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ABSTRACT
A locality-preserving mapping (LPM) from the multi­
dimensional space into the one-dimensional space is ben­
eficial for many applications (e.g., range queries, ncarest­
neighbor queries, clustering, and dedustcring) when multi­
dimeIlsional data is placed into one-dimensional storage
(e.g., the disk). The idea behind a locality-preserving
mapping is to map points that are nearby in the multi­
dimensional space into points that are nearby in the one­
dimensional space. For the past two decades, fractal::; (e.g.,
the Hilbert and Penna space-filling curves) have been consid­
ered the natural method for providing a locality-preserving
mapping to support effieient answer for range queries and
similarity search queries. In this paper, we go beyond the
Idea of fractals. Instead, we investigate a locality-preserving
mapping algorithm (The Spectral LPM) that uses the spec­
trum of the multi· dimensional space 1. This paper prov~

ably demonstrates how Spectral LPM provide.s a globally
optimal mapping from the multi-dimensional .space to the
one-dimensional space, and hence outperforms fractals. As
an application, in the context of range queries and nearest­
neighbor queries, empirical results of the performance of
Spectral LPM validate our analysis in comparison with
Peano, Hilbert, and Gray fractal mappings.

1. INTRODUCTION
An important consideration for multi-dimensional

databa~es is how to place the multi-dimensional data into
a one-dimensional storage media (e.g., the disk) such that
the spatial properties of the multi-dimensional data are

lThe authors proposed the initial idea of u.sing spectral or­
ders for locality-preserving mappings as an alternative to
fractals in a three-page poster paper in [40]. The overlap
between this paper and the lODE poster is minimal and is
limited to the introduction of the Spectral LP~'l algorithm.
This paper provides a thorough study of the optimality of
Spectral LPM and theoretical as well as experimental stud­
ies to analyze its performance.
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preserved. In general, there is no total ordering that fully
preserves spatial locality. A mapping function f that maps
the multi-dimensional space into the one-dimensional space
provides a total ordering for the multi-dimensional data.

A desirable property for the mapping function f is locality.
presenmtirm. Mapping data from the multi-dimensional
space into the one-dimensional space is considered locality­
preseroino if the points that are nearhy in the multi­
dimensional space arc nearby in the one-dimensional space.

Locality-preserving mappings from tbe multi-dimensional
space into the one-dimensional space arc used in many ap­
plications, for e.-,:ample:

• Range query processing [14, 17, 30, 41]: A locality­
preserving mapping enhances the performance of
multi-dimensional range queries. In a range query, it
is preferable that the qllalifying records be located in
consecutive blocks rather than being randomly scat­
tered in disk. A good locality-preserving mapping
maps the records that lie in the query window in
the mlliti-dimensional space into a consecutive set of
blocks in db:k. In [41], an extensive analysis is pre­
sented on the quality of locality-preserving mappings
for providing multiple sets of consecutive blocks for any
range query. Processing a consecutive ~et of blocks
minimizes disk seck time and hence minimb:es the
query response time.

• Nearest-neighhor finding and similarity search: Sev­
eralnearest-neighhor and similarity search algorithms
use locality-preserving mappings [17, 37, 52]. Multi­
dimensional data is stored in disk Iising a locality­
preserving mapping such that the nearest-neighbor for
any point P can be retrieved by performing a sequen­
tial scan in the forward and backward directions from
P. The quality of the locality-preserving mapping al­
gorithms is determined by: (1) the amount of sequen­
tial data that needs to be accessed to find the neare.<;t­
neighbor and (2) the accuracy of the result.

• Spatial join of multi-dimensional data [42, 43]. Multi­
dimensional data is mapped into a one-dimensional do­
main using a locality-preserving mapping. The trans­
formed data is stored in a onc-dimensional data struc­
ture, e.g., the n+-Tree [9], and a spatial join algorithm
is applied.

• R-Tree Packing [32]. The multi-dimensional central
points of a set of rectangles are mapped into a one-



dimensional domain using a locality-preserving map­
ping. Then, the rectangles arc packed into the R·
Tree [24J based on the one-dimensional value of their
central points.

• Declustering multi-dimensional buckets on multi­
ple units [15]. The multi-dimensional buckets arc
mapped to a one-dimensional domaill l1sing a locality­
preserving mapping. Then, the buckets are assigned
to the multiple units in a round-robin fashion based
on their one· dimensional value.

• Spatial access methods for spatial join algorithms [6,
51]. Spatial objects located in disk storage are ordered
according to the one-dimensional value of their cen­
tral point, which is obtaiued from a locality-preserving
mapping of the multi-dimensional space. This map­
ping minimizes the number of times a given page is
retrieved from disk.

• Memory management [55]. Matrix clements are
ordered according to a multi-dimensional locality­
preserving mapping flln<:tion rather than the usual
row-major or column-major order.

• Other uses of locality-preserving mappings include
multi-dimensional indexing [36], GIS applications [5],
disk scheduling [2}, image proce.qsing [56], the trav­
eling salesman problem {3], bandwidth reduction for
sampling signals [4], graphics display generation [45],
and parallel processing [44].

These applications use space-filling curves (SFCs) [50], and
fractals [38] to provide locality-preserving mapping~. Ex­
amples of these curves are the Hilbert SFC [26], the Peano
SFC [46), and the Gray SFC [13]. The Hilbert SFC is used
for locality-preserving mapping in [16,17,30,32,36,37,51]
while the Peano SFC is used for locality-preserving map­
ping in [6, 42, 55, 56]. The Gray SFC is used for locality­
preserving mapping in [13, 14].

In this paper, we go beyond fractals as a means of a
locality-preserving mapping. Instead, we develop a Spec­
tral Locality-Presernlng Mapping algorithm (Spectral LPM,
for short) [40], that makes 11se of the spectrum of the multi­
dimensional space. Although we focu~ on the effect of Spec­
tral LPM in enhancing the performance of range q11eries
and nearest-neighbor queries, we believe that Spectral LPM
can efficiently replace any of the fractal locality-preserving
mappings in the applications mentioned above. The contri­
butions of this paper can be summarized as follows:

1. We argue against the use of fractals as a basis for
locality-preserving mapping algorithms and give some
examples and experimental evidence to show why the
fractal-based algorithms produce a poor mapping (Sec.
tion 2).

2. We introduce the Spectral LPM algorithm, an optimal
locality-preserving mapping algorithm that depends
on the spectral properties of the multi-dimensional
points. As in the case of fractals, the Spectral LPM
algorithm can be generali7.ed easily to any multi­
dimensional space (Section 3).

3. We define the notion of global optimality in locality­
preserving mappings with respect to all multi­
dimensional points, and prove that the Spectral LPM
achieves this optimality (Section 4) while fractals do
not. Also, we show that there are many cases that arc
infeasible to be mapped using fractals, while the same
cases can bc easily mapped optimally using Spectral
LPM (Section 5).

4. As an application, in the context of range queries and
nearest-neighbor queries, we provide empirical results
of the performance of Spectral LPM using real data
sets. The performance results validate our analysis in
comparison with several fractal mappings. We demon­
strate that Spectral LPM is superior to the fractal­
based algorithms that have long been used for locality­
preserving mappings (Section 6).

The rest of this paper is organized (1..'> follows: Section 2
provides the motivation for the spectral-based algorithm by
showing the drawbacks of the fractal-based algorithms. Al­
gorithm Spectral LPM is introduced in Section 3. Section 4
gives the proof of optimality of Spectral LPM. Section 5
demonstrates how Spectral LPM may incorporate additional
req\lirements to the locality-preserving mapping. Experi­
mental results comparing the performance of the spectral­
and fractal-based mapping algorithms arc presented in Sec­
tion 6. Finally, Section 7 concludes the paper.

2. LOCALITY·PRESERVING MAPPINGS:
THE "GOOD", THE ''BAD'', AND THE
"OPTIMAL"

In this section, we ~tart by describing what properties an
optimal locality-preserving mapping algorithm should havc,
and then discuss whether or not such a mapping is feasible.
Next, we discuss the fractal locality-preserving mapping al­
gorithms based on the Peano, Gray and Hilbert space-filling
curves. 'We give e.....amplcs that show why these algorithms
prod1lce a poor mapping. Finally, we discuss the idea of a
spectral locality-preserving mapping that avoids the draw­
backs of the fractal mapping.

2.t The "Good" Mapping
An optimal locality-preserving mapping algorithm maps

the multi-dimensional space into the one-dimensional space
such that the distance between each pair of points in the
rn11lti-dimensional space is preserved in the one· dimensional
space. However, slIch a mapping is not feasible. For ex­
ample, for any point P in the D-dimensional space, there
are 2D neighboring points with Manhattan distance !vI = 1.
Mapping P and its neighbors into the one-dimensional space
allows only two neighbors to have M = 1. Thus, the dis­
tance between 2(D - 1) of the points cannot be preserved.
The best we can do in this case is to <livide the 2D neighbor
points into two equal groups with D points iu each group,
and map the first group to tIle right of point P in the one­
dimensional space, and the other D points to the left of
P. The same argument is valid for points with Manhattan
distance M > 1. The idea of such a mapping is that it guar­
antees that the points with Manhattan distance k from P in
the multi-dimensional space will be nearer to P in the one
dimensional space than the points with Manhattan distance
k+1.
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Figure 1: The Optimal Locality-Preserving Map­
ping with respect to P.

Figure Ia gives an example of Point P ill the twa..
dimensional space, where it has four Ilcigllbors with M = 1
(the white points) and eight neighbors with M = 2 (the gray
points). Mapping P and its white neighboPi into the one­
dimensional space as in Figure lb, results in only two points
wUh lY[ = 1 and another two points with M = 2. Mapping
the eight gray neighbors results in placing four of them to
the right of P and the other four to the left of P. Such a
mapping is con::;idered an optimal locality-preserving map­
ping v.-ith respect to P, since all the points that have J"f = 1
(the white points) in the two-dimensional space a:re nearer
to P in the one-dimensional space than any of the points
that have M = 2 (the gray points) in the two-dimensional
space.

Although this locality-preserving mapping algorithm
seems to be simple and optimal with respect to P, the map­
ping does not guarantee its optimality 'wi.th respect to any
other point. For example, consider tbe two white points
Q, R that have IP - QI = 1, IF - RI = 2 in tbe one·
dimensional space as in Figure Ib, With respect to R, in
the two-dimensional space, IR- QI = 2 and IR - PI = 1.
However, in the one-dimensional space, the situation is re­
\'ersed where IR - QI = 1 and IR - PI = 2. Thus, locality
is not preserved from the two-dimensional space into the
one-dimensional space with respect to R. This means that
this mapping is not an optimal locality-preserving mapping
for each individual point in the multi-dimensional space. In
Section 4, we will define how a locality preserving mapping
algorithm can be optimal with respect to all the points in
the space.

2.2 The Fractal Mapping
For the past two decades, recursive space-filling curves,

which are special cases of fractals [38), have been considered
a natural method for locality-preserving mappings. Mandel­
brot (381, the father of fractals, derived the term fractal from
the Latin adjective Jrnctus. The corresponding Latin verb
Jran9crc means "to break" or "to fragment". Thus, fractals
divide the space into a number of fragments, visiting the
fragments in a specific order. Once a fractal starts to visit
points from a certain fragment, no otber fragment is visited
until the current one is completely exhausted. By dealing
with one fragment at a time, fractallocality-prcserving map­
ping algorithms perform a local optimization ba:;ed on the
cnrrent fragment.

Local optimization is the major drawback in fractal
locality-preserving mapping algorithms. Consider tbe case
of two points Pi and Pj that lie on the boundaries of two
different fragments and IP; - Pjl = 1. Although Pi and Pj
are near to each other in the multi-dimensional space, they
will be far from each other in the one-dimensional space

Figure 2: The Fractal Locality-Preserving Mapping.

becallse they lie in different frab'llients. Figure 2 gives an
example of this boundary effect on three different fractal
locality-preserving mapping aJgoritblll.5, the Peano, Gray,
and Hilbert space-filling curvcs. In each curve, the space is
divided into four quadrants. Each qlladrant is divided re­
cursively into another four quadrants, as in the upper right
quadrant. Notice that, in these fractals, a quadrant repre­
sents a fragment of the space. For points PI and P2 in Fig­
ure 2, although 1Ft - P21 = 1 in the two--dimensional space,
the distance between PI and P2 in the one-dimensional space
will be 6, 5, 11 for the fractal mapping algorithms based on
the Peano, Gray, and Hilbert space-filling curvcs, rcspec­
tively. Things become even worse if we consider a finer res­
olution. For example, consider points P3 and P.l in Figure 2.
IP3 - P41= 1 in the two-dimensional space. The two points
lie in two different quadrants and arc far from each other in
the one-dimensional space. The distance between P3 and P4

in the one-dimensional space will be 22,47,43 if we usc the
mapping algorithms based on the Peano, Gray, and Hilbert
space-filling curves, respectively.

The boundary effect problem in fractallocality-prcserving
mapping algorithms is unavoidable, and results in non­
deterministic results. Any application that uses a locality­
preserving mapping algorithm would expect to have the
same performance in preserving the locality for all multi­
dimensional points. Fractal mapping algorithms favor the
points that lie far from fragment borders. Points that lie
near to the fragment borders fare the worst. In Section 6
we show holV this property affects the performance of the
fractal mapping algorithms.

(37,52] address the boundary problem in fractals by using
more than one space-filling curve. In [37), multiple shifted
copies of the data are stored, where each copy is ordered by
the Hilbert space-filling curve. In this case, if two points
lie on the boundary of one copy of the data, then they will
not lie on the boundary in the shifted copy. An algorithm
for similarity search queries would search in all the shifted
copies. A similar idea is proposed in [521, where multiple
different space-filling curves are used for the same set of
data. Iu this case, the set of candidate nearest neighbors is
formed from the union of neighbors in accordance with the
different space-filling curves. As can be observed, these are
all heuristics for preserving the locality using fractals.

2.3 The Spectral Mapping
In this paper, we propose the use of the Spectral LPM,

an optimal locality-preserving mapping with respect to all
data points, to support multi· dimensional range queries and
nearest.neignbor queries. The optimality proof is presented
in Section 4. Spectral LPM avoids the drawbacks of the
fractal algorithms by using a global optimization instead of
a local one, where global optimization means that all multi-



Figure 3: Pseudo code for the Spectral LPM.

Algorithm Spectral LPM
Input: A set oj mufti-dimensional points P.
Output: A li,ll:ar orner S of t/le sct P.

1. Model the set oj mtllti-dimensionaj poi"t..,· P as a gmph
G(V, E) stlch that eac/! poi"t Pi E P IS represented by a
vcrlc:!: Vi E \1, lIlId lhere is an edge (Vi, Vj) E FJ if M.d D7lly
IfIPi-Pjl=l.

2. Compute the graph Laplacian matn:!: [_(G) = D(G)-h(G).

3. Compute tile seClllld smallest eigenvalue >'2 and its CllrTC·
spolldi'lg eigenvector X 2 oj L{G}.

~. !'"'or Cllel. i = 1 --t n, assign the valuc Xi to Vi aud lIeflce lo
P,

5. Thc liflCllr order S of P is the order of the aS~'igrlcd valucs
af Pi'S.

6. return S.

7. End.

(e) Tho Lopl",i ..M"';. L(;)

FE ['_.._... 00 ~• _']_10_'0000
0_"00_10"0

(..-'003-'0-'00
0_'0_"_10_'0

3 00_10_"0"_'
0"0_100'_'0
0000_'0_"·'
0000'_'0_",

• • •
• • •
• • •

(oj Mulli-di"",n"Dnoi Pnin"

},_ l

.\0_ (-om. -Q:?? _11.57. 0.2S, O. _0.:111. 0,$1. O,!Y. aWl

Suf:!' I. $. 0.-1. S. J. 1.6)

3. THE SPECTRAL MAPPING ALGO­
RITHM

dimensional data points are taken into aCCO\lOt when per­
forming the mapping. Notice that the local optimization
in fractals is achieved by considering only the points in the
current fragment during the mapping process. Unlike frac­
tals, Spectral LPM does not favor any set of points over the
others; all points are treated in a similar way.

In general, spectral algorithms usc the eigenvalues and
eigenvectors of the matrix representation of a graph. Spec­
tral algorithms are based on the spectral theory which re­
lates a matrix to its eigenvalues and eigenvectors [54J. Spec­
tral theory is attributed to David Hilbert, from a series of
six papers collected and published as one volume in [27J. Al­
though spectral algorithms arc well known for more than 90
years, their lise in the computer science fields began in [12],
where the eigenvectors of the adjacency matri..... A(G) of a
graph G are used in graph partitioning. A milestone in spec­
tral algorithms is due to Fiedler [18, 19J who proposed us­
ing the eigenvalues and eigenvectors of the Laplacian matrix
L(G) of a graph G instead of the adjacency matrix A(G).
Following Fiedler's work, all spectral algorithms turn out to
usc the Laplacian matrix L{G). Spectral algorithms have
been widely used in graph partitioning [7, 11, 48, 49], data
clustering [7, II, 33], linear labeling of a graph [31], and load
balancing [25]. The optimality of the spectral order in maIlY
applications is discussed in [8, 22, 23, 31, 33J. To the au­
thors' knowledge, the usc of a spectral mapping in database
systems to support range and similarity search queries is
novel.

For the remainder of this paper, we usc the following no­
tations and definitions.

(oj The 51""',,1 OJ&"

• P: A set of rnulti-dimen.sional points where !PI = TI.

• $: A linear order of all the points in P.

• G(V, E): A graph G with undirected edges E and ver­
tices V, where IVI = 11.

• d i : The degree of vertex Vi E V.

• A(G): The adjacency matrix of G where A(G)ii = 0,
and A(G)ij = 1 if the edge (i,j) E E, o.w A(G)ij = O.

• D(G) : The diagonal matrix of G where D(G);i = di,
and D(G)ij = 0, Vi i= j.

• L(G): The Laplacian matrix of G where L(G)ii = di,
and L(G);j = -1 if (i,j) E E, o.w L(G)ij = O. For
any graph G, L(G) = D(G) - A(G).

• >'2: The second smallest eigenvalue for L(G).

• X 2 : The eigenvector (Xl, X2,··· ,x,,) that corresponds
to the eigenvalue >'2. (Also known as the Fiedler vec­
tor [19]).

• e: The unary vector (1,1··· ,1).

Based on this notation, the pseudo code for the Spectral
LPM algorithm is given in Figure 3.

Fib'llre 4 gives an example of applying Spectral LPM to a
set of two-dimensional points in a 3 x 3 grid. The main idea
of Spectral LPM is to model the multi-dimensional points

Figure 4: The Spectral LPM algorithm.

as a set of vertices V in an undirected, unweighted graph
G(V, E) with an edge e E E between two vertices if and
only if the two vertices represent two points with Manhat­
tan distance M = 1. Figure 4b gives the graph modeling
of the multi-dimensional points ill Figure 4a. Then, the
Laplacian matrix is computed as in Figure 4c, where row
i in L(G) represents vertex Vi E V. Note that the order
used in numbering the vertices in G in Figure 4b is not iIIl­
portant. Different orders result in different permutations of
the rows in L(G), which will yield the same result. The
main step in Spectral LPM is to compute the second sIIlall­
est eigenvalue >'2, also known as the algebraic connectivity
of the graph [18], and its corresponding eigenvector X2, also
known as the chamdenstic valtlatio,1 of the graph (18J or
Fiedler vector [19J. Figure 4d gives >'2 and X2 for L(G) in
Figure 4c. The eigenvalues and eigenvectors of a matrix can
be deterIIlined by any of the well known general iterative
methods, e.g., [10, 35J. More specific numerical methods to
cOIIlpute the Fiedler vector are proposed in [28, 34, 53]. For
a survey on iterative methods for computing eigenvalues, the
reader is referred to [21]. Finally, the value Xi E X 2 is as­
signed to each vertex Vi E V and point Pi E P. The spectral
order S is deterIIlined by ordering the vertices and hence the
points according to their assigned values, as in Figures 4d
and 4e,



PROOF, iFrom the definition of the Laplacian matrix, we
have L(G) = D(G) - A(G). Therefore, the objective func­
tion can be rewritten a'l follows:

XTLX = XTDX _ X TAX (3)

However, X T DX aud X T LX can be rewritten in terIllS of
xi's as follows:

4. THE OPTIMALITY OF THE SPECTRAL
MAPPING

An optimal mapping preservcs the locality from the multi­
dimensional space into the one-dimensional space. In Sec­
tion 2, we showed how a mapping can be optimal with re­
spect to a given point in the multi-dimensional space, and
we called such mapping a local optimal mapping. We :>howed
in Figure 1 that we can not have such local optimal mapping
for each individual point in the multi-dimensional space. In
this section, we show how a mapping can be considered glob­
ally optimal for all points in the space. Then, we prove that
Spectral LPM achieves this optimality.

DEFINITION 1. : A VectOT X = (Xl, X2, ••• ,xn) that rep­
resents the n one-dimen.~iontll values of n multi-dimensional
points repn.~ented as a graph G(V, E) is cornidered to pTO­
vide tlie globally optimal locality.presenJing mapping from
tlie multi-dimensional space into tlie. one-dimensional space
if X satisfies the following optimizaUon problem:

o
d,

o ][J
(

dlZI )
d~X2

dox"

(4)

"
Mini11lize

S.t:
,\,~=n z~ = 1
LJ,=1 ,
".~o 0
LJi=1 Zi =

(1)

=LdiX~= L (x~+xJ)
i=l (v;,vj)Eb'

"nd

THEOREM 1. : The optimization problem in Definition 1
is equivalent tlJ the following op/imizatilJn problem:

As in Figure 4, the locality-preserving mapping problem
from the multi-dimensional space into the one-dimensional
space is the same as the problem of embedding a graph G
into a line L. A globally optimal mapping maps any two
vertices Vi, Vj E V where (Vi, Vj) E E to the points Zi, Zj re­
spectively such that IZi - Zjl is minimized, In other words,
the points with Manhattan distance M = I in the multi­
dimensional space are required to be near to eaeh other in
the one·dimensional space. By making this concept global
over all the edges in the graph (recall that there is an edge iu
the graph between each pair of points with M = 1), we ob­
tain the objective function: },iIinimizef = 2:(U;,U;)EE IXi­

Xjl. To avoid the absolute operation, we use the square for
the differencc between any two points. The objective func­
tion becomes Minimize! = 2:(v;,vj)Ef:(Xi - Xj)~. How­
ever, the minimization problem is invariant under transla­
tion, yielding an infinite number of solutions for X. For
example, the vectors X and X + a give the same result for
f. To rorce a unique solution to the optimi7.ation prob­
lem, we pick any valid solution X' and apply a transfor­
mation by a = -Average(X'). Thus, the mapping vec­
tor X would be X = X' - Average(X'). The constraint

2::~~ Xi = 0 forces a choice for X such that L~~~ Xi =
2::~~ x~ - 2:;~~ Averuge(X') = 2::~~ x;-n(L;~~' x;/n) =
O. Another problem for the objective function is the exis­
tence of a trivial solution where all Xi'S are set to 0, and
hence f will be O. To fwd a non-trivial solution, we normal­
ize X by dividing all Xi'S by II x 11= Jzi+x~ +·,,+x~.
\Vith this normali7.ation, an additional constraint is added
where 2:~~~ Xl = 1.

(5)

= L (Xi _Zj)2

(u,,";JEE

"
= LXi L Xj = 2 L XiXj

;=1 (u;,uj)EE (v"vj)Eb'

X 1'[,X= L (x~+xJ)-2 L XiXj

(u;,u;)EE (v"v;JEE

THEORI>M 2. [lB}: The solution 01 the optimization
problem in Theorem 1 is the second smallest eigcn1Jedor ..\~

and its COrTCsplJnding eigenvector X 2 •

PROOF, Given the first constraiut, the objective function
can be rewritten as X T LX = X T X f = X'f' f X :::} LX =
f X, Thus, X must be au eigenvector of L, with the corro­
sponding eigenvalue f. Then, the solution of the optimiza­
tion problem in Theorem 1 is the least non-trivial eigen­
value I, and its corresponding eigenvector X. Note that the
eigenvector X is guaranteed to satbfy both constraints of
the optimization problem with the transformation and nor­
malization procedure discussed in Theorem 1, According
to the Perron-Frobenills Theorem (developed by Perron [47]
for positive matrices and generalized by Frobenius [20] for

Substituting from 4, 5 into 3 results in:

So, the objective function f = 2:(";,Uj)EE(XI-Xj)~ is equiv­

alent to the objective function I = XT LX, The two
constraints X T X = 1 and X Te = 1 arc just the vector
form representation for the two constraints 2::~~ Xl = 1,
2::~~ Xi = 0, respectively. Proving that these constraints
are equivalent is trivial. 0

(2)
X TX=1
X·f'e=O

Minimize I = X·I'LX
S.t:



Figure 5: Variation or the Spectral LPM algorithm. (a)
Four-connectivity graph, (b) Its corresponding spectral
order, (c) Eight-connectivity graph, (d) Its correspond­
ing spectral order

non-negativt: irreducible matrices), there is only one maxi­
mum eigenvalue for any non-negative irreducible2 matrix
M, which is p(M) and is called the spectral radius of M.
p(M) is hounded by the minimum and maximllm sum of all
the rows in }vI. Applying this theorem on the non-negaHve
irreducible matrix M = (n - 1)1 - L(G), yielding that
p(M) = n-l. Since, p((n -1)1) = 71-1, so p( -L(G)) = o.
This means that the matrix L(G) has only one minimum
eigenvalue ,,'ith value 0, and therefore there is only one
trivial eigenvalue for L(G) [1]. This means that the first
non-trivial eigenvalue for L(G) is the second one. Thus, the
minimization of X T LX is "\'2, the second smallest eigenvalue
of L and its corresponding eigenvector X 2 • 0

,., <0, '0' '"'

i.From Theorem 2, the eigenvector X2 of the second small­
est eigenvalue "\2 (Step 3 in Spectral LPM) is the optimal
solution of the optimization problems for Definition 1 and
Theorem 1. Since the optimizatioll problem in Definition 1
is modeled in the first step in Spectral LPM, then Spectral
LPM guarantees the optimal result.

5. EXTENSIBILITY OF THE SPECTRAL
MAPPING

Additional requirements cannot be integrated in the frac­
tal locality-preserving mapping algorithms. For example,
assllme that we need to map points in the multi-dimensional
space into disk pages, and we know (from experience) that
whenever point x in P" is accessed, there i~ a very high
probability that point y in page PIl will be accessed soon af­
terwards. Assume that x and y lie very far from each other
in the multi-dimensional space. A consistent mapping would
result in pages Per and P II being far away from each other
on disk. However, it is clear that we need to map x and y
into nearby locations in the one-dimensional storage (disk),
fractals cannot help with such an additional requirement
(Le., the requirement of taking the probability of access into
consideration). Fractals deal only with the location of the
multi-dimensional points in the space. In contrast, Spectral
LPM provides an extensible environment that can incorpo.
rate any number of additional requirements. The flexibility
of Spectral LPM COllies from the degree of freedom it has in
Step 1 of the Spectral LPM Algorithm, given in Figure 4.
Step 1 is the graph modeling, where any requirement can
be modeled as an edge in the graph G in Step 1 of Spec­
tral LPM. Returning to the example of two disk pages P"
and P~. To force mapping x and y into nearby locations in
the one-dimensional space using Spectral LPM, we add an
edge (x, y) to the graph G. By adding this edge, Spectral
LPM learns that x and y need to be treated as if they have
Manhattan distance wI = 1 in the multi-dimensional space.

Another extensibility feature ill Spectral LPM is that we
can change the way we construct the graph G. For exam­
ple, we can model the multi-dimensional points in a grapb
G such that there is an edge between any two points Pi
and Pj if and only if the maximum distance over any di­
mension is one. In case of the two-dimensional space, this
results in an eight-connectivity graph where each point P;
is connected to its eight neighbors (compare with the four­
connectivity graph in Figure 4b). Figure 5 gives the mod­
eling of two-dimensional points in it 4 x 4 grid with the re-

:;: A matrix M is irreducible iff it represents a connected
graph.

suIting spectral order after applying Spectral LPM for four­
connectivity (Figures 5a, 5b) and eight-connectivity graphs
(Figures 5c, 5d).

More generally, points in the multi·dimensional space can
be modeled as a weigbted graph, where the weight w of an
edge e(vl, V2) represents the priority of mapping VI and V2
to nearby locations in the one-dimensional space. In tbis
case, the definition of L(G) will be changed slightly to bave
L(G)ii = L(i,j)EEWij, and L(G)jj = -Wij if (i,j) E E,
o.w., L(G)ij = O. Also, the objective function of Definition I
will be f = L( .. ,<"Wij(X; -Xj)~. However, Theorems 1v"v, ...
and 2 will be the same.

Notice that the proof of optimality of Spectral LPM in
Section 4 is valid regardless of the graph type. The idea of
Spectral LPM is that it is optimal for the ("nosen graph type.
For the rest of the paper, we choose to work with the four­
connectivity graph in Figure 4b where it has a very sparse
and symmetric matrix that results in efficient computation
time.

6. EXPERIMENTAL RESULTS
In this section, we give experimental evidence that Spec­

tral LPM is superior to any of the fractal locality-preserving
mapping algorithms. In the experiments, we focus on tbe
effect of Spectral LPM on similarity search queries (e.g.,
nearest-neighbor queries) and range queries. However, due
to its optimality, we believe that Spectral LP?\,I will give
similar superior performance when applied to other appli­
cations that require a locality-preserving mapping (e.g., the
set of applications mentioned in Section 1).

We use the Linear Span for a given query selection (dif­
ference between the maximum and minimum linear coordi­
nates in the selected region) as our measure of performance.
The Linear Span measure is used in [30, 41, 42] to compare
different fractal locality-preserving mappings. The lower
the Linear Span of a given query, the better the locality­
preserving mapping. The idea of the lower Linear Span is
to have the ability to develop a single numeric index on a
one-dimensional space for each point in a multi-dimensional
space such that for any given object, the range of indices,
from the smallest index to the largest, includes few points
not in the object itself.

We evaluate Spectral LPM w.r.t. Linear Span by com­
paring Spectral LPM with three different fractal locality­
preserving mapping algorithms based on the Peano, Gray,
and Hilbert space-filling curves. In addition, we consider
a row-major method as a simple and straightforward solu­
tion for mapping the multi-dimensional space into the one­
dimensional space. In the experiments, we refer to the row-
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Figure 6: The performance of range queries in 4D, 5D spaces.

Figure 7: Examples of 2D range queries.

major mapping: by the Sweep spnce-fLIling curve (SFC) [39J.
The motivdtion for choosing the Sweep SFC is that it pro­
vides another way of multi·dimensional mapping that is not
based on fractals. A popular example that uses the Sweep
SFC is storing the multi-dimensional matrices in memory.

For the implementation of Spectral LPM, we use the con­
jugate grndient method [34] to compute the Fiedler vector
of L(O). The amjlJ.gate gradient method is proved to have
less iterations and efficient time processing over other algo­
rithms. In addition, the conjugate gradient method directly
gives the eigenvector associated with the second smallest
eigeuvalue (the Fiedler vector) without the need to compute
auy other eigenvectors. For the Hilbert SFC, we use the
methodology in [4J to generate the Hilbert SFC for an ar­
bitrary number of dimensions. The Peano and Gray SFCs
can be easily implemented for the D-dimensional space as
in [17]. The implementation of the Sweep SFC is straight­
forward.

We perform two sets of e.''{periments; mesh-data and real­
data experiments. In the mesh-data experiments, we (1$­

sume that there exist a data point at every grid cell in
the multi-dimensional space, and we exhaustively test all
possible range and nearest-neighbor queries. In the real­
data experiments, we use a real data set and generate a
batch of range queries and neare.,>t-neighbor queries. Both
the mesh-data and real-data experiments show the superior
performance of the Spectral LPM over any other locality­
preserving mappings.

6.1 Range Query Performance using Mesh­
data

In the first set of experiments, we run all possible four­
dimensional range queries with sizes ranging from 2% to
64% of the multi-dimensional space. Figure 6a gives the

ma'Cilllum possible Linear Span of range queries. Spectral
LPM outperforms all other locality-preserving mappings,
while the Gray and Hilbert SFCs give the worst perfor­
mance. For example, for a query that retrieve.,> only 2%
of the multi-dimensional space, in the worst case, the Gray
and Hilbert SFCs can map this query to span 100% of the
one-dimensional space. Although, the boundary effect in
fractals is the main reason behind this bad performance,
it does not have the same bad effect on the Peano SFC.
The main reason is that the Gray and Hilbert SFCs visit
the space fragments in the order imposed by the gray code
while the Peano SFC visits the space fragments in the order
imposed by the binary code. Spectral LPM has the smallest
Linear Span. This demonstrates the notion of global op­
timality that Spectral LPM has. In other words, Spectral
LPM optimizes over the entire space and treats the multi­
dimensional space uniformly, and hence its worst-case Linear
Span is much smaller than the other SFCs.

Figure fib tests the stability of the locality-preserving
mapping. A good locality-preserving mapping should pro­
vide the same performance for each query size, regardless
of it!; location in the space. The standard deviation of the
Linear Span is used as a mea,>ure of the stability of the
locality.preserviug mapping. Lower standard deviation in­
dicates more stability. As expected (due to the boundary
effect), the Gray and Hilbert SFCs gives the worst perfor­
mance. Spectral LPi....I outperforms all other mappings for
all range query sizes. The Peano and Sweep SFCs give an
intermediate performance. Notice that although the Sweep
SPC is not a fractal, it gives the same performance as the
Peano fractal mapping. The main reason is that the Sweep
SFC discriminates between the dimensions. For example,
in the two-dimensional Sweep SFC, a range query that asks
for all points with y=l would result in an excellent perfor­
mance, while the query that asks for all points with x = 1
would result in a very bad performance. For all cases, the
Spectral LPM does not suffer from discriminating between
dimensions, or boundary effect.

The same results are obtained when we perform the same
experiments in the five-dimensional space. In general, the
relative performance of the Spectral LPM over other map­
pings increases with the space dimensionality. Figures Gc,
and 6d give the ma...imum and standard deviation of the
Linenr Span in the five-dimensional space, respectively. No­
tice that the standard deviation of the Linear Span decreases
with large query sizes for all locality-preserving mappings.
This can be clarified if we consider the extreme case of a
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range query that covers 100% of the space. Clearly, there
is only one range query with 100% spaec coverages. This
results in zero standard dcviation.

In Figure 7, we clarify the results in Figure G by consider­
ing the simple ca.~e of the two-dimensional space with a 8 x 8
grid. Two range querie.~ with same !ilze (retriving 8 points
out of 64) are gillen for each mapping of the Sweep, Gray
and Peano SFCs. For one of the queries (the da.~hed query),
all mappings arc doing perfectly well, where the query re­
!illlt is located sequentially in the one-dimensional space (Le.,
no irre!eY-dllt points inside the query region). On the other
hand, for the gray-shaded querics, the performance is bad.
The worst performance is that of the Gray SFC, where the
query asks for the first and last points in the one-dimensional
space. Thus, although such a query asks to retrieve only
12.5% of the two-dimensional space, but it spans 100% of
the one-dimensional spacc. The Hilbert SFC has thc exact
performance a... the Gray SFC. For the Sweep ilnd Peano
SFCs, we still have very bad performance for some queries.
This variation in performance of range queries highlights the
importance of study of the standard deviation.

6.2 k-Nearesl-Neighbor Using Mesh-data
Figure 8 gives the performance of k-ncarest-neighbor (k­

I'l"N) querie.~. In the case of mesh data, we have data points
in all space points. A:> a result, in the two-dimensional
space, when setting k = 4, k-NN retrieves the four neighbors
with Manhattan distance 1. Figures 8a gives the maximum
Linear Span of all possible k-nearest-neighbor queries with
query size up to 50% of the four-dimensional space. The
spcctralmapping gives much better performance than frac­
tals with respect to the maximum linear span.

Since Spectral LP M and the Sweep SFC have the best
performance, in Figures 8b and Sc we compare the perfor~

mance of the Spectral LPM and the Sweep SFC with respect
to different space dimensions. For simplicity in presenting
the rcsults, the experiment is performed only for the two­
dimensional space. The x axis represents the Manhattan
distance over only one dimension. The y a.-xls represents
the maximum possible Linear Span in the one-dimensional
space for every two points with a certain Manhattan dis­
tance up to 50% of the two-dimensional space. By the curves
Sweep-X and Sweep.Y, we mean that we compute the Man­
hattan di:>tance over the X and Y dimensions, respectively.
The same argument is valid for Spectral-X and Spectral.Y.
The performance of the Sweep mapping have much variation
when measuring the distance over the X (Sweep-X) and Y

,.
.,
.,

'.' '.' '.' '.' '.- '.' '.' '.'

Figure 9: Data Set.

(Sweep-Y) dimensions. However, for the Spectral mapping,
the performance is very similar for the two dimensions. For
example, a query that asks for a point Q that have similar y
value as point P (},II = 0) would guarantee to have an answer
that have one-dimensional distance at mo~t 15 (Figure Sb)
with average 6 (Figure 8c). However, if the same query asks
for a point Q that has similar x lIalue, instead of y, then the
answer would havc onc·dimensional distance that is up to
240 with average 91. On the other side, Spectral LPM an­
swers the first query in one-dimensional distance up to 146
with average 54 and the second query in a one-dimensional
distance that is up to 173 with average 71. The high varia­
tion of the Sweep mapping makes it non-deterministic and
favor:> some queries over the others. SllCh high variation is
not desirable by any locality-preserving mapping.

Figure 8d performs the same experiment for all locality­
preserving mappings. The plotted curves represent the dif­
ference in the ma.ximum one-dimensional distance that cor­
respouds to Manhattan distance A-I for X and Y dimen­
sions. The Sweep and Spectral curves can be derived by
getting the absolute difference ISweepY - SweepXI and
ISpectrulY - SpectralXI from Figure 8b, respectively. The
Sweep mapping gives very bad performance. Spectral LPM
almost gives an optimal result, where the difference is al­
most O. Fractals, have a moderate performance tbat is not
as good as Spectral LPM nor as bad as the Sweep mapping.

6.3 Performance Using Real-data Sets
In this section, we use the North East data set (Fig­

ure 9) that contains 123,593 postal addresses, which rep­
resent three metropolitan areas (New York, Philadelphia
and Boston) [29]. The two-dimensional space is represented
by a 128 x 128 grid. Each grid cell corresponds to a disk
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page. Data points are aligned to the nearest grid cell. Disk
pages arc stored in the order imposed by the underlying
locality-preserving mapping. It is required that the locality.
preserving mapping dusters the disk pages required to an­
swer a specific query in a minimum Linear Span.

In the first experiment (refer to Figures lOa and lOb),
we run 10,000 random range queries with sizes from 1% to
10% of the space. Figure lOa l,rives the average size of the
Linear Span for each query size. Clearly, the Spectral LPM
outperforms all other mappings. As the query size incre<LScs,
the relative performance of the Spectral LPM over other
mappings increases. Figure lOb measures the stability of the
locality-preserving mappings with regard to the location of
the range query. The standard deviation of the Linear Span
of range queries is used as an indication for the stability.
The Spectral LPM outperforms all other mappings.

In the next experiment, (refer to Figures 10c and lOd), we
run 10,000 random k-nearest-neighbor queries with k ranges
from 100 to 1000. Figures lOc and lOd give the average and
standard deviation of the Linear Span, respectively. Again,
the results from the real data set agrees with the analytical
re.<;lllts that the Spectral LPM outperforms all other locality­
preserving mappings.

7. CONCLUSION
In tIlis paper, we argue against the use of fractals as a

basis for locality-preserving mapping algorithms by provid­
ing some examples and experimental evidence to show how
fractal mapping algorithms produce a poor mapping, Then,
we introduce the Spectral LPMj a provably optimal algo­
rithm for mapping the multi-dimensional space into the one­
dimensional space such that the points that are nearby in
the multi-dimensional space would still be nearby in the
one-dimensional space, Spectral LPM uses the spectral
properties of the multi-dimensional space where the multi­
dimensional points are mapped into a graph G(V, E). Then,
the linear order of the multi-dimensional points is deter­
mined by their order within the eigenvector X 2 that corre­
sponds to the second smallest eigenvalue "\2 of the Laplacian
matrix L(G). In addition, we provide a mathematical proof
for the optimality of Spectral LPM. Unlike fractals, Spectral
LPM can incorporate any number of additional requirements
for the locality-preserving mapping. Experimental analysis
conflrms the superior performance of Spectral LPM over the
long used fractal locality-preserving mapping algorithms for
similarity search queries and range qneries.
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