
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2004

Incremental Evaluation of Sliding- Window Queries over Data Incremental Evaluation of Sliding- Window Queries over Data

Streams Streams

T. M. Ghanem

M. Hammad

M. Mokbel

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Ahmed K. Elmagarmid
Purdue University, ake@cs.purdue.edu

Report Number:
04-021

Ghanem, T. M.; Hammad, M.; Mokbel, M.; Aref, Walid G.; and Elmagarmid, Ahmed K., "Incremental
Evaluation of Sliding- Window Queries over Data Streams" (2004). Department of Computer Science
Technical Reports. Paper 1604.
https://docs.lib.purdue.edu/cstech/1604

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

INCREMENTAL EVALUATION OF SLIDING-WINDOW
QUERIES OVER DATA STREAMS

T.M. Ghanem
M. Hammad
M. Mokbel
W.G. Aref

A.K. Elmagarmid

CSD TR #04-021
July 2004

Revised April 2005

INCREMENTAL EVALUAnON OF SLIDING-WINDOW
QUERIES OVER DATA STREAMS

T.M. Ghanem
M. Hammad
M. Mokbel
W.G. Aref

A.K. Elmagarmid

CSD TR #04-021
July 2004

Revised April 2005

Incremental Evaluation of Sliding-Window Queries over
Data Streams

T. IL1. Ghallellll h1. Hammad2 M. hlokbe1"-. G . Arefl A . Elmagarmidl

'Department of Coinputer Scieace. Purdue University.

2 ~ e p a r t i n e n t of Computer Science. University of Calgary.

3Departinent of Coinputer Science and Engineering, University of hlinnesota.

Abstract

Two research eff0rt.s have been conduct.ed to realize sliding-window queries in dat,a stream

management. syst.ems. na.inely, query re-evaluation and incremental evaluation.. I11 the cluery

re-e~aluat~ion inet,hod. t.wo coi~secut~ive windows are processed independent froin each ot,her.

On the ot,her hand: in t,he iilcreinent,al evaluation inet,hod7 the query answer for a \\:indow is

obtained incrementally froin the answer of t.he preceding window. In this paper, we focus on

the incrementa.1 evaluation method. Two approaches have been adopt.ed for t,he increinent~al

evaluat,ion of slitling-\vindow queries, namely, the input-triggered approach and the negative

tuples approach. I11 t.he in,put-triggered approach, only the newly inserted t.uples flow in the

query pipeline and t.uple expiration is based on t.he t,iinestainps of the newly iilsert,ed t.uples.

On the ot,ller hand; in t,he negative tuples approach: t.uple expiratioil is separat,ed froin tuple -

insertioil where a tuple flows in the pipeline for every inserted or expired tuple. The negative

tuples approach avoids t.he unpredictable output, delays h a t result froin t,he input-triggered

approach. However, negative t ~ ~ p l e s double the number of tuples through the query pipeline,

t,hus reducing the pipeline bandwidth. Based on a, det.ailed study of the increment.al e~aluat~ioil

pipeline, we classifj~ the iilcre~nent,al query operators iilt,o t,wo classes according t,o ~vhet,her an

operator can avoid t.he processiilg of negative t.uples or not. Based on this classificat~ion,

we present several opt.imizat,ion t,echniques over t,he negative tuples approach t,hat aim t,o

reduce t,he overhead of processing negative t,uples while avoiding t,he out,put, delay of the

query answer. A detailed experiinent,al st.udy, based on a prototype system impleinent,ation,

shows the performance gains 017er t,he input-triggered approach of t,he negative tuples approach

when acc61npanied wit,h t,he proposed optimizat,ions.

Incremental Evaluation of Sliding-Window Queries over
Data Streams

T. M. Ghaneml M. Hammad2 M. MokbeP W. G. Arefl A. Elmagarmid l

1Department of Computer Science, Purdue University.

2Department of Computer Science, University of Calgary.

3Department of Computer Science and Engineering, University of Minnesota.

Abstract

Two research efforts have been conducted to realize sliding-window queries in data stream

management systems, namely, query re-evaluation and incremental evaluation. In the query

re-evaluation method, two consecutive windows are processed independent from each other.

On the other hand, in the incremental evaluation method, the query answer for a window is

obtained incrementally from the answer of the preceding window. In this paper. we focus on

the incremental evaluation method. Two approaches have been adopted for the incremental

evaluation of slieling-window queries, namely, the input-triggered approach and the negative

tuples approach. In the input-triggered approach, only the newly inserted tuples flm"- in the

query pipeline and tuple expiration is based on the timestamps of the newly inserted tuples.

On the other hand, in the negative tuples approach, tuple expiration is separated from tuple.

insertion where a tuple flows in the pipeline for every inserted or expired tuple. The negative

tuples approach avoids the unpredictable output delays that result from the input-triggered

approach. However, negative tuples double the number of tuples through the query pipeline,

thus reducing the pipeline bandwidth. Based on a detailed study of the incremental evaluation

pipeline, we classify the incremental query operators into two classes according to whether an

operator can avoid the processing of negative tuples or not. Based on this classification,

we present several optimization techniques over the negative tuples approach that aim to

reduce the overhead of processing negative tuples while avoiding the output delay of the

query answer. A detailed experimental study, based on a prototype system implementation,

shows the performance gains over the input-triggered approach of the negative tuples approach

when accompanied 'with the proposed optimizations.

1

Keywords: Da,ta stream management systems; pipelined query execut,ion: negative tuples.

1 Introduction

The emergence of data streaming applications ca,lls for new querjr processing techniques to cope

with the high rate and the unbounded imture of da,ta streams. The sliding-~uir~~dow query inodel is

introduced to process continuous queries in-memory. The nlain idea is to linlit the focus of continu-

ous queries t,o only those data tuples that are inside the introduced win.dow. As the ~ ~ i n d o w slides,

the query answer is updated to reflect both new tuples entering the ~ v i n d o ~ ~ : and old tuples expiring

froin the ~vindow. Two research efforts ha,ve been conducted to support. sliding-~vindo~v queries in

data. strea,ill ina,nagernent systems: na,mely, query re-evaluation a,nd incremental evaluation.

I11 the query re-evaluation method, the query is re-evaluated over each window independent from

all other windows. Ba,sically, buffers are opened to collect tuples belonging t:o the various windo~vs.

Once a window is completed (i.e., a.11 the tuples in the window are receil-ed): tlle colnpleted ~vindon.

buffer is processed by the query pipeline to produce the complete m~indow answer. An input tuple

may contribute to more than one window buffer at the sa'nle lime. Exanlples of systems that

f o l l o ~ ~ ~ the query re-evaluation nlethod include Aurora [2] a.nd Borealis [I]. On the other hand: in

the incremental evaluation method: a:hen the window slgldes, onlj7 the cha,nges in the IT' (in d ow a.re

processed by the query pipeline to produce the answer of the next ~vindow. As the windo~7 slides,

the cllanges in the window a,re represented by the set of inserted tuples and the set of expired tuples.

Increilleilta~l opera,tors are used in the pipeline to process both the inserted and expired tuples and

to produce the incremental changes to the query answer a.s a,ilother set of inserted a,nd expired

tuples. Examples of systems tha.t follow the increinenhl evalua,tioil a.pproa,ch include STREAM [3]

a,ild Nile [20].

I11 this paper, we focus on the incremental evaluation method. Two approaches have been

adopted to support incremental evaluation of sliding-~vindow queries, namely, the input-triggered

a,pproach and the negative tuples approach. I11 the input-triggered approach (ITA for short), only

the newly inserted tuples flow in the query pipeline. Query operators (aad t8he final query output)

rely on the tiillesta,inps of the inserted tuples to expire old tuples [5: 231. However: as will be

discussed in Section 3.1, ITA may result in significailt delays in the queq7 ans~ver. As an alternative:

Keywords: Data stream management systems, pipelined query execution, negative tuples.

1 Introduction

The emergence of data streaming applications calls for new query processing techniques to cope

with the high rate and the unbounded nature of data streams. The sliding-window query model is

introduced to process continuous queries in-memory. The main idea is to limit the focus of continu

ous queries to only those data tuples that are inside the introduced window. As the window slides,

the query answer is updated to reflect both new tuples entering the window and old tuples expiring

from the \vindow. Two research efforts have been conducted to support sliding-window queries in

data stream management systems, namely, query re-evaluation and incremental evaluation.

In the query re-evaluation method, the query is re-evaluated over each window independent from

all other windows. Basically, buffers are opened to collect tuples belonging to the various windows.

Once a \vindow is completed (i.e., all the tuples in the window are received), the completed window

buffer is processed by the query pipeline to produce the complete window answer. An input tuple

may contribute to more than one window buffer at the same time. Examples of systems that

follow the query re-evaluation method include Aurora [2] and Borealis [1]. On the other hand, in

the incremental evaluation method, when the window slides, only the changes in the window are

processed by the query pipeline to produce the answer of the next window. As the window slides,

the changes in the window are represented by the set of inserted tuples and the set of expired tuples.

Incremental operators are used in the pipeline to process both the inserted and expired tuples and

to produce the incremental changes to the query answer as another set of inserted and expired

tuples. Examples of systems that follow the incremental evaluation approach include STREAl'vI [3]

and Nile [20].

In this paper, we focus on the incremental evaluation method. Two approaches have been

adopted to support incremental evaluation of sliding-window queries, namely, the input-triggered

approach and the negative tuples approach. In the input-triggered approach (ITA for short), only

the newly inserted tuples flow in the query pipeline. Query operators (and the final query output)

rely on the timestamps of the inserted tuples to expire old tuples [5, 23]. However, as will be

discussed in Section 3.1, ITA may result in significant delays in the query answer. As an alternative,

2

the negative tuples approach (NTA for short) is iiltroduced a.s a de1a.y-ba.sed optimizatioil fraine\vork

that aims to reduce the output delay incurred by ITA [4: 211. A negative tuple is an artificial tuple

tha,t is genera.ted for every expired tuple froin the \vindow. Expired tuples are genera.ted by a specia,l

opera,tor, termed EXPIRE, placed a t the bottom of the querjr pipeline (EXPIRE is a generalizatioil

of the operator SEQ-WINDOW in [4] and the operator W-EXPIRE in [21]). For ea.ch inserted tuple in

the windo\v (i.e.; positive tuple), say t : EXPIRE f ~ r n ; a , ~ d s t to the higher opera.tor in the pipeline.

EXPIRE emits a corresponding negative tuple t - once t expires froin the sliding \vindom-. As the

expired tuple flows through the query pipeline, it undoes the effect of its corresponding inserted

tuple.

Although the ba.sic idea of NTA is a,ttra'ctive: it ma!. not be practical. The fact that a nega.tive

tuple is introduced for every expired input tuple inea.ns doubling the iluinber of tuples through the

query pipeline. In this ca,se; the overhea,d of processi~lg tuples through the va,rious query opera,tors is

doubled. This observa.tion opens the room for optimiza,tion illethods over the basic NTA. Va,rious

optimizations would mainly focus on two issues: (1) Reducing the overllead of processing the

negative tuples. (2) Reducing the number of the negative tuples through the pipeline.

In this pa,per, we study the realiza.tion of the incremental evaluation a.pproa,ches in terms of

the design of the increipelltal emluation pipeline. Based on this study, we cla,ssify the increnleiltal

rela,tional opera,tors into two classes according to \vl~ether a.11 operator can a.void the processing

of expired tuples or not. Then, we introduce severa,l optimizatioil techniques over the negative

tuples approa.ch tha.t a.im to reduce the overhead of processing negative tuples while avoiding the

output delay of the query a,ns\ver. The first optimizatioi1, ternled the t ime-message optinliza,tion,

is specific to the cla.ss of opera,tors that ca.n avoid the processing of nega'tive tuples. I11 the t ime -

message optimization, when an opera,tor receives a nega.tive tuple: the opera,tor does not perform

exa,ct processing but just "passes" a time message to upper opera'tors in the pipeline. IVhenever

possible; the time-message optiinization reduces the overhea,d of processing negative tuples while

avoiding the output delay of the query answer.

Furthermore, we introduce the piggybacking a,pproach as a general framework that a,iins to re-

duce the nuinber of nega.tive tuples in the pipeline. In the piggybacking approach; negative tuples

flow in the pipeline only \vhe11 there is no concurreilt positive tuple that can do the expiration.

Instea,d, if positive tuples flow in the query pipeline with high mtes; then the positive tuples purge

the negative tuples approach (NTA for short) is introduced as a delay-based optimization framework

that aims to reduce the output delay incurred by ITA [4, 21]. A negative tuple is an artificial tuple

that is generated for every expired tuple from the \vindow. Expired tuples are generated by a special

operator, termed EXPIRE, placed at the bottom of the query pipeline (EXPIRE is a generalization

of the operator SEQ-WINDOW in [4] and the operator W-EXPIRE in [21]). For each inserted tuple in

the window (i.e., positive tuple), say t, EXPIRE forwards t to the higher operator in the pipeline.

EXPIRE emits a corresponding negative tuple r once t expires from the sliding window. As the

expired tuple flows through the query pipeline, it undoes the effect of its corresponding inserted

tuple.

Although the basic idea of NTA is attractive, it may not be practical. The fact that a negative

tuple is introduced for every expired input tuple means doubling the number of tuples through the

query pipeline. In this case, the overhead of processing tuples through the various query operators is

doubled. This observation opens the room for optimization methods over the basic NTA. Various

optimizations would mainly focus on two issues: (1) Reducing the overhead of processing the

negative tuples. (2) Reducing the number of the negative tuples through the pipeline.

In this paper, we study the realization of the incremental evaluation approaches in terms of

the design of the incremental evaluation pipeline. Based on this study, we classify the incremental

relational operators into two classes "according to whether an operator can avoid the processing

of expired tuples or not. Then, we introduce several optimization techniques over the negative

tuples approach that aim to reduce the overhead of processing negative tuples while avoiding the

output delay of the query answer. The first optimization, termed the time-message optimization,

is specific to the class of operators that can avoid the processing of negative tuples. In the time

message optimization, when an operator receives a negative tuple, the operator does not perform

exact processing but just "passes" a time message to upper operators in the pipeline. \iVhenever

possible, the time-message optimization reduces the overhead of processing negative tuples while

avoiding the output delay of the query answer.

Furthermore, we introduce the piggybacking approach as a general framework that aims to re

duce the number of negative tuples in the pipeline. In the piggybacking approach, negative tuples

flow in the pipeline only when there is no concurrent positive tuple that can do the expiration.

Instead, if positive tuples flow in the query pipeline with high rates, then the positive tuples purge

3

the negative tuples from the pipeline and a,re piggybacked \vit,h the necessary illforination for expi-

ration. Alternating between negative a,ild piggybacked positive tuples is triggered by discovering

fluctua,tions in the input stream cha,racteristics that is likely to ta,ke pla,ce in streainiilg environ-

ments. Ba.sica.lly, the piggybacking approach always achieves the lniniinum possible output delay

i n d e p e n d e n t from the stream or query cl~aracteristics.

In general, the coiltributions of this paper can be suinnlarized a,s follows:

1. We study, in detail, the rea,liza,tion of the incl-emental eva lua t ion approa,ch in terins of the

design of the increnlental evalua,tion pipeline. iLloreover; we compa,re the perforinance of

the two approaches, ITA and NTA, for va,i-ious queries. This cornpa,rison helps identify the

appropriate situations to use each approach.

2. We give a. classificatioil of the increineilta~l operators ba,sed on the behavior of the opera.tor

when processiilg a nega.tive tuple. This classifica,tioll motivates the need for optiinization

techniques over the basic NTA.

3. We iiltroduce the t i m e - m e s s a g e optimiza~tioil techilique that aiins to avoid, whenever possible,

the processiilg of negative tuples while a,voidiilg t.he output delay of the query a,nswer.

4. We introduce the piggybacking technique that aiills to reduce the lluinber of negative tu-

ples in the query pipeline. The pigg;\.backing technique a,llows the system to be stable with

fluctuations in input arrival rates filter selectivity.

5. We provide an experiinenta.1 study using a prototjrpe da,ta. stream illa,ilagemeilt system that

evalua,tes the perfornlance of the ITA, NTA, t i m e - m e s s a g e , and piggybacking techniques.

The rest of the pa,per is orga,nized as follows: Sectioil 2 gives the ilecessa,ry background on

the pipelined query execution inodel in da'ta streaal ma~iia.gement systems. Section 3 discusses

and compares ITA a,ild NTA for the increnlental evaluation of sliding-window queries. Detailed

realizatioil of the various operators is given in Sectioil 4. A classification for the iilcreinenta.1

opera,tors along with the optiinizations over the ba,sic NTA a're introduced in Section 5. Section 6

introduces the piggybacking technique. E ~ p e r i i n e n t ~ l results are presented in Section 7. Section 8

highlights rela,ted work in da'ta streanl query processing. Fina,lly, Section 9 coilcludes the paper.

the negative tuples from the pipeline and are piggybacked with the necessary information for expi

ration. Alternating between negative and piggybacked positive tuples is triggered by discovering

fluctuations in the input stream characteristics that is likely to take place in streaming environ

ments. Basically, the piggybacking approach always achieves the minimum possible output delay

independent from the stream or query characteristics.

In general, the contributions of this paper can be summarized as follows:

1. We study, in detail, the realization of the incremental evaluation approach in terms of the

design of the incremental evaluation pipeline. l\loreover, we compare the performance of

the two approaches, ITA and NTA, for various queries. This comparison helps identify the

appropriate situations to use each approach.

2. We give a classification of the incremental operators based on the behavior of the operator

when processing a negative tuple. This classification motivates the need for optimization

techniques over the basic NTA.

3. We introduce the time-message optimization technique that aims to avoid, whenever possible,

the processing of negative tuples while avoiding the output delay of the query answer.

4. V'Ve introduce the piggybacking technique that aims to reduce the number of negative tu

ples in the query pipeline. The pigg:vbacking technique allows the system to be stable with

fluctuations in input arrival rates and filter selectivity.

5. We provide an experimental study using a prototype data stream management system that

evaluates the performance of the ITA, NTA, time-message, and piggybacking techniques.

The rest of the paper is organized as follows: Section 2 gives the necessary background on

the pipelined query execution model in data stream management systems. Section 3 discusses

and compares ITA and NTA for the incremental evaluation of sliding-window queries. Detailed

realization of the various operators is given in Section 4. A classification for the incremental

operators along with the optimizations over the basic NTA are introduced in Section 5. Section 6

introduces the piggybacking technique. Experimental results are presented in Section 7. Section 8

highlights related work in data stream query processing. Finally, Section 9 concludes the paper.

4

2 Preliminaries

I11 this section; we discuss the prelinliilaries for sliding-windo~v query processing. First, we discuss

the semailtics of sliding-windo~v queries. Then; we discuss the pipelined execution model for the

increinental eva,luation of sliding-\vindo\v queries over da.ta strea.ins.

2.1 Sliding-window Query Semantics

A sliding-window query is a contim~ous query over n input data streams, S1 to S,. Each input

da,ta stream Sj is assigiled a. \?:indo\\; of size wj. At ally time instance T, the answer of the sliding-

willdonr query equa,ls to the a,ns\\-er of' the si~apshot query ~vhose inputs are the eleinents in the

current ~vindow for ea.ch input strea,m. At time T, the current window for stream Si contains

the tuples a'rriving between tiines T - ,wi and T. Tlle same notions of seillailtics for continuous

sliding-\?:iudo\v queries are used in other systems (e.g.. 124, 2'71). In our discussion, we focus on

the t'iine-based sliding ~vindon- that is the illost colnnloilly used sliding v,rindow type. Input tuples

from the input strea.nls! S1 to S,,. a.re tinlestainped upoil the a'rrival to the system. The timestamp

of the input tuple represents the t,ime at. \vhicll the tuple arrives to the system. The window wi

a,ssocia,ted with strea,in Si represents the lifetime of a tuple t fro111 S,.

Handling timestamps: A tuple t ca'rries t\vo timestamps, t 's arriva.1 time, ts , and t 's ex-

pira,tion time, Ets . Operators in the query pipeline handle the timesta,nlps of the input and

output tuples based on the opera.tor's semantics. For example, if a tuple t is generated from the

join of the two tuples t l (ts1, E t s l) aad t2(ts2, Ets2) , then t will have t s = m a x (t s 1 ~ ts2) a,nd

E t s = mil~(Ets1 , Ets2) . In this paper, we use the CQL [4] construct RANGE to express the size

of the ~vindow in time units.

2.2 Data Stream Queuing Model

Da,ta strealll illa'ila,gemellt systems use a. pipelined queuing model for the incremental evaluation

of sliding-~vindow queries [4]. All query opera.tors are coililected via first-in-first-out queues. A11

operator, p , is scheduled once there is at least one input tuple ill its illput queue. Upon scheduling,

p processes its input and produces output results in p's output queue. The strea,ill SCAN (SSCAN)

opera.tor a,cts as an interface between the streaming source and the query pipeline. SSCAN assigns

2 Preliminaries

In this section, \ve discuss the preliminaries for sliding-window query processing. First, we discuss

the semantics of sliding-window queries. Then, we discuss the pipelined execution model for the

incremental evaluation of sliding-window queries over data streams.

2.1 Sliding-window Query Semantics

A sliding-window query is a continuous query over n input data streams, Sl to Sn. Each input

data stream Sj is assigned a window of size Wj' At any time instance T, the answer of the sliding

window query equals to the answer of the snapshot query ,,·,Those inputs are the elements in the

current window for each input stream. At time T, the current window for stream Si contains

the tuples arriving between times T - 'Wi and T. The same notions of semantics for continuous

sliding-window queries are used in other systems (e.g .. [24, 27]). In our discussion, we focus on

the time-based sliding window that is the most commonly used sliding window type. Input tuples

from the input streams, Sl to Sn' are timestamped upon the arrival to the system. The timestamp

of the input tuple represents the time at which the tuple arrives to the system. The window 'Wi

associated with stream Si represents the lifetime of a tuple t from Si'
.
Handling timestamps: A tuple t carries two timestamps, t's arrival time, ts, and t's ex-

piration time, Ets. Operators in the query pipeline handle the timestamps of the input and

output tuples based on the operator's semantics. For example, if a tuple t is generated from the

join of the two tuples tl(tsl, Etsl) and t2(ts2, Ets2), then t will have ts = max(tsl, ts2) and

Ets = min(Etsl, Ets2). In this paper, we use the CQL [4] construct RANGE to express the size

of the window in time units.

2.2 Data Stream Queuing Model

Data stream management systems use a pipelined queuing model for the incremental evaluation

of sliding-window queries [4]. All query operators are connected via first-in-first-out queues. An

operator, p, is scheduled once there is at least one input tuple ill its input queue. Upon scheduling,

p processes its input and produces output results in p's output queue. The stream SCAN (SSCAN)

operator acts as an interface between the streaming source and the query pipeline. SSCAN assigns

5

to ea,ch input tuple two timestamps, t s which equals to the tuple a.rriva.1 time, and Ets which equals

to t s + wi. Inconling tuples are processed in increasing order of their arriva.1 timestamps.

Strean1 query pipelines use incremental query operat.ors. Increnlental query operators process

changes in the input as a. set of inserted a'nd expired tuples and produce the cha.nges in the output

a.s a set of inserted and expired tuples. Algebra for the increinenta.1 relational operators has been

introduced in 1181 in t.he context of increinental nla~inteilance of materialized views (expiration

corresponds to deletions). In order to process the inserted a,nd expired tuples, soine query operators

(e.g., Join, Aggregates, and Distinct) a're required to keep soine sta.te information to keep tra.ck of

all previous input tuples that have not expired yet.

3 Pipelined-execution of Sliding-window Queries

I11 this section, mre discuss two a.pproa,ches for tlle incremental eva,luation of sliding-miindow queries,

namely ITA and NTA. As the nrindo\v slides, the cha,nges in the window include ii~sertion of the

newly a,rrivecl tuples and expira,tion of old tuples. ITA and NTA a,re (almost) simi1a.r in processing

the inserted (or positive) tuples but differ in handling the expired (or negative) tuples. Basically:

the difference between tlle two approa.ches is in: (1) how an operator is notified &out the expiration

of a, tuple; (2) the actions taken by an operator to process the expired tuple, and (3) t.he output

produced by the operator in response to expiring a. tuple. I11 this section, we discuss how ea,ch

ha,ndles the expirn.tioi1 of tuples along with the drawbacks of each a.pproa,ch.

3.1 The Input-triggered Approach (ITA)

The main idea in ITA is to communicate only positive tuples between the various operators in

the query pipeline. Opera'tors in the pipeline (a.nd the final query sink) use the tiinestainp of the

positive tuples to expire tuples from the sta,te. Ba'sica.lly, expiring of tuples in ITA is as follows:

(1) A11 opera.tor lea,rns a,bout the expired tuples from the current time T that equals to the newest

positive tuple's timesta,mp. (2) Processing an expired tuple is operator-dependent. For example:

the join operator just purges tlle expired tuples from the join state. On the other hand, nlost of the

operators (e.g., Distinct, Aggregates aad Set-difference) process every expired tuple and produce

new output tuples. (3) A11 operator produces in the output only positive tuples resulted from

to each input tuple two timestamps, ts which equals to the tuple arrival time, and Ets which equals

to ts + Wi. Incoming tuples are processed in increasing order of their arrival timestamps.

Stream query pipelines use incremental query operators. Incremental query operators process

changes in the input as a set of inserted and expired tuples and produce the changes in the output

as a set of inserted and expired tuples. Algebra for the incremental relational operators has been

introduced in [18] in the context of incremental maintenance of materialized views (expiration

corresponds to deletions). In order to process the inserted and expired tuples, some query operators

(e.g., Join, Aggregates, and Distinct) are required to keep some state information to keep track of

all previous input tuples that have not expired yet.

3 Pipelined-execution of Sliding-window Queries

In this section, we discuss two approaches for the incremental evaluation of sliding-window queries,

namely ITA and NTA. As the window slides, the changes in the window include iI~sertion of the

newly arrived tuples and expiration of old tuples. ITA and NTA are (almost) similar in processing

the inserted (or positive) tuples but differ in handling the expired (or negative) tuples. Basically,

the difference between the two approaches is in: (1) how an operator is notified about the expiration

of a tuple, (2) the actions taken by an operator to process the expired tuple, and (3) the output

produced by the operator in response to expiring a tuple. In this section, we discuss how each

approach handles the expiration of tuples along with the drawbacks of each approach.

3.1 The Input-triggered Approach (ITA)

The main idea in ITA is to communicate only positive tuples between the various operators in

the query pipeline. Operators in the pipeline (and the final query sink) use the timestamp of the

positive tuples to expire tuples from the state. Basically, expiring of tuples in ITA is as follows:

(1) An operator learns about the expired tuples from the current time T that equals to the newest

positive tuple's timestamp. (2) Processing an expired tuple is operator-dependent. For example,

the join operator just purges the expired tuples from the join state. On the other hand, most of the

operators (e.g., Distinct, Aggregates and Set-difference) process every expired tuple and produce

new output tuples. (3) An operator produces in the output only positive tuples resulted from

6

processiilg the expired tuple (if any). The operator a,ttaches the necessary tiine illforination in the

produced positive tuples so that upper opera,tors in the pipeline perform the expira.tion a,ccordingly.

A problem arises in ITA if the opera,tor does not produce a,ny positive tuples in the output

a'lthough the opera,tor has received input positive tuples and has expired some tuples from the

opera'tor's state. In this case, the upper operators in the pipeline are not notified about the

correct time information, \vhich results in a delay in updating the query a,nswer. Note tha,t upper

operators in the pipeline should not expire any tuples until the operator receives an input tuple

from the lower operator in the pipeline. Operators cannot voluntarily expire tuples based on a

globa,l system's clock. Volunta,ry expiratioil ba,sed on a global clock can geilera'te iilcorrect results

because an expired tuple; t l ; may co-exist in the window with another tuple, t2: but t2 may get

delayed at a. lower opera,tor in the pipeline. A11 example demonstra,ting this iilcorrect execution

nrheil using a global clock is given in Appendix A.

The delay in the query answer is a result of not propaga.ting the time illforination that is needed

to expire tuples. The delay is unpredicta,ble and depends on the input streail1 cha,ra.cteristics. In a

streamiilg environn~ent, a delay in updating the answer of a coiltinuous query -is not desira,ble and

may be interpreted by the user as an erroneous result. As it is hard to model the input stream

chara~cteristics in a streainiilg environn~ent, the performailce of the input-triggered approach is

fluctua,ting.

Example: consider the query Q1 "Continuously report the number of favorite items sold in the

last five tim.e units;'. Notice that even if the input is continuously arriving: the filtering condition;

favorite items, may filter out ina,ny of the incoming streain tuples. I11 this ca,se, the join operator

will not produce ina,ny positive tuples and the upper operator in the pipeline (e.g., COUNT in Q1)

does not receive ally ilotification about the current tiine and hence does not expire old tuples.

Figure 1 illustrates the behavior of ITA for Q1. The timelines S1 and S2 correspond to the input

strea,in and the output of JOIN, respectively. Sg and C represent the output strea,m when using

ITA and the correct output, respectively. The window w is equal to five time units. Up to tiine T4;

Q1 ina,tches the correct output C with the result 4. At T5, the input "2" in S1 does not join with

ally itell1 in the table Favoritcltems. Thus, COUNT is not scheduled to upda,te its result. Thus,

S3 will re~na,iil 4 although the correct output C should be 3 due to the expiratioil of the tuple tha,t

arrived a t tiine To. Similarly, a t T6; Sg is still 4 while C is 2 (the tuple a,rriviilg a t tiine Tl ha,s

processing the expired tuple (if any). The operator attaches the necessary time information in the

produced positive tuples so that upper operators in the pipeline perform the expiration accordingly.

A problem arises in ITA if the operator does not produce any positive tuples in the output

although the operator has received input positive tuples and has expired some tuples from the

operator's state. In this case, the upper operators in the pipeline are not notified about the

correct time information, which results in a delay in updating the query answer. Note that upper

operators in the pipeline should not expire any tuples until the operator receives an input tuple

from the lower operator in the pipeline. Operators cannot voluntarily expire tuples based on a

global system's clock. Voluntary expiration based on a global clock can generate incorrect results

because an expired tuple, t 1 , may co-exist in the window with another tuple, t 2 , but t 2 may get

delayed at a lower operator in the pipeline. An example demonstrating this incorrect execution

\\Then using a global clock is given in Appendix A.

The delay in the query answer is a result of not propagating the time information that is needed

to expire tuples. The delay is unpredictable and depends on the input stream characteristics. In a

streaming environment, a delay in updating the answer of a continuous query -is not desirable and

may be interpreted by the user as an erroneous result. As it is hard to model the input stream

characteristics in a streaming environment, the performance of the input-triggered approach is

fluctuating.

Example: consider the query Q1 "Continuously report the number of favorite items sold in the

last five time units". Notice that even if the input is continuously arriving, the filtering condition,

favorite items, may filter out many of the incoming stream tuples. In this case, the join operator

will not produce many positive tuples and the upper operator in the pipeline (e.g., COUNT in Q1)

does not receive any notification about the current time and hence does not expire old tuples.

Figure 1 illustrates the behavior of ITA for Q1. The timelines 51 and 52 correspond to the input

stream and the output of JOIN, respectively. 53 and C represent the output stream \\Then using

ITA and the correct output, respectively. The window w is equal to five time units. Up to time T4 ,

Q1 matches the correct output C with the result 4. At Ts, the input "2" in 51 does not join with

any item in the table FavoriteItems. Thus, COUNT is not scheduled to update its result. Thus,

53 will remain 4 although the correct output C should be 3 due to the expiration of the tuple that

arrived at time To. Similarly, at T6 , 53 is still 4 while C is 2 (the tuple arriving at time T1 has

7

SELECT COUNT(*) i I i
I +

FROM FavoriteItems FI,
S [RANGE 51

$ 5 5 3
s.2 t

WHERE S.ItemID = FI.ItemID
s, ++--

%I
1 2 3 4

S 3 j i I I ! I I I I I '

1 2 3 4 3 2 1
c-CH--t-f-,

To T , T , T3 T I T.5 T6 T , T.9
Correct Output

(a) Query Q1 with the query piepline (b) Execution timeline

Figure 1 : Input-triggered eva,luation.

expired). S3 keeps haviilg a,n erroneous output till an input tuple passes the join and triggers the

sclleduling of COUNT to produce the correct output. This erroileous behavior motivates the idea

of having a new technique tha,t triggers the query operators based on either tuple insertion or tuple

expiration.

3.2 The Negative Tuples Approach (NTA)

The illa,iil goal of NTA is to sepa,ra.te tuple expiration from the a,rrival of new tuples. The main idea.

is to iiltroduce a new type of tuples, ~ ~ a n l e l y nega,tive tuples, to represent expired tuples [4, 211.

A special operator, EXPIRE, is a,dded at the bottom of the query pipeline t11a.t emits a ilega,tive

tuple for every expired tuple. A negative tuple is responsible for undoing the effect of a previously

processed positive tuple. For exa,inple, in time-based sliding-window queries, a positive tuple t+

with timestamp T froin strea,m Ij with window of length wj, will be followed by a nega,tive tuple

t- at time T + wj. The negative tuple's timestamp is set to T + zoj. The nega.tive tuple t - will

be processed by the various operators in the query pipeline. Upon receiving a negative tuple, each

opera'tor in the pipeline behaves accordingly to delete the expired tuple from the opera,tor7s state

and produce outputs to notify upper operators of the expira,tion.

3.2.1 Handling Delays Using Negative Tuples

Figure 2b gives the execution of hTTA for the exainple in Figure 2a (the negative tuples iinpleinen-

ta.tion of the query in Figure la.). At time T5, the tuple with value 4 expires a,nd a.ppears in S1 a's a

negative tuple with value 4. The tuple 4- joins with the tuple 4 in the FavoriteItems ta,ble. At time

____ __U! _____:-

4 5 5 9 3 2 9 8 7
81 I I I i I 1 I I I~

SELECT COUNT(*)

~FROM FavoriteItems FI, COUNT
4 5 5 3

S [RANGE 5] 82 t 8 2 -+----+ I i I)
WHERE S.ItemlD = FI.ltemID ~

8 1/

~
) 2 3 4

~ 8 3 I I I 1 I~

8
i 2 3 4 3 2 1

C i I I I I I I I ~
1'0 T , T z T3 T, T s T. T 7 Ts

Correct Output

(a) Query Ql with the query piepline (b) Execution timeline

Figure 1: Input-triggered evaluation.

expired). 53 keeps having an erroneous output till an input tuple passes the join and triggers the

scheduling of COUNT to produce the correct output. This erroneous behavior motivates the idea

of having a new technique that triggers the query operators based on either tuple insertion or tuple

expiration.

3.2 The Negative Tuples Approach (NTA)

The main goal of NTA is to separate tuple expiration from the arrival of new tuples. The main idea

is to introduce a new type of tuples, namely negative tuples, to represent expired tuples [4, 21].

A special operator, EXPIRE, is added at the bottom of the query pipeline that emits a negative

tuple for every expired tuple. A negative tuple is responsible for undoing the effect of a previously

processed positive tuple. For example, in time-based sliding-window queries, a positive tuple t+

with timestamp T from stream I j with window of length Wj, will be followed by a negative tuple

r at time T + Wj' The negative tuple's timestamp is set to T + 'LVj' The negative tuple r will

be processed by the various operators in the query pipeline. Upon receiving a negative tuple, each

operator in the pipeline behaves accordingly to delete the expired tuple from the operator's state

and produce outputs to notify upper operators of the expiration.

3.2.1 Handling Delays Using Negative Tuples

Figure 2b gives the execution of NTA for the example in Figure 2a (the negative tuples implemen

tation of the query in Figure 1a). At time 7"5, the tuple with value 4 expires and appears in 51 as a

negative tuple with value 4. The tuple 4- joins with the tuple 4 in the FavoriteItems table. At time

8

SELECT COUNT(*)
FROM FavoriteItems FI,
S [RANGE 51
WHERE S.Item1D = F1.IternID FB

A

S
I

(a) Query Q1 with the query pipeline (b) Execution timeline

Figure 2: Negative tuples evalua.tion.

T5, COUNT receives the ilega,tive tuple 4-. Thus, COUNT outputs a new count of 3. Siinila'rly at

time T6, COUNT receives the negative tuple 5- and the result is updated.

The previous example shows that NTA overcomes the output delay problem iiltroduced by ITA

because tuple expiratioil is independent from the query characteristics. Even if the query has highly

selective operators at the bottom of the pipeline, the pipeline still produces timely correct answers.

On the other hand, if the bottom operator in the query pipeline has low selectivity then allnost all

the input tuples pa.ss to the intermediate queues. I11 this case, NTA may present more delays due

to increased waiting times in queues.

3.3 Invalid Tuples

I11 ITA, expired tuples a,re not explicitlj~ generated for every expired tuple from the wiildow but

some tuples may expire before their Ets due to the seinailtics of some opera.tors in the pipeline

(e.g, set-difference) as will be expla,ined in Sectioil 4. I11 the rest of the pa,per, we refer to tuples

that expire out-of-order as invalid tuples. Operators in ITA process invalid tuples in the same

way a.s negative tuples are processed by NTA and produce outputs so tha,t other operators in the

pipeline behave accordingly. This meails that even in ITA, some negative tuples may flow in the

query pipeline.

SELECT COUNT(*)
FROM Favoriteltems FI,
S [RANGE 5]

WHERE S.ltemlD = FI.ltemlD

(a) Query Ql with the query pipeline

w.... --------- - g-4 5 5
4 5 5 9 3 2 9 8 7

SI- I I I I i I I I I " ~

4 5 5 3
-

4 5 5

S2 i I I i I I I I~

i 2 3 4 3 2 1

S3 I I I I l I I I I I~

1'0 T] T2 T 3 T 4 Ts T6 T 7 Ts

(b) Execution timeline

Figure 2: Negative tuples evaluation.

n, COUNT receives the negative tuple 4-. Thus, COUNT outputs a new count of 3. Similarly at

time T6 , COUNT receives the negative tuple 5~ and the result is updated.

The previous example shows that NTA overcomes the output delay problem introduced by ITA

because tuple expiration is independent from the query characteristics. Even if the query has highly

selective operators at the bottom of the pipeline, the pipeline still produces timely correct answers.

On the other hand, if the bottom operator in the query pipeline has low selectivity then almost all

the input tuples pass to the intermediate queues. In this case, NTA may present more delays due

to increased waiting times in queues.

3.3 Invalid Tuples

In ITA, expired tuples are not explicitly generated for every expired tuple from the window but

some tuples may expire before their Ets due to the semantics of some operators in the pipeline

(e.g, set-difference) as will be explained in Section 4. In the rest of the paper, we refer to tuples

that expire out-of-order as invalid tuples. Operators in ITA process invalid tuples in the same

way as negative tuples are processed by NTA and produce outputs so that other operators in the

pipeline behave accordingly. This means that even in ITA, some negative tuples may flow in the

query pipeline.

9

4 Window Query Operators

IVindow query operators differ froill traditiona,l opera,tors in tha,t window query opera.tors need

to process the expired tuples a.s well as the inserted tuples. Two issues should be distinguished

when discussing window operators: opera'tor semantics and opera.tor implementation. Operator

semantics defines the changes in operator's output when the input is cha'nged (by inserting or

deleting a tuple) while operator implementation defines the way the va.rious operators in the pipeline

are coordinated to a.chieve the desired semantics. Operator semantics is independent from the

approa,ch (ITA or NTA) used for query eva'luation. Incremental seinantics for various relationa,l

operators is defined in the context of incremental maintenance of inateria,lized views [18]. On the

other ha,nd: operator ilnplementation depends on whether ITA or NTA is used for query evalua,tion.

In this section, we discuss the seina.ntics and implementa.tion issues for the various relational query

operators under ITA and NTA.

4.1 Incremental Evaluation

In the followiilg we use the incremental equations from [18] as a guide for discussing the seinantics of

the va~riouswii~dow operators. Two equations are given for every relationa,l operator, one equation

gives the semailtics when the input changes by inserting a tuple and the other equa.tion gives the

selnantics when the input changes by deleting a tuple. I11 stream operators, inputs are streams of

inserted and expired tuples. At any time point T j an input stream S can be seen as a rela,tion

that conta,ins the input stream tuples that have arrived before time T a.nd have not expired yet.

After time T , an input positive tuple s+ indicates ail insertion to S, represented a,s (S + s) ; a.nd an

expired tuple s- indica.tes a deletion from S, represented as (S - s) . In the following, we assume the

duplica.te-preserving seillantics of the various operators. Tuples a.rriving to the system out-of-order

can be stored in buffers and ca,n be ordered using heartbea,ts [25]. Ordering tuples is beyond the

scope of this pa'per.

4.2 Window Select op(S) and Window Project aa(S)

4 Window Query Operators

\iVindow query operators differ from traditional operators in that window query operators need

to process the expired tuples as well as the inserted tuples. Two issues should be distinguished

when discussing window operators: operator semantics and operator implementation. Operator

semantics defines the changes in operator's output when the input is changed (by inserting or

deleting a tuple) while operator implementation defines the way the various operators in the pipeline

are coordinated to achieve the desired semantics. Operator semantics is independent from the

approach (ITA or NTA) used for query evaluation. Incremental semantics for various relational

operators is defined in the context of incremental maintenance of materialized views [18]. On the

other hand, operator implementation depends on whether ITA or NTA is used for query evaluation.

In this section, we discuss the semantics and implementation issues for the various relational query

operators under ITA and NTA.

4.1 Incremental Evaluation

In the following we use the incremental equations from [18] as a guide for discussing the semantics of

the various window operators. Two equations are given for every relational operator, one equation

gives the semantics when the input changes by inserting a tuple and the other equation gives the

semantics when the input changes by deleting a tuple. In stream operators, inputs are streams of

inserted and expired tuples. At any time point T, an input stream 5 can be seen as a relation

that contains the input stream tuples that have arrived before time T and have not expired yet.

After time T, an input positive tuple s+ indicates an insertion to 5, represented as (5 + s), and an

expired tuple s- indicates a deletion from 5, represented as (5 - s). In the following, we assume the

duplicate-preserving semantics of the various operators. Tuples arriving to the system out-of-order

can be stored in buffers and can be ordered using heartbeats [25]. Ordering tuples is beyond the

scope of this paper.

4.2 Window Select CJp(S) and Window Project 7TA(S)

CJp(5 + s) = up(5) + CJp(s)

7fA(5 + s) = 7fA(5) + 7fA(S)

CJp(5 - s) = CJp(5) - CJp(s)

7fA(5 - s) = 7fA(5) - 7fA(S)

10

The increinental equations for Select and Project show that both positive and negative tuples

a,re processed in the same way. The only difference is that positive inputs result in positive outputs

negative inputs result in negative outputs. The equations also show tha,t processing an input.

tuple does not require access to previous inputs, hence Select a,nd Project are non-stateful opera,tors.

An output tuple carries the same timestamp and expiration timesta'mp as the corresponding input

tuple. In ITA: Select and Project do not produce any outputs in response to an expired input tuple.

4.3 Window Join (S w R)

(S + s) w R = (S w R) + (s w R) (S - s) w R = (S w R) - (s w R)

Join is synlmetric which means that processing a tuple is done in the same way for both input

sides. The incremental equa'tions for Join show that , like Select; Join processes positive and negative

tuples in the same wa,y with the difference in the output sign. Unlike Select, Join is stateful since

it accesses previous inputs while processing the newly incomiiig tuples. The join sta,te can be

expressed as two hash tables, one for each input. An output tuple from Join carries the seina'ntics

(windows) of two different streams. The timestamp of the output tuples is assigned as follows: the

timesta~mp, ts , equals the illa~ii~luill value of the timesta,inps for a,ll joined tuples. The expiration

timestamp, E t s , equa'ls the ininiill~in va,lue of expiration timestamps for all joined tuples (output of

the join should expire \vhenever a,ny of its conlposing tuples expire). In ITA; Join does not produce

any outputs in response to a,n expired input tuple.

4.4 Window Set Operations

We consider the duplicate-preserving se~nantics of the set operations as follows: if strea,m S has n

duplica.tes of tuple a and strea,in R ha,s m duplica.tes of the same tuple a , the union streain (S U R)

has (n + m) duplica.tes of a ; the intersection stream (S n R) has rnin(n, m) duplica'tes of a ; a,nd the

minus streain (S - R) has max(0, n - m) duplica,tes of a.

4.4.1 Window Union (S U R)

(S + s) U R = (S u R) + s (S - s) U R = (S U R) - s

An input tuple to the union operator is produced in the output wit11 the same sign. In ITA,

The incremental equations for Select and Project show that both positive and negative tuples

are processed in the same way. The only difference is that positive inputs result in positive outputs

and negative inputs result in negative outputs. The equations also show that processing an input

tuple does not require access to previous inputs, hence Select and Project are non-stateful operators.

An output tuple carries the same timestamp and expiration timestamp as the corresponding input

tuple. In ITA, Select and Project do not produce any outputs in response to an expired input tuple.

4.3 Window Join (8 I><J R)

(5 + s) fXJ R = (5 fXJ R) + (s fXJ R) (5 - s) fXJ R = (5 fXJ R) - (s fXJ R)

Join is symmetric which means that processing a tuple is done in the same way for both input

sides. The incremental equations for Join show that, like Select, Join processes positive and negative

tuples in the same way with the difference in the output sign. Unlike Select, Join is stateful since

it accesses previous inputs while processing the newly incoming tuples. The join state can be

expressed as two hash tables, one for each input. An output tuple from Join carries the semantics

(windows) of two different streams. The timestamp of the output tuples is assigned as follows: the

timestamp, ts, equals the maximum value of the timestamps for all joined tuples. The expiration

timestamp, Ets, equals the minimum value of expiration timestamps for all joined tupl~s (output of

the join should expire 'whenever any of its composing tuples expire). In ITA, Join does not produce

any outputs in response to an expired input tuple.

4.4 Window Set Operations

\iVe consider the duplicate-preserving semantics of the set operations as follows: if stream 5 has n

duplicates of tuple a and stream R has m duplicates of the same tuple a, the union stream (5 U R)

has (n + m) duplicates of a, the intersection stream (5 n R) has min(n, m) duplicates of a, and the

minus stream (5 - R) has max(O, n - m) duplicates of a.

4.4.1 Window Union (5 U R)

(5 + s) U R = (5 U R) + s (5 - s) U R = (5 U R) - s

An input tuple to the union operator is produced in the output with the same sign. In ITA,

11

Figure 3: Window Intersectioil in ITA.

Union does not produce any outputs in response to an expired tuple. Union is non-stateful since

processiilg a,n input tuple does not require accessing previous inputs. A11 output tuple carries the

same tinlesta,illp and expiration timestamp a.s the input tuple.

4.4.2 Window Intersection(S n R)

The intersectioil operator is symmetric. When a tuple s is inserted into streail1 S: s is prodwed

in the output only if s has duplicates in the set "R - S" ("R - S" includes the tuples that exist in

R and does not. exist in S). On the other ha,nd, when a. tuple s expires, s should expire froin the

output only if s has no duplica.tes in the set "S - R".

When using ITA, Intersection needs to produce a.dditiona1 positive tuples in respoilse to expiring

a tuple. Figure 3 gives a,n exa.mple to illustrate this case. Assume tha,t S a.nd R are the two input

streams a,nd 0 is the output of Intersection. When the tuple "1" a,rrives in stream S at time Tl,

a correspondiilg tuple "1" is produced in the output. At time TG, the tuple with value "5" arrives

to S a.nd ca.uses the expiration of the tuple "1". When the tuple "5" is propagated to the output

stream: 0, "5" muses the expiration of the tuple "1" froin 0 as well. I11 this ca,se, Intersection

should produce another positive tuple with value 1 in the output stream to repla,ce the expired

tuple. A simi1a.r ca,se happeils in Distinct as will be shown later.

·1
1 3 4 5

0 I I I I I I ~

R 11
1
5

~ i 1 I ~

w, J I
.;(",,

~
1
2 '1

~ i ts I I I I "
T ~ T T T T ~ T T
0,1 2 3 4 5 16 7 8

Figure 3: Window Intersection in ITA.

Union does not produce any outputs in response to an expired tuple. Union is non-stateful since

processing an input tuple does not require accessing previous inputs. An output tuple carries the

same timestamp and expiration timestamp as the input tuple.

4.4.2 Window Intersection(5 n R)

(5 + 8) n R = (5 n R) + (8 n (R - 5)) (5 - 8) n R = (5 n R) - (8 - (5 - R))

The intersection operator is symmetric. \iVhen a tuple 8 is inserted into stream 5, s is produced

in the output only if 8 has duplicates in the set "R - 5" ("R - 5" includes the tuples that exist in

R and does not exist in S). On the other hand, when a tuple 8 expires, 8 should expire from the

output only if s has no duplicates in the set "5 - R".

\iVhen using ITA, Intersection needs to produce additional positive tuples in response to expiring

a tuple. Figure 3 gives an example to illustrate this case. Assume that 5 and R are the two input

streams and 0 is the output of Intersection. \iVhen the tuple "1" arrives in stream 5 at time T 1 ,

a corresponding tuple "1" is produced in the output. At time T6 , the tuple with value "5" arrives

to 5 and causes the expiration of the tuple "1". When the tuple "5" is propagated to the output

stream, 0, "5" causes the expiration of the tuple "1" from 0 as well. In this case, Intersection

should produce another positive tuple with value 1 in the output stream to replace the expired

tuple. A similar case happens in Distinct as will be shown later.

12

4.4.3 Window Minus (S - R)

Case 1: (S + s) - R = (S - R) + (s - (R - S)) Case 3: S - (R + r) = (S - R) - (I - n (S - R))

Case 2: (S - s) - R = (S - R) - (s n (S - R)) Case 4: S - (R - r) = (S - R) + (r - (R - S))

The minus operator is asymmetric, which means that processing an input tuple depends on

whether the tuple is from S or R. The four cases for the input tuples a,re llandled a's follows:

Case 1: an input positive tuple, s+, from strea'ill S is produced as a positive tuple in the

output stream only if s does not exist in the set " R - S" .

Case 2: an input negative tuple, s- , froin stream S is produced in the output stream as

a negative tuple only if s exists in the set "S - R". In ITA. the hIinus operator does not

produce any output in response to a tuple expiring froin streail1 S .

Case 3: an input positive tuple: r+, from stream R results in produciilg a ilega,tive tuple s-

for a previously produced positive tuple s+ when s is a. duplicate for r and s exists in the set

" S - R". Note that the negative tuple s- is an invalid tuple and is produced when using

either ITA or NTA. - - -..

Case 4: a negative tuple, r- from stream R results in produci~lg a positive tuple s+ wheil s

is a duplicate of r and s does not exist in the set " R - S" . The positive tuple sS is produced

in both ITA and NTA.

h/Iiilus is sta'teful since processing an input positive or negative tuple requires accessi~lg previous

inputs. In Cases 1 and 2, the output tuple carries the sa,me tin1esta.m~ a,s the input tuple. In

Ca,ses 3 and 4, the input tuple is from strea,in R while output tuple s is from streail1 S and carries

tin~esta.inp from the stored s tuple.

4.5 Window Distinct 6

c(S + s) = c (S) + (s - S) E (S - S) = E (S) - (S - (S - s))

The seillailtics of the distinct opera,tor sta.tes that aan input positive tuple, s+; is produced in the

output o~lly if s has no duplicates in S (i.e., s exists in tlle set "s - S ") . An input nega,tive tuple,

s-: is produced in the output only if s has no duplicates in the set "S - s". Distinct is stateful.

4.4.3 Window Minus (S - R)

Case 1: (S + s) - R = (S - R) + (s - (R - S))

Case 2: (S - s) - R = (S - R) - (s n (S - R))

Case 3: S-(R+r) = (S-R)-(rn(S-R))

Case 4: S-(R-r) = (S-R)+(r-(R-S))

The minus operator is asymmetric, which means that processing an input tuple depends on

whether the tuple is from S or R. The four cases for the input tuples are handled as follows:

• Case 1: an input positive tuple, s+, from stream S is produced as a positive tuple in the

output stream only if s does not exist in the set "R - 5"' .

• Case 2: an input negative tuple, s-, from stream S is produced in the output stream as

a negative tuple only if s exists in the set "s - R". In ITA, the Minus operator does not

produce any output in response to a tuple expiring from stream S.

• Case 3: an input positive tuple, r+, from stream R results in producing a negative tuple s

for a previously produced positive tuple s+ when s is a duplicate for rand s exists in the set

"s - R". Note that the negative tuple s- is an invalid tuple and is produced when using

either ITA or NTA.

• Case 4: a negative tuple, r-, from stream R results in producing a positive tuple s+ when s

is a duplicate of rand s does not exist in the set "R - S". The positive tuple s+ is produced

in both ITA and NTA.

I'vlinus is stateful since processing an input positive or negative tuple requires accessing previous

inputs. In Cases 1 and 2, the output tuple carries the same timestamp as the input tuple. In

Cases 3 and 4, the input tuple is from stream R while output tuple s is from stream S and carries

timestamp from the stored s tuple.

4.5 Window Distinct E

t(S + s) = t(S) + (s - S) t(S - s) = t(S) - (s - (S - s))

The semantics of the distinct operator states that an input positive tuple, s+, is produced in the

output only if s has no duplicates in S (i.e.) s exists in the set "s - S"). An input negative tuple,

s-, is produced in the output only if s has no duplicates in the set "s - s". Distinct is stateful.

13

Similar to Intersection, when using ITA, Distinct may need t,o produce a positive tuple in response

to expiring a. tuple.

4.6 Window Aggregates and Group-By

The group-by opera.tor maps each input streail1 t,uple t'o a group produces one out.put tuple

for each non-empty group G. the output tuples have the forill < G. V a l > where G is the group

identifier and V a l is the group's aggregate va,lue. The aggrega,te value V a l i for group Gi is updated

whenever the set of Gi's tuples cha,nges, by inserting or expiring a tuple. Two tuples are produced

to update the value of the group: an invalid tuple to cancel the old value and a positive tuple to

report the new value. The behavior of Group-By is the saine for both ITA and NTA a,ild works

as follows. When receiving a,n input tuple, sS, or ~vhen a tuple expires, s-, Group-By ina,ps s to

the corresponding group, G,: a,ild produces a'n invalid tuple, < G,5. oldVal >-, to invalidate the old

value of G,, if G, exists before, a'nd a.nother positive tuple, < G,?. n,eu!Val >+: for the new value of

G, a,fter aggregating s.

Aggregate operator's state: iVhen using ITA, the aggregate operator stores all the input
-s3=

tuples in the opera.tor's sta'te. When using NTA, some aggregate operators (e.g., Sum, Avg, and

Count) do not require storing the tuples. These aggrega.tes a,re increinenta,l, and when receiving

a negative tuple, the new aggregate value can be ca,lculat.ed without a,ccessiilg the previous input

tuples. Other aggregates (e.g., MAX and I\;fIN) require storing the whole input indepeildeilt from

using ITA or NTA.

4.7 Result Interpretation

In ITA, the output of a sliding-window query is a strea,in of positive tuples. Two tiinestainps are

a'tta,ched with each output tuple: a timestamp, t s , and an expira,tion timestamp, E t s . When a

tuple with timestamp va'lue equals to T is received in the output, all previously produced tuples

with E t s less than T should expire. The output of a sliding-window query should be stored in

order to identify the expired tuples. In NTA, the output of a sliding-~vindow query is a sti-ea,m of

positive and negative tuples. Each negative tuple ca,ncels n previously produced positive tuple with

the same attributes.

Similar to Intersection, when using ITA, Distinct may need to produce a positive tuple in response

to expiring a tuple.

4.6 Window Aggregates and Group-By

The group-by operator maps each input stream tuple to a group and produces one output tuple

for each non-empty group G. the output tuples have the form < G, Val> where G is the group

identifier and Val is the group's aggregate value. The aggregate value Vali for group Gi is updated

whenever the set of Gi's tuples changes, by inserting or expiring a tuple. Two tuples are produced

to update the value of the group: an invalid tuple to cancel the old value and a positive tuple to

report the new value. The behavior of Group-By is the same for both ITA and NTA and works

as follows. When receiving an input tuple, s+, or \\Then a tuple expires, s-, Group-By maps s to

the corresponding group, Gs, and produces an invalid tuple, < Gs , oldVal >-, to invalidate the old

value of Gs, if Gs exists before, and another positive tuple, < Gs . newVal> +, for the new value of

Gs after aggregating s.

Aggregate operator's state: \\Then using ITA, the aggregate operator stores all the input
.~

tuples in the operator's state. \iVhen using NTA, some aggregate operators (e.g., Sum, Avg, and

Count) do not require storing th~ tuples. These aggregates are incremental, and when receiving

a negative tuple, the new aggregate value can be calculated \vithout accessing the previous input

tuples. Other aggregates (e.g., },iIAX and l\UN) require storing the whole input independent from

using ITA or NTA.

4.7 Result Interpretation

In ITA, the output of a sliding-window query is a stream of positive tuples. Two timestamps are

attached with each output tuple: a timestamp, ts, and an expiration timestamp, Ets. When a

tuple with timestamp value equals to T is received in the output, all previously produced tuples

with Ets less than T should expire. The output of a sliding-window query should be stored in

order to identify the expired tuples. In NTA, the output of a sliding-window query is a stream of

positive and negative tuples. Each negative tuple cancels a previously produced positive tuple with

the same attributes.

14

5 Negative Tuples Optimizations

Although the basic idea of NTA is a,ttract,ive. i t ina,y not be pra,ctical. The fa.ct that we iiltroduce

a. negative tuple for every expired tuple results in doubliilg the number of tuples through the query

pipeline. In this case: the overhea,d of processiilg tuples through the various query opera,t,ors is

doubled. This observation gives rise to the need for optimiza.tion illethods over the ba,sic NTA. The

proposed optiillizations focus mainly on two targets: (1) Reducing the overhea,d of processing the

negative tuples. (2) Reducing the nunlber of negative tuples through the pipeline.

Based on the study of the wiildow query operators in Sectioil 4; we classify the query oper-

ators into two classes according to whether an opera.tor call avoid the coillplete processing of a.

negative tuple or not. Based on this classificat,ion, we propose optimizatioils to reduce the over-

head of processiilg negative tuples whenever possible (target (1) above). I11 Section 6, we address

optinlizatioils to reduce the i~ulnber of negative t.uples in the pipeline (target (2) above). Before

discussing the proposed optimiza,tions, it is importa.nt to distinguish between two types of negative

tuples: (1) expired tuples that are generated from the EXPIRE operator, and (2) inva'lid tuples that

are genera,ted froin interila'l operators (e.g., h.linus a,nd Group-By). Invalid tuples are generated

out-of-order aad have to be fully processed by the various opera,tors in the pipeline. The proposed

optimizations~a.iin to reduce the overhead of expired tuples and hence are not applied to invalid

tuples.

5.1 Operator Classification

Based on the study of window opera,tors in Sectioil 4; we classify the wiildow operators into two

classes according to whether a.n operator ca'i~ avoid the processing of negative tuples or not while

guaranteeing a limited output delay.

Class 1: The first cla,ss of window operators includes the operators in which an expired tuple

just repea,ts the output that wa,s previously produced by the corresponding positive tuple.

Exa,illples of opera,tors beloilgiilg to this class include: Select, Project, Union; a,ild Join. The

oilly difference betweell the output in respoilse to processiilg an expired tuple and the output

in response to processii~g the correspoilding positive tuple is in the tuple's sign. These oper-

a,tors ca,il avoid processing the expired tuples and just "pass" the necessary time information

5 Negative Tuples Optimizations

Although the basic idea of NTA is attractive, it may not be practical. The fact that we introduce

a negative tuple for every expired tuple results in doubling the number of tuples through the query

pipeline. In this case, the overhead of processing tuples through the various query operators is

doubled. This observation gives rise to the need for optimization methods over the basic NTA. The

proposed optimizations focus mainly on two targets: (1) Reducing the overhead of processing the

negative tuples. (2) Reducing the number of negative tuples through the pipeline.

Based on the study of the window query operators in Section 4, we classify the query oper

ators into two classes according to whether an operator can avoid the complete processing of a

negative tuple or not. Based on this classification, we propose optimizations to reduce the over

head of processing negative tuples whenever possible (target (1) above). In Section 6, we address

optimizations to reduce the number of negative tuples in the pipeline (target (2) above). Before

discussing the proposed optimizations, it is important to distinguish between two types of negative

tuples: (1) expired tuples that are generated from the EXPIRE operator, and (2) invalid tuples that

are generated from internal operators (e.g., l\linus and Group-By). Invalid tuples are generated

out-of-order and have to be fully processed by the various operators in the pipeline. The proposed

optimizations, aim to reduce the overhead of expired tuples and hence are not applied to invalid

tuples.

5.1 Operator Classification

Based on the study of window operators in Section 4, we classify the window operators into two

classes according to whether an operator can avoid the processing of negative tuples or not while

guaranteeing a limited output delay.

• Class 1: The first class of window operators includes the operators in which an expired tuple

just repeats the output that was previously produced by the corresponding positive tuple.

Examples of operators belonging to this class include: Select, Project, Union, and Join. The

only difference between the output in response to processing an expired tuple and the output

in response to processing the corresponding positive tuple is in the tuple's sign. These oper

ators can avoid processing the expired tuples and just "pass" the necessary time information

15

to upper opera,tors in the pipeline so that upper opera,tors expire the correspondiilg tuples

accordingly.

Class 2: The second class of window operators includes the operators in which processing a,n

expired tuple is different froin processing the correspoilding positive tuple. Example opera,tors

belonging to this class include: Intel-section' r\~Iinus' Distinct, Aggregates. Processiilg a,n

expired tuple in this class may result in producing output tuples (positive or negative) even

if the correspoilding positive tuple did not produce outputs. The operators in this class

must perform coillplete processing of every expired tuple. One interestiilg observatioil is t11a.t

inost of the operators in this class are stateful operators, which nleails that the operator's

state lms a copy of ever): input tuple tha,t has not expired yet. For such operators, it suffices

to notify the operator of the necessary time informatioil a,nd the opera,tor reads the expired

tuples from the operator's state.

5.2 The "Time-Message" Optimization

The goal of the "time-message" opt.iinization is to reduce the overhea,d of processing nega,tive

tuples in C1a.s~-1 operators (especially Join) without a,ffecting the output delay. Mainly; when a,

- Cla,ss-1 operator receives a negative tuple (or a tuple expires from the operator's state), instead

of processiilg the tuple, the opera,tor performs the following. (1) Delete the corresponding tuple

from the opera,tor's state (if a,ny), and (2) set a special flag in this tuple indicating that this tuple

is a time-message a,nd produce the tuple as output (a.n example demoilstrating the time-messa,ge

approach is given la.ter in Sectioil 5.3). The time-inessa,ge tuple can be regarded as a special kind

of heartbeat t11a.t is geilera,ted when a tuple expires.

One problenl in the time-message optimizatioil as described is that if an operator sends a time-

message for every expired tuple. then unnecessary messages inay be sent even if their correspoildiilg

positive tuples have not produced ally outputs before. This happens when, for example, the join

filter is highly selective (i.e., wheil inost of the input tuples do not produce join outputs). Filter-

iilg operators (e.g., Select and Join) are the source for unnecessary time-messages. Avoiding the

unilecessary time-messages in the join operator is addressed in the next sectioil (Section 5.2.1).

Avoiding the unnecessary time-messages in Select is achieved by merging the Select and EXPIRE

to upper operators in the pipeline so that upper operators expire the corresponding tuples

accordingly.

• Class 2: The second class of window operators includes the operators in which processing an

expired tuple is different from processing the corresponding positive tuple. Example operators

belonging to this class include: Intersection, rVlinus, Distinct, and Aggregates. Processing an

expired tuple in this class may result in producing output tuples (positive or negative) even

if the corresponding positive tuple did not produce any outputs. The operators in this class

must perform complete processing of every expired tuple. One interesting observation is that

most of the operators in this class are stateful operators, which means that the operator's

state has a copy of every input tuple that has not expired yet. For such operators, it suffices

to notify the operator of the necessary time information and the operator reads the expired

tuples from the operator's state.

5.2 The "Time-Message" Optimization

The goal of the "time-message" optimization is to reduce the overhead of processing negative

tuples in Class-1 operators (especially Join) without affecting the output delay. Mainly, when a

Class-1 operator receives a negative tuple (or a tuple expires from the operator's state), instead

of processing the tuple, the operator performs the following. (1) Delete the corresponding tuple

from the operator's state (if any), and (2) set a special flag in this tuple indicating that this tuple

is a time-message and produce the tuple as output (an example demonstrating the time-message

approach is given later in Section 5.3). The time-message tuple can be regarded as a special kind

of heartbeat that is generated when a tuple expires.

One problem in the time-message optimization as described is that if an operator sends a time

message for every expired tuple, then unnecessary messages may be sent even if their corresponding

positive tuples have not produced any outputs before. This happens when, for example, the join

filter is highly selective (i.e., when most of the input tuples do not produce join outputs). Filter

ing operators (e.g., Select and Join) are the source for unnecessary time-messages. Avoiding the

unnecessary time-messages in the join operator is addressed in the next section (Section 5.2.1).

Avoiding the unnecessary time-messages in Select is achieved by merging the Select and EXPIRE

16

W "2 ~. - -> -...-.-.- ~ ~ - >

4 6 1 8 3 2 1 1 I 4 6 1 8 3 2 1 1 I

s l I I i : ' ! l ! ! ! ' SELECT MAX(S2.Pricc) S I I ! I i I ! I I I I *

FROM Sf [RANGE 51,
S2 [RANGE 51

7 5 6 6 6 9 7 7 7 7 5 6 6 6 9 7 7 7

SZbkI I... L--Hf S 2 * - l ! l + -. 7 - 1 ' ; *
WHERE PR.

S1.StorelD = SZ.StoreID 67 6.T, KT, :?- 6 ST 6 &TI

s 3 1 i I I i I l ~ ! : ' s 3 ; I : I ! ! *

(a) Query Q2 with the query piepline (b) Execu~ion rimeline before (c) Exrcl~tio~l limeline after

Figure 4: The Join-h.iessage Technique.

operators into one opera,tor. h.la,inly, in our implementation; Project a,nd Select a.re merged into one

operator. h/loreover; Select is pushed down a,nd is merged with the Expire operator. By pushing

the selection with the EXPIRE operator, we a'chieve the follo\ving. (1) Reduce the size of the EXPIRE

state since only tuples satisfying the selection predica.te a.re stored. (2) Negative tuples are produced

only for tuples satisfying the selection predica.te. This illeails that Select generates exact negative

tuples (and not just time-messages) without the over11ea.d of re-applying the selection predica,te.

Union is not a filtering operator and hence Union is not a source of unnecessa,ry time-messa.ges.

h,loreover, negative tuples do not encounter processing o\rerhea.d in Union. These observa.tions lea'd

us to the fa.ct that Join is the only Class-1 operat,or that uses and benefits froin the time-message

optimization. In the rest of the p w e r we will use the terins "time-messa.geX and "join-nlessage"

intercha,ngeably.

5.2.1 Time Messages in the Join Operator

The join operator is the most expensive operator in the query pipeline. Without the time-message

optimiza.tion, Join would norma.lly reprocess negative tuples in the sane way as their corresponding

positive tuples. Given the fa.ct tha.t a negative tuple joins with the sa.me tuples a's the corresponding

positive tuple and the high cost of the join opera.tio1-1, the time-messa,ge technique a,iins to avoid

re-executing the join with the negative tuples. To a,chieve this; the join opera,tor keeps some state

informatio~l to avoid unnecessary messages.

Algorithm and Data Structures: Upon receiving a positive tuple t , the join opera.tor inserts

t in the join state a,nd joins the tuple with the other input(s). I11 addition to processing t , the join

operator keeps some informa,tion with t in the state to tell whether t produced join results or not.

w

4 6 1 8 3 2 4 6 1 8 3 2

8, 1 1 I 1 i 1 • 8, 1 1 1 1 1 I I)I

756669777
S2-+--+----t---j-------;-------- -- f· -_---+---+---++

6.TJ

6.) 6.TJ fi.T] ~:B=
Sa I I I I I I I , I I"

7 7 7

1

8 a 1 1

756669
8,-+--+- 1 1

10 12 12 12 11 0

8 4 -+---+1--+1---i-i--+1--+--+1--+1---+-1---++1•
To T] T 2 T 3 T 4 T s T 6 T, T s

12110

1 ill.
T s T fi T -; T s

10 12 12
8 4 1 1 1 1 I

To T , T 2 T 3 T 4

SELECT MAXIS2.Pricc)

FROM SllRANGE 5].
S2lRANGE5)

WHERE
Sl.StorelD =S2.StoreID

8 2

(a) Query Q2 with the query piepline (b) Execution timeline before (el Executiontimeline after

Figure 4: The Join-l\lessage Technique.

operators into one operator. Mainly, in our implementation; Project and Select are merged into one

operator. Moreover; Select is pushed down and is merged \vith the Expire operator. By pushing

the selection with the EXPIRE operator; we achieve the follO\ving. (1) Reduce the size of the EXPIRE

state since only tuples satisfying the selection predicate are stored. (2) Negative tuples are produced

only for tuples satisfying the selection predicate. This means that Select generates exact negative

tuples (and not just time-messages) without the overhead of re-applying the selection predicate.

Union is not a filtering operator and hence Union is not a source of unnecessary time-messages.

Moreover; negative tuples do not encounter processing overhead in Union. These observations lead

us to the fact that Join is the only Class-1 operator that uses and benefits from the time-message

optimization. In the rest of the paper we will use the terms "time-message" and "join-message"

interchangeably.

5.2.1 Time Messages in the Join Operator

The join operator is the most expensive operator in the query pipeline. \"!ithout the time-message

optimization, Join would normally reprocess negative tuples in the same way as their corresponding

positive tuples. Given the fact that a negative tuple joins with the same tuples as the corresponding

positive tuple and the high cost of the join operation; the time-message technique aims to avoid

re-executing the join with the negative tuples. To achieve this; the join operator keeps some state

information to avoid unnecessary messages.

Algorithm and Data Structures: Upon receiving a positive tuple t, the join operator inserts

t in the join state and joins the tuple with the other input(s). In addition to processing t; the join

operator keeps some information with t in the state to tell whether t produced join results or not.

17

Upon receiving a negative tuple, instead of re-performing tlle join opera,tion, the time-message

optimiza.tion performs the following steps: (1) Removes the corresponding positive tuple from the

join state; (2) Checks \vhether tlle corresponding positive tuple produced join results before, (3) If

join results were produced, the join opera,tion sets a fla,g in this tuple indicating that this tuple is a

time-messa,ge and produces the nlessa,ge as output. The information to be kept with every positive

tuple depends on the type of the join opera.tor as described below.

Joining a stream with a table: In this case, only stream tuples will have negative coun-

terparts. To process the negative tuples efficiently, the join operator keeps a table (Joined Tuples

Table, JTT) in sorted list (sorted on the timestamp). When a positive tuple produces join results:

the expira,tion timestamp of this positive tuple is entered in JTT. Only one copy of the expiration

timesta.mp is entered in JTT even if more than one tuple have the same expira,tioll timestamp. At

most, the size of this ta,ble is equa.1 to the window size. When a nega.tive tuple is to be processed,

the join checks whether there is an expiration timestamp in J T T tha,t is equal to the expired tuple

timest,amp. If found, t,llen a time-message is sent and the correspollding timestamp is removed

fro111 JTT. Note that only one time-messa.ge is produced for every timestamp value. If the tuple

t,ilnesta,~np is not in J T T then the ilega,tive tuple is simply ignored. Notice that a join-message is

lnore beneficial in the ca'se when a stream tuple joins with more tha,n one tuple or when more than

one tuple 11a.ve the same expiration timestamp.

Joining two streams: When the join operator joins two tuples t+ from S1 and t: from S2, the

resulting tuple t+ should expire whenever either t+ or t: expire. Assume that ti+ expires first. To

expire, t+. only the join-message for t t is needed. To avoid unnecessa.ry join- messages, a reference

count. will be kept with every tuple t , in the corresponding hash table in the join state. This

reference count indicates the number of output tuples that expire when t , expires. The reference

count of a. tuple t , is incremented by one when tuple t , joins with tuple t , and t , has the minimull1

timestamp. When the join opera,tor is scheduled and a negative tuple is to be processed, the

corresponding positive tuple is deleted from the hash table and the reference count associated with

it is checked, if greater tha.11 zero then a join-message for this tuple is emitted. The pseudocode

for the join operator after adding the reference count is given in Algorithm 1. Figure 5 gives an

exa,~nple on the reference count. When the join operator joins tuple ti from Stream S1 (with time-

s t a ~ n p TI) with tuple t j from Stream S2 (with timestamp T3); the join opera,tor increments the

Upon recelVmg a negative tuple, instead of re-performing the join operation, the time-message

optimization performs the following steps: (1) Removes the corresponding positive tuple from the

join state, (2) Checks whether the corresponding positive tuple produced join results before, (3) If

join results were produced, the join operation sets a flag in this tuple indicating that this tuple is a

time-message and produces the message as output. The information to be kept with every positive

tuple depends on the type of the join operator as described below.

Joining a stream with a table: In this case, only stream tuples will have negative coun

terparts. To process the negative tuples efficiently, the join operator keeps a table (Joined Tuples

Table, JTT) in a sorted list (sorted on the timestamp). When a positive tuple produces join results,

the expiration timestamp of this positive tuple is entered in JTT. Only one copy of the expiration

timestamp is entered in JTT even if more than one tuple have the same expiration timestamp. At

most, the size of this table is equal to the window size. 'When a negative tuple is to be processed,

the join checks whether there is an expiration timestamp in JTT that is equal to the expired tuple

timestamp. If found, then a time-message is sent and the corresponding timestamp is removed

from JTT. Note that only one time-message is produced for every timestamp value. If the tuple

timestamp is not in JTT then the negative tuple is simply ignored. Notice that a join-message is

more beneficial in the case when a stream tuple joins with more than one tuple or when more than

one tuple have the same expiration timestamp.

Joining two streams: \iVhen the join operator joins two tuples it from 51 and it from 52, the

resulting tuple i+ should expire whenever either it or it expire. Assume that it expires first. To

expire, t+, only the join-message for tt is needed. To avoid unnecessary join- messages, a reference

count will be kept with every tuple t x in the corresponding hash table in the join state. This

reference count indicates the number of output tuples that expire when t x expires. The reference

count of a tuple tx is incremented by one when tuple i x joins with tuple ty and tx has the minimum

timestamp. When the join operator is scheduled and a negative tuple is to be processed, the

corresponding positive tuple is deleted from the hash table and the reference count associated with

it is checked, if greater than zero then a join-message for this tuple is emitted. The pseudocode

for the join operator after adding the reference count is given in Algorithm 1. Figure 5 gives an

example on the reference count. When the join operator joins tuple t i from Stream 51 (with time

stamp T1) with tuple t j from Stream 52 (with timestamp T3), the join operator increments the

18

reference count of ti . At time T6; tuple ti from Streanl S1 expires. Since the reference count of ti is

one then a join-message will be sent. No illessages will be sent when t j expires since t j7s reference

couilt is zero.

Note tha,t one time-message is produced for all input tuples tha,t have the saine expiration time-

sta,mp. The join operator avoids producing time-messages with the saine timestamp by keeping

the timestamp of the la,st emitted join-message in a variable, termed lastTM. Before producing

a.nother time-message with time curren.tTM, the join operator checks the value of lastTM. If

currentTM is greater then lastTAd then the current time-messa.ge is emitted and the d u e of

lastTAd is set to currentTM' otherwise, the current message is ignored.

5.3 Processing Time-Messages

When an operator receives a nega.tive tuple with the time-messa.ge flag set, the operator learns

that all positive tuples that have expira,tion timestamps equal to the message's timestamp are

expired a,nd acts accordingly. This can be achieved il-1 the same way a,s expiring tuples in ITA,

i.e., by scanning the operator's state a.nd expiring a.11 tuples that ca.rry the same expiration time-

stamp (Ets) as that of the join-inessa,ge. If the operator's state is sorted on the E t s attribute of

the tuples, then this scan should not be costly. Non-sta.tefu1 Cla,ss-1 operators (e.g., Union) just

pass the time-message to the output. As will be discussed in the next section, the time-message

optiiniza~tion imposes an additioilal ineinory overhead for non-stateful Class-2 operators.

Tlle join-message optimiza.tion is designed with two goals in mind: (1) To reduce the work

performed by the join operator when processing a. nega.tive tuple, a,nd (2) Reduce the number of

nega.tive tuples emitted by the join operator. Note that the join-message achieves its goals as

follows: (1) Negative tuples are "passed" through the join operator without probing the other hash

table(s). (2) Only one message is emitted for every processed negative tuple independent from

its join mnltiplicity. h/Ioreover, one join-message is emitted for tuples having similar expira,tion

timesta.mps. A large ilumber of ilega,tive tuples call be avoided in the case of one-to-many and

ma,ny-to-many join operations, which are coillillon in stream applications, for exa.mple, in on-line

a,uctioil illoilitoring 1261.

Example: Figure 4 gives an example of the join-message approach. Figure 4a is the query

pipeline. Two input streams S1 and S2 a.re joined. Both streams have the same input schema:

reference count of k At time T6 , tuple t i from Stream Sl expires. Since the reference count of t i is

one then a join-message will be sent. No messages will be sent when t j expires since t/s reference

count is zero.

Note that one time-message is produced for all input tuples that have the same expiration time

stamp. The join operator avoids producing time-messages with the same timestamp by keeping

the timestamp of the last emitted join-message in a variable, termed lastTM. Before producing

another time-message with time c1LrrentTM, the join operator checks the value of lastTM. If

c1LrrentTM is greater then lastT111 then the current time-message is emitted and the value of

lastT11.1 is set to c1LrrentTM, otherwise, the current message is ignored.

5.3 Processing Time-Messages

When an operator receives a negative tuple with the time-message flag set, the operator learns

that all positive tuples that have expiration timestamps equal to the message's timestamp are

expired and acts accordingly. This can be achieved in the same way as expiring tuples in ITA,

i.e., by scanning the operator's state and expiring all tuples that carry the same expiration time

stamp (Ets) as that of the join-message. If the operator's state is sorted on the Ets attribute of

the tuples, then this scan should not be costly. Non-stateful Class-1 operators (e.g., Union) just

pass the time-message to the output. As will be discussed in the next section, the time-message

optimization imposes an additional memory overhead for non-stateful Class-2 operators.

The join-message optimization is designed with two goals in mind: (1) To reduce the work

performed by the join operator when processing a negative tuple, and (2) Reduce the number of

negative tuples emitted by the join operator. Note that the join-message achieves its goals as

follows: (1) Negative tuples are "passed" through the join operator without probing the other hash

table(s). (2) Only one message is emitted for every processed negative tuple independent from

its join multiplicity. :LvIoreover, one join-message is emitted for tuples having similar expiration

timestamps. A large number of negative tuples can be avoided in the case of one-to-many and

many-to-many join operations, which are common in stream applications, for example, in on-line

auction monitoring [26].

Example: Figure 4 gives an example of the join-message approach. Figure 4a is the query

pipeline. Two input streams Sl and S2 are joined. Both streams have the same input schema:

19

<ItemId, Price, StoreID> The sliding windows for the two streams are of the saine size and

are equal to five time units each. In the figure, the table beside the MAX operator gives hlAX's

state. The table consists of three columns: the first coluinn is for the value used in the hlAX

aggregation (S2.Price); and the second column is for the tuple timestamp and the third coluini~ is

for the tuple expiration timestamp (other attributes may be stored in the state but are omitted

for clarity of the discussion). Figure 4b gives the stream of tuples in the pipeline when using NTA

and before applying the join-message optiinization. The values on the lines represent the joining

attribute (StoreID). Figure 4c gives the stream of tuples in the query pipeline after applying the

join-message optiinization. A tuple with joining attribute value 6+ arrives a t Stream S1 at time Tl.

Three subsequent tuples from Sz (at times T2, T3 and T4) join with the tuple 6+ (a t time TI) from

Stream S1. The output of the join has an expiration timestamp equals to that of the tuple that

expires first from the two joining tuples. In this example, the output of the join carries expiration

timestamp Tl. At time T6. tuple 6+ from Stream S1 expires. In NTA (Figure 4b). the join operator

will perform the join with tuple 6- and output three output negative tuples. The three tuples are

processed by the MAX operator independently. As meiltioned in Section 4.6, the hlAX operator

will output a new output after processing each input tuple (positive or negative). 14'11en applying

the join-message optimization, (Figure 4c), the join operator sends a join-message with tiinestainp

TI to its output queue. Upon receiving the join-message, the MAX operator scans its state and

expires all tuples with expiratioil timestamp Tl and produces a new output after processiilg each

expired tuple.

5.4 Discussion

As can be seen from the previous example and explana,tions, the join-message optiinization reduces

the CPU cost of ilega,tive tuples in the join operator. On the other hand, the join-message op-

tiillization encounters a little additional lnelllory overhead. The ineinory overhead is due to the

reference counter that is kept with tuples in the join state. The reference counter is a,n integer

and its size can be neglected in compa,rison with the tuple size. hloreover, the inelnory overhea,d

is comproinised by the great saviilgs in CPU by avoiding the re-execution of the join for ilega,tive

tuples.

The join-message optin~ization does not encounter memory overhead for the opera.tor above the

<ItemId, Price, StoreID>. The sliding windows for the two streams are of the same size and

are equal to five time units each. In the figure, the table beside the MAX operator gives lvIAX's

state. The table consists of three columns: the first column is for the value used in the J\IAX

aggregation (S2.Price), and the second column is for the tuple timestamp and the third column is

for the tuple expiration timestamp (other attributes may be stored in the state but are omitted

for clarity of the discussion). Figure 4b gives the stream of tuples in the pipeline when using NTA

and before applying the join-message optimization. The values on the lines represent the joining

attribute (StoreID). Figure 4c gives the stream of tuples in the query pipeline after applying the

join-message optimization. A tuple with joining attribute value 6+ arrives at Stream 51 at time Tl .

Three subsequent tuples from 52 (at times T2 , T3 and T4) join with the tuple 6+ (at time T1) from

Stream 51' The output of the join has an expiration timestamp equals to that of the tuple that

expires first from the t\\TO joining tuples. In this example, the output of the join carries expiration

timestamp T l . At time T6 • tuple 6+ from Stream 51 expires. In NTA (Figure 4b), the join operator

will perform the join with tuple 6~ and output three output negative tuples. The three tuples are

processed by the MAX operator independently. As mentioned in Section 4.6, the MAX operator

will output a new output after processing each input tuple (positive or negative). \iVhen applying

the join-message optimization, (Figure 4c), the join operator sends a join-message with timestamp

T l to its output queue. Upon receiving the join-message, the MAX operator -Bcans its state and

expires all tuples with expiration timestamp Tl and produces a new output after processing each

expired tuple.

5.4 Discussion

As can be seen from the previous example and explanations, the join-message optimization reduces

the CPU cost of negative tuples in the join operator. On the other hand, the join-message op

timization encounters a little additional memory overhead. The memory overhead is due to the

reference counter that is kept with tuples in the join state. The reference counter is an integer

and its size can be neglected in comparison with the tuple size. Moreover, the memory overhead

is compromised by the great savings in CPU by avoiding the re-execution of the join for negative

tuples.

The join-message optimization does not encounter memory overhead for the operator above the

20

Algorithm 1 The Modified W-Join Algorithm
Input: t , : In.com.ing tu,ple from. stream Si. H I : Hz: Hash tables for S1 and S2 represent the join operator state.
Algorithm

1) If t i is Q positive tuple
2) B, = hash(t,)
3) Insert ti in the bucket B , in the hash table Hi
4) For each tuple t j in bucket B , in the other hash table
5) I f t j joins with ti
6) output a positive join output tuple t+ for (ti and t j) with:
7) t+ .ts = max(ti.ts,tj .ts)
8) t+.Ets = min(ti.Ets,tj.Ets)
9) If (t j .Ets < t i .Ets)
10) Increment reference count of t j b y on,e
11) Else In.crement refereme count of ti by one
12) Else if ti is an expired tuple
13) B,: = hash(ti)
14) Delete the tuple ti from the bucket B ,
15) If reference cowt of ti > 0

1 6) if ti.ts > lastTM
1 7) ZastTM = ti.ts
1 8) Sen,d a join-message with tim.estamp = ti.ts

join if this operator is sta.tef~11 (e.g., Join, Distinct or Minus). The menlory overhead of the join-

inessa,ge optimization is worth considering only when the join operator is followed by a non-stateful

Cla,ss-2 operator (i.e., the subtractable aggrega.tes: Sum, Count: and Average). Unlike NTA, when

the join-message optimization is applied, these aggregates have to store the input tuples in a state.

But, as will be discussed next, for high input rates, NTA gives very lligll output delays due to

tuples flooding the pipeline. Ba,sed on these observations, the decision on whether to use the join-

message optimization or the basic NTA with these aggregate queries involves a compromise between

memory, CPU, and output delay. The decision should be based on the available resources a,nd the

chara,cteristics of the input stream.

The Piggybacking Approach

As described in Section 3.2, the main motivation behind NTA is to avoid the output delay tha,t

is incurred in ITA. The output delay comes from either the low arrival rate or highly selective

operators (e.g., Join a.nd Select). Thus, in the case of high arriva'l ra.tes and non-selective operators,

the overhead of having negative tuples is unjustified. I11 fact, in these cases, ITA is preferable over

Algorithm 1 The Modified W-Join Algorithm
Input: t; : Incoming tuple from stream 5;. HI, Hz: Hash tables for 51 and 5z represent the join operator state.
Algorithm

1) If t; is a positive tuple
2) B" = hash(t,)
3) Insert ti in the bucket B" in the hash table Hi
4) For each tuple t j in bucket B" in the other hash table
5) If t j joins with ti
6) output a positive join output tuple t+ for (ti and t j) with:
7) t+.ts = max(ti.ts,tj.ts)
8) t+ .Ets = min(ti.Ets,tj.Ets)
9) If (tj.Ets < ti.Ets)
10) Increment reference count oftj by one
11) Else Increment reference count of t i by one
12) Else if ti is an expired tuple
13) B" = hash(ti)
14) Delete the tuple ti from the bucket B:r'
15) If reference count of ti > 0
16) ifti.ts> lastTM
17) lastTM = ti.ts
18) 5end a join-message with timestamp = ti.ts

join if this operator is stateful (e.g., Join, Distinct or Minus). The memory overhead of the join

message optimization is worth considering only when the join operator is followed by a non-stateful

Class-2 operator (i.e., the subtractable aggregates: Sum, Count, and Average). Unlike NTA, when

the join-message optimization is applied, these aggregates have to store the input tuples in a state.

But, as will be discussed next, for high input rates, NTA gives very high output delays due to

tuples flooding the pipeline. Based on these observations, the decision on whether to use the join

message optimization or the basic NTA with these aggregate queries involves a compromise between

memory, CPU, and output delay. The decision should be based on the available resources and the

characteristics of the input stream.

6 The Piggybacking Approach

As described in Section 3.2, the main motivation behind NTA is to avoid the output delay that

is incurred in ITA. The output delay comes from either the low arrival rate or highly selective

operators (e.g., Join and Select). Thus, in the case of high arrival rates and non-selective operators,

the overhead of having negative tuples is unjustified. In fact, in these cases, ITA is preferable over

21

NTA. In many cases, data stream sources may suffer from fluctuations in data arrival, especially

in unpredictable, slow, or bursty network traffic (e.g., see [29]). I11 addition, due to the streaming

nature of the input, data distribution is unpredictable. Hence, it is difficult to have a illode1 for

operator selectivity [22].

In this section, we present the piggybacking approach for efficient pipelined execution of sliding-

window queries. The goa.1 of the piggybacking optimiza.tion is to always achieve the minimum

possible output delay independent from the input stream characteristics. This goal is achieved by

dynamically ada.pting the pipeline as the cha,racteristics of the input stream cha.nge.

In the piggybacking a,pproach, time-inessa.ges and/or negative tuples flow in the query pipeline

only when they are needed. The main idea of the piggyba,cking optimization is to reduce the number

of tuples in the pipeline by merging multiple negative tuples a,nd/or time-messages into one time-

message. Moreover, positive tuples are piggybacked with the time-messages if they co-exist in a

queue. By reducing the nuillber of tuples in the pipeline, we also reduce the memory occupied by

the queues between the operators a,nd reduce the cost of inserting and reading tuples from queues.

A similar notion of piggybacking is used in [l] to reduce the nleinory needed to process a query.

The piggybacking optimiza,tion is realized by changing the queue insertion opera.tion such that:

a,t any time, the queue will include a,t most one time-messa.ge. The piggyba'cking a.pproac11 works

in two stages as follows:

Producing a piggybacking flag. Wheil an operator produces an output tuple t (either

positive, negative, or time-messa,ge) in the output queue, the insertion operation of the queue

works as follows: first checks if there are any time-messages in the queue (which is the input queue

of the next operator in the pipeline). If there is a t least one time-message, the insertion operatioil

performs two actions: (1) The output tuple t is tagged by a special flag PGFlag, (2) All the time-

messages in the output queue are purged. The tiinesta,inp of the tagged tuple is a time-messa,ge

that is used in the second sta,ge to direct the executioil of the pipelined query operators. Notice

that (I) only time-messages a,re purged from the queue but invalid tuples remain, (2) at a,ily time,

the queue will include a t most one time-messa,ge, and (3) the time-message is the bottom most

tuple in the queue.

Processing the piggybacking flag. When a query opera,tor receives a tuple t (either positive,

negative, or time-message) a t time T, it checks for the PGFlag in t . If the input tuple is not

NTA. In many cases, data stream sources may suffer from fluctuations in data arrival, especially

in unpredictable, slow, or bursty network traffic (e.g., see [29]). In addition, due to the streaming

nature of the input, data distribution is unpredictable. Hence, it is difficult to have a model for

operator selectivity [22].

In this section, we present the piggybacking approach for efficient pipelined execution of sliding

window queries. The goal of the piggybacking optimization is to always achieve the minimum

possible output delay independent from the input stream characteristics. This goal is achieved by

dynamically adapting the pipeline as the characteristics of the input stream change.

In the piggybacking approach, time-messages and/or negative tuples flow in the query pipeline

only when they are needed. The main idea of the piggybacking optimization is to reduce the number

of tuples in the pipeline by merging multiple negative tuples and/or time-messages into one time

message. Moreover, positive tuples are piggybacked with the time-messages if they co-exist in a

queue. By reducing the number of tuples in the pipeline, we also reduce the memory occupied by

the queues between the operators and reduce the cost of inserting and reading tuples from queues.

A similar notion of piggybacking is used in [1] to reduce the memory needed to process a query.

The piggybacking optimization is realized by changing the queue insertion operation such that,

at any time, the queue will include at most one time-message. The piggybacking approach works

in two stages as follows:

Producing a piggybacking flag. When an operator produces an output tuple t (either

positive, negative, or time-message) in the output queue, the insertion operation of the queue

works as follows: first checks if there are any time-messages in the queue (which is the input queue

of the next operator in the pipeline). If there is at least one time-message, the insertion operation

performs two actions: (1) The output tuple t is tagged by a special flag PGFlag, (2) All the time

messages in the output queue are purged. The timestamp of the tagged tuple is a time-message

that is used in the second stage to direct the execution of the pipelined query operators. Notice

that (1) only time-messages are purged from the queue but invalid tuples remain, (2) at any time,

the queue will include at most one time-message, and (3) the time-message is the bottom most

tuple in the queue.

Processing the piggybacking flag. When a query operator receives a tuple t (either positive,

negative, or time-message) at time T, it checks for the PGFlag in t. If the input tuple is not

22

Figure 5: Reference Count Example. Figure 6: The Piggyba.cking Approach.

ta.gged by the piggybacking fla.g, the query opera.tor will act exactly as NTA and the time-message

optimiza,tion. However, if the incoming tuple is tagged by the piggybacking flag, the query operator

act.s as ITA: described in Section 3.1. This means tha.t all tuples stored in the opera,tor state with

expiratioil tiillesta~np less than or equa,l T should expire. The idea is, if there are many positive

tuples, the11 there is no need to communicate explicit time-messages in the pipeline. In the case

tha,t, processing the illcoining tuple t does not result in any output (e.g., filtered wit11 the Join),

we output a time-message tlmt contains only the timestamp and the piggybacking flag so that

operators higher in the pipeline behave a.ccordingly.

The piggybacking fla,g (PGFlag) is a generalization of the time-message, described in Sec-

tioil 5.2.1. The ma.in difference is that a time-n~essa~ge with timestamp T is respoilsible for expiring

tuples with expira,tioil timestamp T, while a PGFlag with timestamp T is respoilsible for expiring

all the tuples with expira.tion tiinesta.inps less than o r equal to T.

Example: Figure 6 gives an exa.mple on the piggybacking approach. This exa,mple uses the

sa,me query of Figure 2a. The exaillple shows that when the join operator is highly selective (in

the period T6 to T8) nega.tive tuples a.re passed to COUNT for immediate expiration of tuples with

va,lues 4; 5, and 5. At time Tlo, the join opera,tor emits tuple 4- immediately followed by tuple 4+.

If tuple 4+ is einitted before COUNT reads 4-: then 4+ will delete 4- from the queue and COUNT

will read only tuple 4+. IVhile processing 4+, COUNT checks the input tuple's (4+) timesta.inp and

kilows that a tuple with value 4 (that is stored in COUNT'S state) should expire. Then, COUNT

emits the new aaswer reflecting the expiratioil of 4 and the addition of 4. The same happens a t

time Tll . This exa.mple shows t11a.t the delay in the answer upda.te will be the minimum possible

delay.

The piggybacking a,pproach is designed with the following goal in mind: "always achieve the

w W

------------:-- .- - - - - - -- -- -- --- ---.
I . Ii
,I

S1 I 1 1 ~ 4 5 5 9 4 3 9 8 6 3 4 5

8]-+ I I I +-+--: I I I I ~

I . 4 5
J 4 5 5 4 3 4" 5 5 3 F.%'

S 2 -+--t I I.
8 i I I I I I I , I ~I I

2

I,T] t~'1j 1 2 3 4 5 4 3 2 3 3 3

S3 1 1 I I I I 1 1 1 I~ 83 I I I I I I I I I I I I ~

To T] T 2 T 3 T. T S T 6 T 7 T 8 To T I T2 T3 T. Ts T. T 7 T a T y T 10 Tll

Figure 5: Reference Count Example. Figure 6: The Piggybacking Approach.

tagged b:y the piggybacking flag, the query operator will act exactly as NTA and the time-message

optimization. However, if the incoming tuple is tagged by the piggybacking flag, the query operator

acts as ITA, described in Section 3.1. This means that all tuples stored in the operator state with

expiration timestamp less than or equal T should expire. The idea is, if there are many positive

tuples, then there is no need to communicate explicit time-messages in the pipeline. In the case

that processing the incoming tuple t does not result in any output (e.g., filtered with the Join),

we output a time-message that contains only the timestamp and the piggybacking flag so that

operators higher in the pipeline behave accordingly.

The piggybacking flag (PGFlag) is a generalization of the time-message, described in Sec

tion 5.2.1. The main difference is that a time-message with timestamp T is responsible for expiring

tuples \'lith expiration timestamp T, while a PGFlag with timestamp T is responsible for expiring

all the tuples with expiration timestamps less than or equal to T.

Example: Figure 6 gives an example on the piggybacking approach. This example uses the

same query of Figure 2a. The example shows that when the join operator is highly selective (in

the period T6 to Ts) negative tuples are passed to COUNT for immediate expiration of tuples with

values 4, 5, and 5. At time TIO , the join operator emits tuple 4- immediately followed by tuple 4+.

If tuple 4+ is emitted before COUNT reads 4-, then 4+ will delete 4- from the queue and COUNT

will read only tuple 4+. \iVhile processing 4+, COUNT checks the input tuple's (4+) timestamp and

knows that a tuple with value 4 (that is stored in COUNT's state) should expire. Then, COUNT

emits the new answer reflecting the expiration of 4 and the addition of 4. The same happens at

time Tn. This example shows that the delay in the answer update will be the minimum possible

delay.

The piggybacking approach is designed with the following goal in mind: "always achieve the

23

(a) Data. Distribution

(b) Avg Output Delay (c) Max Output Delay

Figure 7: Q1: Effect of Selectivity and Da,ta Distribution.

minimum possible output delay indepeildent from the input stream or query cha,racteristics". This

goal is a,chieved as follows: (1) the time infornlation is propagated (using time messages) in the

pipeline once they are generated without waiting for positive tuples, and (2) the tiine information

is merged with the positive tuples whenever possible. Basically, the piggybwking optimization

self-tmles the query pipeline by alternating bet~veen both NTA and ITA.

6.1 Discussion

In our prototype, operators in the pipeline a,re scheduled using the round-robin (RR) approach. In

the RR scheduling; an operator runs for a fixed amount of tiine before releasing the CPU to the

next opera,tor. During an operator runj the operator processes tuples from the operator's input

queue and produces tuples in the operator's output queue. The piggybacking approach results

in miniiniziilg the number of tuples produced in the output queue during an operator's run since

time-1nessa.ges a,re inerged together or inerged with positive tuples. This reductioil in queue sizes

has the benefit of reducing the illenlory usage by the pipeline and reducing the overhea,d of reading

WI \\'2 W3- -• • --
Dala Disnioulioll 1

WI w' W3
....... - _.

............•• •• •
Data Di~rliouli(\ll 2

(a) Data Distribution

"
"
1.

12

Input Triggered 11) ~
Input Triggered (2) ..----+

Negative Tuple' ---+--

0.2 0.4 0.6 O. I;

Selectivity

(b) Avg Output Delay

~ 60

~ 50

~ 40

Input Triggere'd III ---lo(-
Input TriggEred 12) ____

Negative Tuple _-b_

Selectivity

(c) lVlax Output Delay

Figure 7: Q1: Effect of Selectivity and Data Distribution.

minimum possible output delay independent from the input stream or query characteristics". This

goal is achieved as follows: (1) the time information is propagated (using time messages) in the

pipeline once they are generated without waiting for positive tuples, and (2) the time information

is merged with the positive tuples whenever possible. Basically, the piggybacking optimization

self-tunes the query pipeline by alternating between both NTA and ITA.

6.1 Discussion

In our prototype, operators in the pipeline are scheduled using the round-robin (RR) approach. In

the RR scheduling, an operator runs for a fixed amount of time before releasing the CPU to the

next operator. During an operator run, the operator processes tuples from the operator's input

queue and produces tuples in the operator's output queue. The piggybacking approach results

in minimizing the number of tuples produced in the output queue during an operator's run since
-

time-messages are merged together or merged with positive tuples. This reduction in queue sizes

has the benefit of reducing the memory usage by the pipeline and reducing the overhead of reading

24

tuples from the queue.

There are several other opera,tor scheduling techniques, e.g., FIFO, chain [7] a.nd tra.in [I I] . The

reduction in the queue size ga,ined by using the piggybacking approach depends on which scheduling

policy is used. For example, if the FIFO scheduling is used, then the piggybxking optimization

does not provide any performance ga,ins over NTA. This is bemuse in the FIFO scheduling. one

tuple is processed in the pipeline at a time and tuples a,re not accumulating in the interinediate

queues. On the other hand, for scheduling policies that a,llow tuples to accuinulate in the output,

queues (e.g., RR, chain, or train). the piggybacking optimization achieves performance ga,ins over

NTA. In other words, the piggybacking optimization is orthogonal to the scheduling policy. Under

all scheduling policies, in the worst case, the piggybxking approach performs the same a's NTA.

Experiments

I11 this section, we present experimental results from the inlplenlentation of our algorithins in a,

prototype data stream ma.na~gement system, I\TILE [20]. We coinpa,re the performance of NTA with

ITA and show how the proposed optimizations enhance the performance further.

7.1 Experimental Setup

The prototype system is inlpleillented on Intel Pentiuin 4 CPU 2.4 GHz with 512 I\/IB RAM runniilg

\Vindows XP. The system uses the pipeline query execution model for processing queries over data,

strea,ms. The query execution pipeline is connected with the underlying strea.ining source via,

the streain scan operator SSCAN. The EXPIRE operator is impleinented as p a t of the SSCAN

operator. The local selection predica,tes for ea,ch stream are pushed inside the EXPIRE opera,tor.

Different operators in the pipeline cominunicate with each other via, a network of FIFO queues.

Tuples a.re ta.gged with a special flag to indicate whether the tuple is positive, nega.tive, or invalid.

Each opera,tor in the pipeline runs as an independent thread. Opera,tors in NILE are scheduled

using a round-robin scheduliiig where each opera,tor runs for a fixed ainount of time to consunle

tuples froill the opera.tor's input queue. Once the input queue of the opera.tor is exha,ustecl or the

opera,tor's time slot is finished, the next operator is scheduled.

We use the average and max output delay as a illeasure of performance. The output delay is

tuples from the queue.

There are several other operator scheduling techniques, e.g., FIFO, chain [7] and train [Il]. The

reduction in the queue size gained by using the piggybacking approach depends on which scheduling

policy is used. For example, if the FIFO scheduling is used, then the piggybacking optimization

does not provide any performance gains over NTA. This is because in the FIFO scheduling. one

tuple is processed in the pipeline at a time and tuples are not accumulating in the intermediate

queues. On the other hand, for scheduling policies that allow tuples to accumulate in the output

queues (e.g., RR, chain, or train). the piggybacking optimization achieves performance gains over

NTA. In other words, the piggybacking optimization is orthogonal to the scheduling policy. Under

all scheduling policies, in the worst case, the piggybacking approach performs the same as NTA.

7 Experiments

In this section, we present experimental results from the implementation of our algorithms in a

prototype data stream management system, NILE [20]. We compare the performance of NTA with

ITA and show how the proposed optimizations enhance the performance further.

7.1 Experimental Setup

The prototype system is implemented on Intel Pentium 4 CPU 2.4 GHz with 512 MB RAfvf running

'Windows XP. The system uses the pipeline query execution model for processing queries over data

streams. The query execution pipeline is connected with the underlying streaming source via

the stream scan operator SSCAN. The EXPIRE operator is implemented as part of the SSCAN

operator. The local selection predicates for each stream are pushed inside the EXPIRE operator.

Different operators in the pipeline communicate with each other via a network of FIFO queues.

Tuples are tagged with a special flag to indicate whether the tuple is positive, negative, or invalid.

Each operator in the pipeline runs as an independent thread. Operators in NILE are scheduled

using a round-robin scheduling where each operator runs for a fixed amount of time to consume

tuples from the operator's input queue. Once the input queue of the operator is exhausted or the

operator's time slot is finished, the next operator is scheduled.

We use the average and max output delay as a measure of performance. The output delay is

25

h v g T U p l e ! ' , ~ l C i ~ l l C l i Y

(a) Tuples in the Pipeliile

A \ ; Typle I B u l t i p l i c l t y

(b) Join Ca.pacity

Figure 8: Effect of the Join Message.

defined as the delay between the arri~,,al/expira,tion of a tuple and the a.ppearance of its effect in

the query answer. For example, a.ssume that in Q1 (Figure 2); a tuple t l a,rrives to the system a t

time T. COUhTT produces an output tuple a,ft.er a.dding the va.lue of t l a.t time T + d, then this

tuple encounters an output delay of d units of time.

Workload queries: We use the t\47o queries, Q1 (Figure 2) a,ild Q2 (Figure 4) to evaluate

the proposed techniques. The stream Sa.lesStream used in the queries ha,s the same following

schema,: (StoreID, IteinID, Price: Quantity; Timestamp). We use randomly generated synthetic

data,. The inter-arrival time between two data. items follows the exponential distribution with mean

X tuples/second. The a,rrival rate of the input streams is changed by varying the parameter X of the

exponential distribution. A timestamp is assigned to a tuple when the tuple arrives to the server.

Synthetic data generation: For the input streams, the number of distinct items is set to

1200 items. For Query Q1, the ta'ble FavoriteItems is changed to achieve the desired selectivity.

The distribution of the data items inside the window is randonlly genera,ted (if not mentioned

otherwise). For Query Q2, we achieve the desired join selectivity by controlliilg the values of the

join attribute (StoreID). For exa.mple, if the window size is set such tha,t the window will contain

100 tuples, then the StoreID values in the first strea.111 axe ra,ndomly generated in the range 1 to 100

a.nd in the second stream in the ra,nge 50 t,o 150. Such data, distribution guarantees a selectivity of

0.005 for a,ll windows.

0.8 'I-------~>____A____ _A_____~

1200

1100

Inj:'ut Trjggere:: ----*
EXact. Negotive: ~uj:'les ------A-----

G.6~=-
0.4

o./.

900

800

700

SGG

Exact Negative Tuples ---A-
Jcin l·jESSage ___________

1 1.5 2 2.5 3 3.':: Ii 4.:

Avg Tuple l'll.ll t.ir:.lici ly

(a) Tuples in the Pipeline

1 1.5 ~ 2.5 3 .3.: 4 4.5 5

;,v; T"Jple J~ultiplicity

(b) Join Capacity

Figure 8: Effect of the Join J'vlessage.

defined as the delay between the arrival/expiration of a tuple and the appearance of its effect in

the query answer. For example, assume that in Q1 (Figure 2), a tuple t1 arrives to the system at

time T. COUNT produces an output tuple after adding the value of t1 at time T + d, then this

tuple encounters an output delay of d units of time.

Workload queries: \Ne use the two queries, Q1 (Figure 2) and Q2 (Figure 4) to evaluate

the proposed techniques. The stream SalesStream used in the queries has the same following

schema: (StoreID, ItemID, Price, Quantity, Timestamp). We use randomly generated synthetic

data. The inter-arrival time between two data items follows the exponential distribution with mean

A tuples/second. The arrival rate of the input streams is changed by var,ying the parameter A of the

exponential distribution. A timestamp is assigned to a tuple when the tuple arrives to the server.

Synthetic data generation: For the input streams, the number of distinct items is set to

1200 items. For Query Q1, the table FavoriteItems is changed to achieve the desired selectivity.

The distribution of the data items inside the window is randomly generated (if not mentioned

otherwise). For Query Q2, we achieve the desired join selectivity by controlling the values of the

join attribute (StoreID). For example, if the window size is set such that the window will contain

100 tuples, then the StoreID values in the first stream are randomly generated in the range 1 to 100

and in the second stream in the range 50 to 150. Such data distribution guarantees a selectivity of

0.005 for all windows.

26

7.2 ITA vs. NTA

I11 this section; we compare tlle performance of ITA a,nd NTA for va,rious data distributions. Figure 7

gives the effect of c11a.nging the selectivity of the join operator in Q1 (Figure 2a). Figure 7b gives

the avera,ge output delay while Figure 7c gives the rnaximum output delay. We run the experiment

for two da.ta distributions as s l ~ o ~ v i ~ in Figure 7a. In this experiment, the input rate is fixed a,t 50

tuples/second, the window size is 30 seconds ,md the selectivity varies from 0.1 to 1. For the sa.ine

selectivity value; the data distribution in Figure 7a shows how the qualified tuples are distributed in

the window. In Da,ta Distributioil 1; the qualified tuples are accumulated a t one end of the wiildow

a,nd some windo~vs may not. ha,ve any qualified tuples. On the other ha.nd, in Data. Distribution 2 the

qua,lified tuples are scattered a.long the wiildow width. The experiment shows that the output delay

in ITA is highly affected by the selectivity a,nd the data distribution. For low selectivity, ITA shows

high output delay since the COUNT operator will not expire old tuples until a new input tuple

qualifies the join. The output delay for ITA is higher in the case of Data Distribution 1 because

the range between qualified tuples is bigger than tha,t in Data Distribution 2. The output delay

for ITA decreases considera,bly 14?11e11 either the selectivity increases or when tuples are scattered in

the window since qua'lified tuples pass the join and the COUNT operator is scheduled more often.

In general, tbe output delav in the case of ITA is unpredicta,ble and is highly affected by the input

data, characteristics. The experinlent also shows that NTA does not depend on the selectivity or

data distribution since tuple expiration takes place even if no input tuples pass the join. As the

input chara.cteristics in streanliilg environinents are always changing, ITA is not suita.ble to use. I11

the rest of the experiments we onlit ITA.

7.3 The Join-Message Optimization

Figure 8 illustrates how the join message optimization reduces the overhead of processiilg negative

tuples. This experiment uses Query Q2 (Figure 4a). The input rate is 50 tuples/second for ea.ch

stream. The window is 30 seconds and the join selectivity is fixed to 0.01. The tuple's join

nlultiplicity ra.nges froin 1 to 5. To understand how to get different tuple multiplicity for the same

join selectivity, assume the number of tuples in each wiildow is 100, then for a join selectivity of

0.01, 100 tuples will be output froin the join in ea.ch window (100/100*100). The 100 output tuples

7.2 ITA vs. NTA

In this section, \\'e compare the performance of ITA and NTA for various data distributions. Figure 7

gives the effect of changing the selectivity of the join operator in Q1 (Figure 2a). Figure 7b gives

the average output delay while Figure 7c gives the maximum output delay. We run the experiment

for two data distributions as shown in Figure 7a. In this experiment, the input rate is fixed at 50

tuples/second, the window size is 30 seconds and the selectivity varies from 0.1 to 1. For the same

selectivity value, the data distribution in Figure 7a shows how the qualified tuples are distributed in

the window. In Data Distribution 1, the qualified tuples are accumulated at one end of the window

and some windows may not have any qualified tuples. On the other hand, in Data Distribution 2 the

qualified tuples are scattered along the window width. The experiment shows that the output delay

in ITA is highly affected by the selectivity and the data distribution. For low selectivity, ITA shows

high output delay since the COUNT operator will not expire old tuples until a new input tuple

qualifies the join. The output delay for ITA is higher in the case of Data Distribution 1 because

the range between qualified tuples is bigger than that in Data Distribution 2. The output delay

for ITA decreases considerably when either the selectivity increases or when tuples are scattered in

the window since qualified tuples pass the join and the COUNT operator is scheduled more often.

In general, the output delay in the case of ITA is unpredictable and is highly affected by the input

data characteristics. The experiment also shows that NTA does not depend on the selectivity or

data distribution since tuple expiration takes place even if no input tuples pass the join. As the

input characteristics in streaming environments are always changing, ITA is not suitable to use. In

the rest of the experiments we omit ITA.

7.3 The Join-Message Optimization

Figure 8 illustrates how the join message optimization reduces the overhead of processing negative

tuples. This experiment uses Query Q2 (Figure 4a). The input rate is 50 tuples/second for each

stream. The window is 30 seconds and the join selectivity is fixed to 0.01. The tuple's join

multiplicity ranges from 1 to 5. To understand how to get different tuple multiplicity for the same

join selectivity, assume the number of tuples in each window is 100, then for a join selectivity of

0.01, 100 tuples will be output from the join in each window (100/100*100). The 100 output tuples

27

call result if 100 tuples from the first streain ea,ch joining with one tuple from the second stream

(i.e., tuple mult,iplicity equals to 1). The 100 output tuples can also result if 50 tuples from the

first stream each joiniilg with 2 tuples froin the second streain (i.e., tuple nlultiplicity equals to 2).

Figure 8a gives the ratio between the nuinber of negative and positive tuples in the join output

queue. The nuinber of tuples in the queue is a11 indication about memory usage by the queue.

Also; the number of negative tuples represents the overhead associated with NTA. This overhead

is always zero for ITA. Tlle overhead is almost equal to one in NTA since one negative tuple is

processed for ever!. positive tuple (in the figure, it is not exactly one since some negative tuples inay

have not been processed yet at the time the measurement is taken). The join message optiinizatioil

reduces the nuinber of negative tuples emitted froin the join operator to the next operator in the

pipeline (hlAX). Tlle reductioil increases as the tuple join multiplicity increases. Figure 8b gives

the average join capacit!.. The join capacity is defined as the number of tuples processed by the

join operator per second. The experiment shonrs that the join capacity is doubled when using the

join message optimization. The reason is that the negative tuples do not perform the exact join.

Figure 8b illustrates that the join capacity is illdependent of tuple multiplicity. In the symmetric

hash join between two streams S1 and S2, an input tuple from stream S1 probes only one bucket in

the hash table for streain S2. The probing cost is negligible coinpared to the cost of performing the

join and constructing the output tuple. The join capacity is independent of the tuple nlultiplicity

because the join selectivity is fixed and the iluinber of output tuples is independent of the tuple

multiplicity.

7.4 The Piggybacking Approach

This section shows the perforillance of the piggybacking optimization (accompanied by the join-

message optimization). Implementing the piggybacking a,pproach requires only a slight nlodification

to the impleinenta~tion of the queues connecting operators in the pipeline (as described in Section 6).

7.4.1 Performance Enhancement

Figure 9a compares the output delay of NTA and the piggybacking approach for Query Q2 (Fig-

ure 4a). The input rate is fixed to 200 tuples per secoild while varying the join selectivities froin 0

can result if 100 tuples from the first stream each joining with one tuple from the second stream

(i.e., tuple multiplicity equals to 1). The 100 output tuples can also result if 50 tuples from the

first stream each joining with 2 tuples from the second stream (i.e., tuple multiplicity equals to 2).

Figure 8a gives the ratio between the number of negative and positive tuples in the join output

queue. The number of tuples in the queue is an indication about memory usage by the queue.

Also, the number of negative tuples represents the overhead associated with NTA. This overhead

is always zero for ITA. The overhead is almost equal to one in NTA since one negative tuple is

processed for every positive tuple (in the figure, it is not exactly one since some negative tuples may

have not been processed yet at the time the measurement is taken). The join message optimization

reduces the number of negative tuples emitted from the join operator to the next operator in the

pipeline (rvIAX). The reduction increases as the tuple join multiplicity increases. Figure 8b gives

the average join capacity. The join capacity is defined as the number of tuples processed by the

join operator per second. The experiment shows that the join capacity is doubled when using the

join message optimization. The reason is that the negative tuples do not perform the exact join.

Figure 8b illustrates that the join capacity is independent of tuple multiplicity. In the symmetric

hash join between two streams 51 and 52, an input tuple from stream 51 probes only one bucket in

the hash table for stream 52. The probing cost is negligible compared to the cost of performing the

join and constructing the output tuple. The join capacity is independent of the tuple multiplicity

because the join selectivity is fixed and the number of output tuples is independent of the tuple

multiplicity.

7.4 The Piggybacking Approach

This section shows the performance of the piggybacking optimization (accompanied by the join

message optimization). Implementing the piggybacking approach requires only a slight modification

to the implementation of the queues connecting operators in the pipeline (as described in Section 6).

7.4.1 Performance Enhancement

Figure 9a compares the output delay of NTA and the piggybacking approach for Query Q2 (Fig

ure 4a). The input rate is fixed to 200 tuples per second while varying the join selectivities from a

28

Join s e l e c r i v i t y b

(a) Perforlnance Enhancelllellt

J c l n S e l e c t i v i t y 1 %)

(b) Overhead Reduction

Figure 9: Performance of Piggybacking.

to 1%. The figure illustrates that for lower selectivity, which correspoilds to high output rates from

the join operator, NTA encouilters more output delays since the queues are flooded with positive

and nega,tive tuples. For low selectivity values (which corresponds to lower output rates from the

join), NTA and the piggybacking a,pproa,ch give the same output delay since fewer number of tuples

flow in the queues and hence there is no waiting time. In general, the piggyba.cking approach gives

the minimum possible output delay in all arrival ra.tes and all selectivities since it coinmunicates

the negative tuples only when necessary.

7.4.2 Reducing Overhead

This experiment shows how the piggyba,ckiilg approach reduces the ilun~ber of negative tuples in the

pipeline. Reducing the number of negative tuples in the pipeline mea,ns reducing the memory usage

by the queues. Figure 9b gives the ratio between the number of negative tuples a.nd the number of

positive tuples processed by the MAX operator in Query Q2. We vary the join selectivity as the

input rate is fixed to 200 tuples per second. In NTA, the ratio is almost one since one negative

tuple is processed for every positive tuple. In the piggybacking approach, the ratio decreases for

lower selectivity. The rea.son is tlmt positive tuples flow in the query pipeline with high rate and

hence purge negative tuples (if any) from the queue.

Negative Tuples ------A-
Piggybacking _.-

0.6

0.4

0.2

Negative Tuples -8-
Piggybacking ________

,..1c.in selectivity (~)

o~~=o:::::...-~~-~~_~---l

0.2 0.3 0.14 0.5 0.6 0.7 0.8 0.9

Join select.ivity %

o. ~ 0.4 (1.6 o. e

(a) Performance Enhancement (b) Overhead Reduction

Figure 9: Performance of Piggybacking.

to 1%. The figure illustrates that for lower selectivity, which corresponds to high output rates from

the join operator, NTA encounters more output delays since the queues are flooded with positive

and negative tuples. For low selectivity values (which corresponds to lower output rates from the

join), NTA and the piggybacking approach give the same output delay since fewer number of tuples

flow in the queues and hence there is no waiting time. In general, the piggybacking approach gives

the minimum possible output delay in all arrival rates and all selectivities since it communicates

the negative tuples only when necessary.

7.4.2 Reducing Overhead

This experiment shows how the piggybacking approach reduces the number of negative tuples in the

pipeline. Reducing the number of negative tuples in the pipeline means reducing the memory usage

by the queues. Figure 9b gives the ratio between the number of negative tuples and the number of

positive tuples processed by the MAX operator in Query Q2. We vary the join selectivity as the

input rate is fixed to 200 tuples per second. In NTA, the ratio is almost one since one negative

tuple is processed for every positive tuple. In the piggybacking approach, the ratio decreases for

lower selectivity. The reason is that positive tuples flow in the query pipeline with high rate and

hence purge negative tuples (if any) from the queue.

29

8 Related Work

Strea,m query processiilg is currently being addressed in a number of research prototypes. Exam-

ples include Aurora [2], which is later extended to Borealis [I], NiagraCQ [15], TelegraphCQ [12],

PSoup [14], NILE [20, 211 and STREAM [3]. These resea.rch prototypes address various issues in

processing queries over data. streams. All these research prototypes have recognized the need for

sliding windows to express queries over data streams. For a survey about the requirements for

stream query processing, refer to [8, 171.

Window-aware query opera.tors have been addressed many times in the literature. Exanlples of

algorithms for processiilg wiildow aggregates include [5: 2, 13, 161 and examples of algorithms for

window join include [23]. The previous work in this subject addresses the processing of a single

window operator but does not address the processing of a whole query pipeline. Aurora. [2] uses

the window re-evalua.tion a.pproach to evaluate window aggregates. In the window re-evalua.tion

approach, a computation state is initialized whenever a wi~ldow is opened, that state is updated

whenever a tuple arrives, and the state is converted into a. final result when the window closes.

An input tuple updates a.nd is stored in more than one computation state in the s a ~ n e time. In

this paper we focus on the increinental evaluation pipeline. Incremental evaluation for Join is

addressed in [23], where ITA is used to invalidate tuples froin the join state when a new tuple

a.rrives. However, the a,uthors in [23] do not address how to expire tuples from the operators above

the join. Also [23] does not address the output delay problem.

The traditional query optimization goal does not apply to coiltinuous queries. Rate-based

optimization is introduced in [313]. The goal of the opt i~niz~t ion is to nmximize the output ra.te of

a query. In [6], the a.uthors introduce a framework for conjunctive query optimiza.tion. The goal

of the optimiza.tion is to find an execution plan that reduces the resource usa.ge. None of these

optimization techniques consider reducing the output delay as an optimization god. Moreover,

these optimization frameworks consider only ITA. Applying these opti~nization frameworks over

NTA is an interestiilg area for future work. The time message a.nd piggybacking optimizations

reduce the CPU and memory utilization of NTA, hence they can be categorized under the class of

optimizations to reduce resource utilization.

Recent resea.rcl1 efforts focus on introducing new "artificial" kinds of tuples that flow througll

8 Related Work

Stream query processing is currently being addressed in a number of research prototypes. Exam

ples include Aurora [2]' which is later extended to Borealis [1]' NiagraCQ [15], TelegraphCQ [12],

PSoup [14], NILE [20, 21] and STREAM [3]. These research prototypes address various issues in

processing queries over data streams. All these research prototypes have recognized the need for

sliding windows to express queries over data streams. For a survey about the requirements for

stream query processing, refer to [8, 17].

Window-aware query operators have been addressed many times in the literature. Examples of

algorithms for processing window aggregates include [5, 2, 13, 16] and examples of algorithms for

window join include [23]. The previous work in this subject addresses the processing of a single

window operator but does not address the processing of a whole query pipeline. Aurora [2] uses

the window re-evaluation approach to evaluate window aggregates. In the window re-evaluation

approach, a computation state is initialized whenever a window is opened, that state is updated

whenever a tuple arrives, and the state is converted into a final result when the window closes.

An input tuple updates and is stored in more than one computation state in the same time. In

this paper we focus on the incremental evaluation pipeline. Incremental evaluation for Join is

addressed in [23], where ITA is used to invalidate tuples from the join state when a new tuple

arrives. However, the authors in [23] do not address how to expire tuples from the operators above

the join. Also [23] does not address the output delay problem.

The traditional query optimization goal does not apply to continuous querIes. Rate-based

optimization is introduced in [30]. The goal of the optimization is to maximize the output rate of

a query. In [6], the authors introduce a framework for conjunctive query optimization. The goal

of the optimization is to find an execution plan that reduces the resource usage. None of these

optimization techniques consider reducing the output delay as an optimization goal. Moreover,

these optimization frameworks consider only ITA. Applying these optimization frameworks over

NTA is an interesting area for future work. The time message and piggybacking optimizations

reduce the CPU and memory utilization of NTA, hence they can be categorized under the class of

optimizations to reduce resource utilization.

Recent research efforts focus on introducing new "artificial" kinds of tuples that flow through

30

the query pipeline. Examples of such tuples include delete messages [I], DStream [4], Negative

Tuples [2:1.] , heartbeats [26] , and punctuation [28]. The main idea of these artificial tuples is to notify

various pipelined operators of a certain event (e.g., expiring a tuple, synchronizing opera.tors, or

end of sequence of data). STREAM [3] and Nile [20, 21.1 use NTA to expire tuples. Negative tuples

have been used in other systems, e.g., Borealis [I] for automatic data revision where a negative

tuple is sent by the streaming source to delete a,n erroneous positive tuple. Although not mentioned

explicitly, Niagra,CQ [15] uses a notioll silnila,r to negative tuples when processing deletions to data

strea,ms. All the previous works either uses ITA or NTA. Our work is considered the first to

automatically the pipeline to switch between ITA and NTA based on the underlying stream

chxacteristics.

Punctua.tion is mother form of artificial tuples [28]. A punctuation marks the end of a subset of

the data and is used to purge state and to unblock blocking operators. Processing stream constraints

is a,nother way to discover and purge unneeded tuples froin operators' states [9]. Unlike negative

tuples, the tuples purged by the punctuatioil (or strea,in constraints) a,re not re-processed and do

not affect the query answer. Moreover, both [28] and [9] assume prior knowledge of the input

stream cllara~cteristics and utilize this kilowledge in generating the appropria,te punctua-tion.

An opera,tor-level heartbeat [26] is a way for time synchronization. A hea,rtbeat is sent along the

query pipeline so that the operators learn the current time and process input tuples accordingly.

The goal of the heartbeats is to order tuples arrived out-of-order. Heartbe& generation assumes

knowledge of the cha,ra-cteristics of the input strea.111~. Heartbeat generation is independent from

the data distribution or the query. The time-messa.ge optiinization we propose in this paper can be

regarded as a special kind of heartbeat that has a different goal and different generation policies

than the 11eartbea.t~ in [26]. Time-messages a,re generated based on the data distribution and query

selectivity and flow in the pipeline oilly when there are tuples to expire. Moreover, time messages

call be merged with positive tuples. The goal of time messages is to reduce the output delay of the

query.

Processing negative tuples in the query pipeline to update the query answer is closely related to

the traditional iilcrelnental maintenance of materialized views [19, 101. The design of our window

opera,tors is based on the differential approach for incrementa.1 view inainteilance [18] where change

propaga.tioi1 equatioils are defined for the various relational algebra opera,tors [18]. The equations

the query pipeline. Examples of such tuples include delete messages [1], DStream [4], Negative

Tuples [21], heartbeats [26], and punctuation [28]. The main idea of these artificial tuples is to notify

various pipelined operators of a certain event (e.g., expiring a tuple, synchronizing operators, or

end of sequence of data). STREAM [3] and Nile [20, 21] use NTA to expire tuples. Negative tuples

have been used in other systems, e.g., Borealis [1] for automatic data revision where a negative

tuple is sent by the streaming source to delete an erroneous positive tuple. Although not mentioned

explicitly, NiagraCQ [15] uses a notion similar to negative tuples when processing deletions to data

streams. All the previous works either uses ITA or NTA. Our work is considered the first to

automatically adapt the pipeline to switch between ITA and NTA based on the underlying stream

characteristics.

Punctuation is another form of artificial tuples [28]. A punctuation marks the end of a subset of

the data and is used to purge state and to unblock blocking operators. Processing stream constraints

is another way to discover and purge unneeded tuples from operators' states [9]. Unlike negative

tuples, the tuples purged by the punctuation (or stream constraints) are not re-processed and do

not affect the query answer. Moreover. both [28] and [9] assume prior knowledge of the input

stream characteristics and utilize this knowledge in generating the appropriate punctuation.

An operator-level heartbeat [26] is a way for time synchronization. A heartbeat is sent along the

query pipeline so that the operators learn the current time and process input tuples accordingly.

The goal of the heartbeats is to order tuples arrived out-of-order. Heartbeat generation assumes

knowledge of the characteristics of the input streams. Heartbeat generation is independent from

the data distribution or the query. The time-message optimization we propose in this paper can be

regarded as a special kind of heartbeat that has a different goal and different generation policies

than the heartbeats in [26]. Time-messages are generated based on the data distribution and query

selectivity and flow in the pipeline only when there are tuples to expire. Moreover, time messages

can be merged with positive tuples. The goal of time messages is to reduce the output delay of the

query.

Processing negative tuples in the query pipeline to update the query answer is closely related to

the traditional incremental maintenance of materialized views [19, 10]. The design of our window

operators is based on the differential approach for incremental view maintenance [18] where change

propagation equations are defined for the various relational algebra operators [18]. The equations

31

specify how an operator should process a.n inserted or expired tuple.

9 Conclusions

Incremental query evaluatioil has been adopted by da.ta streain management systems as a coor-

dination scheme among various pipelined query operators. In this pa,per, we focus on the two

approaches for incremental query evalua.tion, namely, the input-triggered approach (ITA) and neg-

ative tuples a,pproach (NTA). We study the realization of the incremeiltal evalua,tion pipeline in

terms of the design of the increnlental relational operators. We show that although NTA a.voids

the shortcomings of ITA (i.e., la,rge output delays), NTA suffers from a major dra,wba,ck. Negative

tuples double the number of tuples in the query pipeline, hence the pipeline bandwidth is reduced

to ha.lf. We classified incremental operators into two classes a.ccording to whether an operator can

avoid the processing of a negative tuple or not. Based on the operator classifica.tion, we presented

two optimization techniques tha't enhanced the performance of the negative tuples a,pproa,ch. The

first optimization, namely the time message optimization, ma,inly focuses on the join operator

subtree. The main idea is to avoid the re-execution of the expensive join operation with nega,-

tive tuples. The second optimization, na,mely the piggybacking optimization; self-tunes the query

pipeline to work in either ITA or NTA according to the characteristics of the tuples flowing in the

query pipeline. With the piggybacking a.pproach, the query pipeline gets the benefits of both ITA

and NTA. Experimental results based on a rea'l implementation of input-triggered, negative tuples,

time messages, and piggybacking approa.ches inside a prototype data streain management system

show that the join message optimization enhances the performance of negative tuples by a, factor of

two. Based on the input rate and/or join selectivity, the piggybacking optimization always traces

the best performance of either ITA or NTA.

References

[l] D. Abadi. et al. The Design of the Borealis Stream Processing Engine. In CIDR, 2005.

specify how an operator should process an inserted or expired tuple.

9 Conclusions

Incremental query evaluation has been adopted by data stream management systems as a coor

dination scheme among various pipelined query operators. In this paper, we focus on the two

approaches for incremental query evaluation, namely, the input-triggered approach (ITA) and neg

ative tuples approach (NTA). We study the realization of the incremental evaluation pipeline in

terms of the design of the incremental relational operators. VVe show that although NTA avoids

the shortcomings of ITA (i.e., large output delays), NTA suffers from a major drawback. Negative

tuples double the number of tuples in the query pipeline, hence the pipeline bandwidth is reduced

to half. We classified incremental operators into two classes according to whether an operator can

avoid the processing of a negative tuple or not. Based on the operator classification, we presented

two optimization techniques that enhanced the performance of the negative tuples approach. The

first optimization, namely the time message optimization, mainly focuses on the join operator

subtree. The main idea is to avoid the re-execution of the expensive join operation with nega

tive tuples. The second optimization, namely the piggybacking optimization, self-tunes the query

pipeline to work in either ITA or NTA according to the characteristics of the tHples flowing in the

query pipeline. With the piggybacking approach, the query pipeline gets the benefits of both ITA

and NTA. Experimental results based on a real implementation of input-triggered, negative tuples,

time messages, and piggybacking approaches inside a prototype data stream management system

show that the join message optimization enhances the performance of negative tuples by a factor of

two. Based on the input rate and/or join selectivity, the piggybacking optimization always traces

the best performance of either ITA or NTA.

References

[1] D. Abadi. et al. The Design of the Borealis Stream Processing Engine. In CIDR, 2005.

32

[2] D. J. Abadi. et al. Aurora: A New Model and Architecture for Data Stream Management. The

International Journal on Very Large Data Bases, VLDB Journal, 12(2):120-139, 2003.

[3] A. Arasu. et al. Data-Stream Management: Processing High-Speed Data Streams, chapter STREAM:

The Stanford Data Stream Management System, Springer-Verlag, New York 2005 (to appear).

[4] A. Arasu, S. Babu, and J. Widom. CQL: A Language for Continuous Queries over Streams and

Relations. I11 In Proceedings of the International Workshop on Database Programming Languages,

DBPL. 2003.

[5] A. Arasu and J. Widom. Resource Sharing in Coi~tinuous Sliding-Window Aggregates. In VLDB,

2004.

[6] A. Ayad and J. F. Naughton. Static Opt,iinizatioil of Conjunctive Queries with Sliding Windows Over

Infinit,e St,reains. In SIGMOD, 2004.

[7] B. Babcock, S. Babu, M. Datar, and R. h/lot,wani. Chain : Operator Scheduling for Memory Mini-

inizat,ioll in Data Stream Systems. In SIGMOD, pages 253-264, 2003.

[8] B. Babcock, S. Babu, M. Datar, R. h~Iotwani, and J. Widom. Models and Issues in Data Stream

Systems. In PODS, 2002.

[9] S. Babu, U. Srivastava, and J . Widom. Exploiting k-Constraints to Reduce I~leinory Overhead in

Continuous Queries over Data Streams. ACM Transactions on Database Systems, TODS, 29(3):545-

580, 2004.

[lo] J. A. Blakeley, P. Larson, and F. W. Toinpa. Efficiently Updating Materialized Views. 111 SIGMOD,

1986.

[ll] D. Carney, U. Cetinteinel, A. Rasin, S. B. Zdonik, M. Cherniack, and M. Stonebraker. Operator

Scheduling in a Data Stream Manager. In VLDB, pages 838-849, 2003.

[12] S. Chandrasekaran. et al. TelegraphCQ: Continuous Dat,aflow Processiilg for an Uncertain World. In

CIDR. 2003.

1131 S. Chandrasekaran and M. J. Franklin. Streaming Queries over Streaming Data. In VLDB, 2002.

[14] S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries over streaming data.

The International Journal on Very Large Data Bases, VLDB Journal, 12(2):140-156, 2003.

[2] D. J. Abadi. et al. Aurora: A New l'vfodel and Architecture for Data Stream Management. The

International Journal on Very Large Data Bases; VLDB Journal, 12(2):120-139, 2003.

[3] A. Arasu. et al. Data-Stream Management: Processing High-Speed Data Streams, chapter STREAM:

The Stanford Data Stream Management System, Springer-Verlag, New York 2005 (to appear).

[4] A. Arasu, S. Babu, and J. Widom. CQL: A Language for Continuous Queries over Streams and

Relations. In In Proceedings of the International Workshop on Database Programming Languages;

DBPL,2003.

[5] A. Arasu and J. Widom. Resource Sharing in Continuous Sliding-Window Aggregates. In VLDB,

2004.

[6] A. Ayad and J. F. Naughton. Static Optimization of Conjunctive Queries with Sliding Windows Over

Infinite Streams. In SIGMOD, 2004.

[7] B. Babcock, S. Babu, M. Datar, and R. l\llotwani. Chain: Operator Scheduling for Memory Mini

mization in Data Stream Systems. In SIGMOD, pages 253-264, 2003.

[8] B. Babcock, S. Babu, M. Datar, R. IVlotwani, and J. Widom. Models and Issues in Data Stream

Systems. In PODS, 2002.

[9] S. Babu, U. Srivastava, and J. Widom. Exploiting k-Constraints to Reduce Memory Overhead in

Continuous Queries over Data Streams. ACM Transactions on Database Systems; TODS, 29(3):545

580, 2004.

[10] J. A. Blakeley, P. Larson, and F. W. Tompa. Efficiently Updating Materialized Views. In SIGMOD,

1986.

[11] D. Carney, U. Cetintemel, A. Rasin, S. B. Zdonik, M. Cherniack, and 1\11. Stonebraker. Operator

Scheduling in a Data Stream Manager. In VLDB, pages 838-849, 2003.

[12] S. Chandrasekaran. et al. TelegraphCQ: Continuous Dataflow Processing for an Uncertain World. In

CIDR,2003.

[13] S. Chandrasekaran and M. J. Franklin. Streaming Queries over Streaming Data. In VLDB, 2002.

[14] S. Chandrasekaran and M. J. Franklin. PSoup: a system for streaming queries over streaming data.

The International Journal on Very Large Data Bases; VLDB Journal, 12(2):140-156, 2003.

33

[15] J . Chen, D. J . DeWitt,, F . Tian, and Y. Wang. NiagraCQ: A Scalable Continuous Query System for

Internet Databases. In SIGMOD, 2000.

[16] J . Gehrke, F. Korn, and D. Srivastava. On Computing Correlated aggregates over Cont i~~ua l Data

Streams. In SIGMOD: 2001.

[17] L. Golab and M. T . Ozsu. Issues in Data Stream Management. SIGMOD Record, 32(2), June 2003.

[18] T . Griffin and L. Libkin. I~lcrement,al Maintenance of Views with Duplicates. In SIGMOD, 1995.

[19] A. Gupta and I. S. Mumick. Ailaintenance of Materialized Views: Problems, Techniques, and Appli-

cations. IEEE Data Eng. Bull., 18(2) :3-18, 1995.

[20] M. A. Hammad. et al. Nile: A Query Processing Engine for Dat,a Streams (Demo). In ICDE; 2004.

[21] Ail. A. Hammad, T . M.Ghanem, W. G. Aref, A. K. Elmagarmid, and ICI. F.Mokbe1. Efficient Pipelined

Execution of Sliding Window Queries over Data Streams. In Purdue University Technical Report, CSD

TR 03-035, June 2004.

[22] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An Adaptive Query Execution

System for Data Integration. In SIGMOD, 1999.

[23] J . Kang, J . F. Naughton, and S. D. Viglas. Evaluating Window Joins over Unbounded Streams. In

ICDE, 2003.

[24] R. Motwani. et al. Query Processing, Approximation, and Resource hilanagement in a Dat,a Stream

Management System. In CIDR, 2003.

1251 U. Srivastava and J . Widom. Flexible Time Management in Data Stream Systems. In PODS, 2004.

[26] U. Srivastava and J . Widom. Memory-Limited Execution of Windowed Stream Joins. In VLDB,

2004.

[27] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Co~lt,inuous Queries over Append-Only

Databases. In SIGMOD, 1992.

[28] P. A. Tucker, D. Maier, T . Sheard, and L. Fegaras. Exploiting Puactuat.ion Semantics in Continuous

Data Streams. IEEE Transactions on Knowledge and Data Engineering, TKDE, 15(3):555-568, 2003.

[29] T . Urhan, Ail. J . Fraaklin, and L. Amsaleg. Cost Based Query Scrambli~lg for Initial Delays. I11

SIGMOD, 1998.

[15] J. Chen, D. J. DeWitt, F. Tian, and Y. Wang. NiagraCQ: A Scalable Continuous Query System for

Internet Databases. In SIGMOD, 2000.

[16] J. Gehrke, F. Korn, and D. Srivastava. On Computing Correlated aggregates over Continual Data

Streams. In SIGMOD, 2001.

[17] L. Golab and M. T. Ozsu. Issues in Data Stream Management. SIGMOD Record, 32(2), June 2003.

[18] T. Griffin and L. Libkin. Incremental Maintenance of Views with Duplicates. In SIGMOD, 1995.

[19] A. Gupta and I. S. Mumick. Maintenance of Materialized Views: Problems, Techniques, and Appli

cations. IEEE Data Eng. Bull., 18(2):3-18, 1995.

[20] M. A. Hammad. et al. Nile: A Query Processing Engine for Data Streams (Demo). In ICDE, 2004.

[21] M. A. Hammad, T. M.Ghanem, W. G. Aref, A. K. Elmagarmid, and 1\:1. F.Mokbel. Efficient Pipelined

Execution of Sliding Window Queries over Data Streams. In Purdue University Technical Report, CSD

TR 03-035, June 2004.

[22] Z. G. Ives, D. Florescu, M. Friedman, A. Y. Levy, and D. S. Weld. An Adaptive Query Execution

System for Data Integration. In SIGMOD, 1999.

[23] J. Kang, J. F. Naughton, and S. D. Viglas. Evaluating Window Joins over Unbounded Streams. In

ICDE, 2003.

[24] R. Motwani. et al. Query Processing, Approximation, and Resource Management in a Data Stream

Management System. In CIDR, 2003.

[25] U. Srivastava and J. Widom. Flexible Time Management in Data Stream Systems. In PODS, 2004.

[26] U. Srivastava and J. Widom. Memory-Limited Execution of Windowed Stream Joins. In VLDB,

2004.

[27] D. B. Terry, D. Goldberg, D. Nichols, and B. M. Oki. Continuous Queries over Append-Only

Databases. In SIGMOD, 1992.

[28] P. A. Tucker, D. Maier, T. Sheard, and L. Fegaras. Exploiting Punctuation Semantics in Continuous

Data Streams. IEEE Transactions on Knowledge and Data Engineering, TKDE, 15(3):555-568, 2003.

[29] T. Urhan, M. J. Franklin, and L. Amsaleg. Cost Based Query Scrambling for Initial Delays. In

SIGMOD, 1998.

34

SEL.ECT SUhUS.Price) $
FROM S [RANGE 51

WHERE S.Price > 4

S1

5 13 20 15
C I I I I I I I I I I ,

T o T , TZ 7-3 T1 T.5 T 6 TB
Correct Output

(a) Query Q1 with the query piepline (b) Execution time line

Figure 10: Expiration based on global clock

S. Viglas, J . F. Naught.011, and J . Burger. A/Iaximizing the Output Rate of Multi-Way Join Queries

over Streaming Inforination Sources. I11 VLDB, 2003.

Global Clock Approach

This appeildix gives an example to show that a query may produce incorrect answers if the operators

depend on a global clock to expire tuples. The example in Figure 10 is an aggregate query (SUM) over an

input stream S1. Figure 10a gives the query pipeline and Figure lob gives the executioil t i ne line. Stream

S 3 represents the output of the SUM operator while stream C represents the expected output.

I11 this example, a delay of three clock-ticks takes place between the time that the tuple of value 7 is

received at S 1 and the time it is received at S2. The tuple 7 11s a timestamp equals to the time of its

arrival to S1 which is T4. Due to scheduliilg and the different operator processing speeds, the tuple 7 does

not arrive at the SUM operator until time T7. If the SUM operator is scheduled between Ts and T7, the

SUM will expire tuple 5 and produce an incorrect SUM 8 in S 3 at time T5. I\/loreover, when the SUM

is scheduled at time T7 or after, the SUM will receive the delayed tuple 7, which has a tiinest.amp T4.

This means that. the SUA/I is processing and producing tuples in a noildeterininistic timestamp order. The

negative tuples approach solves this problem because the positive t.uple 7 is generated at time T4 while the

negative tuple 5 is generated at time T5 and the two tuples will arrive to the SUI\/I operat,or in the correct

times tamp order.

w
.c - - - - - - - - - - -::.-

SELECT SUM(S.Price)

FROM S [RANGE 5]

WHERE S.Price > 4

5 8 3 4 7 2 3 6 7

81 1 1 I 1 1 i 1 1~

5 8 ".

8 2 I i o•
r: 1 1 •

..-.....
~;

5 13 1!f';8

8 3 1 1 I~ 1 I •

(a) Query Ql with the query piepline

5 13 20 15
C I 1 I 1 1 1 1

To Tl T 2 T 3 T. T5 T. T l T 8
Correct Output

(b) Execution time line

I.

Figure 10: Expiration based on global clock

[30] S. Viglas, J. F. Naughton, and J. Burger. Maximizing the Output Rate of Multi-Way Join Queries

over Streaming Information Sources. In VLDB, 2003.

A Global Clock Approach

This appendix gives an example to show that a query may produce incorrect answers if the operators

depend on a global clock to expire tuples. The example in Figure 10 is an aggregate query (SUrvl) over an

input stream S1. Figure lOa gives the query pipeline and Figure lOb gives the execution time line. Stream

33 represents the output of the SUM operator while stream C represents the expected output.

In this example, a delay of three clock-ticks takes place between the time that the tuple of value 7 is

received at 31 and the time it is received at 32. The tuple 7 has a timestamp equals to the time of its

arrival to 31 which is T4 . Due to scheduling and the different operator processing speeds, the tuple 7 does

not arrive at the SUM operator until time T7 . If the SUM operator is scheduled between Ts and T7 , the

SUM will expire tuple 5 and produce an incorrect SUM 8 in 33 at time Ts . Moreover, when the SUM

is scheduled at time T7 or after, the SUM will receive the delayed tuple 7, which has a timestamp T 4 .

This means that the SUM is processing and producing tuples in a nondeterministic timestamp order. The

negative tuples approach solves this problem because the positive tuple 7 is generated at time T4 while the

negative tuple 5 is generated at time Ts and the two tuples will arrive to the SUM operator in the correct

timestamp order.

35

	Incremental Evaluation of Sliding- Window Queries over Data Streams
	Report Number:
	

	tmp.1307986960.pdf.MFOiu

