
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2002

Performance of Multi-Dimensional Space- Filling Curves Performance of Multi-Dimensional Space- Filling Curves

Mohamed F. Mokbel

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ibrahim Kamel

Report Number:
02-028

Mokbel, Mohamed F.; Aref, Walid G.; and Kamel, Ibrahim, "Performance of Multi-Dimensional Space- Filling
Curves" (2002). Department of Computer Science Technical Reports. Paper 1546.
https://docs.lib.purdue.edu/cstech/1546

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972245?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PERFORMANCE OF MULTI-DIMENSIONAL
SPACE-FILLING CURVES

Mohamed F. Mokbel
Walid G. Aref

Ibrahim Kamel

CSD TR #02-028
December 2002

Performance of Multi-Dimensional Space-filling Curves

Mohamed F. Mokbel! \iValid G. Arefl Ibrahim Kamel2

IDcpartmcnt of Computer Sdenl:es, Purdue University, \Vest Lafayette, IN 47907-1398

2Pauasonic Information and Networking Technologies Laboratory. Two Research 'Vay Princetoll, NJ 085110

{rnoklJel,aref}@cs.purdue.cdu, ibrahim@rcscarch.panasonk.colll

Abstract

A space-filling CurV(l is a way of mapping the multi-dimensional space into the one-dimensional space.

It acts like a thread that passes through every cdl clement (or pixel) in the V-dimensional Space so

that every C:(lll is visited exactly once. There are numerous kinds of space-filling curves. The difference

between such curves is in their way of mapping to the one-dimensional space. Selecting the appropriate

curve for any application requires knowledge of the mapping schcme provided by each space-filling

curve. A space-filling curve consists of a set of segments. Each segment connects two consecutive

multi-ilimensional points. Five different t.ypes of segments are distinguished, namely, .Jump, Contiguity,

Reverse, Forward, and Still. A dcscription vector V = (.J,C,R,F,S), where.J, 0, R, P, and 5, arc

the percentages of .Jump, Contiguity, Rcvcrse, FOlllJUf"d, and Still segments in the space-filling curve,

encapsulates all the properties of a space-filling curve. The knowledgc of \I facilitates the process of

selecting the appropriate space-filling curve for different applications. Closed formulas are developed to

compute the description vector \I for any D-dimensional space and grid size N for different space-filling

curves. A comparative study of cliIferent space-filling curV(!S with respect to the description vcctor is

conclucted and rcsults are presented and diSCllssed.

1 Introduction

Mapping the multi-dimensional space inLo the one-dimensional domain plays an important role in ap­

plications that involve multi-dimensional data. Multimedia databa<;es, Geographic Information Systems

(GIS), QoS routing and Image processing are examples of multi-dimensional applications. Modules that

are commonly used in multi-dimensional applications include searching, sorting, scheduling, spatial ac­

cess methods, indexing and clustering. Numerous research has been conducted for developing efficient

algorithms and data structures for these modules for one-dimensional data. In most cases, modifying the

existing one-dimensional algorithms and data structures to deal with multi-dimensional data results in

spaghetti-like programs to handle many special cases. The cost of maintaining and developing such code

degrades the system performance.

1

(a) Sweep

.,

(b) Scan (c) Peano (d) Gray (e) Hilbert

Figure 1: Two-dimensional Space-Filling Curves.

Mapping from the multi-dimensional space into the one-dimensional domain provides a pre-processing

step for multi-dimensional applications. The pre-processing step takes the multi-dimensional data as

inpnt and outputs the same set of data represented in the one-dimensional domain. The idea is to keep

the existing algorithms and data structures independent of the dimensionality of data. The objective of

the mapping is to represent a point from the D-dimensional space by a single integer value that reflects

the various dimensions of the original space. Such a mapping is called a locality-preserving mapping in

the sense that, if two points arc ncar to each other in the D-dimensional space, then they will be near to

each other in the one-dimensional space.

Space-filling Curves (SFCs) have been extensively used as a mapping scheme from the multi-dimensional

space into the one-dimensional space. A space-filling curve is a thread that goes through all the points

in the space while visiting each point only one time. Thus, a space-filling curve imposes a linear order of

points in the mult.i-dimensional space. Space-filling curves are discovered by Peano [36) where he introduces

a mapping from the unit interval to the unit square. Hilbert [20J generalizes the idea to a mapping of the

whole space. Following Peano and Hilbert curves, many space-filling curves are proposed, e.g., [6, 30, 39].

Figures 1 and 2 give examples of two- and three-dimensional space-filling curves with grid size (i.e., number

of points per dimension) eight and four, respectively. According to the classification in [6], space-filling

curves are classified into two categories: recursive space-filling curves (RSFC) and non-recursive space­

filling curves. An RSFC is an SFC that can be recursively divided into four square RSFCs of equal size.

Examples of RSFCs are the Peano SFC, (Figure Ic), the Gray SFC, (Figure Id) and the Hilbert SFC,

(Figure Ie). For a historical survey and more types of space-filling curves, the reader is re[erred to [37J.

With the variety of space-filling curves and the wide spread o[multi-dimensional applications, the

selection of the appropriate space-filling curve for a certain application is not a trivial ta."k. One way is

to perform many simulation experiments over different space-filling curves. However, this is not practical

in terms of execution time. Another way is to tailor a new space-filling curve for each application, e.g.,

as in [6, 7, 32]. However, with the increase of multi-dimensional applications, it becomes a hard task to

tailor a new space-filling cmve [or each application.

2

(a) Sweep (b) Scan

'$~.: ~:,:
, ' .

./. '~..........

(I:) Peano

(el) Gray (el Hilbert

Figure 2: Three-dimensional Space-Filling Curves.

The objective of this paper is to provide a systematic and a scalable framework for selecting the appro­

priate space-filling curve for any applicat.ion. To achieve this objective, we divide any space-filling curve

into segments. Each segment connects two COllHecntive llluiti-dimensional points. Thus, aD-dimensional

space-filling curve with grid size N would have ND_l segments that connect N D points. We distinguish

among five different segment types .lump, Contiguity, Reverse., F01'1IJard, and Still. A space-filling curve

SFC is described by its description vector V = (.1, C, R,F, S), where J, C, R, F, and S, are the percentages

of Jump, Contiguity, ReveTse, Fonua1'd, and Still segments, respectively. Then, with only looking at the

description vector V, one can choose the right space-filling curve for a given application.

The rest of this paper is organized as follows. Section 2 surveys some of the related work on space-filling

curves. Different types of segments in space-filling curves are presented in Section 3. Section 4 analyzes

two non-recursive ~pace-filling curves, the Sweep and Scan SFC, and three recursive space-filing curves,

the Peano, Gray and Hilbcrt SFC, and develops clo~ed formulas to compute the description vector of ea.ch

space-filling curve. In Section 5, we conduct a comprchensive comparison among different space-filling

curves. Finally, Section 6 concludes the paper.

3

2 Related Work

Although space-filling curves were discovered in the last century [20, 30, 36], their use in computer science

applications is not discovered until recently. The use of space-filling curves is motivated by the emergence

of multi·dimensional applications. Space-filling curves are used by [33] for spatial join of multi-dimensional

data. Multi-dimensional data is transformed into the ollc-dimensional domain using the Z-ordcr [34], which

is the same as the Peana SFC [36]. The transformed data is stored in a one-dimensional data structure,

the B+-T'ree [11J, and a spatial join algorithm is applied. The Gray [18] and Hilbert [20] SFCs are used for

answering range queries in [12, 21], respectively. [14, 15] nse space-filling curves a..'i a spatial access method

where the multi-dimensional data is stored in one-dimensional media (disk) using the Hilbert SFC. This

achieves clustering and hence reduces the number of disk accesses and improves the response time. In [22],

the Hilbert SFC is used in packing the R-Tree [19], where a set of rectangles are sorted according to the

Hilbert order, and then are packed into the R-Tree nodes. Similar ideas for constructing R-trees using

space-filling curves are proposed in [23J. The Z-order [34J (Peano SFC [36]) is used in [9J as a spatial access

method to enhance the performance of spatial join. Spatial objects located in a disk are ordered according

to their Z-order value to minimize the number of times a given page is retrieved from the disk. Similar

use of space-filling curves is performed in [38] based on the Hilbert SFC. The Hilbert gFC is also used in

multi-dimensional indexing in [24, 25J and for answering nearest-neighbor queries in [26J.

Other uses of space-filling curve include data-parallel applications [35], disk scheduling [4], memory

management [27, 40), and image processing [42, 44 , 4(jJ. Some applications need a tailored space-filling

curve. In [6], a new recursive space-filling curve is proposed that guarantees an upper bound of three

seek operations to any two-dimensional square query. In [32J, an H-index ordering is proposed for mesh­

indexing. XZ-ordering is proposed by [7J to map objects with spatial extension. The XZ-order is an

extension of the Z-order by extending each region in Z-order by a factor of two in each dimension.

The properties of different space-filling curves is explored in [3, 5, 28, 29J. In [3J, the notion of Hilbert

indexing is generalized to arbitrary dimensions. The Hilbert gFC is structurally analyzed, which helps

in understanding how the Hilbert SFC is built in the multi-dimensional space. (5) studies the properties

of several space filling curves in the two- and three-dimensional spaces, and introduces new measures

to describe the behavior of any space-filling curve. The notion of irregularity is presented in [28J as a

quantitative measure of how irregular a space-filling curve is. In [29J, the clustering properties of the

Hilbert SFC is analyzed by deriving closed formulas for the number of clusters in a given query region.

Numerous algorithms are developed for efficiently generating different space-filling curves. Recursive

algoriUulls for generating the Hilbert gFC are proposed in [8, 10, 17, 45] and for the Peano SFC in [10, 45J.

A table-driven algorithm for the Peano and Hilbert SFCs is proposed in [17J. An algorithm for computing

the order of any point in the Hilbert, Peano, and Gray SFCs is proposed in [15J. For a comparison of

4

P,
P;.Uk

Jump(k, N, D)
Corltiyl.ity(k, N, D)

Reverse(k, N, 0)
Forward(k, N, lJ)

Still(k,N,D
h(N,D)
C'I'(N,D)
RT{N, IJ)
FT(N,D)
ST(N,D)

VT

The ith point in a space-filling curve
The kth dimension in the ith point in a space-filling curve
The number of JUI1l1! segments in dirnClISioTl k in a D-dimensional space with grid size N
The number of Contiguity segments in dimension k ill ;'\ f)-dimensional space with grid size N
The number of RelJcrse segments in dimension k in a V-dimensional space with grid si:r.c N
The nUmblJf of Forward segments in dimension k in a V-dimensional space Wilh grid 5i>:!'! N
The number of Still scgrncmls iu dimcJlsion k in a V-dimensional space with grid size N
The total number of Jump se~ments in all dimensions in a D-dimcnsionaJ space with grid size N
The lotal number of Contiguity segments in all dimtHlsions in a D-dimensional space with grid size N
The total number of Reuerse segments in all dimensions III a LJ-dimellsional space wilh grid size N
The total number of Forward segments ill all dimensions in a D-dimensional space with grid siz(! N
The tolal number of Still segments ill all dimensiolls in a IJ-dimellsional space with grid size N
The total description vector l"r (J'r,CT,RT,FT,ST)

Table 1: Symbols used in the paper.

different space-filling curves, a reader is rerened to [1, 5, 13, 37J.

3 Segment Types in Space-filling Curves

A D-dimensional space-filling curve with grid size N has N D _l segments that connect N D points. Each

segment is classified as one or more of five segment types: Jump, Contiguity, Reverse, Forward, and Still. In

this section, we give a precise definition or each segment typc along with an iterative equation to compute

the number of segments from each type for each dimension in the multi-dimensional space. For the rest

of the paper, we usc the notations and definitions given in Table 1.

3.1 Jump

Definition 1 A Jump in an SFC is said to happen when the distance, along any of the dimensions,

between two consecutive points in the SFC is greater than one.

Formally, for any two consecutive multi-dimensional points Pi and PHI in an SFC, a Jump occurs

III dimension k iff abs(Pi.uk - Pi+\.Uk) > 1. The total number of Jump scgments in a dimension k

in a D-dimensional space with grid size N is: Jump(k,N,D) = L~~-I fJ(i,k) where h(i,k) = 1 iff

abs(~.uk - Pi+\.Uk) > 1 and 0 othcrwise. The total number of Jump segments in an SFC is: .Jr(N, D) =

L~';Ol Jump(k, N, D).

A Jump in a space-filling curve reflects the locality of the consecutive points in the order implied by the

space-filling curve. For cxample, consider the Sweep SFC (Figure 1a). By the end of each horizontal sweep,

the Sweep SFC jumps back to the beginning of the horizontal axis. Thus, the last point in a horizontal

swcep and the first point in the next horiwntal sweep will be neighbors in the one-dimcnsional domain

while they are not neighbors in the multi-dimensional space. In contrast, consider the C-Scan and I-Iilbert

SFCs, where they do not have any Jump segments. So, any two neighbors in the one-dimensional ordering

5

are guaranteed to be neighbors in the multi-dimensional space. Generally, the lack of Jump segments

indicates more ability for clustering. However, Jump mayor may not be a favorable property based on

the application type. For example, in a disk-head scheduling [4], Jumps are considered bad, as they result

in a longer seek time without retrieving any data. On the other side, in multi-priority scheduling, Jumps

are considered good, as the ability of fast moving among different priority types is requircd.

3.2 Contiguity

Definition 2 A Contiguity in an SFC is said to happen when the di.<;tance, along any of the dimension.,>,

between two consecutive points in the SFC is equal to one.

Formally, for any two consecutive multi-dimensional points Pi and Pi+! in an SFC, a Contiguity occurs

in dimension k iff abs(Pi,Uk - P i+1,Uk) = 1. The total number of Contiguity segments in a dimension k

in a D-dimensional space with grid sizc N is: Cuntiyuity(k,N,D) = I:t:,~-I fc(i,k) where fc(i,k) = 1

iff abs(Pj,Uk - PH1.Uk) = 1 and 0 otherwise. The total number of Contiguity segments in an SFC is:

CT(N, D) = I:f':Ol Contiguity(k, N, D).

Contiguity reflects the ability of a space-filling curve to go continuously along any of the dimensions.

For examplc, consider the Scan SFC (Figure 1b) where it always go continuously in one of the dimensions.

It starts by seven continuous horizontal segments followed by one continuous segment vertically, then

another set of continuous hori7.ontal segments. A high ratio of Contiguity indicates a lower ratio in Jump.

As in Jumps, Contiguity mayor may not be favorable, depending on the underlying application.

3.3 Reverse

Definition 3 A segment in an SFC is tamed a Reverse segment if the p1'Ojection of its two consecutive

points, along any of the dimensions, results in scanning the dimension in dec1Y~asing of·der.

Formally, for any two consecutive multi·dimensional points Pi and Pi+l in an SFC, a Reve1'se segmcnt

occurs in dimcnsion k iff Pi+1,Uk < Pi.Uk. The total number of Reverse segments in a dimension k in

a D-dimensional space with grid size N is: Reve1'se(k,N,D) = Ei;:'/~-l fJl(i,k) where fJl(i,k) = 1 iff

Pi+l,Uk < Pi.Uk and 0 otherwise. The total number of Reverse segments in an SFC is: RT(N, D) =

Ef';Ol Reverse(k, N, D).

A Reverse segment is also classified a."i either a Jump or a Contiguity one. For example, in the Sweep

SFC, moving from thc first horizontal sweep to the second one is done by a reverse and jump segment. On

the other side, moving from the first horizontal sweep to the second one in the Scan SFC is done by seven

reverse and continuous segments. Whether reverse segments are favorable or not relates to the semantic of

the sorted parameter. For example, consider real-time applications. When applying a space-filling curve

6

to a deadline parameter, the sorting from the largest to the smallest, i.e" in reverse order, means that we

visit the points with larger deadline before the points with smaller deadline, In this case, reverse ordering

is considered unfavorable. As another example, consider the case of disk-head scheduling [4J. Based on

the disk-head movement, alternating between forward and reverse orderings is favorable. In summary, it

is important to point out and quantify whether or not a space-filling curve exhibits reverse ordering in its

dimensions.

3.4 Forward

Definition 4 A segment in an SFC is termed a Forward segment if the projection of its two consecutive

points, along any of the dimensions, results in scanning the dimension in increasing o1'del·,

Formally, for any two consecutive multi-dimensional points P; and P i+I in an SFC, a Forward segment

occurs in dimension k iff P;+1,Uk > Pi.Uk. The total number of Forward segments in a dimension k in

a D-dimensional space with grid size N is: Forwurd(k,N,D) = :L~~~-l fdi,k) where fdi,k) = 1 iff

P HI .Uk > Pi.Uk and 0 otherwIse. The total number of Forward segments in an SFC is: Fr(N,D) =

~~';O' Furwa"d(k, N, D).

As in Reverse segment, a Fonuard segment is also classified a"i either a Jump or a Contiguity segment.

For example, the first horiwntal sweep in the Sweep SFC have seven forward and continuous segments. On

the other side, in the Peano SFC (Figure lc), the segment that connects the second and the third quadrants

is considered <l.'; a forward and jump segment. in the horiwntal dimension. However, it is considered as a

reverse and continuous segment in t.he vettical dimension. A higher ratio of Revenu~ segments indicates a

lower ratio of Forward segments.

3.5 Still

Definition 5 A segment in an SFC is te17ned a Still segment when the distance, along any of the dimen­

sions, between the segment's two consecutive point,<; in the SPC is equal to zero,

Formally, for any two consecutive multi-dimensional points Pi and H+1 in an SFC, a Still segment

occurs in dimension k iff PHI,Uk = Pi.Uk. The total number of Still segments in a dimensIon k in a

D-dimensional space with grid si:o:e N is: Still(k, N, D) = :L~~-l fs(i, k) where fs(i, k) = 1 iff Pi+l·Uk =

Pi.Uk and a otherwise. The total number of Still segments in an SFC is: ST(N, D) = :Lf';ol Still(k, N, D).

A segment is considered as' a Still segment if it does not match any of the other types, Still segments is

the closure of other types, For example, a segment that is neithcr a Jump nor a Contiguity is considered as

a Still. Also, a scgment that is ncither a Reve7'se nol' a FOl'wa1'd segment is considered as a Still segment.

In general, the nnmber of Still segments in a dimension k indicates the percent that this dimension

7

Segment types in [he horizontal dimension Segmenr lypes in the vertical dimension

• Point D Jump WI Contiguity ~ Reverse EJ Forward lim Still

Figurc 3: The relation between segment types.

is neglected to visit other dimcnsions. For example, consider the Sweep SFC, cach horizontal swccp has

seven segmcnts that are continuous and forward in thc horizontal dimension. However, they are considered

&'i Still segments in thc vertical dimension. This high ratio of Still scgments in the vertical dimension in

indicates that the Sweep SFC neglects advancing in the vcr tical dimension in favor of advancing in the

hori7.ontal dimension. Unlike other segment types, a Still segment cannot bc classificd as another segment

type.

3.6 Relation between segment types

The five segment types can bc divided into two categories. The first category, termed the distance catego1'Y,

is concerned with the segment length. Tills includes Jump, Contiguity, and Still segments where the

segment length in greater than, cqual, or less than one, respectively. The second category, termed the

direction category is concerned with the dircction of thc segment. This includes Reverse, Forward, and

Still segments. Notice that the Still segments belong to the two categorics whcrc it scrvcs as thc closurc of

cach property. Figme 3 illustrates the difference between the distance category segments and the direction

category segments for both the horizontal and vertical dimensions in the two-dimensional space. The

relationships among the segment types are summari7.ed in the following Lcmma.

Lemma 1 For any dimension k in a D-dimcnsional space with grid size N, the following equalities always

hold_

Jump(k, N, D) + Cantiguity(k, N, D) + Still(k, N, D) = N D ~ 1

Rev,,-se(k, N, D) + Fm-waTd(k, N, D) + Still(k, N, D) ~ N D - 1

Jr +CT+ST = D(ND
- 1)

RT+F'l'+ ST ~ D(ND -1)

Proof: The proof is given in Appendix A.I.

8

o

From Lemma 1, we deduce the following Corollary:

Corollary 1 To compute the desc7-iption vector V, it is enough to compute only three segment types with

at least one from each catego1'!}. The othe7' two segment types can be computed from Lemma 1.

4 Case Studies

The time complexity for calculating the number of segments of any type in a D-dimensional space with

grid size N° is O(ND). Consider the case of 20 dimensions with grid size 16, we need 1620 operations to

compute the number of .Jumps of a space-filling curve. To avoid this excessive operation, we derive closed

formulas that compute the number of segments of each type for any dimension k in aD-dimensional

space with grid si7.e N. In this paper, we concentrate on two nOlH'ecursive space-filling curves: the Sweep

and Scan SFCsj and three recursive space-filling curves: the Peano, Gray, and Hilbert SFCs. For each

space-filling curve, we derive two formulas; the first formula gives the number of segment types in each

dimension k, and the second formula gives the total description vector VT that represents the total number

of each segment for all dimcnsions. Givcn that the total number of segments in the D-dimensional space

is D(ND - 1), therefore, the percentages of each segment type are computed in the description vector

V = Vr/D(N D -1).

4.1 Case Study I: The Sweep SFC

Figures la and 2a give the Sweep SFC in the two· and thl'ce·dimensional spaccs wit.h grid sizcs cight and

four, respectively. The simplicity of the Sweep SFC is the main reason to its wide spread. Applications of

the Sweep SFC include storing multi-dimensional arrays in mcmory and disk scheduling. AD-dimensional

Sweep SFC with grid size N is represented by a D digits number in the base N system. The rightmost

digit represents the last dimension (k = D - 1), while the leftmost digit represents the first dimension

(k = 0). This means that in order to increase the value of dimension k from v to v + 1, the Sweep SFC

goes through all the points 0 to N-l in dimension k -1. We call this event a Cycle of the Sweep SFC. For

example, in Figure la, in order to advance one value in the vertical dimension, the Sweep SFC should go

through a Cycle from 0 to 7 in the horizontal dimension. The first dimension in the Sweep SFC has N D - 1

cycles, each with N points. Generally, the kth dimcnsion has N D - k- l cycles, each with Nk+l points.

Notice that the last dimension has only one cycle that includes all space points (N D). Table 2 gives an

example of computing the Sweep order for the two- and three-dimensional points with a grid size of eight

points in each dimension.

Lemma 2 In a D-dimensional space with grid size N, the number of .Jumpl Contiguity, Reverse, Forward,

9

Point Octal Convertion Sweep Point Onal Cpnversion Sweep
NUlTlll(~r Process Order Number Process Order

(2,1) 21 8 2X8+1 17 (0,1,3) (013)8 Ox61+1 x8+3 11
(5,3) (53)8 5x8+3 17 (2,1,4) 214)8 2xli4+1x8+4 140
(7,0) (70)s 7x8+0 56 (7,0,7) (70T)s 7x61+0x8+7 455

Table 2: An Example of two- and three-dimensional Sweep SFC with grid sir.e 8 in each dimension.

and Still se.qments in any dimension k for the Sweep SFC is:

Jump(k,N,D) = Reve7'se(k,N,D) = N D - k - 1 _l

Contiguity(k, N, D) ~ FUTWUTd(k, N, D) ~ ND-k-1(N - 1)

Stitl(k, N,D) ~ N D _ N D- k

Proof: The proof is given in Appendix A.2. o

Lemma 3 The total desc1iption vector Vr for the D-dimensional Sweep SFC with g1-id size N is VT =

(Jr , Cr,RT,FT , ST) where:

N D -1
h=IVl'= N 1- D

CT =FT =ND ~ 1

D N (ND - 1)
ST ~DN - N -1

The desc1-iption ved07' V = VT/D(ND - 1).

Proof: The proof is given in Appendix A.3.

4.2 Case Study II: The Scan SFC

o

The Scan SFC (Figures Ib and 2b) is a slight modification of the original Sweep SFC. The main motivation

is to avoid the Jump segments in the Sweep SFC. Thus instead of having one Jump and Reverse segment

betwccn each Sweep Cycle, the Scan SFC replaces this segment by a sequence of N - 1 Contiguity and

Reverse segments. The Scan SFC havc the same concept of a Cycle as in the Sweep SFC. However,

the Scan SFC distinguishes between even-numbered and odd-numbered cycles. Notice that for the kth

dimension, the Scan SFC has N D - k - 1 cycles. Even-numbered cycles are exactly the same as the Swecp

SFC. However, the odd-numbered Cycles in the case of the Scan SFC consists of N - 1 Contiguity and

Reverse segments rather than Contiguity and F01'llJm'd segments as in the case of the Sweep SFC. Also, the

transition between each cycle is performed by a Still segment in the case of the Scan SFC rather than by

10

a Jump segment as in the case of the Sweep SFC. Many applications benefit from the no Jump property

of the Scan SFC.

Lemma 4 In a D-dimensional space with g1-id size N, the number of Jump, Contiguity, Reverse, FOr1IJaTd,

and Still segments in any dimension k JOT the Scan SFC is:

J"mp(k, N, D) ~ 0

Contig"ity(k, N, D) = ND-k-1(N - I)

Still(k,N, D) = N D- k- 1 (Nk+l - N + I) - 1
Reverse(D - 1, N, D) = 0

Reve7'se(k,N,D) = ~ND-k-l(N -I),

Forward(D - I, N, D) = N - 1

Fonvard(k,N,D) ~ ~ND-k-l(N-I),

Proof: The proof is given in Appendix AA.

k < D-I

k < D-I

o

Lemma 5 The tolal desc7-iption vector Vr Jor the D-dimensional Scan SFC with g1-id size N is VT =

(JT, 01', RT, FT, 81') when::!.:

Jr =0

Gr=ND -1

ST~(D-I)(ND_I)

RT = N (ND- 1-I)
2

FT ~ N (ND-1 _ I) + N - 1
2

The desc1-iption vedor V = 1hl'/D(ND -1).

Proof: The proof is given in Appendix A.5.

4,3 Case Study III: The Peano SFC

o

The Peano SFC (Figures lc and 2c) is introduced by Peano [36] and is also called Morton encoding [31],

quad code [16], bit-interleaving [411> N-order [43], locational code [2], or Z-order [34]. The Peano SFC is

constructed recursively as in Figure 4. The basic step (Figure 4a) contains four points in the foUl' quadrants

of the space. Each quadrant is represented by two binary digits. The most significant digit is represented

II

Point Dimensions Bit Decimal Point DilllCIlSiolls Bit Decimal
0 1 Interleaving Order 0 1 2 Interleaving Order

(2,1) 010 001 001001 , (0,1,3) 000 001 011 000001011 11
(5,3) 101 011 100111 39 (2,1,4) 010 00/ 100 001100010 98
(7,0) 111 000 101010 "' (7,0,7) 111 000 111 101101101 365

Table 3: An Example of two- and three-dimensional Peano orders with grid size 8 in each dimension.

'""'"
Ca) (b)

Figure 4: The Peano SFC.

(e)

by its x position and the least significant digit is represented by its y position. The Peano SFC orders

these points in ascending order (00, 01, 10, 11). Figure 4b contains four repeated blocks of Figme 4a at a

finer resolution and is visited in the same order as in Figure 4a. Similarly, Figlll'c lie contains four repeated

blocks of Figure 4b at a finer resolution.

To extend the Peano SFC to the multi-dimensional space, we present the idea of bit-intcrleaving in the

two-dimensional space a."i shown in Figure 5. Each point in the space is assigned a binary number that

results from interleaving bits of the two dimensions. The bits are interleaved according to an interleaving

vector Tv=(O,I,O,l). This corresponds to taking the first and third bits from dimension a (x) and taking

the second and fourth bits from dimension 1 (y). For a D-dimensional space with four points in each

dimension, the interleaving vector is (0,1,2, ... ,D - 1,0,1,2, ... ,D - 1). For a grid si7,e of N points in

each dimension, the term 0,1,2, ... , D - 1 is repeated LogN times. The points are visited in ascending

order according to their binary number representation. Table 3 gives an example of computing the Peano

order for two- and three-dimensional points with a grid size of eight points in each dimension.

Lemma 6 In a D-dimensional space with grid size N, the m!mber of Jump, Contiguity, Revcrsc, Fonnanl,

12

II OLe! 0"1 no>

"

lIll

Figure 5: Bit Interleaving in Peano SFC.

and Still segments in any dimension k for the Peano SFG is:

Proof: The proof is given in Appendix A.B. o

Lemma 7 The total desc1"iplion vectoT VT for the D-dimensional Peano SFG with grid size N is Vcr =

(Jl',CT,RT,FT,ST) where:

Jr ~ (~r (l- 2' - D
) + 1 - D

CT ~ (~) D (2D+l + 2' - D _ 3)

RT ~ N D (1 - 2
'
- D) + 1 - D

FT =ND _1

ST = N D (2 ' -
D+D - 2)

The description veetm· V = VTjD(ND - 1).

Proof: The proof is given in Appendix A.7.

13

o

Point Dimensions nil Occim",1 Poinl nimen~ion~ Bit Decimal
0 1 Interleaving Order 0 1 2 Interleaving Order

(2,1) 011 001 001011 13 (0,1,3) 000 001 010 000001010 12
(5,3) III UlO 101110 52 (2,1,4) 011 001 110 001101110 75
(7,0) 100 000 100000 63 (7,0,7) 100 000 100 100000100 384

Table 4: An Example of two- and three-dimensional Gray orders with grid sir.e 8 in cach dimension.

(a) (b)

Figure 0: The Gray SFC.

(0)

4.4 Case Study IV, The Gray SFC

The Gray SFC (Figures ld and 2d) uscs the Gray code representation [18] in contrast to the binary

code representation as in the Peano SFC. Figure Ggives the recursive construction of the Gray SFC. The

basic step (Figurc 6a) contains four points in the four quadrants of the space. As in the Peano SFC, each

quadrant is represented by two binary digits. The most significant digit is represented by its x position and

thc least significant digit is represented by its y position. The Gray SFC ordcrs these points in asccnding

order according to the Gray code (00, 01, 11 , 10). Figure 6b contains four repeated blocks of Figure Ga at

a finer resolution and is visitcd in Gray order.

Unlike the Peano SFC, the first and the fourth blocks have the samc orientation as those of Figurc Ga,

while the second and the third blocks are constructed by rotating the block of Figure 6a by 1800 . Similarly,

Figure Ge is construeted from two blocks of Figurc 6b at a finer resolution and two blocks of the rotation

of Figurc 6b by 1800 . For details about extending the Gray SFC to multi·dimensional space, thc reader is

referred to [28].

To extcnd the Gray SFC to the multi-dimensional space, we use the same idca of bit interleaving as in

the Peano SFC. Figure 7 gives the bit interleaving in the two-dimensional space with four points in each

dimension. Table 4 gives an example of computing the Gray order for two- and thrcc-dimensional points

with grid size eight (i.e., eight points) in each dimension.

Lemma 8 In a D-dimensional space with grid size N, the number of Jump, Contiguity, Reverse, Forward,

14

and Still segments in any dimension k /07" the Gmy SFC is:

(NO _ 20)
Jump(k, N, D) ~ 2D '(2D _ 1)

Contiguity(k, N, D) = 2~~k

Slill(k N D) = (NO -1) {2'J - 2' -1)
, , 2D 1

N D _2D

Rever,>e(O, N, D) = 2 (2D _ 1)

2'-1 (NO -1)
Rcvcrsc(k, N, D) = D '

2 -1
N D _2D

Forwa1'd(O, N, D) = 2 (20 1) + 1

2'-1 (N D -1)
For'llJard(k,N,D) = D '

2 -1

Proof: The proof is given in Appendix A.B.

k>O

k>O

o

Lemma 9 The total desc1-iption vector VT for the D-dimensional Gmy SFC with grid size N is VT =

(JT,CT,RT,FT,ST) where:

.IT ~ (~r -1

C,~cr (21}_1)

N D _2
RT= -"'2-

ND
FT = -2-

ST = (D - I)(No - 1)

The description vector V = VTjD(ND -1).

Proof: The proof is given in Appendix A.9.

4.5 Case Study V: The Hilhert SFC

o

Figure 8 gives the recursive construction of the Hilbert SFC. The basic block of the I'Iilbert SFC (Figure Sa)

is the same as the basic block of the Gray SFC (Figure Ga). The basic block is repeated four times at a

finer resolution in the foUl' quadrants, as given in Figure 8b. The quadrants are visited in their gray order.

The second and third blocks in Figure 8b have the same orientation as in Figure 8a. The first block is

15

oof=-,7"

".

.."

\1"_--,'00'

I"''-...J 1l0>

00m

Figure 7: Bit Interleaving in Pcano SFC.

!:::EJ .
E:J

rL:j·EJl

(0) (b)

Figure 8: The Hilbert SFC.

constructed from rotating the block of Figure Sa by 900 , while the fourth block is constructed by rotating

the block of Figure 8 by ~90o. Figure 8e is constructed from Figure 8b in an analogous manner.

Lemma 10 In a D-dimc1Isional space with grid size N, the nnmber of Jump, Contiguity, RcveTsc, FOT"­

ward, and Still segments in any dimension k f01' the Hilbe.r"t SFC is:

.Jump(k, N, D) = 0

JJ-l

Contiguity{k, N, D) = L 2i Contignity((k + i)
i=l

dN)C··(N)kmo D, 2' D + 2 onttyuzty k, 2' D + 2

Gontiguity(k, 1, D) = 0

Still(k, N, D) = N D
- 1 - Contiguity(k, N, D)

Reoerse(O, N, D) = (Gontiguily(O, N, D) - N + 1)/2

Revcrse(k, N ,D) = Contiguity(k, N, D)J2 k> a

FOTwaTd(k,N,D) = N D -1- Revel'se(k,N,D) - Still(k,N,D)

Proof: The proof is given in Appendix A.IO. o

Lemma 11 The total description vector VT /01· ihe D-dimensional Hilbert SFC with grid size N is Vr =

16

(JT, 01', RT, F r ,Sr) where:

Jr = 0

CT = NJ)_1

N (D-1)R1'=- N -1
2

N (D 1)F1'=- N - +1 -1
2

ST = (D - I)(N D - I)

The description ved07' V = Vr/D(ND - 1).

Proof: The proof is given in Appendix A.l1.

5 Performance Evaluation

o

In this section, we perform comprehensive experiments to compare the Sweep, Scan, Peano, Gray, and

Hilbert SFCs with respect to the different segment types. The results in this section arc computed using

the closed formulas developed in Section 4. Notice that it is timely infeasible to compute segment types

in high-dimensional spaces using the definition and iterative equations from Section 3.

5.1 Scalability of Space-filling Curves

In this section, we address the issue of scalability, i.e., when the number of dimensions and/or the llumber of

points per dimension increase. For the following experiments, we usc Lemmas 3, 5, 7, 9, and 11 to compute

the description vector V. Figure 9 gives the results of setting the grid si;>;e N =16, while measuring different

segment types (Jump, Reverse, and StilQ up to 12 dimensions. An interesting result appears in the J7lmp

segments (Figure 9a) where both the Peano and Gray SFCs have very low percentage (almost 0%) of Jumps

after six dimensions while the Hilbert and Scan SFCs have no Jumps for any dimensions. The fact that

the Hilbert SFC has no Jumps is well-known [15, 29], and it is the main criteria for why the Hilbert SFC

is chosen for many applications e.g., [3, 15, 23]. However, this experiment emphasizes that both the Penno

and Gray SFCs share the property of no Jumps with the Hilbert SFC for medium and high dimensionality.

For Contiguity, all space-filling curves almost have the same number of Conti,quity segments, except the

Peallo SFC, where it has higher Contiguity segments than the other space-filling curves. This affects the

number of Still segments, where the Peano SFC has the least number of Still segments. As it appears from

its definition, the Sweep SFC has very low Reverse segments, while the Peano SFC has the highest number

of Reverse segments. For the ForwU7Yi segments, both the Sweep and Peano SFCs have the highest ratio.

17

P .."o ~.-
CTOy X

HIl""," --e-­
~.....,p ---E­

So." ---A---

"LC--:--:---:--::-:-C:--:--:--:,. o'.?'Ollll'0 " "

r",,~. I
CT"y ----*­

Hilbo<e --e-­
Sp ---ool--­

SO"" _8_

" •••• D1=..~ole~. " •. ,,' D1=..~.!.~.

(a) Jllmp (b) Contiguity (c) Still

P ••no ~,­
GT07 ---i-<­

H.,bo=' 0
S~"P ---rt­
50"" ----8--

~9--R
---'liI_~

° -S--s_"" -E----P----R_

, l • , 6 , 8 10 H ,.

P....r." ~+--.
C,", ---i-<­

H.lbo,c --e-­
'".op ---'--..1­
S0"" -8-

"0_ ., D1=..~.i.~.

(d) Reverse (el Forward

Figure 9: Scalability of space-filling curve w.r.t dimensionality.

The Gray and Hilbert SFCs have similar behavior for all segment types except for low-dimensionality

in the Jump and Contiguity scgments. Notice that all segment types except Still are decreasing as the

number of dimensions increases. The reason for this comes from the Still segment definition. A Still

segment indicates that the value in one of its dimensions does not change. With a larger number of

dimensions, it is difficult to find a segment that connects two consecutive multi-dimensional points that

are different in all dimensions. Thus, almost each segment is counted as Still for one or more dimensions.

The second set of experiments (Figure 10) tests the four-dimensional space with grid size up to 256.

All space-filling curves except the Sweep SFC almost have constant percentage regardless of the grid size.

This can be noted from the description vector V, where getting the limN---)oo V gives a constant value that

docs not depend on N. An interesting rcsult is that the Scan and Hilbert SFCs have the same performance

for aU segment types. The Gray SFC share the same performance with the Hilbert and Scan SFCs for

the Reve1'!;e, F01wm·d, and Still segments. However, the Gray SFC has more Jumps and lower Contiguity

than the Hilbert SFC. The Peano SFC has the highest ratio, with a large margin, of both Contiguity and

Reverse segments. This is balanced by the very low ratio of Still segments in the Peano SFC. The Sweep

SFC is the only space-filling curve that is affected by the change of grid size. However, it tends to be

stable after grid size 64.

18

",-------~-~-1"n•• o --j
C'O, -x­

"'1""''- --e­.""op --B­
Sc..~ .•.",-""""" --+­Croy ---*­

HHbo=' 0
Swnop --a--Scon ____

",L_-;-_-;;_-;;_-;;_;-;-;_-;!
, '" l, 6' 11' .,~6' '" '"

Poor•• --+­
C=oy ---;<­

H'U",,, 0
Swo"" --a--Sc"" ____

(a) Jump (b) Contiguity (e) Still

",-----------, " ,---~-~.----.--.,---,

P ••hO --+­
Cooy ---*­

Hilbo" 0
Swnop --a-­

Soon ---b----

(d) Rcversc (e) Forward

Figure 10; Scalability of space-filling curves w.r.t grid size.

5.2 Fairness of Space-filling Curves

In this section, we test the fairness! of space-filling curves. For each segment type T, we use the standard

deviation of the number of T segments over all dimensions as an indication for fairness. The lower the

standard deviation the more fair the space-filling curve is. For the experiments of this section, we use

Lemmas 2, 4, 6, 8, and 10 to compute the number of segments for each segment type over each individual

dimension rather than the total that is used in the description vector.

Figure II gives the standard deviation for all segment types for up to the 12-dimensional space with

grid size 16. It is clear that for all segment types, the Hilbcrt SFC is the most fair space-filling curve

with very low standard deviation. In general, recursive space-filling curves tend to be more fair than

non-recursive space-filling curves. This comes from the fact that the recursive space-filling curves divide

the space into equal fragments. Each fragment is dealt with in the same way. An exception is the Reverse

segments in the Sweep SFC, where it has very low standard deviation. This cOllies from the very low

Humber of Reverse segments in all dimensions of the Sweep SFC. Among the recursive space-filling curve,

the Peano SFC gives the worst performance. The interesting result is that both the Peano and Gray SFCs

tend to be more fair as the dimensionality incrcases while the Hilbert SFC behaves the opposite. This

1"'e sa}' that a space-filling curve is fair if it ha.'i similar bchavior towards all dimensions in the llluiti-dimensional space.

19

(a) Jump

,..ft. --+-­
~<oy -)\­

Hllboc< a
S~cp ---B­

SO"" -A---

(b) Conti!,'l.lity (c) Still

(rl) Reverse

,
:: 50,
~ <0

"

(e) Forward

Figure 11: Fairness of space-filling curves.

indicates that for very high dimensionality, the Hilbert SFC may not be the most fair space-filling curve.

5.3 Intentional Bias of Space-filling Curves

A very critical point for SFC-based applications is how to assign the different parameters to thc space

dimensions. In this section, we explore the intentional bias2 of each space-filling curve by plotting its

behavior for each dimension individually. Figures 12 and 13 give the intentional bias for distance (Jump,

Contiguity, StilQ and direction segments (RCVC7'SC, F01WU1"d, Still), respectively. The experiment is per­

formed for the four-dimensional space with grid size 16. Each dimension is plotted individually as a stacked

bar that contains the percentage of distance or direction segments. The fifth column is the percentage of

the total number of segments over all dimensions from each type. Note that the height of each bar is 100

(refer to Lemma 1).

From Figure 12, the percentage of Jumps in the Peano, Gray, and Sweep SFCs is ncgligible. The

Hilbert SFC is not biased to any dimension. This agrees with the result in the previous section, where

the Hilbcrt SFC has a very low standard deviation. With respect to Contiguity, the Peano SFC is bia."ied

2We say that an SFC is intentionally biased towards a certain dimension k with respect to segment type T if the SFC has
more T segments in dimension k witll respect to all other dimensions

20

TOlal

DstHl

2nd 3rd 4th

I:aContiguily

,,,
.Jump

100r.

80r.

SOr.

40r.

lOY.

Or.
TOlal

DstiIJ

2nd :lrd 4th

llIContiguny

,,,
.Jump

aor.

100r.

40r.

20r.

Or. +-'''''-~","~

100r.

Total

DSti11

1st 2nd 3rd 4th

.Jump C Contiguity

100%

'0%

60'...
20.

0% -I-'~"'--~

(a) Peano (b) Gray (c) Hilbert

"'0'.,.
.,....
'0%

0%

T" ,,'

WO%.,.
60%

40%

'0%

0%

'''' "" T••

• Jump m Contiguity 0 Still • Jump m Contiguity 0 Still

(d) Sweep (e) Scan

Figurc 12: Intentional bias of space-filling curves w.r.t distance segments.

towards the last dimension where almost all the segments are Contiguity segments with no Still segments.

With the increase of the dimension number k, the number of the Contiguity segments is increasing rapidly,

and the number of Still segments is decreasing. The Gray SFC has similar behavior as in the Peano SFC,

howcver, the increase/decrease in Contiguity/Still segments is slower. On the other hand, the Sweep and

Scan SFCs have very high Contiguity segmcnts in the first dimcnsion followcd by a very low Contiguity

segmcnts in thc second dimension. There is almost nD Contiguity in the other dimensiDns.

Figurc 13 gives the results of the same experiment fDr directiDn segments. The same analysis is applied,

where the Hilbert SFC is extremely fair, while the Peano SFC is biased towards the last dimensiDn. The

only difference here, is that the bias of thc Pcano and Gray SFCs is with respect to both the Reverse and

Forward segments instead of Dnly the Jump segments in Figurc 12. Note that in thc three recursive SFCs,

the percentages of the Reverse and ForwaTd segments are almDst equal fDr all dimensions. On the other

hand, the non-recursive SFCs almost have only Still segments after the second dimension. This is the main

reason why non-recursive SFCs havc very high standard deviation in Figure 11. The Sweep SFC has very

low number of Reverse segments in the first dimension. On the other hand, the number of Forward and

Reve7·se segments are equal in the Scan SFC.

21

100X

60X

60x

40X

20X

ox
1st 2nd

• Reverse

3ed 4th

l2IForward

Total

DS1ill

100X

60X

60X

40X

20X

Is! 2nd

.Reverse

3rd 4th

l2IForward
Total

DS1i11

100X

60x

60x

40x

20x

Ox
1st 2nd

• Reverse

3rd 4th

r:aForward

Total

DS1i11

(a) Peano

",.",,.,,
60%

,,.,,
"'%

0% ,. 2M " ,. To!~1

(b) Gray

H'''''
"'%
"'%
'''''
'''''
"" ''''

(c) Hilbert

T••

• Reverse ~ Forward 0 Still

(d) Sweep

• Reverse I'l:I Forward 0 Still

(e) Scan

Figure 13: Intentional bias of space-filling curves w.r.t direction segments.

6 Conclusions

Space-filling curves are used as a mapping scheme from the multi-dimensional space into the one-dimensional

space. The behavior of different space-filling curves in the D-dimensional space is analyzed. A description

vector V is proposed to give a brief description for each space-filling curve. Closed formulas that depend

on the space dimensionality and grid size are derived to compute V. The idea is to divide the space-filling

curve into a set of connected segments. Each segment connects two consecutive multi-dimensional points.

Five segment types are distinguished, namely, Jump, Contiguity, Reverse, Fonva1·d, and Still. The de­

scription vector V contains the percentage of occurrence of each segment type. Several experiments are

conducted to show the scalability and fairness of space-filling curves with respect to segment types.

References

[IJ David J. Abel and David M. Mark. A comparative analysis of some two-dimensional orderings. Intl.

Journal of Geographical Information System.'i, 4(1):21-31, 1990.

[2] David J. Abel and J. Smith. A data structure and algorithm based on a linear key for a rectangle

22

retrieval problem. Computer Vision Graphics Image Processing, 24:1-13, 1983.

[3] Jochell Alber and Rolf Niedermeier. On multi-dimensional hilbert indexing. In Proc. of the 4th Inti.

Computing and Combinator1,cs Conference, COCOON, pages 329-338, Taipei, Taiwan, August 1998.

[4] Walid G. Aref, Khaled EI-Bassyouni, Ibrahim Kamel, and Mohamed F. Mokbel. Scalable qos-aware

disk-scheduling. In International Database Engineering and Applications Symposium, IDEAS, Al­

berta, Canada, .July 2002.

[5J Walid G. Aref and Ibrahim Kamel. On multi-dimensional sorting orders. In Pmc. of the 11th Inil.

Conf. on Database and Expert Systems Applications, DEXA, pages 774-783, London, September 2000.

[6] Tetsuo Asano, Desh Ranjan, Tomas Roos, Emo Welzl, and Peter Widmayer. Space-filling curves and

their use in the design of geometric data structures. Thc07dical Computer Science, TCS, 181(1):3-15,

1997.

[7] Christian Balun, Gerald Klump, and Hans-Peter Kriegel. xz-ordering: A space-filling curve for objects

with spatial extensio. In Pmc. oj 6th InU. Symp. on Large Spatial Databases, SSD, pages 75-90, l'long

Kong, .July 1999.

[8] Greg Breinholt and Christoph Schierz. Algorithm 781: Generating hilbert's space-filling curve by

recursion. ACM Trans. on Mathematical Software, TOMS, 24(2):184-189, June 1998.

(9] Thoma.'! Brinkhoff, Hans-Peter Kriegel, and Bernhard Seeger. Efficient processing of spatial joints

using r-trees. In Pmc. of the intl. conf. on Management of data, SIGMOD, pages 237-246, Wa.'!hington

D.C., May 1993.

[10] A. .J. Cole. A note on space filling curves. Softwan~-P1'aclice and E'J-'Pe11,cncc, SPE, 13(12):1181-1189,

1983.

[l1J Douglas Comer. The ubiquitous b-tree. ACM Computing Snrveys, 11(2):121-137, June 1979.

[12] Christos Faloutsos. Gray codes for partial match and range queries. IEEE Trans. on Software

Engineering, TSE, 14(10):1381-1393, October 1988.

[13] Christos Faloutsos. Analytical results on the quad tree decomposition of arbitrary rcctangles. PattC1'1l

Recognition Letters, 13(1):31-40, .January 1992.

[14J Christos Faloutsos and Yl Rong. Dot: A spatial access method using fradals. In Proc. of Inll. Conf.

on Data Engineering, ICDE, pages 152-159, Kobe, Japan, Apri11991.

[15] Christos Faloutsos and Shari Roseman. Fractals for secondary kcy retrieval. In Pmc. of the 8th

ACM SIGACT-SIGMOD-SIGART Symp. on P11,nciples oj Database Systems, PODS, pages 247-252,

Philadelphia, March 1989.

[16] Raphael A. Finkel and .TOIl 1. Bentley. Quad trees: a data structure for retrieval on composite keys.

Acta Informatica, 4:1-9, 1974.

23

[17] Leslie M. Goldschlager. Short algorithms for space-filling curves. Softwaf'e-Practice and Experience,

SPE, 11(1)099-100, 1981.

[18] F. Gray. Pulse code communications. US Palent 2632058, 19S3.

[19J Antonin Guttman. R-trees: A dynamic index structure for spatial indexing. In Proc. of the inti. conf.

on Management of data, SIGMOD, pages 47-S7, Boston, MA, June 1984.

[20] D. Hilbert. Ueber stetige abbildung cineI' linie auf ein flashenstuck. Mathematishe Annalen, pages

459-460, 1891.

[21] H. V. Jagadish. Linear clustering of objects with multiple attributes. In Pmc. of lhe intl. conf. on

Manayement of data, SIGMOD, pages 332-342, Atlantic City, NJ, June 1990.

[22] Ibrahim Kamel and Christos Faloutsos. On packing r-trees. In Proc. of the 2nd Inti. Conf. on

Inf01mation and knowledge Management, CIKM, pages 490-499, Washington D. C., November 1993.

[23] Ibrahim Kamel and Christos FalolltsoS. l-lilbert r-tree: An improved r-tree using fractals. In Proc. of

the 20th IntI. Conf. on Ve11/ Large Data Bases, VLDB, pages SOD-S09, Santiago, Chile, September

1994.

[24] Jonathan K. Lawder and Peter. J. H. King. Using space-filling curves for multi-dimensional indexing.

In Proc. of the 11th B1'itish National Conf. on Databases, BNCOD, pages 20-3S, UK, July 2000.

[25] Jonathan K. Lawder and Peter. J. H. King. Querying multi-dimensional data indexed using the

hilbert space filling curve. SIGMOD Rec07'd, 30(1), March 2001.

[26] S. Liao, Mario A. Lopez, and Scott.T. Leutenegger. High dimensional similarity search with space­

filling curves. In Pmc. of Inti. Conf. on Data Enginee7'ing, IGDE, pages 61S-622, Heidelberg, Germany,

April 2001.

[27] .John M. Mellor-Crummey, David B. Whalley, and Ken Kennedy. Improving memory hierarchy perfor­

mance for irregular applications. In Pmc. of the Inti. Gonf. on Supercomp1!ting, IGS, pages 42S-433,

Rhodes, Greece, June 1999.

[28] Mohamed F. Mokbel and Walid G. Aref. Irregularity in multi-dimensional space-filling curves with

applications in multimedia databases. III Proc. of the 2nd Inti. GonJ. on Information and knowledge

Management, CIKM, pages S12-519, Atlanta, GA, November 2001.

[29] B. Moon, H. V. Jagadish, Christos Faloutsos, and .J. Salz. Analysis of the clustering properties of

hilbert space-filling curve. IEEE Trans. on Knowledge and Data Enginee1'ing, TKDE,13(1):124-141,
2001.

[30] E. H. Moore. On certain crinkly curves. Trans. Am. Math Soc., pages 72-90, 1900.

[31] G. M. Morton. A computer oriented geodetic data base and a new technique in file sequences. IBM,

1966.

24

[32] Rolf Niedermeier, Klaus Reinhardt, and Peter Sanders. Towards optimal locality in mesh-indexing. In

Pmc. of the 11th IntI. Symp. on Fundamentals of Computation Theory, FCT, pages 364-375, Krakow,

Poland, September 1997.

[33J Jack A. Orenstein. Spatial query processing in an object-oriented daLabase system. In Pmc. of the

inti. conf. on Management of data, SIGMOD, pages 326-336, Washington D.C., May 1986.

[34J Jack A. Orenstein and T. H. Merrett. A class of data structures for associative searching. In Proc. of

the 3rd ACM SIGACT·SlGMOD-SlGART Symp. on Principles of Database Systems, PODS, pages

181-190, Ontario, Canada, April 1984.

[35J Chao-Wei Ou, Manoj Gunwani, and Sanjay Ranka. Architecture-independent locality-improving

transformations of computational graphs embedded in k-dimensions. In Pmc. of the 9th ACM JnU.

Conf. on Supercomputing, lCS, pages 289-298, Barcelona, Spain, July 1995.

(36] G. Peano. Sur une courbe qui remplit toute une air plaine. Mathematishe Annalen, 36:157-160, 1890.

[37] H. Sagan. Space Filling CU71JCS. Springer, Berlin, 1994.

[38] Kenneth C. Sevcik and Nick Koudas. Filter trees for managing spatial data over a range of size

granularities. In Pmc. of the 22th Ina. Conf. on Very La1YJe Data Bases, VLDB, pages 16-27, Bombay,

India, September 1996.

[39J W. Sierpinski. Sur une nouvelle courbe qui remplit toute une aire plaine. Bull. Acad. Sci. Cracovie,

BeneA, pages 462-478, 1912.

[40] M. Thottethodi, S. Chatterjee, and A.R. Lebeck. TUning stl'assan matrix multiplication algoriLhm

for memory efficiency. In Pmc. of SC9S: High Performance Computing ad NetwoTking, Orlando, FL,

November 1998.

[41] H. Tropf and H. Herzog. Multidimensional range search in dynamically balanced trees. Angewandte

Jnfo7inatik, pages 71-77, 1981.

[42] Lui7, Velho and Jonas Gomes. Digital halftoning with space fi.lllng curves. ComputeT Gmphics,

25(4)081-90, July 1991.

[43] M. White. N-trees: Large ordered indexes for mu1ti~dimensional space. statistical research division.

US Bureau of the Census, 1980.

[44] I. H. Witten and M. Neal. Using peano curves for bilevel display of continuous tone images. IEEE

Comp1der Gmphics and Applications, pages 47-52, 1982.

[45] I. H. Witten and B. Wyvill. On the generation and use of space-filling curves. SoftwU7'c-Pmdice and

Experience, 3:519-525, 1983.

[46J Y. Zhang and R. E. Webber. Space diffusion: An improved parallel halftoning technique using space­

filling curves. In ComputeT Gmphics Pmc., pages 305-312, August 1993.

25

A Appendix

A.I Proof of Lemma 1

Proof: A D-dimensional space-filling curve with grid size N has N D points connected by N D -1 segments.

According to the definition of segments in Section 3 and Figure 3, any segment has a distance and a

direction. Based OIl the distance, any segment is classified as either a Jump, Contiguity or Still segment.

Therefore,

.Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N, D) ~ N D - 1

Based on the direction, any segment is da."isified a."i either a ReveTse, F01'llJard or Still segment. There­

fore,

Rever,.e(k, N, D) + Forwa7'd(k, N, D) + Still(k, N, D) ~ N D - 1

By summing over all dimensions,

lJ-1 D-l

I: .Jump(k, N, D) + Contiguity(k, N, D) + Still(k, N,D) = I: (N D - 1), and
k=O k=O

D-l D-1

I: Reverse(k, N, D) + F01'wa1'd(k, N, D) + Still(k, N, D) = I: (N D - 1)
k=O k=O

Therefore,

.for + C,. + S,. = D(ND
- 1)

&1' +Fr +Sr ~ D(ND -1)

D

A.2 Proof of Lemma 2

Proof: We start by the first dimension:

.Jump(O, N, D) ~ N D - 1 - 1

Contiguity(O, N, D) = ND-1(N - 1)

From the definition of the Sweep SFC, we have the recurrence relations:

.Jump(k, N, D) = .Jump(k - 1, N, D - 1)

Gontiguity(k, N, D) = Gontiguity(k - 1, N, D - 1)

26

Solving these recurrence relations, therefore:

Jump(k, N, D) = N D- k- 1
- 1

Contiguity(k,N,D) ~ N D
- k- 1(N -1)

From Lemma 1, we have: Still(k,N,D) = N D - N D - k . From the definition of the Swcep SFC, every

.Jump segment is counted as a Reverse segmcnt, and every Contiguity segment is counted as a Forward

segment. Therefore,

Rcvcrse(k N D) = N D - k- 1 - 1 and, , ,
Forw""d(k,N, D) = ND-k-1(N -I),

o

A.3 Proof of Lemma 3

Proof: For any segment type X in Lemma 2, XT is computed from the equation: XT = 2:,f';;ol X. 0

A.4 Proof of Lemma 4

Proof: The Scan SFC has no Jump segments in all its dimensions, Le., Jump(k, N, D) = O. The main

distinction between the Sweep and Scan SFCs is the direction of the odd-numbcred Cycles. However,

the length of the segmcnts inside cach Cycle is the same. Thus, the number of Contiyuity segmcnts is

the same in both the Sweep and Scan SFCs. Therefore, Contiguity(k,N,D) = ND-k-1(N -1). From

Lemma 1, we have Still(k, N, D) = N D - k- 1 (Nk+1 - N + 1) - 1. The Reve7·se segments in thc Scan SFC

appears only in the odd-numbered Cycles. For all dimensions, the number of odd Cycles is the same

as the number of the cven Cycles. Thus, the number of Reverse segmcnts is the same as the number

of the Forward segments. Using Lemma 1, we have 2Revcrse(k, N, D) = Contiguity(k, N, D). Thus,

ReveT.'>e(k, N, D) = Forwa1'd(k, N, D) = !ND- k- 1(N -1). An exception is the last dimension k = D ~ 1.

The last dimension has only one Cycle. Thus, there are no ReveT.'>e segments in the last dimension, i.e.,

Revcrse(D - 1,N, D) = O. This means that the number of FoTtllard segments in the la."it dimension eqnals

the number of Contiguity segments. Therefore, FOTward(D - 1, N, D) = N - 1.

o

A.5 Proof of Lemma 5

Proof: For any segment type X in Lemma 4, XT is computed from the equation: XT = 2:,f';;Ol X. 0

27

A.6 Proof of Lemma 6

Proof: We start by the following base equations:

Jump(O, 4, D) ~ °
Contiguity(O, 4, D) = 2D+1 _1

RCVCTSC(O, 4, D) = 2D - 2

Thcn, we can construct the following recursive equations for the first dimension (k = 0):

N
Jump(O,N,D) ~ 2° Jump(O, 2,D) + 2° - 2

N
Contiguity(O, N, D) = 2D Contiguity(O, 2' D) + 1

D N DRever.<;e(O, N, D) = 2 Rever.~e(O, 2' D) + 2 - 2

By solving these recurrence relations for the first dimcnsion,

For the other dimensions, wc havc the following l'CCUITCncc relations:

N
Jump(k, N, D) ~ 2Jump(k - 1, 2' D) + 1

N
Contiguity(k, N, D) = 2Contiguity(k - 1, 2' D)

N
Reverse(k,N,D) = 2Reverse(k -1, 2,D) + 1

By solving the recurrences,

(N D - 22D) (2 D - 2) ,
Jump(k,N,D) ~ 22D ' (2 D -1) + 2 -1

.. (0)_ 1 O(0+1) 1 N
D

_2
2D

Conttgmty k, N, D - 2 2D- k N 2 - 1 + 22D-k 2D _ 1

2' (NO _ 20) (20 - 2) .
Reve,·se(k, N, D) = 2D (2 D 1) + 2' - 1

28

Using Lemma 1, therefore,

o

A.7 Proof of Lemma 7

Proof: For any segment type X in Lemma 6, X T is computed from the equation: X T = "L,f':Ol X. 0

A.8 Proof of Lemma 8

Proof: We start by the following base equations:

Jump(O, 4, D) ~ 1

Contiguity(O, 4, D) = 2D

Then, we can construct the following recursive equations for the first dimension (k = 0):

N
Jump(O, N, D) = 2DJump(O, 2' D) + 1

N
Contiguity(O, N, D) = 2D Conliguily(O, 2' D)

By solving these recurrence relations for the first dimension,

NO _ 20
Jump(O, N, D) ~ 2D (2D 1)

Contiguity(O, N,D) = (~) D

For the other dimensions, we have the following recurrence relations:

Jump(k, N, D) = 2.Jump(k - 1, N, D)

Contiguity(k, N,D) = 2Contiguity(k - 1, N, D)

By solving the recurrences,

(N0 _ 20)
Jump(k, N, D) = 2D k (2D 1)

N D
Contiguity(k, N, D) = 20 - k

29

Using Lemma 1, thcrefore
(ND _ 1) (2 D _ 2' - 1)

Still(k, N, D) ~ -'--~2~D-_-lo----'-

One of the properties of the Gray SFC is that it has the same number of Rever.<;e and F01'Wurd segmcnts

for all dimensions, except for the first dimension, whcre the number of the Forward segments is larger by

1. Therefore,

Forward(O,N,D) = Reverse(O,N,D) + 1

Forward(k, N, D) = Revc1'sc(k, N,D),

From Lcmma 1, we have:

R (N D) .Jump(O,N,D) + Gontiguity(O,N,D)-1
ever.'le 0" = 2

R (k N D)
.Jump(k, N, D) + Gontiguity(k, N, D)

everse . =, , 2 '

Solving these equations results in:

N D _2D

Reverse(O, N, D) = (D)
2 2 - 1

2'-1 (N D -1)
Rever.<;e(k, N, D) = 2D _ 1 k > 0

N D _2D

FOTwaTd(O,N, D) ~ 2 (2D _ 1) + 1

2'-1 (ND - 1)
FOTWOTd(k, N, D) = 2D 1 k > 0

A.9 Proof of Lemma 9

k>O

k>O

D

Proof: For any segment type X in Lemma 8, X-r is computed from the equation: X T = 'L,f':Ol X. 0

A.10 Proof of Lemma 10

Proof: As in the Scan SFC, there is no Jump segments in the Hilbert SFC, I.e., Jump(k, N, D) = O.

The Hilbert SFC of grid size N consists of 2D blocks of the Hilbert SFC of grid size N/2 rotated along

the different dimensions. Only two of these blocks are not rotated. Generally, for any dimension (k + i)

mod D, there are 2i blocks rotated along the ith dimension. The 2D segments that connect dirrel'ent blocks

contain 2k Contiguity segments. Therefore, we have the recurrence relation:

30

D-l

Contiguity(k, N, D) = L: 2iContiguity((k + i) mod D, ~, D) + 2Contiguity(k, ~, D) + 2k

i=l

Cmdiguity(k, 1, D) = 0

From Lemma 1, Still(k, N, D) = N D -1- Contiguity(k, N, D). As in the Scan SFC, the total number

of ReveT'se and Forward segments equals the number of Contiguity segments. For all dimensions k > 0, the

number of Reverse segments equals the number of Forwm'd segments. The reason is that half the rotations

of the basic figure of the Hilbert SFC are clockwise and the other half arc anticlockwise. Thus, the ratio

of the Reverse and Forward segments is preserved. For example, in Figure 8a, the second dimension (the

vertical one) has one Revc1'se and one FonJJaHl segment. Figure 8b consists of four blocks of Figure 8a.

Two of these blocks (the two upper blocks) are not rotated, which results in two F01ward and two Reve7'se

segments. The third block (the lower left block) is rotated clockwise, which results in one F01'11Jard segment.

Thc fourth (the lower right block) is rotated anticlockwise results in one Reve7'se segment. Thus, the ratio

of the F07wanl and Rcverse. segments is preserved with the increase of the grid size. An exception of Lhis

is the first dimension k = 0, where the number of F01'11Jard segmcnts is more than the number of Rcvcn;c

segments by N - 1. Therefore,

Reverse(O,N, D) = (Cantig71ity(O, N, D) - N + 1)/2

Reverse(k,N,D) = Contiguity(k,N,D)/2 k > 0

Farwurd(k,N,D) = N D -1- Reverse(k,N,D) - Still(k,N,D)

o

A.II Proof of Lemma 11

Proof: For any segment type X in Lemma 10, XT is computed from the equation: X r = Ef:01 x. D

31

	Performance of Multi-Dimensional Space- Filling Curves
	Report Number:
	

	tmp.1307986960.pdf.23pJG

