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ABSTRACT

A locality-preserving mapping (LPM) from the multi-
dimensional space into the one-dimensional space is Dben-
cficial for many applications {e.g., range queries, nearest-
neighbor querics, clustering, and declustering) when multi-
dimensional data is placed into one-dimensional storage
(e.g., the disk). The idea behind a locality-preserving
mapping is to map points that are nearby in the multi-
dimensional space into points that are nearby in the one-
dimensional space. For the past two decades, fractals {(e.g.,
the Hilbert and Peano space-filling curves) have been consid-
cred the natural method for providing a locality-preserving
mapping to support efficicnt answer for rauge queries and
similarity search queries. In this paper, we go beyond the
idea of fractals. Instead, we investigate a locality-preserving
mapping algorithm (The Spectral LPM) that uses the spec-
trum of the multi-dimensional space !. This paper prov-
ably demonstrates how Spectral LPM provides a globally
optimal mapping from the multi-dirmensional space to the
cne-dimensional space, and hence outperforms fractals. As
an application, in the context of range queries and nearest-
ncighbor queries, empirical results of the performance of
Spectral LPM validate our analysis in comparison with
Peano, Hilbert, and Gray fractal mappings.

1. INTRODUCTION

An  important consideration for multi-dimensional
databases iy how to place the multi-dimensional data into
a one-dimensional storage media {e.g., the disk) such that
the spatial properties of the multi-dimensional data are

!The authors proposcd the initial idea of using spectral or-
ders for locality-preserving mappings as an alternative to
fractals in a three-page poster paper in [40]. The overlap
between this paper and the ICDE poster is minimal and is
limited to the introduction of the Spectral LPM algorithm.
This paper provides a thorough study of the optimality of
Spectral LPM and thcoretical as well as experimental stud-
ies to analyze its performance.
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preserved. In general, there is no total ordering that [ully
preserves spatial locality. A mapping function f that maps
the multi-ditnensional space into the one-dimensional space
provides a total ordering for the multi-dimensional data.

A desirable property for the mapping function f is locality-
preservetion.  Mapping data from the multi-dimensional
space into the one-dimensional spacc is considered locality-
preserving if thc points that are nearby in the multi-
dimensional space are ncarby in the one-dimensional space.

Locality-preserving mappings from the multi-dimensional
space into the one-dimensional space are used in many ap-
plications, for example:

» Range query processing [14, 17, 30, 41): A locality-
preserving mapping enhances the performance of
multi-dimensional range queries. In a range query, it
is preferable that the gualifying records be located in
consecutive blocks rather than being randomly scat-
tered in disk. A good locality-preserving mapping
maps the records that lic in the query window in
the multi-dimensional space into a conscentive set of
blecks in disk. In [41], an extcnsive analysis is pre-
sented on the quality of locality-prescrving mappings
for providing multiple sets of ¢consecutive blocks for any
range query. Processing a consecutive set of blocks
minimizes disk seek time and hence minimizes the
query responsc time.

» Nearest-neighbor finding and similarity search: Sev-
eral nearest-neighbor and similarity search algorithms
use locality-preserving mappings [17, 37, 52]. Multi-
dimensional data is stored in disk using a locality-
prescrving mapping such that the nearest-neighbor for
any point P can be retrieved by performing a sequen-
tial scan in the forward and backward directions from
P. The quality of the locality-preserving mapping al-
gorithms is determined by: (1) the amount of sequen-
tial data that peeds to be accessed to And the nearest-
neighbor and (2} the accuracy of the result.

s Spatial join of multi-dimensional data [42, 43]. Multi-
dimeasional data is mapped into a one-dimensional do-
main using a locality-preserving mapping. The trans-
formed data is stored in a one-dimensional data struc-
ture, e.g., the B*-Tree [9], and a spatial join algorithm
is applied.

s B-Tree Packing [32]. The multi-dimensional central
points of a set of rectangles arec mapped into a one-



dimensioral domain using a locality-preserving map-
ping. Then, the rectangles arc packed into the R-
Tree (24| based on the one-dimensional value of their
central points.

» Declustering multi-dimensional buckets on multi-
ple units [I5]. The multi-dimensional buckets arc
mapped to a one-dimensional domain using a locality-
preserving mapping. Then, the buckets are assigned
to the multiple units in a round-robin fashion based
on their onc-dimensional value.

« Spatial access methods for spatial join algorithms [6,
51]. Spatial objects located in disk storage are ordered
according to the one-dimensional value of their cen-
tral point, which is obtained [rom a Iocality-preserving
mapping of the multi-dimensicnal space. This map-
ping minimizes the number of times a given page is
retricved {rom disk.

e Memory management [553]. Matrix elements are
ordered according toe a multi-dimensional locality-
preserving mapping finction rather than the usual
row-major or column-major order.

s Other uses of locality-preserving mappings include
multi-dimensional indexing [36], GIS applications [5],
disk scheduling [2], image processing [56], the trav-
eling salesman problem [3], bandwidth reduction for
sampling signals [4], graphics display generation [45],
and parallel processing [44].

These applications use space-filling curves (SFCs) [50], and
fractals [38] to provide locality-preserving mappings. Ex-
amples of these curves are the Hilbert SFC [26], the Peano
SFC [46], and the Gray SFC [13]. The Hilbert SFC is used
for locality-preserving mapping in [16, 17, 30, 32, 36, 37, 51]
while the Pcano SFC is used for locality-preserving map-
ping in [6, 42, 55, 56]. The Gray SFC is used for locality-
preserving mapping in [13, 14].

In this paper, we go beyond [ractals as a means of a
locality-preserving mapping. Instcad, we develop a Spec-
tral Locality-Preserving Mapping algorithm (Spectral LPM,
for short) [40], that makes use of the spectrum of the multi-
dimensional space. Although we focus on the effect of Spec-
tral LPM in enhancing the performance of range queries
and nearest-neighbor qucries, we believe that Spectral LPM
can efficiently replace any of the fractal lecality-preserving
mappings in the applications mentioned above. The coutri-
butions of this paper can be summarized as follows:

1. We argue against the use of fractals as a basis for
locality-preserving mapping algorithms and give some
examples and experimental cvidence to show why the
fractal-based algorithms produce a poor mapping (Sec-
tion 2),

2. We introduce the Spectral LPM algorithin, an optimal
locality-preserving mapping algorithm that depends
on the spectral properties of the multi-dimensional
points. As in the case of fractals, the Spcctral LPM
algorithm can be generalized easily to any multi-
dimensional space (Section 3).

3. We dcfinc the notion of global optimality in locality-
preserving mappings with respect to all multi-
dimensional points, and prove that the Spectral LPM
achieves this optimality (Section 4) while fractals do
not. Also, we show that there are many cases that are
infeasible to be mapped using fractals, while the same
cascs can be casily mapped optimally using Spectral
LPM (Section 5).

4. As an application, in the context of range queries and
nearest-neighbor queries, we provide empirical results
of the performance of Spectral LPM using real data
sets. The performance results validate our analysis in
comparison with several fractal mappings. We demon-
strate that Spcctral LPM is superior to the fractal-
based algorithms that have long been used for locality-
preserving mappings (Section 6).

The rest of this paper is organized as [ollows: Section 2
provides the motivation for the spectral-based algorithm by
showing the drawbacks of the fractal-based algorithms. Al-
gorithm Spectral LPM is introduced in Section 3. Section 4
gives the proof of optimality of Spectral LPM. Section 5
demonstrates how Spectral LPM may incorporate additional
requirements to the locality-preserving mapping. Experi-
mental results comparing the performance of the spectral-
and fractal-based mapping algorithms are presented in Sec-
tion §. Finally, Section 7 concludes the paper.

2. LOCALITY-PRESERVING MAPPINGS:
THE “GOOD”, THE “BAD”, AND THE
“OPTIMAL”

In this section, we start by describing what properties an
optimal locality-preserving mapping algorithm should have,
and then discuss whether or not such a mapping is feasible.
Next, we discuss the fractal locality-preserving mapping al-
gorithms based on the Peano, Gray and Hilbert space-filling
curves. We give examples that show why these algorithms
produce a poor mapping. Finally, we discuss the idea of a
spectral locality-preserving mapping that aveids the draw-
backs of the fractal mapping.

2.1 The “Good” Mapping

An optimal locality-preserving mapping algorithm maps
the multi-dimensional space into the one-dimensional space
such that the distance between each pair of points in the
multi-dimensional space is preserved in the one-dimensional
space. However, such a mapping is not {casible. For ex-
ample, for any point P in the D-dimensional space, there
are 2D neighboring points with Manhattan distance M =1,
Mapping PP and its neighbors into the one-dimensional space
allows only two neighbors to have M = 1. Thus, the dis-
tance between 2(D — 1) of the points cannot be preserved.
The best we can do in this case is to divide the 2 neighbor
points into two equal groups with L2 points in each group,
and map the first group to the right of point P in the one-
dimensiconal space, and thc other D points to the left of
P. The same argument is valid for points with Manhattan
distance M > 1. The idea of such a mapping is that it guar-
antees that the points with Manhattan distance k from P in
the multi-dimensional space will be nearer te P in the one
dimensional space than the points with Manhattan distance
k+1.
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Figure 1: The Optimal Locality-Preserving Map-
ping with respect to P.

Figure la gives an example of Point P in the two-
dimensional spacc, where it kas four ncighbors with M =1
(the white points) and eight neighbors with Af = 2 (the gray
points). Mapping P and its white neighbors into the one-
dimensional space as in Figure 1D, results in only two points
with M = 1 and another two points with M = 2. Mapping
the eight gray neighbors results in placing four of them to
the right of P and the other four to the left of P. Such a
mapping is considered an optimal locality-preserving map-
ping with respect to P, since all the points that have M =1
(the white points) in the two-dimensional space are nearer
to P in the one-dimensional space than any of the points
that have M = 2 (the gray points) in the $wo-dimensional
space.

Although this locality-preserving mapping algorithm
seems to be simple and optimal with respect to P, the map-
ping does not guarantee its optimality with respect to any
other point. For example, consider the two white points
Q, It that have [P - Q| = 1, |P — R| = 2 in the one-
dimensional space as in Figurc 1b. With respect to ft, in
the two-dimensional space, |[R—~ Q| = 2and |[R - P| = 1.
However, in the one-dimensional space, the situation is re-
versed where |R — Q| = 1 and |R — P| = 2. Thus, locality
is not preserved from the two-dimensional space into the
onc-dimensional space with respect to R. This means that
this mapping is not an optimal locality-preserving mapping
for cach individual point in the multi-dimensional space. In
Section 4, we will definc how a locality preserving mapping
algorithm can be optimal with respect to all the points in
the space.

2.2 The Fractal Mapping

For the past two decades, recursive space-filling curves,
which are special cases of fractals [38), have been considered
a natural method for locality-preserving mappings. Mandel-
brot (38], the father of fractals, derived the term fraciel from
the Latin adjective frectus. The corresponding Latin verb
frangere means “to break™ or “to fragment”. Thus, fractals
divide the space into a number of Fraginents, visiting the
fragments in a specific order. Ouce a Fractal starts to visit
points from a certain fragment, no other lragment is visited
until the current one is completely exhausted. By dealing
with one fragment at a time, fractal locality-preserving map-
ping algorithms perform a local optimization based on the
current fragmeat.

Local optimization is the major drawback in Fractal
locality-preserving mapping algorithms. Consider the case
of two points £ and F; that lie on the boundaries of two
different fragments and P — P;| = 1. Although F: and P;
are near to each other in the multi-dimensional space, they
will be far from each other in the onc-dimensional space
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Figure 2: The Fractal Locality-Preserving Mapping.

because they lie in different fragments. Figure 2 gives an
example of this boundary effect on three different [ractal
locality-preserving mapping algorithms, the Peano, Gray,
and Hilbert space-filling curves. In cach curve, the space is
divided into four quadrants, Each quadrant is divided re-
cursively into another four quadrants, as in the upper right
quadrant. Notice that, in these fractals, a quadrant repre-
sents a fragment of the space. For points P, and P in Fig-
ure 2, although |Py — P> =1 in the two-dimensicnal space,
the distance between P and P in the one-dimensional space
will be 6, 5,11 for the fractal mapping algorithms based on
the Peano, Gray, and Hilbert space-filling curves, respec-
tively. Things becomc even worse if we consider a finer res-
olution. For example, consider points Pa and P in Figure 2.
|Pa — Py| =1 in the two-dimensional space. The two points
lic in two different quadrants and are far from each other in
the one-dimensional space. The distance between PP and Py
in the one-dimensional space will be 22, 47,43 if we use the
mapping algorithms based on the Peano, Gray, and Hilbert
space-filling curves, respectively.

The boundary effect problem in fractal locality-preserving
mapping algorithms is umnavoidable, and results in non-
deterministic results. Any application that uses a locality-
preserving mapping algorithm would expect to have the
same performance in preserving the locality for all multi-
dimensional points. Fractal mapping algorithms favor the
points that lie far from fragment borders. Points that lie
near to the fragment borders fare the worst. In Section 6
we show how this property afects the perlormance of the
fractal mapping algorithms.

[37, 52] address the boundary problem in fractals by using
morc than one space-filling curve. In [37}, multiple shifted
copies of the data are stored, where each copy is ordered by
the Hilbert space-filling curve. In this case, if two points
lie on the boundary of one copy of the data, then they will
not lie on the boundary in the shifted copy. An algorithin
for similarity search queries would search in all the shifted
copies. A similar idea is proposed in [52], where multiple
different space-filling curves are used for the same set of
data. In this case, the set of candidate nearest neighbors is
formed From the union of neighbors in accordance with the
different space-filling curves. As can be observed, these are
all heuristics for presecving the locality using fractals.

2.3 The Spectral Mapping

In this paper, we propose the use of the Spectral LPM,
an optimal locality-preserving mapping with respect to all
data points, to support multi-dimensional range queries and
nearest-ncighbor qucrics. The optimality proof is presented
in Section 4. Spectral LPM avoids the drawbacks of the
fractal algorithms by using a global optimization instead of
a local one, where global optimization means that all multi-



dimensional data points are taken into account when per-
forming the mapping. Notice that the local optimization
in fractals s achieved by considering only the points in the
current fragment during the mapping process. Unlike frac-
tals, Spectral LPM does not favor any set of paints over the
others; all points are treated in a similar way.

In general, spectral algorithms use the eigenvalues and
eigenvectors of the matrix representation of a graph. Spec-
tral algorithms are based on the spectral theory which re-
lates a matrix to its eigenvalues and eigenvectors [54]. Spee-
tral theory is attributed to David Hilbert, from a series of
six papers ¢ollected and publisked as one volume in [27]. Al-
though spectral algorithms are well known for more than 90
years, their use in the computer science fields began in [12],
where the eigenvectors of the adjacency matrix A(G) of a
graph & are used in graph partitioning. A milestone in spec-
tral algorithms is due to Fiedler [18, 19] who proposcd us-
ing the cigenvalues and eigenvectors of the Laplacien matrix
L{G) of a graph G instead of the adjaccncy matrix A(G).
Following Fiedler’s work, all spectral algoritiims turn out to
usc the Laplacian matrix L{G)}). Spectral algorithms have
been widely used in graph partitioning [7, 11, 48, 49], data
clustering [7, 11, 33, linear labeling of a graph [31], and load
balancing [25]. The optimality of the spectral order in many
applications is discussed in (8, 22, 23, 31, 33). To the au-
thors' knowledge, the use of a spectral mapping in database
systems to support range and similarity search quecrics is
novel.

3. THE SPECTRAL MAPPING ALGO-
RITHM

For the remainder of this paper, we use the following no-
tations and definitions.

s P: A set of multi-dimensional points where |P| = n.
a S: A linear order of all the points in P.

o G(V, E): A graph 7 with undirected edpges £ and ver-
tices V', where |V] =n.

& di: The degree of vertex v; € V.

s A{G): The edjacency matrix of G where A(G)u =0,
and A{G@)i; = 1 if the edge (i,7) € E, o.w A(G)ij = 0.

¢ D(G) : The diagonal matrix of G where D(Gii = di,
and D(G);; = 0,Vi # j.

s L{G) : The Laplacian matrix of G where L{G)i = di,
and L(G);; = -1 1if {i,j} € E, ow L{G)i; = 0. For
any graph G, L(G) = D{G) — A(G).

# X2 : The second smallest eigenvalue for L(G).

e X, : The eipenvector {x1, 2, -+ ,Tn) that corresponds
to the eigenvalue Az. (Also known as the Fiedler vec-
tor [19]).

# ¢ : The unary vector (1,1---,1).

Based on this notation, the pseudo code for the Spectral
LPM algorithm is given in Figure 3.

Figure 4 gives an example of applying Spectral LPM to a
set of two-dimensional points in a 3 x 3 grid. The main idea
of Spectral LPM is to model the multi-dimensional points

Algorithm Spectiral LPM
Input: A set of mulli-dimensions! poinis P,
Output: A linear order 5 of the sct P.

1. Model the sel af mulli-dimensional points P &s a graph
G{V,E) such that each point P; € P is represenied by a
verlez vy € V, and there is an edge (v;,v;) € E if and anly
if 1P - P = 1.

2. Compule the graph Laplacian matriz L(G) = D(G}— A{G).

3. Compule the second smallest eigenvaltue Ay and ils corre-
sponding eigenvector X of L{G}.

4. For each I = 1 — n, assign the valuc z; (o v; and flience to
B

5. The linear order § of P is the order of the assigned values
of F's.

6. return S.
7. End.

Figure 3: Pseudo code for the Spectral LPM.
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Figure 4: The Spectral LPM algorithm.

as a set of vertices V' in an undirected, unweighted graph
G(V, E) with an edge ¢ € F between two vertices if and
only if the two vertices represent two points with Manhat-
tan distance M = 1. Figure 4b gives the graph modeling
of the multi-dimensional points in Figure 4a. Then, the
Laplecian matrix is computed as in Figure 4c, where row
i in L(G) represeuts vertex v; € V. Note that the order
used in numbering the vertices in & in Figure 4b is not im-
portant. Different orders result in different permutations of
the rows in L(G), which will yicld the same result. The
main step in Spectral LPM is to compute the second small-
est eipenvalue Ao, also known as the algebraic connectivily
of the graph [18], and its corresponding eigenvector X3, also
known as the eharacteristic valualion of the graph (18] or
Fiedler vector [19). Figure 4d gives A2 and Xz for L(G) in
Figure 4c. The eigenvalues and cigenvectors of a matrix can
be determined by any of the well known general iterative
methods, e.g., [10, 35]. More specific numerical methods to
compute the Ficdler vector are proposed in [28, 34, 53], For
a survey on iterative methods for computing cigenvalues, the
reader is referred to [21]. Finally, the value z; € Xq is as-
signed to each vertex v; € V aund point pi € . The spectral
order S is determined biy ordering the vertices and hence the
points according to their assigned values, as in Figures 4d
and 4e.




4. THE OPTIMALITY OF THE SPECTRAL
MAPPING

An optimal mapping preserves the locality from the multi-
dimensional space into the one-dimensional space. In Sec-
tion 2, we showed how a mapping can be optimal with re-
spect to a given point in the multi-dimensional space, and
we called such mapping a Iocal optimal mapping. We showed
in Figure 1 that we can not have such local optimal mapping
for each individual point in the multi-dimensional space. In
this section, we show how a mapping can be considered glob-
ally optimal for all points in the space. Then, we prove that
Spectral LPM achieves this optimality.

DeriNiTION 1. ¢ A vector X = (z),22,...,%n) that rep-
resenis the n one-dimensional values of n mulli-dimenstonal
points represented as o graph G(V, E) is considered o pro-
vide the globally optimel localily-preserving mapping from
the mulli-dimensional space inio the one-dimensional space
if X setisfles the following optimization problem.:

Minimize f= E(u.—.u,—)E ,:.;(:Ci — Tj )2

S.E:

Tae=1

i zi=0

As in Figure 4, the locality-preserving mapping problem
from the multi-dimensional space into the one-dimensional
space is the same as the problem of embedding a graph G
into a line L. A globally optimal mapping maps any twe
vertices v, v; € V where {vi, ;) € E to the points z;,z; Te-
spectively such that |z; — =] is minimized. In other words,
the points with Manhattan distance M = 1 in the multi-
dimensional space are required to be near to cach ether in
the one-dimensional space. By making this concept global
over all the edges in the graph (recall that there is an edge in
the graph between each pair of points with M = 1}, we ob-
tain the objective function: Minimizef = E(U‘,.U“)EE |z —

ey

z;|. To avoid the absolute operation, we use the square for
the difference between any two poiuts. The objective fune-
tion becomes Minimizef = 3.,. . yep(®i — z;}%. How-
ever, the minimization problem is invariant under transla-
tion, yielding an infinite number of solutions for X. For
example, the vectors X and X + a give the same result for
f. To force a unique solution to the optimization prob-
lem, we pick any valid solution X' and apply a transfor-
mation by a = —Average(X’). Thus, the mapping vec-
tor X would be X = X — Average{X'). The constraint
SIT7 3 = 0 forces a choice for X such that 327z =
ST g - I Average(X) = Yo o - n(iC] wifn) =
0. Another problem for the objective function is the exis-
tence of a trivial solution where all z;'s are set to 0, and
hence f will be 0. To find a non-trivial solution, we normal-
ize X by dividing all z;'s by || = ||= =} + 2% +--- + 2.
With this normalization, an additional constraint is added
where 3027 zf = 1.

THEOREM 1. : The oplimizetion problem in Definition !
is equivalent to the following optimization problem:

Minimize f=XTLX

Si:
XTX =1 (2)
XTe=0

ProoF. ;From the definition of the Laplacian matrix, we
have L(G) = D{G) — A(G). Therefore, the objective func-
tion can be rewritten as follows:

XTrx=XTDx - XTAX (3)

However, XTDX and XTLX can be rewritten in terms of
z;'s as [ollows:

do 0 -+ 0 1
o a0 2
xTpx = x" . ,
0 0 dn Tn
d]Il
tfzxg (4)
=(:I:1 Tz -- In
dnzn
"
=Edm‘.‘?= Z (z?+z;':)
i=1 (IJ;.I.I'J')EH
and
2ot fEE T
v, ¥ EIJ
XTA_X=($] Ta - :I:,,) (-J_)E

Loivn yeE T3 )
-Yu ¥ om=2 ¥
=1 (viy)EE (vi,v;)EL

Substituting from 4, 5 into 3 results in:

XTLX= Z (I?-!-I})—'Z Z I;Zj
(viv;)€E (vivj)EE
= Z (=i —::j)2

(vivj)EE

Sa, the objective function f = Z(u;.u,v)eE(I" —z;)* is cquiv-

alent to the objective Function f = XTLX . The two
constraints XTX = 1 and X7e = 1 arc just the vector

form representation for the two constraints 3 ,;=7 i = 1,
iy i = 0, respectively. Proving that thesc constraints

are equivalent is trivial. [

THEOREM 2. [18): The solution of the oplimization
problem in Theorem 1 is the second smallest eigenveclor Aq
and its correspording eigenveclor Xa.

Pnoor. Given the first constraint, the objective function
can be rewritten as XTLX = XTXf = XTfX = LX =
fX. Thus, X must be an eigenvector of L, with the corre-
sponding eigenvalue f. Then, the solution of the optimiza-
tion problem in Theorem 1 is the least non-trivial eigen-
value f, and its corresponding cigenvector X. Note that the
cigenvector X is puarantecd to satisfy both constraints of
the optimization problem with the transfortnation and nor-
malization procedure discussed in Theorem 1. According
to the Perron-Frobenius Theorem (developed by Perron [47)
for positive matrices and pgeneralized by Frobenius [20] for




non-negative irreducible matrices), there is only one maxi-
murm eigenvalue for any non-negative irreducible® matrix
M, which is p(M) and is called the spectral radius of M.
p(Af} is bounded by the minimum and maximum sum of all
the rows in M. Applying this theorem on the non-negative
irreducible matrix M = (n — 1) — L(G), yielding that
p(M}=mn—1. Since, p({n—1)I) =n—-1,s0 p(—L(G)) = 0.
This means that the matrix L(G) has only one minimum
eigenvalue with value 0, and therefore there is only onc
trivial eigenvalue for L{G) [1]. This means that the first
non-trivial eigenvalue for L{G} is the second one. Thus, the
minimization of XTLX is Aa, the second smallest eigenvalue
of L and its corresponding eigenvector X». [

iFrom Theorem 2, the eigenvector X» of the second small-
est eigenvalue A2 (Step 3 in Spectral LPM) is the optimal
solution of the optimization problems [or Definition 1 and
Theorem 1. Since the optimization problem in Definition 1
is modeled in the first step in Spectral LPM, then Spectral
LPM guarantees the optimal result.

5. EXTENSIBILITY OF THE SPECTRAL
MAPPING

Additional requirements caunoct be integrated in the frac-
tal locality-preserving mapping algorithms. For example,
assume that we need to map points in the multi-dimensional
space into disk pages, and we know (from experience) that
whenever point T in P is accessed, there is a very high
probability that point y in page /; will be accessed scon af-
terwards. Assume that z and y lie very far from each other
in the multi-dimensional space. A consistent mapping would
result in pages P- and P, being far away from cach other
on disk. However, it is clear that we nced to map © and y
into nearby locations in the one-dimensional storage (disk),
fractals cannot help with such an additional requirement
(i.e., the requirement of taking the probability of access inte
consideration). Fractals deal only with the location of the
multi-dimensional points in the space. In contrast, Spectral
LPM provides an extensible environment that can incorpo-
rate any number ol additional requirements. The flexibility
of Spectral LPM comes from the degree of freedom it has in
Step 1 of the Spectral LPM Algorithm, given in Figure 4.
Step 1 is the graph modeling, where any requirement can
be modeled as an edge in the graph & in Step 1 of Spec-
tral LPM. Returning to the example of two disk pages P:
and P,. To force mapping x and y into nearby locations in
the one-dimensional space using Spectral LPM, we add an
edge {z,y) to the graph &. By adding this edge, Spectral
LPM lcarns that r© and y need to be treated as il they have
Manhattan distance M =1 in the multi-dimensional space.

Another extensibility feature in Spectral LPM is that we
can change the way we construct the graph &. For exam-
ple, we can model the multi-dimensional points in a graph
G such that there is an edge between any two points B
and P; if and only if the maximum distance over any di-
mension is one. In case of the two-dimensional space, this
results in an eight-connectivity graph where cach point F;
is connected to its cight neighbors (compare with the four-
connectivity graph in Figure 4b). Figure 5 gives the mod-
eling of two-dimensional points in a 4 x 4 grid with the re-

%A matrix M is irreducible iff it represents a connected
graph.

I

L]

Figure 5: Variation of the Spectral LPM algorithm. (a)
Four-connectivity graph, (b) Its corresponding spectral
order, (c) Eight-connectivity graph, (d) Its correspond-
ing spectral order

@ B} (c) )]

sulting spectral order after applying Spectral LPM for four-
connectivity (Figures 5a, 5b) and eight-connectivity graphs
(Figures 5c, 5d).

More generally, points in the multi-dimensional space can
be modeled as a weighted graph, where the weight w of an
edge e(vy, ve) represents the priority of mapping v and v
to nearby locations in the one-dimensional space, In this
case, the definition of L{G) will be changed slightly to have
L(G)“ = Z(i,j)EE Wiy, and L(G)ij = — Wy if (i,j) € I,
o.w., L(G};; = 0. Also, the objective function of Definition 1
will be f = E(U;‘Uj)eﬁ.w.—j (zi — ;)*. However, Theorems 1
and 2 will be the same.

Notice that the proof of optimality of Spectral LPM in
Section 4 is valid regardless of the graph type. The idea of
Spectral LPM is that it is optimal for the chosen graph type.
For the rest of the paper, we choose to work with the four-
connectivity graph in Figure 4b where it has a very sparse
and symmetric matrix that results in efficient computation
time.

6. EXPERIMENTAL RESULTS

In this section, we give experimental evidence that Spec-
tral LPM is superior to any of the fractal locality-preserving
mapping algorithms. In the experiments, we focus on the
effect of Spectral LPM on similarity scarch queries (e.g.,
nearcst-neighbor queries) and range queries. However, due
to its optimality, we believe that Specctral LPM will give
similar superior performance when applied to other appli-
cations that require a locality-preserving mapping (e.g., the
set of applications mentioned tn Section 1}

We use the Linear Span for a given query selection (dif-
ference between the maximum and minimum linear coordi-
nates in the selected region) as our measure of performance.
The Linear Span measure is used in [30, 41, 42] to compare
different fractal locality-preserving mappings. The lower
the Linear Spon of a given query, the better the locality-
preserving mapping. The idea of the lower Linear Spar is
to have the ability to develop a single numeric index on a
one-dimensional space for cach point in a multi-dimensional
space such that for any given object, the range of indices,
from the smallest index to the largest, includes few points
not in the object itsell

We evaluate Spectral LPM w.r.t. Linear Spen by com-
paring Spectral LPM with three different fractal locality-
preserving mapping algorithms based on the Peano, Gray,
and Hilbert space-filling curves. In addition, we consider
a row-major method as a simple and straightlorward solu-
tion for mapping the multi-dimensional space into the one-
dimensional space. In the experiments, we refer to the row-
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major mapping by the Sweep space-filling curve (SFC) [39).
The motivation for choosing the Sweep SFC is that it pro-
vides another way of multi-dimensional mapping that is not
based on fractals. A popular example that uses the Sweep
SFC is storing the multi-dimensional matrices in memory.

For the implementation of Spectral LPM, we use the con-
jugate grodient method [34] to compute the Fiedler vector
of L{Z). The conjugaie gredienl method is proved to have
less itcrations and efficient time processing over other algo-
rithms. In addition, the conjugate gradient method directly
gives the eigenvector associated with the second smallest
eigenvalue (the Fiedler vector) without the need to compute
auy other eipenvectors., For the Hilbert SFC, we use the
methodology in [4] te generate the Hilbert SFC for an ar-
bitrary mumber of dimensions. The Peano and Gray SFCs
can be easily implemented for the D-dimensional space as
in [17]. The implementation of the Sweep SFC is straight-
forward.

We perform two sets of experiments; mesh-data and real-
data experiments. In the mesh-data experiments, we as-
sume that there exist a data point at every grid cell in
the multi-dimensional space, and we exhaustively test all
possible range and nearest-neighbor queries. In the real-
data experiments, we use a real data set and gencrate a
batch of range queries and nearest-neighbor quertes. Both
the mesh-data and real-data experiments show the superior
performance of the Spectral LPM over any other locality-
preserving mappings.

6.1 Range Query Performance using Mesh-
data

In the first sct of experiments, we run all possible four-

dimensional range queries with sizes ranging from 2% to

64% of the multi-dimensional space. Figure 6a gives the

maximum possible Lineer Span of range queries. Spectral
LPM outperforms all other locality-preserving mappings,
while the Gray and Hilbert SFCs give the worst perfor-
mance. For example, for a query that retrieves only 2%
of the multi-dimensional space, in the worst case, the Gray
and Hilbert SFCs can map this query to span 100% of the
one-dimensional space. Although, the boundary effect in
fractals is the main reason bchind this bad performance,
it does not have the same bad effect on the Peano SFC.
The main reason is that the Gray and Hilbert SFCs visit
the space fragments in the order imposed by the pray code
while the Peano SFC visits the space [ragimnents in the order
imposed by the binary code. Spectral LPM Las the smallest
Linear Span. This demonstrates the notion of global op-
timality that Spectral LPM lLas. In other words, Spectral
LPM optimizes over the entire space and treats the moulti-
dimensional space uniformly, and hence its worst-case Linear
Span is much smaller than the other SFCs.

Figure Gb tests the stability of the locality-preserving
mapping. A gooed locality-preserving mapping should pro-
vide the samc performance for cach query size, regardless
of its lacation in the space. The standard deviation of the
Linear Span is used as a measure of the stability of the
locality-preserving mapping. Lower standard deviation in-
dicates more stability. As expected {due to the boundary
effect), the Gray and Hilbert SFCs gives the worst perfor-
mance. Spectral LPM outperforms all other mappings for
all range query sizes. The Peano and Sweep SFCs give an
intermediate performance. Notice that although the Sweep
SFC is not a fractal, it gives the same performance as the
Pcano fractal mapping. The main rcason is that the Sweep
SFC discriminates between the dimensions. For example,
in the two-dimensional Sweep SFC, a range query that asks
for all points with y=1 would result in an excellent perfor-
mance, while the query that asks for all points with z =1
would result in a very bad performance. For all cascs, the
Spectral LPM does not suffer from discriminating between
dimensions, or boundary cfiect.

The same results are obtained when we perform the same
experiments in the five-dimensional space. In general, the
relative performance of the Spectral LPM over other map-
pings increases with the space dimensionality. Figures 6c,
and 6d give the maximum and standard deviation of the
Linear Span in the five-dimensional space, respectively. No-
tice that the standard deviation of the Linear Span decreases
with large query sizes for all locality-preserving mappings.
This can be clarificd if we consider the extreme case of a
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Figure 8: The performance of k-Nearest Neighbor queries in 2D and 4D spaces using mesh data.

range query that covers 100% of the space. Clearly, there
is only one range query with 100% spacc coverages. This
results in zero standard deviation.

In Figure 7, we clarify the results in Figure 6 by consider-
ing the simple case of the two-dimensional space with a 8% §
grid. Two range queries with same size (retriving 8 points
out of G4) are given for each mapping of the Sweep, Gray
and Peano SFCs. For one of the queries (the dashed query),
all mappings are doing perfectly well, where the query re-
sult is lacated sequentially in the one-dimensional space (i.e.,
no irrelevant points inside the query region). On the other
land, for the pray-shaded queries, the performance is bad.
The worst performance is that of the Gray SFC, where the
query asks for the first and last points in the one-dimeastonal
space. Thus, although such a query asks to retrieve only
12.5% of the two-dimensional space, but it spans 100% of
the one-dimensional space. The Hilbert SFC has the exact
performance as the Gray SFC. For the Sweep and Peano
SFCs, we still have very bad performance for some queries.
This variation in performance of range queries highlights the
importance of study of the standard deviation.

6.2 k-Nearest-Neighbor Using Mesh-data

Figure 8 gives the performance of &-nearest-neighbor (k-
NN) queries. In the case of mesh data, we have data points
in all space points. As a result, in the two-dimensicnal
space, when setting k = 4, k-NN retrieves the four neighbors
with Manhattan distance 1. Figures 8a gives the maximum
Linear Spon of all possible k-nearest-neighbor queries with
query size up to 50% of the four-dimensional space. The
spectral mapping gives much better performance than frac-
tals with respect to the maximum linear span.

Since Spectral LPM and the Sweep SFC have the best
performance, in Figures 8b and 8¢ we compare the perfor-
mauce of the Spectral LPM and the Sweep SFC with respect
to different space dimensions. For simplicity in prescoting
the results, the experiment is performed only for the two-
dimensional space. The z axis represents the Manhattan
distance over only one dimension. The y axis represents
the maximum possible Lineer Spen in the ope-dimensional
space for every two points with a certain Manhattan dis-
tance up to 50% of the two-dimensional space. By the curves
Sweep-X and Sweep-Y, we mean that we compute the Man-
hattan distance over the X and YV dimensions, respectively.
The same argument is valid for Spectral-X and Spectral-Y.
The performance of the Sweep mapping have much variation
when measuring the distance over the X {Sweep-X) and ¥

@ @ et @& ®1 B2 8% 0,7 B B 1

Figure 9: Data Set.

(Sweep-Y) dimensions. However, for the Spectral mapping,
the performance is very similar for the two dimensions. For
example, a query that asks for a point @ that have similar ¥
value as point P {M = ) would guarantee to have an answer
that have one-dimensional distance at most 15 (Figure 8b)
with average 6 (Figure 8c). However, if the same query asks
for a point (@ that has similar x valee, instead of y, then the
answer would have onc-dimensional distance that is up to
240 with average 91. On the other side, Spectral LPM an-
swers the fitrst query in one-dimensional distance up to 146
with average 54 and the sccond query in a one-dimensional
distance that is up to 173 with average 71. The high varia-
tion of the Sweep mapping makes it non-deterministic and
favors some queries over the others. Such high variation is
not desirable by any locality-preserving mapping.

Figure 8d performns the same experiment for all locality-
preserving mappings. The plotted curves represent the dif-
ference in the mavimum one-dimensional distance that cor-
responds to Manhattan distance M for X and Y dimen-
sions. The Swecep and Spectral curves can be derived by
getting the absolute difference |SweepY — SweepX| and
|SpectralY — SpectralX| from Figure 8b, respectively. The
Sweep mapping gives very bad perlormance. Spectral LPM
almost gives an optimal result, where the difference is al-
most 0. Fractals, have a moderate performaunce that is not
as good as Spectral LPM nor as bad as the Sweep mapping.

6.3 Performance Using Real-data Sets

In this section, we use the North East data set (Fig-
ure 9) that contains 123,593 postal addresses, which rep-
resent threc metropolitan arcas (New York, Philadclphia
and Boston} {29]. The two-dimensional space is represented
by a 128 x 128 grid. Each grid ccll corresponds to a disk
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page. Data points are aligned to the nearest grid cell. Disk
pages are stored in the order imposed by the underlying
locality-preserving mapping. It is required that the locality-
preserving mapping clusters the disk pages required to an-
swer a specific query in a minimum Linear Span.

In the first experiment (refer to Figures 10a and 10b),
we run 10,000 random range queries with sizes from 1% to
10% of the space. Figure 10a gives the average size of the
Linear Span for cach guery size. Clearly, the Spectral LPM
outperforms all other mappings. As the query sizc increases,
the relative performance of the Spectral LPM over other
mappings increases. Figurc 10b measures the stability of the
locality-preserving mappings with regard to the location of
the range query. The standard deviation of the Lirear Spen
of range queries is used as an indication for the stability.
The Spectral LIPM outperlorms all other mappings.

In the next experiment, (refer to Figures 10c and 10d), we
run 10,000 random k-ncarcst-ncighbor queries with & ranges
from 100 to 1000. Figures 10c and 10d give the average and
standard deviation of the Linear Span, respectively. Again,
the results from the real data set agrees with the analytical
results that the Spectral LPM outperforms all other locality-
Preserving mappings.

7. CONCLUSION

In this paper, we argue against the use of {ractals as a
basis lor locality-preserving mapping atgorithms by provid-
ing some examples and experimental evidence to show how
fractal mapping algorithms produce a poor mapping. Then,
we introduce the Spectral LIM; a provably optimal algo-
rithm for mapping the multi-dimensional! space into the one-
dimcnsional space such that the points that are nearby in
the multi-dimensional space would still be nearby in the
one-dimensional space. Spectral LPM uses the spectral
properties of the multi-dimensional space where the multi-
dimensional points are mapped into a graph G(V, E). Then,
the linear order of the multi-dimensional points is deter-
mined by their order within the eigenvector X2 that corre-
sponds to the second smallest eigenvalue Az of the Laplacian
matrix L(G). In addition, we provide a mathematical proofl
for the optimality of Spectral LPM. Unlike fractals, Spectral
LPM can incorporate any number of additional requirements
for the locality-preserving mapping. Experimental analysis
confirms the superior performance of Spectral LPM over the
long uscd fractal locality-preserving mapping algorithms for
similarity scarch queries and range queries.
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