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Abstract

A space-filling curve is a way of mapping the multi-dimensional space into the one-dimensional space.
It acts like a thread that passes through every cell element (or pixel) in the D-dimensional space so
that every cell is visited exactly once. There are numerous kinds of space-filling curves. The differcnce
between such curves is in their way of mapping to the one-dimensional space. Selecting the appropriate
curve for any application requires knowledge of the mapping scheme provided by each space-filling
curve. A space-filling curve consists of a set of segments. Each segment connects two consecutive
multi-dimensional points. Five different types of segments are distinguished, namely, Jump, Contiguity,
Reverse, Forward, and Still. A description veclor V = (J,C, IR, F, S), where J, C, R, F, and 5, arc
the percentages of Jump, Contiguity, Reverse, Forward, and Siill segments in the space-filling curve,
encapsulates all the properties of a space-filling curve. The knowledge of V [acilitates the process of
sclecting the appropriate space-filling curve for diflerent applications. Closed formulas are develeped to
compute the description vector V for any D-dimensional space and grid size NV for different space-filling
curves. A comparative study of different space-filling curves with respect to the description vector is

conducted and results are presented and discussed.

1 Introduction

Mapping the multi-dimensional space inlo the one-dimensional domain plays an important role in ap-
plications that involve multi-dimensional data. Multimedia databases, Geographic Information Systems
(GIS), QoS routing and Image processing are examples of multi-dimensional applications. Modules that
arc commonly used in multi-dimensional applications include searching, sorting, scheduling, spatial ac-
cess methods, indexing and clustering. Numerous research has been conducted for developing efficient
algorithms and data structures for these modules for one-dimensional data. In most cases, modifying the
existing one-dimensional algorithms and data structures to deal with multi-dimensional data results in
spaghetti-like programs to handle many special cases. The cost of maintaining and developing such code

degrades the system performance.
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Figure 1: Two-dimensional Space-Filling Curves.

Mapping from the mmulti-dimensional space into the one-dimensional domain provides a pre-processing
step for multi-dimensional applications. The pre-processing step takes the multi-dimensional data as
input and outputs the same sct ol data represented in the one-dimensional domain. The idea is to keep
the existing algorithms and data structures independent of the dimensionality of data. The objective of
the mapping is to represent a point from the D-dimensional space by a single integer value that reflects
the various dimensions of the original space. Such a mapping is called a locality-preserving mapping in
the sense that, if two points arc ncar to cach other in the D-dimensional space, then they will be near to

cach other in the one-dimensional space.

Space-filling Curves (SFCs) have been cxtensively uscd as a mapping scheme from the multi-dimensional
spacc into the one-dimensional space. A space-filling curve is a thread that goes through all the points
in the space while visiting each point only one time. Thus, a space-filling curve imposes a linear order of
points in the multi-dimensional space. Space-filling curves are discovered by Peano [36] where he introduces
a mapping from the unit interval to the unit square. Hilbert [20] generalizes the idea to a mapping of the
whole space. Following Peano and Hilbert curves, many space-filling curves are proposed, e.g., (6, 30, 39].
Figures I and 2 give examples of two- and three-dimensional space-filling curves with grid size (i.e., number
of points per dimension) eight and four, respectively. According to the classification in [6], space-filling
curves arc classified into two categories: recursive space-filling curves (RSFC) and non-recursive space-
filling curves. An RSFC is an SFC that can be recursively divided into four square RSIFCs of equal size.
Examples of RSFCs are the Peano SFC, (Figurc lc), the Gray SFC, {Figure 1d) and the Hilbert SFC,

{Figure le). For a historical survey and more types of space-filling curves, the reader is referred to [37].

With the variety of space-filling curves and the wide spread of multi-dimensional applications, the
selection of the appropriate space-filling curve for a certain application is not a trivial task. One way is
Lo perform many simulation experiments over different space-filling curves. However, this is not practical
in terms of execution time. Another way is to tailor a new space-filling curve for each application, e.g.,
as in [6, 7, 32]. However, with the increase of multi-dimensional applications, it becomes a hard task to

tailor a new space-filling curve for each application.
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Figure 2: Three-dimensional Space-Filling Curves.

The objective of this paper is to provide a systematic and a scalable framework for selecting the appro-
priate space-filling curve for any application. To achicve this objective, we divide any space-filling curve
into segments. Each segment connects two consecutive multi-dimensional points. Thus, a D-dimensional
space-filling curve with grid size N would have NP-1 segments that connect N points. We distinguish
among five different segment types Jump, Contiguity, Reverse, Forward, and Still. A space-flling curve
SFC is described by its description vector V = (J,C, R, F, S), where J,C, R, F, and S, arc the percentages
of Jump, Contiguily, Reverse, Forward, and Siill segments, respectively. Then, with only looking at the

description vector V, one can choose the right space-filling curve for a given application.

The rest of this paper is organized as follows. Section 2 surveys some of the related work on space-filling
curves. Different types of segments in space-filling curves are presented in Section 3. Section 4 analyzcs
two non-recursive space-filling curves , the Sweep and Scan SFC, and three recursive space-filing curves,
the Peano, Gray and Hilbert SFC, and develops closed formulas to compute the description vector of each
space-filling curve. In Section 5, we conduct a comprchensive comparison among different space-filling

curves. Finally, Section 6 concludes the paper.




2 Related Work

Although space-filling curves were discovered in the last century [20, 30, 36], their use in computer science
applications is not discovered until recently. The use of space-filling curves is motivated by the emergence
of multi-dimensional applications. Space-filling curves are used by [33] for spatial join of multi-dimensional
data. Multi-dimensional data is transformed into the one-dimensional domaiu using the Z-order [34], which
is the same as the Peano SFC [36]. The transformed data is stored in a one-dimensional data structure,
the B*-Tree [11], and a spatial join algorithm is applied. The Gray [18] and Hilbert [20] SFCs are used for
answering range queries in [12, 21], respectively. [14, 15] use space-filling curves as a spatial access method
where the multi-dimensional data is stored in one-dimensional media (disk) using the Hilbert SFC. This
achieves clustering and hence reduces the number ol disk accesses and improves the response time. In [22],
the Hilbert SFC is used in packing the R-Tree [19], where a set of rectangles are sorted according to the
Hilbert order, and then are packed into the R-Tree nodes. Similar ideas for constructing R-trees using
space-filling curves are proposed in [23]. The Z-order [34] (Peano SFC [36]) is used in [9] as a spatial access
method to enhance the performance of spatial join. Spatial objects located in a disk are ordered according
to their Z-order valuc to minimize the number of times a given page is retricved from the disk. Similar
use of space-filling curves is performed in [38] based on the Hilbert SFC. The Hilbert SFC is also used int

multi-dimensional indexing in [24, 23] and for answering nearest-neighbor querics in [26].

Other uses of space-filling curve include data-paralle] applications [35], disk scheduling [4], memory
management [27, 40), and image processing [42, 44, 46]. Some applications need a tailored space-filling
curve. In [6], a new rccursive space-filling curve is proposed that guarantees an upper bound of three
seek operations to any two-dimensional square query. In [32], an H-index ordering is proposed for mesh-
indexing. XZ-ordering is proposed by [7) to map objects with spatial extension. The XZ-order is an

extension of the Z-order by extending each region in Z-order by a factor of two in each dimension.

The properties of different space-filling curves is explored in [3, §, 28, 29]. In [3], the notion of Hilbert
indexing is generalized to arbitrary dimensions, The Hilbert SI'C is structurally analyzed, which helps
in understanding how the Hilbert SFC is built in the multi-dimensional space. [5] studies the properties
of several space filling curves in the two- and three-dimensional spaces, and introduces new measures
to describe the behavior of any space-filling curve. The notion of irregularity is presented in 28] as a
quantitative measure of how irregular a space-filling curve is. In [29], the clustering properties of the

Hilbert SFC is analyzed by deriving closed formulas for the number of ¢lusters in a given query region.

Numerous algorithms are developed for efficiently generating different space-fiiling curves. Recursive
algorithms for generating the Hilbert SFC are proposed in [8, 10, 17, 45] and for the Peano SFC in (10, 45].
A table-driven algorithm for the Peano and Hilbert SFCs is proposed in [17]. An algorithm for computing

the order of any point in the Hilbert, Peano, and Gray SFCs is proposed in [15]. For a comparison of



P The ith peint in a space-filling curve
Py, The kth dimension in the ith point in a space-flling curve
Jump(k, N, D) The number of Jump segments in dimension & in a D-dimensional space with grid size N
Conliguity(k, N, D) | The number of Cenliguily segments in dimension &k in a D-dimensional space with grid size N
Reverse(k, N, {2) The number ol Reverse segments in dimension k in a D-dimensional space with grid size &
Forward(k, N, ) The number of Forwerd segments in dimension & in a D-dimensional space with grid size &
Stitl{k, N, D) The number of Sl segments in dimension & in 2 D-dimensional space with grid size N
Jr(N, D) The total number ol Jump segments in all dimensions in a D-dimensional space wilh grid size N
Cp{N,D} The Lotal nember of Contiguity sogments in all dimensions in a D-dimensional space with grid size N
Rr{N, D} The total number of Reverse segments in all dimensions 1 a 2-dimensional space wilh grid size ¥
Fr{N, D) The total number of Forward segments in all dimensions in a I)-dimensional space wiLlh grid size N
Sr(N, D) The tolal number of S4il segments in all dimensions in a P-dimensional space with grid size &
Vi The total description vector Vip = (Jop, O, Iy, Fr, 5]

Table 1: Symbols used in the paper.

different space-filling curves, a reader is referrved to [1, 5, 13, 37).

3 Segment Types in Space-filling Curves

A D-dimensional space-filling curve with grid size N has NP-1 segments that connect NP points. Each
segment is classified as one or more of five segment types: Jump, Contiguily, Reverse, Forward, and Still. In
this section, we give a precise definition of each segment type along with an iterative equation to compute
the number of segments from each type for each dimension in the muliti-dimensional space. For the rest

of the paper, we usc the notations and definitions given in Table 1.

3.1 Jump

Definition 1 A Jump in an SFC is said to happen when the distance, along any of the dimensions,

between two consecutive points in the SFC is grealer than one.

Formally, for any two consecutive multi-dimensional points P; and FP;y, in an SFC, a Jump occurs
in dimension k iff ebs(Pi.up — Fyr-ug) > 1. The total number of Jump segments in a dimension &
in a D-dimensional space with grid size N is: Jump(k, N, D) = Zf_j_l fr(E, k) where f;(i,k) = 1 iff
uf:».s[P-.wc — Pipy.uy) > 1 and 0 otherwise. The total number of Jump segments in an SFC is: Jp(N, D) =
Z Ju'm.p (k, N, D).

A Jump in a space-filling curve reflects the locality of the consecutive points in the order implied by the
space-filling curve. For cxample, consider the Sweep SIFC {Figure 1a}. By the end of each horizontal sweep,
the Sweep SFC jumps back to the beginning of the horizontal axis. Thus, the last point in a horizontal
sweep and the first point in the next horizontal sweep will be neighbors in the one-dimensional domain
while they are not neighbors in the multi-dimensional space. In contrast, consider the C-Scan and Hilbert

SFCs, where they do not have any Jump segments. So, any two neighbors in the one-dimensional ordering




arc guaranteed to be neighbors in the multi-dimensional space. Generally, the lack of Jump segments
indicates more ability for clustering. However, Jump may or may not be a favorable property based on
the application type. For example, in a disk-head scheduling [4], Jumps are considered bad, as they result
in a longer seek time without retrieving any data. On the other side, in multi-priority scheduling, Jumps

are considered good, as the ability of fast moving among different priority typces is required.

3.2 Contiguity

Definition 2 A Contiguity in an SFC is said to happen when the distance, along any of the dimensions,

belween two consecutive points in the SI'C is equal to one.

Formally, for any two consecutive multi-dimensional points F; and P4 in an SFC, a Conliguily occurs
in dimension & iff abs{P;.u; — Piuq.ug) = 1. The total number of Contiguity segments in a dimension k
in a D-dimensional space with grid size N is: Contiguity(k, N, D) = l—’\;ﬁ_l fo(e, k) where fo(i,k) = 1
iff abs(Piug — Piyroug) = 1 and 0 otherwise. The total number of Contiguity segments in an SFC is:
Cr(N, D) = Y0 Contiguity(k, N, D).

Contiguity reflects the ability of a space-filling curve to go continuously along any of the dimensions.
For example, consider the Scan SFC (Figure 1b} where it always go continuously in one of the dimensions.
It starts by seven continuous horizontal scgments followed by onc continuous segment vertically, then
another set of continuous horizontal segments. A high ratio of Contiguity indicates a lower ratio in Jump.

As in Jumps, Contiguity may or may not be favorable, depending on the underlying application.

3.3 Reverse

Definition 3 A segmeni in an SFC 15 termed a Reverse segment of the projection of ils lwo conseculive

points, along any of the dimensions, resulls in scanning lhe dimension in decreasing order.

Formally, for any two consecutive multi-dimensional poinis I and P4, in an SFC, a Reverse scgment
occurs in dimension k iff Piyqy.u; < Paug. The total number of Reverse segments in a dimension & in
a D-dimensional space with grid size ¥V is: Reverse(k,N,D) = Z;i’;_lf;g(i,k) where fr(i, k) = 1 iff
Piyyup < Py and 0 otherwise. The total number of Rewerse segments in an SFC is: Bp(N,D) =
Ef__ﬁ'ul Reverse(k, N, D).

A Reverse segment is also classified as either a Jump or a Contiguily one. For example, in the Sweep
SFC, moving [rom the first horizontal sweep to the second one is done by a reverse and jump segment. On
the other side, moving from the first horizontal sweep to the second one in the Scan SFC is done by seven
reverse and continuous segments. Whether reverse segments are favorable or not relates to the semantic of

the sorted parametcr. For example, consider real-time applications. When applying a space-filling curve




to a deadline parameter, the sorting from the largest to the smallest, i.e., in reverse order, means that we
visit the points with larger deadline before the points with smaller deadline. In this case, reverse ordering
is considered unfavorable. As another example, consider the case of disk-head scheduling [4]. Bascd on
the disk-head movement, alternating between forward and reverse orderings is favorable. In summary, it
is important to point out and quantify whether or not a space-filling curve exhibits reverse ordering in its

dimensions.

3.4 Forward

Definition 4 A segment in en SFC is termed o Forward segment if the projection of its two consecutive

points, along any of the dimensions, results in scanning the dimension in increasing ovder.

Formally, for any two consecutive multi-dimensional points P; and Py in an SFC, a Forward segment
occurs in dimension k iff Pyyq.u; > FPug. The total number of Forward segments in a dimension k& in
a D-dimensional space with grid size N is: Forward(k,N,D) = zjiDo"l fr(i, k) where frp(i, k) = 1 iff
Piy1.up > Puy and 0 otherwise. The total number of Forwerd segments in an SFC is: Fp(N,D) =
Ef;ol Forward{k, N, D).

As in Reverse scgment, a Forward segment is also classified as either a Jump or a Contiguity scgment.
For example, the first horizontal sweep in the Sweep SFC have seven forward and continuous segments. On
the other side, in the Peano SIFC (Figure 1c¢), the segiment that conneccts the second and the third quadrants
is considered as a forward and jump segment in the horizontal dimension. However, it is considered as a
reverse and continuous segment in the vertical dimension. A higher ratio of Reverse scgments indicates a

lower ratio of Forward segments.

3.5 5till

Definition 5 A4 segment in an SFC is termed a Still segment when the distance, along any of the dimen-

stons, between the segment’s lwo consecutive points in the SFC is equal to zero.

Formally, for any two consecutive multi-dimensional points P; and Pi;, in an SFC, a Stil segment
occurs in dimension &k iff Piyq.up = Prug. The total number of Still segments in a dimension & in a
D-dimensional space with grid size NV is: Still(k, N, D} = E?i.;_l fs(2, k) where fs(i, k) =1 iff Pijq.ue =
P;.uy and 0 otherwise. The total number of Still segments in an SFC is: Sp(N, D) = ED ' Still(k, N, D).

A segment is considered as'a Still segment if it does not match any of the other types. Stil segments is
the closure of other types. For example, a segment that is neither a Jump nor a Contiguily is considered as
a Still. Also, a segment that is ncither a Reverse nor a Forwerd segiment is considered as a Still segment.

In general, the number of Still segments in a dimension % indicates the percent that this dimension
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Figurc 3: The relation between segment types.

is neglected to visit other dimensions. For example, consider the Sweep SFC, cach horizontal sweep has
seven segments that are continnons and forward in the horizontal dimension. However, they are considered
as Still segments in the vertical dimension. This high ratio of Still scgments in the vertical dimension in
indicates that the Sweep SFC neglects advancing in the vertical dimension in favor of advancing in the

horizontal dimension. Unlike other segment types, a Still segment cannot be classified as another segment

type.

3.6 Relation between segment types

The five segment types can be divided into two categories. The first category, termed the distance calegory,
is concerned with the segment length. This includes Jump, Contiguity, and Siill segments where the
segment length in greater than, cqual, or less than one, respectively. The second category, termed the
direction category is concerned with the dircction of the segment. This includes Rewerse, Forward, and
Still segments. Notice that the Still segments belong to the two categorics where it serves as the closurc of
cach property. Figure 3 illustrates the difference between the distance category segments and the direction
category scgments for both the horizontal and vertical dimensions in the two-dimensional space. The

relationships among the seginent types are summarized in the following Lemma.

Lemma 1 For any dimension k in a D-dimensional space with grid size N, the following equalities always

hold.

Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N, D) = NP — 1
Reverse(k, N, D) + Forward(k, N, D) 4+ Stili(k,N,D) = N? -1
Jr4+Cr+Sp=DWNY-1)
Rr+ Fp+8p=D(N? -1)

Proof: The proof is given in Appendix A.l. O




From Lemma 1, we deduce the following Corollary:

Corollary 1 To compute the description vector V', it is enough to compuie only three segment types with

at least one from each category. The other lwo segment lypes can be compuled from Lemma 1.

4 Case Studies

The time complexity for calculating the number of segments of any type in a D-dimensional space with
grid size N'is O(N?). Consider the case of 20 dimensions with grid size 16, we need 16%% operations to
comnpute the number of Jumps of a space-filling curve. To avoid this excessive operation, we derive closed
formulas that compute the number of segments of each type for any dimension & in a D-dimensional
space with grid size /V. In this paper, we concentrate on two non-recursive space-filling curves: the Sweep
and Scan SFCs; and three recursive space-filling curves: the Peano, Gray, and Hilbert SFCs. For cach
spacc-filling curve, we derive two formulas; the first formula gives the number of segment types in each
dimension &, and the second formula gives the total description vector Vi that represents the total number
of each segment for all dimensions. Given that the total number of segments in the D-dimensional space
is D(NP — 1), therefore, the percentages of each segment type are computed in the description vector

V =Vyp/D(N? - 1).

4.1 Case Study I: The Sweep SFC

Iigures 1a and 2a give the Sweep SFC in the two- and three-dimensional spaces with grid sizes cight and
four, respectively. The simplicity of the Sweep SFC is the main reason to its wide spread. Applications of
the Sweep SFC include storing multi-dimensional arrays in memory and disk scheduling. A D-dimensional
Sweep SFC with grid size N is represented by a D digits number in the base N system. The rightmost
digit represents the last dimension (§ = D — 1}, while the leftmost digit represents the first dimension
(k = 0). This means that in order to increase the value of dimension & from v to v + 1, the Sweep SFC
goces through all the points 0 to N-1 in dimension k£ — 1. We call this event a Cycle of the Sweep SFC. For
example, in Figure la, in order to advance one value in the vertical dimension, the Sweep SFC should go
through a Cycle from 0 to 7 in the liorizontal dimension. The first dimension in the Sweep SFC has NP1
cycles, each with N points. Generally, the £th dimension has NP~*=! cycles, cach with N¥1 points.
Notice that the last dimension has only one cycle that includes all space points (N?). Table 2 gives an
example of computing the Sweep order for the two- and three-dimensional points with a grid size of eight

points in each dimension.

Lemma 2 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,




Paint Octal Convertion | Sweep Toint Qcral Cpnversion Sweep
Number Process Order Number Process Order
(2,1} (21} 2x8+1 17 (0,13 | (013)g [Ox64+1x8+3 11
(5,3) {53)a 5x 843 17 {2,1,4} (214)s XG44+ 1x8+4 140
(7.0} {70)s 7x84+0 o6 (7.0,7) {707)a TXO614+0x8+7 455

Table 2: An Example of two- and three-dimensional Sweep SFC with grid size 8 in each dimension.

and Still segmenis in eny dimension k for the Sweep SFC is:

Jump(k, N, D} = Reverse(k,N,D) = NP=%"1 _1
Contiguity(k, N, D) = Forward(k,N,D) = ND—k—1(N _1)
Still(k,N,D) = NP - NP

Proof: The proofl is given in Appendix A.2. O

Lemma 3 The lotal description vector Vr for the D-dimensional Sweep SFC with grid size N is Vp =
(Jp, Cp, iy, Fr, 87) where:

Jr =Ry = -D
1 i N1
Cr=Fr=N"-1
N (NP -1)
Sp=DNP —
T N -1
The description vector V = Vo /D(NP —1).
Proof: The proof is given in Appendix A.3. O

4.2 Case Study II: The Scan SFC

The Scan SFC (Figures 1b and 2b} is a slight modification of the original Sweep SFC. The main motivation
is to avoid the Jump segments in the Sweep SFC. Thus instcad of having onc Jump and Reverse segment
between cach Sweep Cyele, the Scan SIFC replaces this segment by a sequence of N — 1 Contiguily and
Reverse segments. The Scan SFC have the same concept of a Cycle as in the Sweep SFC. However,
the Scan SFC distinguishes between even-numbered and odd-numbered cycles. Notice that for the kth
dimension, the Scan SFC has NP—#-1 cycles. Even-numbered cycles are exactly the same as the Sweep
SFC. However, the odd-numbered Cycles in the case of the Scan SFC consists of N — 1 Contiguity and
Reverse segments rather than Contiguily and Forward scgments as in the case of the Sweep SFC. Also, the

transition between each cycle is performed by a Stifl segment in the case of the Scan SFC rather than by

10




a Jump segment as in the casc of the Sweep SIFC. Many applications benefit from the no Jump property

of the Scan SFC.

Lemma 4 In a D-dimensional space with grid size N, the number of Jumnp, Contiguity, Reverse, Forward,

and Still segments in eny dimension k for the Scan SFC is:

Jump(k,N,D) =0
Contiguity(k, N, D) = NP=% Y — 1)
Still(k, N, D) = NP1 (Nk'“ -N+ 1) -1

Reverse(D — 1, N, D) =0

1 .
Reverse(k,N,D) = EN‘D"‘"](N -1}, k<D-1
Forward(D —1,N,D)=N -1
1 .
Forward(k,N,D) = §N”"H(N - 1), E<D-1
Proof: The proof is given in Appendix A.4. ]

Lemma 5 The lofal descripiion vector Vp for the D-dimensional Scan SFC with grid size N is Vp =

(J7,Cr, Ry, Fr, St) where:

Jr=90
CTZND—I
Sp=(D-1){N? -1}

Rr = % (WPt —1)

N
FT=-2-(ND—1—1)+N—1
The description vector V = Vyp/D(NP - 1).
Proof: The prool is given in Appendix A.5. a

4.3 Case Study III: The Peano SFC

The Peano SFC (Figures lc and 2c¢) is introduced by Peano [36] and is also called Morton encoding [31],
quad code [16], bit-interleaving [41], N-order [43], locational code [2], or Z-order [34]. The Peano SFC is
constructed recursively as in Figure 4. The basic step (Figure 4a) contains four points in the four quadrants

of the space. Each quadrant is represented by two binary digits. The most significant digit is represented

11




Paint | Dimensions Bit Decimal Poaint Dimensions Bit Decimal
0 1 Interleaving Order 0 1 2 Interleaving Order
(2,1) 010 ool ao1o001 0 {0,1,3) | 000 | @01 | D11 oanog1osl 11
(5,3) 101 | 011 100111 39 (2,1,4) | 010 | ¢0r | 100 | 01180010 98
(7.0) | 111 | ©ooo 101010 12 (7,0,7) | 111 | oo | 111 | 1011011401 365

Table 3: An IExample of two- and three-dimensional Peano orders with grid size 8 in each dimension.

N

ﬁ

—

(a) {b) (c)

Figure 4: The Peano SFC.

by its = position and the least significant digit is represented by its ¢ position. The Peano SFC orders
these points in ascending order {00, 01, 10, 11). Figure 4b contains four repeated blocks of Figure 4a at a
finer resolution and is visited in the same order as in Figure 4a. Similarly, Figure 4c contains four repeated

blocks of Figure 4b at a finer resolution.

To extend the Peano SFC to the multi-dimensional space, we present the idea of bit-intcricaving in the
two-dimensional space as shown in Figurce 5. Each point in the space is assigned a binary number that
results from interleaving bits of the two dimensions. The bits are interleaved according to an interleaving
vector 7,=(0,1,0,1). This corresponds to taking the first and third bits from dimension 0 {z) and taking
the second and fourth bits from dimension 1 {y). For a D-dimensional space with four points in each
dimension, the interleaving vector is (0,1,2,...,D —1,0,1,2,...,D — 1). For a grid size of N points in
each dimension, the term 0,1,2,..., 0 ~ 1 is repeated LogN times. The points are visited in ascending
order according to their binary number representation. Table 3 gives an example of computing the Peano

order for two- and three-dimensional points with a grid size of eight points in each dimension.

Lemma 6 In a D-dimensional space with grid size N, the number of Jump, Contiguily, Reverse, Forward,
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Figure 5: Bit Interleaving in Peano SFC.

and Still segmenis in any dimension k for the Peano SFC is:

(NP - 229) (27 - 2)
221)—k (21) — ]_)

1
= 22Dk

Jump(k,N,D) = +28 -1

1 ND 92D

Contiguity(k, N, D) 922Dk 9D _ 1

NP (2P 1) +

Still(k, N, D) = N” (1 - 2’*-”“)
2k (NP — 2D) (2P — 2)

. — k
Reverse(k,N,D) = 2D (2P — 1) +2F -1
2F (VP + 27 - 2)
Forward(k, N, D) = 5D — 1
Proof: The proof is given in Appendix A.6. O

Lemma 7 The lotal descriplion vector Vp for the D-dimensional Peano SFC with grid size N s Vi =
(Jr,Cr, Rr, Fr,St) where:

D
erz(%) (1-2""")+1-D
—_ N P D+1 1-D
CT—(E‘) (24t 42170 - 3)
Rr=NP(1-2"P}+1-D
Fr=NP -1

The description wvector V = Vp/D(NP - 1).

Proof: The proof is given in Appendix A.T. a
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Point | Dimensions Bit Decimal Peoinl Dimensions Bit Decimal
0 1 Interleaving QOrder 0 1 2 Interleaving Order
(Z,]) | 011 [ ool 001011 13 {0,1,3) | 000 | 001 | 010 | OPODBGIDID 12
{5,3) 111 010 101110 52 {(2,1,4) | 011 (e[t 110 00101110 75
(7,0) | 100 | 000 100000 63 {7,0,7y | 100 | poo | 100 | 10000140 3R4

Table 4: An Example of two- and three-dimensional Gray orders with grid size 8 in cach dimension.

T
L

(a) (b) (c)

Figure 6: The Gray SFC.

4.4 Case Study IV: The Gray SFC

The Gray SFC (Figures 1d and 2d) uses the Gray code representation [18] in contrast to the binary
code representation as in the Peano SFC. Figure § gives the recursive construction of the Gray SFC. The
basic step (Figurc 6a) contains four points in the four quadrants of the space. As in the Peano SFC, each
quadrant is represented by two binary digits. The most significant digit is represented by its £ position and
the lcast significant digit is represented by its i position. The Gray SFC orders these points in ascending
order according to the Gray code {00, 01, 11, 10}. Figure 6b contains four repeated blocks of Figure Ga at

a finer resolution and is visited in Gray order.

Unlike the Peano SIFC, the first and the fourth blocks have the same orientation as those of Figure 6a,
while the second and the third blocks are constructed by rotating the block of Figure 6a by 180°. Similarly,
Figure Gc is constructed [rom two blocks of Figurc 6b at a finer resolution and two blocks of the rotation
of Figure 6b by 180°. For details about extending the Gray SFC to multi-dimensional space, the rcader is
referred to [28].

To extend the Gray SFC to the multi-dimensional space, we use the samec idea of bit interlcaving as in
the Peano SFC. Figure 7 gives the bit interleaving in the two-dimensional space with four points in each
dimension. Table 4 gives an example of computing the Gray order for two- and tlhree-dimensional points

with grid size eight (i.e., eight points) in each dimension.

Lemma 8 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,
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and Still segments in any dimension k for the Gray SFC is:

NP 2P
Jump(k,N, D) = 5’18_—@:%3
ND
Contiguity(k, N, D)} = oD~k
. (W2 -1) (27 —2* 1)
Stili(k, N, D) = 20 =1
ND 2P
Reverse(0,N, D) = 220 1)
Reverse(k, N, D) = 24" ~1) k>0
cverse(k, N, = oh _1 !
ND 2P
N = —————+1
Forward(0,N, D) 2(2P - 1) +
ok—1 (ND — 1)
Forward(k,N, D) = T oD _71 k>0

Proof: The proof is given in Appendix A.8. (|

Lemma 9 The total deseription vector Vp for the D-dimensional Gray SFC with grid size N is Vp =
{(Jr,Cr, Ry, Fr,St) where:

N D
e (5) 4
N D
Cp = (—) (22 - 1)
2
NP _2
Rr = 5
ND
Pr=—-

Sr=(D-1)(N"-1)

The descriplion veelor V = Vp/D(NP - 1).

Proof: The proof is given in Appendix A.9.

4.5 Case Study V: The Hilbert SFC

Figure 8 gives the recursive construction of the Hilbert SFC. The basic block of the Hilbert SIFC (Figure 8a)
is the same as the basic block of the Gray SFC (Figure Ga). The basic block is repeated four times at a
finer resolution in the four quadrants, as given in Figure 8b. The quadrants are visited in their gray order.

The second and third blocks in Figure 8b have the same orientation as in Figure 8a. The first block is
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Figure 8: The Hilbert SFC.

constructed from rotating the block of Figure 8a by 90%, while the fourth block is constructed by rotating

the block of Figure 8 by —90%. Figure 8c is constructed from Figure 8b in an analogous manner.

Lemma 10 n a D-dimensional space with grid size N, the number of Jump, Contiquity, Reverse, For-

ward, and Still segments in any dimension k for the Hilbert SFC 1s:

Jump(k,N,D) =0
D=1
. i .. ; N . N &
Contiguity{k, N, D) = Z 2'Contiguity((k +1) mod D, 5 D) + 2Contiguity(k, oK D)+2

i=]

Contiguity(k,1,D) =0

Still(k, N, D) = NP — 1 — Contiguity(k, N, D)
Reverse(0, N, D) = (Contiguily(0, N, D) — N +1)/2
Reverse(k, N, D) = Contiguity(k,N,D)/2 k>0

Forward(k,N,D) = NP — 1 — Reverse(k, N, D) — Still(k, N, D)
Proof: The proof is given in Appendix A.10. a
Lemma 11 The tetal description vector Vo for the D-dimensional Hilbert SFC with grid size N is Vp =
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(JT: CT: R’I'g FI‘, S’]"‘) 'thBTﬂ.'

Jr =10
Cr=N"_-1
R-;-:%(ND“I—l)
Fy:%(ND']+1)—-1

Sr=(D-1)(N"-1)
The description vector V = Vip/D(ND - 1).

Proof: The proof is given in Appendix A.11. O

5 Performance Evaluation

In this section, we perform comprehensive experiments to compare the Sweep, Scan, Peano, Gray, and
Hilbert SFCs with respect to the dillerent segment types. The results in this section are computed using
the closed formulas developed in Section 4. Notice that it is timely infeasible to compute segment types

in high-dimensional spaces using the definition and iterative equations from Section 3.

5.1 Scalability of Space-filling Curves

In this scction, we address the issue of scalability, i.c., when the number of dimensions and /or the number of
paints per dimension increase. For the following experiments, we use Lemninas 3, 5, 7, 9, and 11 to compute
the description vector V. Figure 9 gives thie results of setting the grid size N=16, while measuring different
segment types (Jump, Reverse, and Still) up to 12 dimensions. An interesting result appears in the Jump
scgments {Figure Ya) where both the Peano and Gray SFCs have very low percentage {almost 0%) of Jumps
after six dimensions while the Hilbert and Scan SFCs have no Jumps for any dimensions. The fact that
the Hilbert SFC has no Jumps is well-known [15, 29], and it is the main criteria for why the Hilbert SFC
is chosen for many applications c.g., [3, 15, 23]. However, this experiment emphasizes that both the Peano
and Gray SFCs share the property of no Jumps with the Hilbert SFC for medium and high dimensionality.
For Contiguity, all space-filling curves almost have the same number of Contiguity segments, except the
Peano SFC, where it has higher Conliguily scgments than the other space-filling curves. This aflects the
number of Still segments, where the Peano SFC has the least number of Still segments. As it appears [rom
its definition, the Sweep SFC has very low Reverse segments, while the Peano SFC has the highest number

of Reverse segments. For the Forward segments, both the Sweep and Peano SFCs have the highest ratio.
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Figure 9: Scalability of space-filling curve w.r.t dimensionality.

The Gray and Hilbert SFFCs have similar behavior {or all scgment types except for low-dimensionality
in the Jump and Coniiguily scgments. Notice that all segment types except Still are decreasing as the
nuimnber of dimensions increases. The rcason for this comes from the Still segment definition. A St
segment indicates that the value in ome of its dimensions does not change. With a larger number of
dimensions, it is difficult to find a scgment that connects two consecutive multi-dimensional points that

arc different in all dimensions. Thus, almost cach scgment is counted as Stz for one or more dimensions.

The sccond set of experiments (Figure 10) tests the four-dimensional space with grid size up to 256.
All space-filling curves cxcept the Sweep SFC almost have constant percentage regardless of the grid size.
This can be noted from the description vector V', where getting the limy_, oo V gives a constant valuc that
docs not depend on N. An interesting result is that the Scan and Hilbert SFCs have the same performance
for all scgment types. The Gray SFC sharc the same performance with the Hilbert and Scan SFCs for
the Reverse, Forward, and Still segments. However, the Gray SFC has morc Jumps and lower Contiguity
than the Hilbert SIC. The Peano SFC has the highest ratio, with a large margin, of both Conliguify and
Reverse segments. This is balanced by the very low ratio of Still scginents in the Peano SFC. The Sweep
SFC is the only space-filling curve that is affected by the change of grid size. However, it tends to be
stable after grid size 64.
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Figure 10: Scalability of space-filling curves w.r.t grid size.

5.2 Fairness of Space-filling Curves

In this section, we test the fairness! of space-filling curves. For each segment type T, we use the standard
deviation of the number of T' scgments over all dimensions as an indication for fairness. The lower the
standard deviation the more fair the space-filling curve is. For the experiments of this scction, we use
Lemmas 2, 4, 6, 8, and 10 to compute the number of segments for each segment type over each individual

dimension rather than the total that is used in the description vector.

Figure 11 gives the standard deviation for all segment types for up to the 12-dimensional space with
grid size 16. It is clear that for all segment types, the Hilbert SFC is the most fair space-filling curve
with very low standard deviation. In general, recursive space-filling curves tend to be more fair than
non-recursive space-filling curves. This comes from the fact that the recursive space-filling curves divide
the space into equal fragments. Each fragment is dealt with in the same way. An exception is the Reverse
scgments in the Sweep SFC, where it has very low standard deviation. This comes from the very low
number of Reverse segments in all dimensions of the Sweep SFC. Among the recursive space-filling curve,
the Peano SFC gives the worst performance. The interesting result is that both the Peano and Gray SFCs

tend to be more fair as the dimensionality incrcascs while the Hilbert SFC behaves the opposite. This

We say that a space-filling curve is fair if it has similar behavior towards all ditnensions in the multi-dimensional space.
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Figure 11: Fairncss of space-filling curves.

indicates that for very high dimensionality, the Hilbert SFC may not be the most fair space-filling curve.

5.3 Intentional Bias of Space-filling Curves

A very critical point for SFC-based applications is how to assign the different paramecters to the space
dimensions. In this section, we explore the intentional bias? of each space-filling curve by plotting its
behavior for each dimenston individually. Figures 12 and 13 give the intentional bias for distance (Jump,
Contiguity, Still) and direction segments {Reverse, Forward, Still), respectively. The experiment is per-
forined for the four-dimensional space with grid size 16. Each dimension is plotted individually as a stacked
bar that contains the percentage of distance or direction scgments. The fifth column is the percentage of
the total number of segments over all dimensions from each type. Note that the height of each bar is 100
{vefer to Lemma 1}.

From Figure 12, the percentage of Jumps in the Peano, Gray, and Sweep SFCs is ncgligible. The
Hilbert SFC is not biased to any dimension. This agrees with the result in the previous section, where

the Hilbert SFC has a very low standard deviation. With respect to Contiguity, the Peano SFC is biased

*We say that an SFC is intentionally biasced towards a certain dimension k with respect to segment type T if the SFC has
more T segments in dimension & with respect to all other dimensions
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Figurc 12: Intentional bias of space-filling curves w.r.t distance segments.

towards the last dimension where almost all the segments are Contiguity segments with no Still segments.
With the increase of the dimension number k&, the number of the Contiguity segments is increasing rapidly,
and the number of Still segments is decreasing. The Gray SFC has similar behavior as in the Peano SFC,
however, the increase/decrease in Contiguity/ Still segments is slower. On the other hand, the Sweep and
Scan SFCs have very high Conliguily scgments in the first dimension followed by a very low Contiguily

segments in the second dimension. There is almaost no Contiguity in the other dimensions.

Figure 13 gives the results of the same experiment for direction segments. The same analysis is applied,
where the Hilbert SFC is cxtremely fair, while the Peano SFC is biased towards the last dimension. The
only difference here, is that the bias of the Peano and Gray SFCs is with respect to both the Reverse and
Forwerd segments instead of only the Jump segments in Figure 12. Note that in the three recursive SFCs,
the percentages of the Reverse and Forward segments are almost equal for all dimensions. On the other
hand, the non-recursive SFCs almost have only Still segments after the second dimension. This is the main
reason why non-recursive SFCs have very high standard deviation in Figure 11. The Sweep SIFC has very
low number of Reverse segments in the first dimension. On the other hand, the number of Forward and

Reverse segments are equal in the Scan SFC.
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Figure 13: Intentional bias ol space-filling curves w.r.t direction segments.

6 Conclusions

Space-filling curves are used as a mapping scheme from the multi-dimensional space into the one-dimensional
space. The behavior of different space-filling curves in the D-dimensional space is analyzed. A description
vector V' is proposed to give a bricf description for each space-filling curve. Closed formulas that depend
on the space dimensionality and grid size are derived to compute V. The idea is to divide the space-flling
curve into a sct of connected segments. Each segment connects two consccutive multi-dimensional points.
Five segment types are distinguished, namely, Jump, Coniiguity, Reverse, Forward, and Still. The de-
scription vector V' contains the percentage of occurrence of cach scgment type. Several experiments are

conducted to show the scalability and fairness of space-filling curves with respect to segment types.
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A Appendix

A1 Proof of Lemma 1

Proof: A D-dimensional space-filling curve with grid size N has N2 points connected by N2 —1 segments.
According to the definition of segments in Scction 3 and Figure 3, any segment has a distance and a
direction. Based on the distance, any scgment is classified as either a Jump, Contiguity or Still segment.
Therefore,

Jump(k, N, D} + Contiguily(k, N, D) + Still{k, N,D) = N” -1

Bascd on the direction, any segment is classified as either a Beverse, Forward or Still scgment. There-
fore,

Reverse(k, N, D) + Forward(k, N, D) + Still{k, N, D) = N” -1

By summing over all dimensions,

b-1 D-1
Jump(k, N, D) + Contiguity(k, N, D) + Still(k,N,D) = (ND —1),and
k=0 £=0
D~1 D-1
Reverse(k, N, D) + Forwerd(k, N, D) + Still(k, N,D) = > (N” -1)
k=0 k=0
Therefore,

Jr+Cp+ Sp=DWNP - 1)

Ry + Fr+8p=D(NP -1)

A.2 Proof of Lemma 2

Proof: We start by the first dimension:

Jump(0,N,D) = NP-1 -1
Contiguity(0, N,D) = NP~YN - 1)

From the definition of the Sweep SFC, we have the recurrence relations:

Jump(k, N, D) = Jump(k — 1,N, D - 1)
Contiguity(k, N, D) = Contiguily(k - 1,N,D - 1)
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Solving these recurrence relations, therefore:

Jump(k, N, D}y = NP~+1 1
Contiguity(k,N,D) = NP~*- (N - 1)

From Lemma 1, we have: Still(k, N,D) = N? — NP=*_ From the definition of the Sweep SFC, cvery
Jump segment is counted as a Reverse segment, and cvery Contiguity segment is counted as a Forward

segment. Therefore,

Reverse(k,N,D) = NP~*1_1, and
Porward(k, N, D) = NP=%"1(n — 1).

A.3 Proof of Lemma 3

Proof: For any segment type X in Lemma 2, Xy is computed from the equation: X = Ef____ul X. O

A4 Proof of Lemma 4

Proof: The Scan SFC has no Jump segments in all its dimensions, i.e., Jump(k, N, D) = 0. The main
distinction between the Sweep and Scan SFCs is the direction of the odd-numbered Cycles. However,
the length of the segments inside cach Cycle is the same. Thus, the number of Coniiguily scgments is
the same in both the Sweep and Scan SFCs. Thercfore, Contiguity(k, N, D) = NP?~*-1(N — 1). From
Lemma 1, we have Still(k, N, D} = NP=k=1 (N*+1 _ N 4 1) — 1. The Reverse scgments in the Scan SFC
appears only in the odd-numbered Cycles. For all dimensions, the number of odd Cycles is the same
as the number of the even Cycles. Thus, the number of Reverse scgments is the same as the number
of the Forward segments. Using Lemma 1, we have 2Reverse(k, N, D) = Contiguity(k, N, D). Thus,
Reverse(k, N, D) = Forward{k, N,D) = NP~F=1(N —1). An cxception is the last dimension k= D —1.
The last dimension has only one Cycle. Thus, there are no Reverse segments in the last dimension, i.e.,
Reverse(D — 1, N, D) = 0. This means that the number of Forward segments in the last dimension equals
the number of Contiguity segments. Therefore, Forwaerd(D — 1,N,D) = N — 1.

a

A.5 Proof of Lemma 5

Proof: For any segment type X in Lemma 4, X is computed [rom the equation: Xp = Zf;nl X. O
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A.6 Proof of Lemma 6

Proof: We start by the following base equations:

Jump(0,4,D) =0
Contiguity(0,4, D) = 2P+ —1
Reverse(0,4,D) =20 -2

Then, we can construct the following recursive equations for the first dimension (& = 0):

Jump(0, N, D) = 27 Jump(0, % Dy+27 -2

Contiguity(0, N, D) = 2P Contiguity(0, —j;—, Dy+1
N

:_51D)+2D“2

Reverse(0, N, D) = 2P Reverse(0

By solving these recurrence relations for the first dimension,

D _ 02D\ {oD _
Jump(0, N, D) = (v 2 ) (2 2)

220 (20 — 1)
o ND Dl ND _ 22”
Contiguity(0, N, D) = 22D (2 - 1) + 220 (2D _7)
(2P —2) (NP —2P)
Reverse(0,N,D) = 2D (20 — 1)
For the other dimensions, we have the following recurrence relations:
N
Jump(k, N, D) = 2Jump(k —- 1, '_2"1D) +1
N
Contiguity(k, N, D) = 2Contiguity(k — 1, o D)

N
Reverse(k, N, D) = 2Reverse(k — 1, E,D] +1

By solving the recurrences,

(P —22) (2° - )

Jump(k,N, D) = +2%_1

220k (2D — 1)
Contiguity(k, N, D) = m”n (2% 1)+ 22D-k 2D ]
2k (vh-2Py 2P -2)
Reverse(k, N, D) = 2D (2D~ 1) +27 -1
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Using Lemma, 1, therelore,

Still(k, N, D) = NP (1 - 2k—D+1)

2k (ND + 20 — 2)
27 -1

Forward(k,N,D) =

A.7 Proof of Lemma 7

Proof: For any segment type X in Lemma 6, X7 is computed from the equation: Xp = Ef:_ul X.

A.8 Proof of Lemima 8

Proof: We start by the following base equations:

Jump(0,4,D) =1
Contiguity(0,4, D) = 27

Then, we can construct the following recursive equations for the first dimension (& = 0):
D N
Jump(0, N, D) = 2% Jump(0, -5 Dy+1
N
Contiguity(0, N, D) = 2P Conliguity(0, - D)

By solving these recurrence relations for the first dimension,

ND—Q‘D

Jump({], N, D) = m

N D
Contiguity(0, N, D) = (—2—-)

For the other dimensions, we have the following recurrence relations:

Jump(k, N, D) = 2Jump(k — 1,N, D)
Contiguity(k, N, D) = 2Contiguity(k — 1, N, D)

By solving the recurrences,

- ~ (NP - 2P)
Jump(k, N, D) = DR
ND
Contiguity(k, N, D) = SD—F
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Using Lemma 1, therefore
(NP - 1) (2P — 2% — 1)

Still(k, N, D) = P 1

One of the properties of the Gray SFC is that it has the same number of Reverse and Forward scgments
for all dimensions, except for the first dimension, where the number of the Forwaerd segments is larger by
1. Therefore,

Forward(0,N, D) = Reverse(0,N.D) + 1
Forward(k, N, D} = Reverse(k,N,D), k>0

From Lemma 1, we have:

Jump(0, N, D) + Contiguity(0, N, D) — 1

Reverse(0, N, D) =

Reverse(k, N, D) = Jump(k, N, D) + (;oitiguity(k, N, D)’ £ 0
Solving these equations results in:
Reverse(t, N, D) = 21\5—)0__—2;
Reverse(k,N, D) = w k>0
Forward(0,N,D) = % +1
Forward(k, N,D) = -%;_l—z(bN—j)-l—_—{l k>0

A.9 Proof of Lemma 9

Proof: For any scgment type X in Lemima 8, X is cornputed from the equation: Xp = EE:_OI X. O

A.10 Proof of Lemma 10

Proof: As in the Scan SFC, there is no Jump segments in the Hilbert SFC, i.e., Jump(k,N,D) = 0.
The Hilbert SFC of grid size N consists of 2¥ blocks of the Hilbert SFC of grid size N/2 rotated along
the different dimensions. Only two of these blocks are not rotated. Generally, for any dimension (k + 1)
mod D, there are 2! blocks rotated along the ith dimension. The 2¥ segments that connect different blocks

contain 28 Contiguity segments. Therefore, we have the recurrence relation:
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n-1
; N N :
Contiguity(k,N,D) = Z 2'Contiguity((k +1) mod D, 5 D) + 2Contiguily(k, oX D)+ 2F

i=1

Contiguity(k,1,D) =10

From Lemma 1, Still(k, N, D) = NP — 1 — Contiguity(k, N, D). As in the Scan SFC, the total number
of Reverse and Forward segments equals the number of Contiguily scgments. For all dimensions k > 0, the
number of Keverse segments equals the number of Forward segments. The reason is that half the rotations
of the basic figure of the Hilbert SFC are clockwise and the other half are anticlockwise. Thus, the ratio
of the Reverse and Forward segments is preserved. For example, in Figurc 8a, the sccond dimension (the
vertical one) has one Reverse and one Forwerd segment. Figure 8b consists of four blocks of Figurc 8a.
Two of these blocks (the two upper blocks) are not rotated, which results in two Forward and two Rewverse
segments. The third block (the lower left block) is rotated clockwise, which results in one Forward segment.
The fourth (the lower right block) is rotated anticlockwise results in onc Reverse segment. Thus, the ratio
of the Forwerd and Reverse segments is preserved with the increase of the grid size. An exception of this
is the first dimension % = 0, where the number of Forward segments is more than the number of Rewverse

scgments by iV — 1. Therefore,

Reverse(0,N, D) = (Contiguity(0, N, D) — N +1)/2
Reverse(k, N, D) = Contiguity(k, N,D)/2 k>0
Forward(k,N,D) = N? — 1 — Reverse(k, N, D) — Still(k, N, D)

A.11 Proof of Lemma 11

Proof: For any segment type X in Lemma 10, X7 is computed [rom the equation: Xp = E,‘?:“Ol X. O
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