6 DECEMBER 2006 HONOLULU, HAWAII, USA

Experimental relationship between tire's structural wave propagation and sound radiation

Kiho Yum

Kwanwoo Hong and J. Stuart Bolton

Hyundai Motor Co

Ray W. Herrick Laboratories Mechanical Engineering Purdue university

Objectives and Contents

Objectives

• To identify structural wave propagation on tire surface and its sound radiation experimentally

Contents

p3

- Structural vibration on tire surface
 - Experimental structural mobility distribution on tire surface
 - Structural wave propagation characteristics on tire surface
- Sound radiation from a tire
 - Sound radiation measurement and calculation
 - Radiated sound power characteristics
- Relationship between structural wave propagation characteristics and its sound radiation

RATORIES

Structural Vibration Measurement

Structural vibration measurement on tire surface

- Normal harmonic force was applied on the treadband center point of the slick tire (205/70R14 Tire).
- Structural mobility was measured on whole tire surface. (except on wheel)

VERSITY

BORATORIES

Structural Vibration Measurement

Structural velocity (mobility) distribution

Structural Power Contribution

Structural input power

 $E = \rho_0 c S_b \left\langle \overline{v}_b^2 \right\rangle$

- Structural vibrations below 300 Hz, transferred to the interior cabin, appears mainly on treadband.
- Sidewall's contribution on structural power is higher in the mid-frequency region.

Sound Radiation Measurement

Nearfield SPL and intensity measurement and calculation

- Nearfield sound radiation resulting from a tire's structural vibration was measured and calculated.
- Sound radiation was measured in the hemi-anechoic chamber.
- Radiated sound calculation using D-BEM was based on the structural mobilities obtained in the structural vibration measurement.

Nearfield Radiation Model

Nearfield Sound Radiation Model

- To validate BE calculation by comparing with measurement results
- Nearfield SPL and intensity were measured and calculated in front of treadband centerline.
- Nearfield radiated sound power was measured and calculated on halfbox recovery surface.

- Generally calculation results are matching well with measurement results.
- SPL at the ring frequency, 570 Hz, is higher all over circumferential positions.
- Region close to contact patch area has high SPL level above 1000 Hz: Horn effect characteristics.

p10

- Generally calculation results are matching well with measurement results.
- Flexural motion on treadband contributes to nearfield sound radiation below 400 Hz.
- Intensity at the ring frequency, 570 Hz, is higher all over circumferential locations.

p11

Sound Radiation from a Tire

Nearfield intensity distribution at 570 Hz

- Generally calculation results are matching well with measurement results.
- Sound radiation from whole tire surface dominates at the ring frequency.

Structural Vibration/Radiation Relationship

Relationship between structural wave propagation and its radiation

- Radiated power peaks don't match with those of structural power.
- Structural input power peaks appear at cut-on frequencies of flexural wave mode.
- Radiated power peaks appear when structural wave has low wave number.
- The peak at 570 Hz relates to 'ring frequency'.
- Structural vibration below the ring frequency does not contribute to sound radiation effectively.

Summary and Conclusions

- The sound radiation resulting from the structural wave propagation was investigated.
- The relationship between structural wave propagation on the tire surface and its radiation was identified empirically.
- Most of a tire's structural vibration does not contribute to sound radiation.
- Effective radiation was found at the frequencies where low wave number components of the longitudinal wave appear
- The **fast longitudinal wave** propagating through the treadband contributes on sound radiation at the tire's ring frequency.

Q & A

~ Thank you ~

