
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2005

To Trie or Not to Trie? Realizing Space-partitioning Trees inside To Trie or Not to Trie? Realizing Space-partitioning Trees inside

PostgreSQL: Challenges, Experiences and Performance PostgreSQL: Challenges, Experiences and Performance

Mohamed Y. Eltabakh

Ramy Eltarras

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
05-008

Eltabakh, Mohamed Y.; Eltarras, Ramy; and Aref, Walid G., "To Trie or Not to Trie? Realizing Space-
partitioning Trees inside PostgreSQL: Challenges, Experiences and Performance" (2005). Department of
Computer Science Technical Reports. Paper 1623.
https://docs.lib.purdue.edu/cstech/1623

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972237?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

TO TRIE OR NOT TO TRIE? REALIZING SPACE­
PARTITIONING TREES INSIDE POSTGRESQL:

CHALLENGES, EXPERIENCES AND PERFORMANCE

Mohamed Y. Eltaabakh
Ramy Eltarras
Walid G. Aref

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #05-008
April 2005

To Trie or Not to Trie? Realizing Space-partitioning
Trees inside PostgreSQL: Challenges, Experiences, and

Performance

l\Iohamed Y. Eltabakh Ramy Eltarras Walid G. Aref

Purdue Universit~·

West Lafayette, IN. 47907-1398. USA
{meltabak, rhassan, aref}@cs.purdue.edu

Abstract

l'l1an~' evolving datil bilse applications warrant
the use of non-twditional indexing mecha­
nisms beyond B+-trees and hash tables. SP­
GiST is an extensible indexing framework that
broadens the class of supported indexes to
include disk-based wrsions of a \vide vari­
ety of space-partitioning trees, e.g., disk-based
trie variants, quadtree vilriants, and kd-trees.
This paper presents il serious attempt at im­
plementing and realizing SP-GiST-based in­
dexes inside PostgreSQL. Several index types
are realized inside PostgreSQL facilitated by
rapid SP-GiST instantiations. Challenge~,
experiences. and performance issues are ad­
dressed in the paper. Performance compar­
isons are conducted from within PostgreSQL
to compare updilte ilnd search performances
of SP-GiST-based indexes against the B+-tree
and the R-tree for text string and point data
sets. Interesting performilnce results are pre­
sented in the paper. Results highlight the po­
tentifd performance gains of SP-GiST-based
indexes as well ilS several strengths and weak­
nesses of SP-GiST-bilsed indexes that need to
be addressed in future research

1 Introduction

l\Iany emerging database applicat.ions warrant the use
of non-traditional indexing mechanisms beyond B+­
trees and hash tables. Diltil base vendors hilve realized

Perrnission to copy wi.thout fee all OJ' part of this material is
grunted pT'Ovided t./wt the copies are nol made or distributed for
direct com mercial a.dvantage. I he VLDB copyrighl not.ice and
the tit.le of the pllblicaJion and its dale appear. and not.ice is
gillen Owl copying is by pennission of the Very Large Data. Base
Endowment. To copy olherll'ise. or 10 republish. requires a fee
and/or s}i<"ciol permission fmm the Endowment.

Proceedings of the 31st VLDB Conference,
Trondheim, Norway, 2005

this need and have initiated efforts to support several
non-traditional indexes, e.g., (Oracle [35]. and IBl\l
DB2 [ID.

One of the major hurdles in implementing non­
traditionill indexes inside a database engine is the
very wide variety of such indexes. Moreover. there
is tremendous overhead that is associated with real­
izing and integrating any of these indexes inside the
engine. Generalized search trees (e.g., GiST [21] and
SP-GiST [4. 3D are designed to address this problem.

Generalized search trees (GiST [21Dand Space­
partitioning Generalized search trees (SP-GiST [4. 3D
are software engineering frameworks for rapid proto­
typing of indexes inside a database engine. GiST
supports the class of balanced trees (B+-tree-like
trees). e.g., R-trees [7, 20, 32], SR-trees [24], and
RD-trees [22], while SP-GiST supports the class of
space-partitioning trees. e.g., tries, quadtrees. and k-d
trees. Both frameworks have internal methods that
furnish general database functionalities. e.g.. gener­
alized search and insert algorithms, as well as user­
defined external methods and parameters that tailor
the generalized index into one instance index from the
corresponding index class. GiST has been tested in
prototype systems, e.g.. in Predator [34] and in Post­
greSQL [37J. and hence is not the focus of this study.

The purpose of this study is to demonstrate feasibil­
ity and performance issues of SP-GiST-based indexes.
This work presents a serious attempt at implement­
ing and realizing SP-GiST-based indexes inside Post­
greSQL. Using rapid SP-GiST instantiations. several
index types are realized inside PostgreSQL that in­
dex string and point data types. Performance compar­
isons are conducted from within PostgreSQL to com­
pare update and search performances of one disk-based
trie variant against the B+-tree for a variety of string
dataset collections, and one disk-based kd-tree variant
against the R-tree for two-dimensional point dataset
collections. Other more sophisticated index types can
be instantiated using the same SP-GiST platform. We

plan to release the PostgreSQL version of SP-GiST
around the same time we publish this paper.

The contributions of this research can be summa­
rized as follows:

1. We realized SP-GiST inside PostgreSQL to ex­
tend the available access methods to include the
class of space partitioning trees. Our implementa­
tion methodology makes SP-GiST portable. That
is. SP-GiST can be realized inside PostgreSQL
without recompiling PostgreSQL code.

2. \Ve extended the indexing operations of the space
partitioning trees, e.g., the trie, to include more
challenging search operations, e.g., the prefix
match search, and the regular expression match
search.

3. \:Ve conducted extensive experiments from within
PostgreSQL to compare the performance of the
trie and the kd-tree against the B+-tree and the
R-tree, respectively. Our results illustrate that
the lrie has more than 150% search performance
improvement over the B+-tree performance in the
case of the exact match search. Also, the trie
has more than 2 orders of magnitude search per­
formance improvement in the case of the regular
expression match search. Our experiments also
demonstrate that the kd-tree has more than 300%
search performance improvement over the R-tree
in the case of the point match search.

4. We realized the suffix tree index structure using
the SP-GiST framevvork to support the substring
match searching. Our experiments demonstrate
that the suffix tree improves the search perfor­
mance by more than 3 orders of magnitude over
the sequential scan. The other index structures,
e.g.. B+-tree, and R-tree, do not support the sub­
string match search.

5. We identified weaknesses of SP-GiST-based in­
dexes compared to the B+-tree and the R-tree
indexes that need to be addressed in future re­
search. Basically, the insertion time and the index
size of the SP-GiST-based indexes involve higher
overhead than those of the B+-tree and the R-tree
indexes.

The rest of this paper proceeds as follows. In Sec­
tion 2. we highlight related work in the area of ex­
tensible indexes and generalized indexing frameworks.
In Section 3. we overview space-partitioning trees, the
challenges they have from database indexing point of
view, and how these challenges are addressed in SP­
GiST. Section 4 describes the implementation of SP­
GiST inside PostgreSQL. In Section 5, we present the
performance results of disk-based tries vs. B+-trees
for string data sets and the performance results of disk­
based kd-trees vs. R-trees for two-dimensional point
data sets. Section 6 contains concluding remarks.

2 Related Work

I\l ultidimensional searching is a fundamental oper­
ation for many database applications. Several in­
dex structures beyond B-trees [6, 11], and hash ta­
bles [14, 29], have been proposed to manage the update
and search operations over spatial and multidimen­
sional data, e.g., [17, 27. 31, 33]. These index struc­
tures include the R-tree, and its variants [7. 20, 32].
the quadtree, and its variants [15, 18, 25, 39], the kd­
tree [8], the disk based kd-tree variants, e.g .. [9, 30],
and the trie structure, and its variants [2, 10. 16]. Ex­
tensions to the B-tree have been also proposed to ad­
dress indexing multidimensional attributes. such as the
universal B-tree [5], and the hB-tree [13]. Extensible
indexing frameworks have been proposed to instanti­
ate a variety of index structures in an efficient way and
without modifying the database engine. Extensible in­
dexing frameworks are first proposed in [36]. GiST
(Generalized Search Trees) is an extensible framework
for B-tree-Iike indexes [21]. SP-GiST (Space Partition­
ing Generalized Search Trees) is an extensible frame­
work for the family of space partitioning trees [4, 3].
An extensible bulk loading algorithm for SP-GiST is
proposed in [19]. Extensible indexing structures gain
more importance in the context of the object rela­
tional database management systems (ORDBMS) that
are designed primarily to support new types of data
and applications. The implementation of GiST in 1n­
formix Dynamic Server with Universal Data Option
(IDSjUDO) is presented in [26]. Current commercial
databases have also supported the extensible indexing
frameworks, e.g., IBM DB2 [1], and Oracle [35]. The
performance of the various index strllctures have been
studied extensively. For example. a model for the R­
tree performance is proposed in [38]. A comparison
between quadtree and R-tree indexes in Oracle spa­
tial is presented in [28]. Another comparative study
among the R-tree variants and the Pl\lR quadtree is
presented in [23].

3 Space-partitioning 'Trees: Overview,
Challenges, and SP-GiST

The main characteristic of space-partitioning trees
is that they partition the multi-dimensional space
into disjoint (non-overlapping) regions. Refer to
Figures I, 2, and 3, for a few examples of space­
partitioning trees. Partitioning can be either
(1) space-driven (e.g., Figure 2), where we decompose
the space into equal-sized partitions regardless of the
data distribution, or (2) data-driven (e.g., Figure 3),
where we split the data set into equal portions based
on some criteria, e.g., based on one of the dimensions.

There are many various types of trees in the class of
space-partitioning trees. They differ from each other
in various ways. These variations were proposed to en­
hance the performance of the space-partitioning trees.

• Key Type: This parameter specifies the data type
stored at the leaf nodes.

(e)

(b)

(b)

(a)

(a)

Figure 2: Variant trie structures. (a) No node shrink.
(b) Node shrink.

• NodePredicate: This parameter specifies the pred­
icate type at the index nodes.

Figure 1: Variant trie structures. (a) No tree shrink,
(b) Leaf shrink, (c) Path shrink.

• NumberofSpacePartitions: This parameter speci­
fies the number of disjoint partitions produced at
each decomposition.

of SP-GiST, and they implement the common features
among the space partitioning trees.

To handle the differences among the various index
structures, SP-GiST provides for the developers. a set
of parameters, called interface parameters. and a set
of methods, called external methods.

The interface parameters include:

• Path Shrinking (refer to Figure 1) - The prob­
lem here is that we may want to avoid lengthy and
skinny paths from a root to a leaf. Paths of one
child can be collapsed into one node. For example,
the Patricia trie allows for leaf-shrinking (Shrink­
ing single child nodes at the leaf level nodes,
e.g ..Figure l(b)), while it is also possible to allow
for path-shrinking (Shrinking single child nodes
at the non-leaf level nodes, e.g., Figure l(c)), or
even no shrinking at all (Figure 1(a)).

3.1 SP-GiST

• Clustering - This is one of the most seri­
ous issues when addressing disk-based space­
partitioning trees. The problem is that tree nodes
do not map directly to disk pages. In fact, tree
nodes are usually much smaller than disk pages.
So. the question is: How do we pack tree nodes
together into disk pages with the objective of re­
ducing disk l/Os vv"hile performing tree operations
(e.g.. search or insert)? An optimal and practical
node-packing algorithm already exists that solves
this issue [12].

• Node Shrinking (refer to Figure 2) - The prob­
lem is that \vith space-driven partitions, some par­
titions may end up being empty. So, the question
is: Do we allow that empty partitions be omitted?
For example, the difference between the standard
trie (Figure 2(a)) and the forest trie (Figure 2(b))
is that the latter allows for empty partitions to be
eliminated.

Other characteristics of importance to space­
partitioning trees include the bucket size of leaf nodes,
the resolution of the underlying space, the support for
various data types, the splitting of nodes (when to trig­
ger a split and how node splitting is performed), and
how concurrency control of space-partitioning trees is
performed. For more discussion on these issues as they
relate to space-partitioning trees, the reader is referred
to 14. 3].

vVithout loss of generality, and for the simplicity of this
discussion, we highlight below some of the important
variations in the context of the trie data structure.

SP-GiST is an extensible indexing framework that
broadens the class of supported indexes to include
disk-based versions of a wide variety of space­
partitioning trees, e.g., disk-based trie variants,
quadtree variants, and kd-trees.

SP-GiST provides a set of methods, called inter­
nal methods. that are shared among all the space
partitioning trees. The internal methods include a
method for the insertion, i.e., lnsert(), a method for
the search, i.e., Searcho. and a method for the dele­
tion. i.e.,Delete(). The internal methods are the core

• Resolution: This parameter limits the number of
space decompositions and is set depending on the
required granularity.

• PathShrink: This parameter specifies how the in­
dex tree can shrink. PathShrink takes one of
three possible values: NeverShrik, LeafShrink,
and TreeSh-rink.

• NodeShT"ink: A Boolean parameter that specifies
whether the empty partitions should be kept in
the index tree or not.

Dc-nn.,r

Om.,ha

ToftlUln

1

Allan".l
Mnhile T

~
Dc-II\, ...,. T''''\lIIl' Om•• lm Mnhilc

A1\ A1\ A1\ 41\

I i

I tT

"''':
_.I!::.~' ..J I BUll",

fiC""11
Omah;. I .1 .-\1);,1ll:1

I ~1 '''11'"1

~
l~ I"'''k

0"",,,,, "A,,,,,,,,,,,
/ X"'"

AIIaJl\~

(a) Point quadtree (b) kd-tree

Figure 3: Example of a point quadtree and a k-d tree.

trie k-d tree
Parameters PathShrink - TreeShrink, NodeShrink - True PathShrink - NeverShrink. NodeShrink - False

BucketSize = B BucketSize = 1
NoOfSpacePartitions = 27 NoOfSpacePartitions = 2
NodePredicate = letter or blank NodePredicate = "leff', "right", or blank
Key Type = String Key Type = Point

Consistent(E.q,Jevel) If (qllevelj--E.letter) If (level is odd AND q.X satisfies E.p.x)
OR (E.letter ==blank AND level> length(q)) OR (level is even AND q.y satisfies E.p.y)
Return True. else Return False Return True. else Return False

PickSplit(P,leveJ) Find a common prefix among words in P Put the old point in a child node with
Update level = level + length of the common prefix predicate "blank"'
Let P predicate = the common prefix Put the new point in a child node wit h
Partition the data strings in P acording to predicate "left."· or "righI"
the character values at position "lever' Return False
Jf any data string has length < leveL

Insert data string in Partition "blank"'
If any of the partitions is still over full

Return True, else Return False

Table 1: Instantiation of the trie and k-d tree using SP-GiST.

• BucketSize: This parameter specifies the ma~i­

mum number of data items a data node can hold.

For example. to instantiate the trie variants pre­
sented in Figure 1(30), (b), and (c), we set PathShrink
parameter to values NeverShrink, LeafShrink, and
TreeShrink, respectively. To instantiate the trie vari­
ants presented in Figure 2(30), and (b), we set the
NodeShrink parameter to values FALSE, and TRUE.
respectively. In the case of the quadtree and the kd­
tree presented in Figure 3, the NoOfSpacePartitions
parameter is set to values 4, and 2, respectively.

The SP-GiST external methods include a method
to specify how the space is decomposed, and how the
data items are distributed over the new partitions.
i.e., PickSplit(). PickSplit() is called by the internal
method Insert() when a split is needed. The external
methods also include a method to specify how to navi­
gate through the index tree, i.e., Consistent(). Consis­
tent() is called by the internal methods Insert(), and
Search() to guide the tree navigation.

In Table 1, we illustrate the instantiation of the dic­
tionary trie and the kd-tree using SP-GiST framework.
Notice that from the developer's point of view, coding
of the methods in Table 1 is all what the developer
needs to provide.

For the index storage, SP-GiST provides a default
clustering technique that maps index nodes into disk
pages. The clustering technique is based on [12]. and it
is proven to generate minimum page-height trees. The
clustering technique and the SP-GiST storage layer are
discussed in more detail in Section 4.2.

4 Implementation Issues and Chal­
lenges

In this section we discuss the challenges and implemen­
tation issues of realizing SP-GiST framework inside
PostgreSQL. First, we give an overview of the main
extensible features of PostgreSQL. Then, we discuss
the implementation of SP-GiST.

4.1 PostgreSQL Extensibility

PostgreSQL is an open-source object-relational
database management system. The extensibility in
PostgreSQL is because most of its functionalities
are table-driven. That is, the information about the
available data types. access methods. operators, etc ..
is stored in the system catalog tables. PostgreSQL
can also incorporate user-defined functions into the
engine through dynamically loadable modules. e.g ..

INSERT INTO pg_am VALUES eSP_GiST'. O. 20. 20. 0, T, T, T, '1'. 'spgistgettuple',
SP-GiST insert 'spgistinsert'. 'spgistbeginscan·. 'spgistrescan·. 'spgistendscan'. 'spgistmarkpos'.

statement 'spgistrestrpos', ·spgistbuild'. 'spgistbulkdeJete', '-' , 'spgistcostestimate'):

Column name Column description SP-GiST function/value
amname Name of the access method SP_GiST
amowner User ID of the owner 0
amstrategies]'\'lax number of operator strategies for 20

this access method
amsupport Max number of support functions for 20

this access method
amorderstrategJ! The strategy number for entries ordering 0
amcanunique Support unique index flag FALSE
amcanmulticol Support multicolumn flag FALSE
amindexnulls Support null entries flag FALSE
amconcurrent Support concurrent update flag TRUE
amgettuple "Next valid tuple" function 'spgistgettuple'
aminsert "Insert this tuple" function 'spgistinsert'
ambeginscan "Start new scan" function 'spgistbeginscan'
amrescan "Restart this scan" function 'spgistrescan
amendscan "End this scan" function 'spgistendscan'
ammarkpos "Mark current scan position" function 'spgistmarkpos'
amrestrpos "Restore marked scan position" function 'spgistrestrpos'
ambuild "Build new index" function 'spgistbuild'
arnbulkdeJete Bulk-delete function 'spgistbulkdelete'
amvacuumcleanup Post-VACUUl\l cleanup function -

amcostestimate Function to estimate cost. of an index scan 'spgistcostestimate'

Table 2: pg_am catalog table entry for SP-GiST.

shared libraries. These loadable modules can be used
to implement the functionality of new operators or
access methods.

The implementation of SP-GiST inside PostgreSQL
makes use of the following features:

• Defining New Interface Routines: Each ac­
cess method in PostgreSQL has a set of associ­
ated functions that perform the functionality of
that access method. These functions are called,
interface routines. The interface routines can be
implemented as loadable modules.

• Defining New Operators: In the operator def­
inition, we specify the data types on which the
operator works. V-Ie also specify a set of proper­
ties that the query optimizer can use in evaluating
the access methods.

• Defining New Operator Classes: Operator
classes specify the data type and the operators on
which a certain access method can vvork. In addi­
tion to linking an access method with data types
and operators, operator classes allow users to de­
fine a set of functions called support functions,
that are used by the access method to perform
internal functions.

4.2 Realizing SP-GiST Inside PostgreSQL

The access methods currently supported by Post­
greSQL (version 8.0.1) are:

I. Heap access: Sequential scan over the relation.

2. B+-tree: The default index access method.

3. R-tree: To support queries on spatial data.

4. Hash: To support simple equality queries.

5. GiST: Generalized index framework for the B­
tree-like structures.

By realizing SP-GiST inside PostgreSQL, we extend
the access methods to include the family of space par­
titioning trees, e.g.. the kd-tree, the trie, the quadtree
and their variants. Our design objectives are:

1. Fully isolate the definition of the SP-GiST core
(i.e., internal methods) from the definition of the
extensions (i.e., external methods).

2. Implement SP-GiST as a portable access method.
That is. not only SP-GiST extensions be plug­
gable modules, but also SP-GiST core be a plug­
gable module.

3. Support a wide range of index operations. For
example, we extend the trie operations to include:

Query type Query Semantic
Equality query Helurn the keys that exactly match the query predicate.
Prefix query Return the keys that have a prefix that matches the query predicate.
Hegular expression query Return the keys that match the query regular expression predicate.
Substring query Return the keys that have a substring that matches the query predicate.
Range query Return the keys that are within the query predicate range.

Table 3: The semantic of the query types.

trie . kd-tree
Equality operator'-' Prefix match operat.or '?-' Equality operator '@' inside operator' /\'

CREATE OPERATOR = (CREATE OPERATOR ?= (CREATE OPERATOR @ (CREATE OPERATOR 11 (
leftarg = VARCHAR, leftarg = VARCHAR leftarg = POINT, Ieftarg = POINT,
rightarg = VARCHAR, rightarg = VARCHAR, rightarg = POINT. rightarg = BOX,
procedure = trieword_equaL procedure = trieword_prefix, procedure = kdpoinLequaL procedure = kdpoinUnside,
commutator = =, restrict = likesel. commutator = @. restrict = contsel,
restrict = eqseL restrict = eqseL

):):):):

Table 4: The trie and kd-tree operators definitions.

is assigned to column amcostestimate. spgist­
costestimate() uses the generic cost estimate func­
tions provided by PostgreSQL. Four cost param­
eters are estimated:

]. Index selectivity: The index selectivity is
the estimated fraction of the underlying ta­
ble rows that will be retrieved during the in­
dex scan. The selectivity depends on the op­
erator being used in the query. We associate
with each operator that we define, a proce­
dure that estimates the selectivity of that op­
erator.

2. Index correlation: The index correlation
is set to 0 because there is no correlation be­
tween the index order and the underlying ta­
ble order.

3. Index startup cost: The startup cost is
the CPU cost of evaluating any complex ex­
pressions that are arguments to the index.
These expressions are evaluated once at the
beginning of the index scan.

4. Index total cost: The total cost is the sum
of the startup cost plus the disk I/O cost.
The estimated disk I/O cost depends on the
index selectivity and the index size.

SP-GiST internal methods are implemented as a
dynamically loadable module that is loaded by
the PostgreSQL dynamic loader when the index
is first used.

the prefix match search. and the regular exprEssion
match search. vVe abo realize the suffix tree to
support the substring match search.

In the following, we discuss how we achieve our objec­
tives along with the implementation challenges.

• Realization of SP-GiST Internal Methods

SP-GiST internal methods are the core part
of the SP-GiST framework. and the~' are shared
among all the space partitioning tree structures.
To r~alize the internal methods. we use Post­
greSQL access methods' interface routines (See
Section 4.1). A new row is inserted into the
pg_am table to introduce SP-GiST to PostgreSQL
as a new access method (See Table 2). pg_am is a
system catalog table that stores the information
about the available access methods. The internal
methods are defined as the interface routines of
that access method.

In Table 2 we illustrate the pg_am table's entry for
SP-GiST. The name of the new access method is
set to 'SP_GiST'. \Ve set the maximum number
of the possible strategies (i.e., operators linked
to an access method), and the maximum num­
ber of possible support functions to 20. Since
SP-GiST index entries do not follow a certain or­
der, we set the value of the amorderstmtegy to
O. This value means that there is no strategy for
ordering the index entries. The SP-GiST inter­
nal methods (e.g., spgistgettuple(): spgistinsert().
etc.) are assigned to the corresponding interface
routine columns (e.g., amgettuple: aminsert, etc.).

Estimating the cost of the SP-GiST index scan is
performed by function spgistcostestimate(). which

• Definition of SP-GiST Operators

The various SP-GiST index structures
different sets of operators to work on.
the trie index structure. we define the

have
For

three

trie kd-tree suffix tree

CREATE OPERATOR CLASS CREATE OPERATOR CLASS CREATE OPERATOR CLASS
SP_GiST_trie SP_GiSTJ<dtree SP_GiST ...suffix
FOR TYPE VARCHAR FOR TYPE POINT FOR TYPE VARCHAR
USING SP_GiST USING SP_GiST USING SP_GiST
AS OPERATOR 1 =. AS OPERATOR 1 @. AS OPERATOR 1 @'=.
AS OPERATOR 2 #=. OPERATOR 2 1\. FUNCTION 1 suffix_consistent.
AS OPERATOR 3 ?=. FUNCTION 1 kdtree_consistent. FUNCTION 2 suffix-pickspIit.
FUNCTION 1 trie_consistent. FUNCTION 2 kdtree_picksplit, FUNCTION 3 suffix_getparameters:
FUNCTION 2 trie_picksplit, FUNCTION 3 kdtree_getparameters;
FUNCTION 3 trie_getparameters:

Table 5: The trie. kd-tree and suffix tree operator class definitions.

operators: '='. '#='. and '?=', to support the
equality queries, the prefix queries, and the
regular expression queries. respectively. For the
regular expression queries, the SP-GiST trie
supports currentl~·. the wildcard character: '?',
that matches any single character. In the case
of the kd-tree. we define two operators: '@' and
'/\'. to support the equality and range queries.
respectively. \Ve define one operator for the
suffix tree. i.e.. "cg='. to support the substring
match queries. The semantics of the query types
is given in Table 3.

An example of the operators' definitions is given
in Table 4. Each operator is linked to a proce­
dure that performs the operator's functionality.
e.g., triword_equal(), kdpoinLequal(). Other prop­
erties can be defined for each operator. For exam­
ple, the commutator clause specifies the operator
that the query optimizer should use. if it decides
to switch the original operator's arguments.

Estimating the selectivity of each operator is per­
formed by the procedures defined in the restrict
clause. "Ve use procedures provided by Post­
greSQL. e.g., eqsel(), contsel(), likesel(). eqsel()
estimates the selectivity of the equality operators.
contsel() estimates the selectivity of the contain­
ment operators (i.e.. range search). whereas. like­
sel() estimates the selectivity of the similarity op­
erators, e.g. , LIKE operator. The query optimizer
uses these procedures to estimate the index selec­
tivity and the index scan cost.

• Realization of SP-GiST External Methods

The SP-GiST external methods and inter­
face parameters capture the differences among
the various types of SP-GiST index structures.
To realize the external methods inside Post­
greSQL, we use the access methods' support
functions. The support functions are provided
within the definition of the operator classes (See
Section 4.1). The definitions of the trie operator

class (SP-GiST_trie) , the kd-tree operator class
(SP-GiST_kdtree), and the suffix tree operator
class (SP-GiST_suffix) are given in Table 5.
SP-GiST_trie, and SP-GiST_suffix use the data
type VARCHAR, whereas, SP-GiST_kdtree uses
the data type POINT. Each operator class
defines three support functions. getparameters()
functions are used to set the index parameters
(e.g.. BucketSize, N oOfSpacePartitions) to their
proper values, as illustrated in Table 1.

Two examples for creating and querying the trie
and kd-tree indexes are given in Table 6. The US­
ING clause in the CREATE INDEX statement
specifies the name of the access method to be
used, that is 'SP_GiST' in our case. \Ve then
specify the column name to be indexed, and the
corresponding operator class.

SP-GiST external methods are implemented as a
dynamically loadable module that is loaded when
the index is first used.

In Figure 4, we illustrate the architecture of SP­
GiST inside PostgreSQL. The implementation of
the SP-GiST core (i.e., internal methods) is full~'

isolated from the implementation of the SP-GiST
extensions (i.e., external methods). The link be­
tween the core and the extensions is achieved
through PostgreSQL operator classes. The com­
munication among the methods is through the
PostgreSQL function manager. The portability
is achieved because both the SP-GiST core and
extensions are loadable modules. That is. SP­
GiST can be realized inside PostgreSQL database
without recompiling PostgreSQL code. YVe ex­
tended the internal methods to include functions.
i.e .. PostgreSQL storage interface. to communi­
cate with the PostgreSQL storage manager for the
allocation and retrieval of disk pages. We describe
the SP-GiST storage layer in more detail in the
next section.

• SP-GiST Storage Layer

trie kd-tree

CREATE TABLE word_data (CREATE TABLE poinLdata (
IndC'x name VARCHAR(.50), id INT): p POINT. id INT):
creation

CREATE INDEX sp_triejndex ON word_data CREATE INDEX spJ<dtreejndex ON poinLdata
USING SP_GiST (name SP_GiST_trie): USING SP_GiST (p SP _GiSTJ<dtree);

equality qlIery regular expression query equality query range query

Queries SELECT * SELECT * SELECT * SELECT *
FRO!'.J word_data FRO!'.J word_data FROM poinLdata FROM poinLdata
\VHERE name = 'random'; \\lHERE name 7= 'r7nd7m': WHERE p @ '(0.1)': WHERE p /\ '(0,0,5,5)';

Table 6: The trie and kd-tree index creation and querying.

PostgreSQL Engine

PostgreSQL Function Manager

PostgreSQL
Storage Manager

I
I
I
I
I
I
I
o
o
o
r
L _

SP-Gist
Internal
Methods

Figure 4: SP-GiST architecture inside PostgreSQL.

SP-GiST manages the disk pages by the in­
ternal method lnsert() and the clustering
technique that maps index nodes into disk pages.
Although the page allocation and retrieval are
performed by PostgreSQL, the page layout is not
interpretable by PostgreSQL as it does not follow
PostgreSQL page formatting. The clustering
technique that SP-GiST uses for mapping index
nodes into disk pages is proposed in [12]' and
it is proven to generate minimum page-height
trees. Therefore, it achieves the minimum I/O
access in the case of searching. However, our
experiments demonstrate that achieving the
minimum page-height tree causes the index size
to grow rapidly. The reason is that, to always
maintain a minimum page-height, the clustering
technique has to continuously move the nodes
between the pages at each time a split occurs
to a node. This continuous change results in
increasing the number of pages significantly, and
reducing the pages' utilization.

\Ve modified the clustering technique to increase
the pages utilization and hence reduce the in-

dex size without significantly degrFlding the search
performance. Although the modified technique is
not guaranteed to generate minimum page-height
trees, the experiments demonstrate that it per­
forms generally well. The summary of our mod­
ifications is as follows. \Vhen a tree node splits
into multiple nodes, we check:

1. If the newly created nodes can fit into their
parent's page, then we store the nodes into
that page.

2. If the newly created nodes cannot fit into
their parent's page. and the tree page-height
will increase. then we Slare the 1I0des into a
new page and invoke the clustering technique
of [12].

3. If the newly created nodes cannot fit into
their parent's page. but 1he tree page-height
will not change. then \I'e store the nodes into
an existing page. ternwd au:r:iliaTy_page. If
the auxiliaTy_page is [ull. \\'e create a new
page to be the current IJ Il:r;ilial'y_page.

5 Experiments Search Time Relative Performance

3

Ol-~~~~~~~~~~~~~~~~~-;

Regular Exp. Search Tirre Performance

32M

32M

16M8M

.------- i
--- Search Relative performance~

------ Exact Match Performance

..- _. Prefix Match Performance

4M

Relation Size (No. of Keys)

4M 8M 16M

Relation Size (No. of Keys)

&-- •••••
'---.a. --- ..••... -.a. ••.• -- ••.• __& __ • ••••.&

2M

2M

175

150

0

~ 125

><
:i" 100

l 75

~
50

25

0

2.5

:i

l
~ 1.5

0

Cl
0
...J

0.5

Figure 5: The search performance of the B+-tree vs.
the trie.

Figure 6: The regular expo search of the B+-tree vs.
the trie.

tree to answer the prefix match queries efficiently. In
contrast, the trie has to fork the navigation in the in­
dex tree in order to reach all the keys that match the
search string.

In Figure 7, we present the search time standard
deviation of the trie in the case of the exact match
search to study the effect of the variation of the tree
depth on the search performance. The insertion time
and the index size of the B+-tree and the trie are pre­
sented in Figures 8 and 9, respectively. The figures
demonstrate thilt the B+-tree scales better with re­
spect to bot h factors. The reason is that the trie in­
volves a higher number of nodes and a higher number
of node split s thiln the B+-tree because the trie node
size is much smilller than the B+-tree node size. In
Figures 10 ilnd 11. we present the B+-tree and the trie
maximum tree height in nodes and pages, respectively.
Although. the trie has higher maximum node-height,
as it is an unbalanced tree. the maximum page-height
is almost the same ilS the B+-tree page-height. Recall
that SP-GiST uses iI clustering technique that tries
to minimize the tree maximum page height, which is
effective.

For the comparison of the kd-tree against the R­
tree, we conrluct our experiments over two-dimensional

In this section, we present our experimental results.
vVe realized three index structures using SP-GiST
framework; the trie, the kd-tree. and the suffix tree.
The parameters settings of the indexes are as given
in Table 1. The BucketSize parameter is set to 100
in the case of the trie and the suffix tree. We conduct
our experiments from within PostgreSQL. vVe compare
the performance of the SP-GiST trie against the per­
formance of the B+-tree in the context of text string
data. Vie also compare the performance of the SP­
GiST kd-tree against the performance of the R-tree
in the context of point data. The performance of the
suffix tree is compared against the sequential scan be­
cause the other access methods do not support the
substring match operations.

For the trie versus B+-tree experiments, we gen­
erate datasets with size ranges from 500K words to
321\1 words. The word size (key size) is uniformly dis­
tributed over the range [1. 15], and the alphabet let­
ters are from 'a' to 'z'. Our experiments illustrate that
the trie has a better search performance than that of
the B+-tree. In Figures 5, and 6, we demonstrate the
search performance under three search operations; ex­
act match, prefix match, and regular expression match.
Figure 5 illustrates that in the case of the exact match
search, the trie has more than 150% search time im­
provement over the B+-tree, and that, the trie scales
better especially with the increase of the realtion size.

For the regular expression match search (Figure 6),
our experiments illustrate that the trie achieves more
than 2 orders of magnitude search time improvement.
Recall that, we only allow for the wildcard, '7', that
matches any single character. \Ve notice that the B+­
tree performance is very sensitive to the positions of
the wildcard; '7' in the search string. For example, if
'7' appears in the 2nd or the 3rd positions, then the
B+-tree performance will degrade significantly. Ivlore­
over, if '7' appears as the first character in the search
string, then the B+-tree index will not be used at all,
and a sequential scan is performed. The reason for
this sensitivity is that the B+-tree makes use only of
the search string's prefix that proceeds any wildcards.
In contrast, the trie makes use of any non-wildcard
characters in the search string to navigate in the in­
dex tree. Therefore, the trie is much more tolerant for
the regular expression match queries. For example, to
search for expression '?at?r', the trie matches all the
entries of the tree root node with '7', then the 2nd
and the 3rd tree levels are filtered based on letters 'a'
and 't', respectively. At the 4th level of the tree, the
entries of the reached nodes are matched with '7'. and
then the 5th level is filtered based on letter 'r'.

For the prefix match search (Figure 5), our experi­
ments illustrate that the B+-tree has a better perfor­
mance over the trie. The reason is that having the
keys sorted in the B+-tree leaf nodes, allows the B+-

32M

..
.•.

Max Tree Node-Height

1M 2M 4M 8M 16M

Relation Size (No. of Keys)

.•.. _- ---.--.-•.. _-----.

__ S-Iree

-. -.- -- SP-Gisttrie

-,-_--_-_0/
~

~

•..

500K

1 -

8

7 ­

6 -

.E
Cl

~ 4-
><
~ 3

2 -

Trie Search Time Standard Deviation
4 --------~._~-------

• A....·erage time
3.5 - I Standard deviation

Ul 3

f
.§.

IQ)

IE 2.5i= f
2

1.5

2M 4M 8M 16M 32M

L- Relation Size (No. of Keys)

Figure 7: The trie search time standard deviation Figure 10: The maximum tree height 111 nodes.

Insert Time Relative Performance Max Tree Page-Height
100

0
80

0

>< 60
Q)

I 40

~
20

0

Insert RelalivePerformance

500K 1M 2M 4M 8M 16M 32M

No. of Inserted Keys Relation Size (No. of Keys)

Figure 8: The insert performance of the B+-tree vs.
the trie.

Figure 11: The maximum tree height in pages.

L- R_e_la_t_io_n_S_iZ~e_(N_o_.o_f_K_e_yS_) -.J

4M2M1M500K

Relation Size (No. of Keys)

.. ----_ _._--•.. _. ----_ _---..

250K

+- -11 --- Point Search I
I -..... Range Search

Search Time Relative Performance
350

0
300

:= 250><

j 200

~ 150

~
~

100

50

0

32M16M8M

-- Relalive Index Size

4M2M

+- R_e_la_~_iv_e_ln_d_e_x_S_iz_e l_

I

I

100

-----0
80 ----

0

>< 60
~

~ 40 -

~ 20

0-

500K 1M

Figure 9: The index size of the B+-tree vs. the trie.
Figure 12: The search performance of the R-tree Ys.
the kd-tree.

Insert Time Relative Performance
..-------------------- 1

I
!
I

~ 'M"" R,.~ """,m'~'J1J
500K 1M 2M 4M

Relation Size (No. of Keys)

250K

o

Suffix Match Search Time Performance
3_5 --------------------------------------0

12:
::I

!!!
.. 2
E
~ 1.5
r:r

! 1 +--------
o

g 0.5
...J

4M2M1M

No. of Inserted Keys

500K250K

i
i

+-------- --+- Insert RelativePertormance l

I

100

0 80
~
)(

I 60

--6

1 40

fE. 20

Figure 13: The insert performance of the R-tree vs. Figure 15: The suffix tree search performance.
the kd-tree.

6 Conclusion and Future Research
Relative Index Size

Figure 14: The index size of the R-tree vs. the kd-tree.

[1] Ibm corp.: Ibm db2 universal database application
development guide. vs. 6. 1999.

[2] W. G. AreL D. Barbara: and P. Vallabhaneni. The
handwritten trie: Indexing electronic ink. In Proceed­
ings of the ACM SIGMOD: pages 151-162.1995.

[3] W. G. Aref and 1. F. Ilyas. Sp-gist: An extensible
database index for supporting space partitioning trees.
J. Intel!. Inf. SysL 17(2-3):215-240: 200l.

[4J W. G. Aref and Ihab F. Ilyas. An extensible index for
spatial databases. In Proceedings of the 13th SSDBM:
pages 49-58: 200l.

[5] R. Bayer. The universal b-tree for multidimensional
indexing: general concepts. In Proceedings of the
WWCA Conference: pages 198-209: 1997.

[6J R. Bayer and E. M. l'vIcCreight. Organization and
maintenance of large ordered indices. Acta Inf.: 1:173­
189.1972.

References

Vve presented a serious attempt at implementing and
realizing SP-GiST-based indexes inside PostgreSQL.
Vlfe realized three index structures: namely one vari­
ant of a forest trie. a kd-tree and a suffix tree. Sev­
eral implementation challenges: experiences, and per­
formance issues are addressed in the paper. Our exper­
iments demonstrate the potential gain of the SP-GiST
indexes. For example, the trie has more than 150%
search performance improvement over the B+-tree in
the case of the exact match search: and it has more
than 2 orders of magnitude search performance gain
over the B+-tree in the case of the regular expression
match search. The kd-tree also has more than 300%
search performance improvement over the R-tree in
the case of the point match search. Our experiments
demonstrate several weaknesses of SP-GiST indexes
that need to be addressed in future research. For ex­
ample. the insertion time and the index size of the
SP-GiST indexes involve higher overhead than those
of the B+-tree: and the R-tree indexes.

-- -----.<.......--.... i

i
I
I

---- Relative Index Size H

500K 1M 2M ~ I
Relation Size (No. of KeYS)~

100

0 80
~
)(

a;- 60
~
--6
-'" 40as
~
fE. 20

0-

250K

point datasets. The x-axis and the y-axis range from 0
to 100. -We generate datasets of size that ranges from
250K to 4IvI two-dimensional points. In Figure 12: we
illustrate the search performance under t\VO search op­
erations: the point match search. and the range search.
The figure illustrates that the SP-GiST kd-tree has
more than 300% search time improvement over the
R-tree in the case of the point ·match search. and it
has around 125% performance gain in the case of the
range search. Hmvever. the experiments demonstrate
that the R-tree has better insertion time (Figure 13).
and better index size (Figure 14) than the kd-tree. The
reason is that the kd-tree is a binary search tree. where
the node size (BucketSize) is 1. and almost every in­
sert results in a node split. Therefore. the number of
the kd-tree nodes is velY large. and in order for the
storage clustering technique to reduce the tree page­
height: it has to degrade the index page utilization,
which results in an increase in the index size.

Viith respect to the suffix tree performance: we il­
lustrate in Figure 15. the significant performance gain
of using the suffix tree index to support the substring
match search. The performance gain is more than 3 or­
der of magnitude over the sequential scan search. The
other types of index structures. e.g.: B+-tree. do not
support the substring match search.

[7J N. Beckmann, H.P. Kriegel, R. Schneider, and
B. Seeger. The 1'* -tree: An efficient robust access
method for points and rectangles. In SIGMOD Record,
19(2)., 1990.

18] J. L. Bentley. l'vIultidimensional binary search trees
used for associative searching. Commun. ACM,
18(9):509-517, 1975.

19] J. L. Bentley. 1\1ultidimensional binary search trees in
database applications. IEEE Transactions Software
Engineering. SE-5:333-340, 1979.

110] W. A. Burkhard. Hashing and trie algorithms for par­
tial match retrieva1. A CM Transactions Database Sys­
tems, 1(2):175-187, 1976.

[11] D. Comer. Ubiquitous b-tree. A CM Comput. Surv.,
11(2):121-137, 1979.

[12] A. A. Diwan, S. Rane, S. Seshadri. and S. Sudar­
shan. Clustering techniques for minimizing external
path length. In Proceedings of the 22th 1!LDB, pages
342-353, 1996.

[13] G. Evangelidis, D. B. Lomet, and B. Salzberg. The
hb-pi-tree: A multi-attribute index supporting con­
currency, recovery and node consolidation. 1!LDB
JournaL 6(1):1-25, 1997.

[14] R. Fagin, J. Nievergelt, N. Pippenger. and H. R.
Strong. Extendible hashinga fast access method for
dynamic files. A CM Trans. Database Syst., 4(3):315­
344, 1979.

115] R. A. Finkel and J. L. Bentley. Quad trees: A data
structure for retrieval on composite keys. Acta lnf.,
4:1-9,1974.

116] E. F'redkin. Trie memory. Commun. ACM, 3(9):490­
499, 1960.

117] V. Gaede and O. Gonther. Multidimensional access
methods. ACM Comput. Sur-v., 30(2):170-231, 1998.

118] 1. Gargantini. An effective way to represent quadtrees.
Commun. ACM, 25(12):905-910, 1982.

[19] T. 1\1. Ghanem, R. Shah, M. F. Mokbel, W. G.
AreL and J. S. Vitter. Bulk operations for space­
partitioning trees. In Proceedings of the 20th lCDE,
pages 29-40, 2004.

120J A. Guttman. R-trees: A dynamic index structure for
spatial searching. In Proceedings of SlGMOD, pages
47-57, 1984.

121] J. M. Hellerstein, J. F. Naughton, and A. Pfeffer. Gen­
eralized search trees for database systems. In Proceed­
ings of the 21th 1!LDB, pages .562-573, 1995.

122] J. M. Hellerstein and A. Pfeffer. The I'd-tree: An
index structure for sets. In University of Wisconsin
Computer Science Technical Report 1252, 1994.

[23] E. G. Hoel and H. Samet, A qualitative compari­
son study of data structures for large line segment
databases. In Proceedings of the ACM SIGMOD,
pages 205-214, 1992.

124J N. Katayama and S. Satoh. The sr-tree: an in­
dex structure for high-dimensional nearest neighbor
queries. In Proceedings of the A CM SIGMOD, pages
369-380, 1997.

125] G. Kedem. The quad-cif tree: A data structure for
hierarchical on-line algorithms. In Proceedings of the
19th conference on Design automation, pages 352-357.
1982.

[26] 1\1. Kornacker. High-performance extensible index­
ing. In Proceedings of the 25th 1!LDH pages 699-708,
1999.

[27] R. I<. I<othuri and S. Ravada. Efficient processing of
large spatial queries using interior approximations. In
Proceedings of the 7th SSTD, pages 404-424, 2001.

[28] R.K.V. Kothuri, S. Ravada, and D. Abugov. Quadtree
and r-tree indexes in oracle spatial: a comparison us­
ing gis data. In Proceedings oj the ACM SIGMOD,
pages 546-557, 2002.

[29] R. L. Rivest, Partial-match retrieval algorithms. In
SIAM J. Cornput.. 5(1), pages 19-50, 1976.

130] J. T. Robinson. The k-d-b-tree: a search structure for
large multidimensional dynamic indexes. In Proceed­
ings oj the ACM SIGMOD, pages 10-18, 1981.

131] H. Samet. The design and analysis of spatial data
structures. In Addison- Wesley, Reading MA, 1990.

132] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. The
r+-tree: A dynamic index for multi-dimensional ob­
jects. In Proceedings oj 13th 1!LDB, pages 507-518,
1987.

[33] T. K. Sellis, N. Roussopoulos, and C. Faloutsos. l'dul­
tidimensional access methods: Trees have grovm ev­
erywhere. In Proceedings oj the 23rd 1!LDB, pages
13-14, 1997.

[34] P. Seshadri. Predator: A resource for database re­
search. In SIGMOD Record, 27(1)" pages 16-20,
1998.

[35] J. Srinivasan, R. Murthy, S. Sundara, N. AgarwaL
and S. DeFazio. Extensible indexing: a framework
for integrating domain-specific indexing schemes into
oracle8i. In Proceedings oj the 16th ICDE, pages 91­
100.2000.

136J !'vI. Stonebraker. Inclusion of new types in relational
data base systems. In Proceedings oj the 2nd ICDE,
pages 262-269, 1986.

137] J'v1. Stonebraker and G. Kemnitz. The postgres next
generation database management system. Commun.
ACM, 34(10):78-92, 1991.

138] Y. Theodoridis and T. Sellis. A model for the predic­
tion of r-tree performance. In PODS, pages 161-171.
1996.

139] F. \iVang. Relational-linear quad tree approach for tViQ­
dimensional spatial representation and manipulation.
TKDE, 3(1):118-122, 1991.

	To Trie or Not to Trie? Realizing Space-partitioning Trees inside PostgreSQL: Challenges, Experiences and Performance
	Report Number:
	

	tmp.1307986960.pdf.KM4AH

