View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2005

SOLE: Scalable On-Line Execution of Continuous Queries on
Spatio-temporal Data Streams

Mohamed F. Mokbel

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
05-016

Mokbel, Mohamed F. and Aref, Walid G., "SOLE: Scalable On-Line Execution of Continuous Queries on
Spatio-temporal Data Streams" (2005). Department of Computer Science Technical Reports. Paper 1630.
https://docs.lib.purdue.edu/cstech/1630

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SOLE: SCALABLE ON-LINE EXECUTION OF
CONTINUOUS QUERIES ON SPATIO-TEMPORAL DATA STREAMS

Mohamed F. Mokbel
‘Walid G. Aref

CSD TR #05-016
July 2005

vldb manuscript No.
(will be inserted by the editor)

Mohamed F. Mokbel - Walid G. Aref

SOLE: Scalable On-Line Execution of Continuous

Queries

on Spatio-temporal Data Streams

the date of receipt and acceptance should be inserted later

Abstract This paper presents the Scalable On-Line
Ezxecution algorithm (SOLE. for short) for continuous
and on-line evaluation of concurrent continuous spatio-
temporal queries over data streams. Incoming spatio-
temporal data streams are processed in-memory against
a set of outstanding contimuous queries. The SOLE algo-
rithm utilizes the scarce mmemory resource efficiently by
keeping track of only the significant objects. In-memory
stored objects are expired (i.e.. dropped) from memory
once they become insignificant. SOLE is a scalable algo-
rithm where all the continuous outstanding queries share
the same buffer pool. In addition, SOLE is presented
as a spatio-temporal join between two input streams, a
stream of spatio-temporal objects and a stream of spatio-
temporal queries. To cope with intervals of high arrival
rates of objects and/or queries, SOLE utilizes a self-
tuning approach based on load-shedding where some of
the stored objects are dropped from memory. SOLE is
implemented as a pipelined query operator that can be
combined with traditional query operators in a query
execution plan to support a wide variety of continuous
queries. Performance experiiments based on a real imple-
mentation of SOLE inside a prototype of a data stream
management system show the scalability and efficiency
of SOLE in highly dynamic environments.

This work was supported in part by the National Sci-
ence Foundation under Grants 11S-0093116. 115-0209120, and
0010044-CCR.

Mohamed F. Mokbel

Department. of Computer Science and Engineering, Univer-
sity of Minnesota, Minneapolis. NN, 55455 E-mail: mok-
bel@cs.umn.edu

Walid G. Aref
Department of Computer Science, Purdue University, West
Lafayette, IN 47907 E-mail: aref@cs.purdue.edu

1 Introduction

The rapid increase of spatio-temporal applications calls
for new query processing techniques to deal with the
continuous arrival of spatio-temporal data streams. Ex-
amples of spatio-temporal applications include location-
aware services [28], traffic monitoring [34]. and enhanced
911 services [19]. Recent research efforts for continuous
spatio-temporal query processing (e.g.. see [20-25,33,29,
36.39,41.42.44]) suffer from one or more of the following
drawbacks: (1) They rely mainly on the ability of stor-
ing and indexing spatio-temporal data. Such indexing
schemes fail in practice to cope with high arrival rates of
spatio-temporal data streams where only in-memory al-
gorithms for continuous queries can be realized. (2) Most
of the proposed techniques are based on high level im-
plementations on top of the database engine. Such high
level iinplementation does not scale up with the large
number of moving objects in highly dynamic environ-
ments. (3) Most of the algorithms are tailored to support
only one query type. From a system point of view, it is
more altractive to have one unified framework that can
support various query types.

On the other side, research efforts in data stream
management systems (e.g.. see [2,6,10.11,32]) focus
mainly on processing continuous queries over data
streams. However. the spatial and temporal properties
of both data streams and continuous queries are over-
looked. Continuous query processing in spatio-temporal
streams has the following distinguishing characteristics:
(1) Queries as well as data have the ability to continu-
ously change their locations. Due to this mobility, any
delay in processing spatio-temporal queries may result
in an obsolete answer. (2) An object may be added to
or removed from the answer set of a spatio-temporal
query. Consider moving vehicles that move in and out
of a certain query region. {3) The commonly used model
of sliding-uindow queries [3.4,15] does not support com-
mon spatio-temporal ¢ueries that are interested on the
current state of the database rather than on the recent

historical state. The current state of a database is a com-
bination of recently received data and old data that has
not been updated recently.

In this paper. we propose the Scalable On-Line
Ezecution algorithm (SOLE, for short) for continuous
and on-line evaluation of concwrrent continuous spatio-
temporal queries over spatio-temporal data streams.
SOLE combines the recent advances of both spatio-
temporal continuous query processors and data stream
management systems. On-line execution is achieved in
SOLE by allowing only in-memory processing of incom-
ing spatio-temporal data streams. The scarce memory
resource is efficiently utilized by keeping track of only
those objects that are considered significant. Scalabil-
ity in SOLE is achieved by using a shared buffer pool
that is accessible by all outstanding queries. Fwrther-
more. SOLE is presented as a spatio-temporal join be-
tween two input streams; a stream of spatio-temporal
objects and a stream of spatio-temporal queries. To cope
with intervals of very high arrival rates of objects and/or
queries. SOLE adopts a self-tuning approach based on
load-shedding. The main idea is to dynamically adopt the
notion of significant objects based on the current load.
Thus, in-memory stored objects that become insignif-
icant with respect to the new notion may be dropped
from memory. In addition, newly incoming objects are
admitted to the system only if they are considered sig-
nificant. The main goal of self-tuning in SOLE is to sup-
port larger numbers of continuous queries, vet with an
approximate answer.

Two alternative approaches exist for implenmenting
spatio-temporal algorithms in database systems: using
table functions or encapsulating the algorithmm into a
physical pipelined operator. In the first approach. which is
employed by existing spatio-temporal algorithms. algo-
rithms are implemented using SQL table functions [37).
Since there is no straightforward method of pushing
query predicates into table functions [38]. the perfor-
mance of this table function is severely limited and the
approach does not give enough flexibility in optimizing
the issued queries. The second approach, which we adopt
in SOLE, is to define a query operator that can be part
of the query execution plan. The SOLE operator can be
combined with traditional operators (e.g., join. aggre-
gates, and distinct) to support a wide variety of spatio-
temporal qgueries. In addition, with the SOLE operator.
the query optimizer can support multiple candidate ex-
ecution plans.

The rest of this paper is organized as follows: Sec-
tion 2 highlights related work. The basic concepts of
SOLE are discussed in Section 3. The SOLE algorithm
is presented in Section 5. Approximate query processing
i SOLE via load shedding and self tuning is presented in
Section 6. Experimental results that are based on a real
implementation of SOLE inside a data stream manage-
ment system are presented in Section 7. Finally. Section 8
concludes the paper.

2 Related Work

Up to the authors’ knowledge. SOLE provides the first
attempt to furnish query processors in data stream man-
agement systems with the required operators and al-
gorithms to support a scalable execution of concurrent
continuous spatio-temporal queries over spatio-temporal
data streams. Since SOLE bridges the areas of spatio-
temporal databases and data streain management sys-
tems, in this section we discuss the related work in each
area separately.

2.1 Spatio-temporal Databases

Existing algorithms for continuous spatio-temporal
query processing focus mainly on materializing incom-
ing spatio-temporal data in disk-based indexing struc-
tures {(e.g.. hash tables [9.40], grid files [14,29,35], the
B-tree [22]. the R-tree [23,25]. and the TPR-tree [39.
42]). Scalable execution of coucurrent spatio-temporal
queries is addressed recently for centralized [14,36] and
distributed environments [8.14]. However, the under-
lving data structure is either a disk-based gird struc-
ture [14.29] or a disk-based R-tree [8,36]. None of these
techniques deal with the issue of spatio-temporal data
streams. Issues of high arrival rates. infinite nature of
data. and spatio-temporal streams are overlooked by
these approaches. With the notion of data streams, only
in-memory algorithms and data structures can be real-
ized.

The most related work to SOLE in the context of
spatio-temporal databases is the SINA framework [29].
SOLE has common functionalities with SINA where both
of them utilize a shared grid structure to produce in-
cremental results in the form of positive and negative
updates. However, SOLE distinguishes itself from SINA
and other spatio-temporal query processors in the fol-
lowing aspects: (1) SOLE is an in-memory algorithm
where all data structures are memory based. (2) SOLE
is equipped with load shedding techniques to cope with
intervals of high arrival rates of moving objects and/or
queries. (3) As a result of the streaming environment,
SOLE deals with new challenging issues, e.g., uncertainty
in query areas, scarce memory resources, and approxi-
mate query processing. (4) SOLE is encapsulated into
a physical non-blocking pipelined guery operator where
the result of SOLE is produced one tuple at a time. Pre-
vious spatio-temporal query processors (e.g.. SINA) can
be implemented only as a table function where the result
is produced periodically in batches.

2.2 Data Streamn Management Systems

Existing prototypes for data stream management sys-
tems [1.10.12.32] aim to efficiently support continuous

queries over data streams. However, the spatial and
temporal properties of data streams and/or continuous
queries are overlooked by these prototypes. With lim-
ited memory resources, existing stream query processors
adopt the concept of sliding windows to limit the num-
ber of tuples stored in-memory to only the recent tu-
ples [3.4.15]). Such model is not appropriate for many
spatio-temporal applications where the focus is on the
current status of the database rather than on the recent
past. The only work for continuous queries over spatio-
temporal streams is the GPAC algorithm {27]. However,
GPAC is concerned only with the execution of a single
outstanding continuous query. In a typical data stream
environment, there is a huge number of outstanding con-
tinuous queries in which GPAC cannot afford.

Scalable execution of continuous queries in tradi-
tional data streams aim to either detect common subex-
pressions [11.12.26] or share resources at the operator
level [3,13.16]. SOLE exploits both paradigms where
evaluating multiple spatio-temporal queries is performed
as a spatio-temporal join between an object stream and
a query stream while a shared memory resource (buffer
pool) is maintained to support all continuous queries.
Load shedding in data stream management sSystems is
addressed recently in [5,43]. The main idea to add a
special operator to the query plan to regulate the load
by discarding unimportant incoming tuples. Load shed-
ding techniques in SOLE are distinguished from other
approaches where in addition to discarding some of the
incoming tuples, SOLE voluntary drops some of the tu-
ples stored in-memory.

The most related work to SOLE in the context of data
stream management systems is the NiagaraCQ frame-
work [12]. SOLE has common functionalities with Nia-
garaCQ where both of them utilize a shared operator
to join a set of objects with a set of queries. However,
SOLE distinguishes itself from NiagaraCQ and other
data stream management systems in the following: (1) As
a result of the spatio-temporal environment. SOLE has
to deal with new challenging issues, e.g., moving queries,
uncertainty in query areas, positive and negalive up-
dates to the query resnlt. (2) In a highly overloaded sys-
tem, SOLE provides approximate results by employing
load shedding techniques. (3) In addition to sharing the
query operator as in NiagaraCQ, SOLE share memory
resources at the operator level.

3 Basic Concepts in SOLE

In this section. we discuss the basic concepts of SOLE
that include: The input/output model. supporting vari-
ous queries, SOLE pipelined operator. and the SQL syvn-
tax.

3.1 Input/Output Model

Input. The input to SOLE is two streams: (1) A stream
of spatio-temporal data that is sent from continuwously
moving objects with the format (OID. Loc.T). where
O1D is the object identifier, and Loc is the current loca-
tion of the moving object at time 7". Moving objects are
required to send updates of their locations periodically.
Failure to do so results in considering the moving ob-
ject as disconnected. (2) A stream of continuous queries.
Queries can be sent either from moving objects or from
external entities (e.g., a traffic administrator). In gen-
eral, a query is represented as (QJD. Region), where
Q1D is the query identifier, and Region is the spatial
area covered by Q.

Output. SOLE employs an incremental evaluation
paradigm similar to the one used in SINA [29]. The
main idea is to avoid continuous reevaluation of continu-
ous spatio-temporal queries. Instead, SOLE updates the
query result by computing and sending only updates of
the previously reported answer. SOLE distinguish be-
tween two types of query updates: Posilive updaies and
negative updates. A positive update indicates that a cer-
tain object needs to be added to the result set of a cer-
tain query. In contrast, a negative update indicates that
a certain object is no longer in the answer set of a cer-
tain query. Thus, the output of SOLE is a stream of
tuples with the format (QID.+,0ID). where QID is
the query identifier that would receive this output tuple,
=+ indicates whether this output is a positive or negative
updates. A positive/negative update indicates the addi-
tion/removal of object OID to/from query QID.

3.2 SOLE as a Pipelined Operator

SOLE is encapsulated into a physical pipelined operator
that can interact with traditional query operators in a
large pipelined query plan. Having the SOLE operator ei-
ther in the bottom or in the middle of the query pipeline
requires that all the above operators be equipped with
special mechanisms to handle negative tuples. Fortu-
nately, recent data stream management systems (e.g.,
Borealis [1]. NILE [18], STREANMI [32]) have the ability
to process such negative tuples.

Basically, negative tuples are processed in traditional
operators as follows: Selection and Join operators handle
negative tuples in the same way as positive tuples. The
only difference is that the output will be in the form
of a negative tuple. Aggregates update their aggregate
functions by considering the received negative tuple. The
Dastinct operator reports a negative tuple at the output
only if the corresponding positive tuple is in the recently
reported result. For detailed algorithms about handling
the negative tuples in various traditional query operators.
the reader is referred to [17].

3.3 Supporting Various Query Types

SOLE is a unified framework that deals with range
queries as well as k-nearest-neighbor (kNN) queries. In
addition SOLE supports both stationary and moving
queries with the same framework.

Moving Queries. Each moving query is bounded to
a focal object. For example, if a moving object A submits
a query @ that asks about objects within a certain range
of M, then M is considered the focal object of Q. A mov-
ing query @ is represented as (QID, Focall D. Region),
where QI D is the query identifier, Focall D is the object
identifier that submits Q. and Region is the spatial area
of Q.

kNN Queries. A kNN query is represented as a
circular range query. The only difference is that the
size of the query range may grow or shrink based on
the movement of the query and objects of interest. Ini-
tiallv. a kNN query is submitted to SOLE with the for-
mat (QID, center, k) or (QID. Focall D, k) for station-
ary and moving queries, respectively. Thus, the center of
the query circular region is either stated explicitly as in
stationary queries or implicitly as the current location of
the object FocallD in case of moving queries. Once the
kNN query is registered in SOLE, the first incoming k
objects are considered as the initial query answer. The
radius of the circular region is determined by the distance
from the query center to the current kth farthest neigh-
bor. Once the kNN query determines its initial circular
region, the query execution continues as a regular range
query, vet with a variable size. Whenever a newly coming
object P lies inside the circular query region, P removes
the kth farthest neighbor from the answer set (with a
negative update) and adds itself to the answer set (with
a positive update). The query circular region is shrunk
to reflect the new kth neighbor. Similarly. if an object
P. that is one of the k neighbors, updates its location
to be outside the circular region, we expand the query
circular region to reflect the fact that P is considered the
farthest kth neighbor. Notice that in case of expanding
the query region. we do not output any updates.

3.4 SQL Syntax

Since SOLE is implemented as a query operator. we use
the following SQL syutax that invoke the processing of
SOLE.

SELECT select-clause
FROM from_clause
WHERE where_clause
INSIDE in_clause
kNN knn_clause

The in_clause may have one of two forms:

— Static range query (z1,¥1. 2, y2), where (z1,¥,) and
(z2,12) represent the top left and bottom right cor-
ners of the rectangular range query.

~ Moving rectangular range query (‘A ', I D, zdist, ydist),
where ‘M’ is a flag indicates that the query is mov-
ing, ID is the identifier of the query focal point. x:dist
is the length of the query rectangle, and ydist is the
width of the query rectangle.

Similarly, the knn_clause may have one of two forms:

— Static kNN query (k.z.y), where k is the number
of the neighbors to be maintained, and (z,y) is the
center of the query point.

— Moving kNN query (‘M’.k,ID), where ‘M’ is a flag
indicates that the query is moving, k is the number of
neighbors to be maintained. and 7D is the identifier
of the query focal point.

4 Single Execution of Continuous Queries in

SOLE

To clarify many of the ideas used in SOLE, in this sec-
tion, we present the SOLE in the context of single query
execution [27]. In the next section, we show how SOLE
can be generalized to the case of evaluating multiple
concurrent continuous spatio-temporal queries. Assum-
ing that for a query Q. the query answer is stored in
Q.Answer, then, whenever SOLE receives a data input
of object P, SOLE distinguishes among four cases:

— Case I: P € Q.Answer and P satisfies Q (e.g., Q)
in Figure 1a). As SOLE processes only the updates
of the previously reported result, P will neither be
processed nor will be sent to the user.

— Case II: P € Q.Answer and P does not satisfy @
(Figure 1b). In this case, SOLE reports a negative
update P~ to the user.

— Case III: P ¢ @Q.Answer and P satisfies Q (Fig-
ure 1c). In this case, SOLE reports a positive update
to the user.

— Case IV: P ¢ Q.Answer and P does not satisfy Q
(e.g., Q2 in Figure 1a). In this case, P has no effect
on . Thus, P will neither be processed nor will be
sent to the user.

On the other side, whenever SOLE receives an up-
date from a moving query, it classifies in-memory stored
objects into four categories C'y to Cy wheve: (1) ¢y C
Q.Answer and C satisfies the new Q.Region (e.g., white
objects in Figure 1d). SOLE does not process any of the
objects in Cy. (2) C; C Q.Answer. (3 does not sat-
isfy the query region (e.g.. gray objects in Figure 1d).
For each data object in (3, SOLE produces a negative
update. (3) C3 ¢ Q.Answer and Cs satisfies the new
Q.Region (e.g., black objects in Figure 1d). For each
data object in Cs, SOLE produces a positive update.
(4) Cy ¢ Q.Answer and C4 does not satisfy Q.Region.
SOLE does not process objects in Cj.

QQ‘

r ——
Q. newr Q Q5(new:)
3 4 o o
3 Prmu' o o 4
L Told Pod . Y

Qstoray O

{a) Nothing {b) Negative {c) Positive (d)} Moving Query

Fig. 1 Positive/Negative updates in SOLE.

4.1 Uncertainty in Spatio-temporal Queries

A key feature of SOLE is to utilize the scarce memory
resource efficiently by keeping track of only those objects
that satisfy at least one outstanding query. However, a
straightforward application of this feature may result in
uncertainly areas.

The uncertainty avea of a query @ is defined as fol-
lows:

Definition 1 The uncertainty area of query @ is the
spatial area of () that mav contain potential moving ob-
jects that satisfy @, with @ not being aware of the con-
tents of this area.

Figure 2 gives three consecutive snapshots of seven
objects P, to P;, a moving range queries @1, and a k-
nearest-neighbor query (k = 2) Q2. Two types of uncer-
tainties are distinguished:

1. Moving query ;. At time Ty (Figure 2a), P is
outside the area of Q;. Thus, P; is not physically
stored in the database. Recall that only objects that
satisfy the query region are stored in the database. At
time Ty (Figure 2b), Q) is moved. The shaded area
in @, represents its uncertainty area. Although P, is
inside the new query region, P; is not reported in the
query answer where it is not actually stored. At T3
(Figure 2c¢), P, moves out of the query region. Thus,
P, is never reported at the query result, although
it was inside the query region in the time interval
(Th. T2

2. Stationary query (J2. At time Ty, the answer of
Q2 18 (P, Ps). The query circular region is centered
at Q2 with its radius being the distance from Q5 to
Ps. Since P; is outside the query spatial region, P;
is not stored in the database. At T\, Ps is moved far
from Q2. Since)2 is aware only of P; and Ps, we
extend the region of Q2 to include the new location
of Ps. Thus, an uncertainty area is produced. Notice
that Q2 is unaware of P7 since P; is not stored in
the database. At Ty, P; moves out of the new query
region. Thus, P; never appears as an answer of QJz.
although it should have been part of the answer in
the time interval [Ty, T3].

4.2 Avoiding Uncertainty in SOLE

SOLE avoids uncertainty areas in spatio-temporal queries
using a caching technique. The main idea is to predict

P
Ps 4,

Op7

{a) Snapshot at time T,

[¢]

(b} Snapshot at time T
Q,. K are moved.

{c) Snapshot at time T,
P, P, are moved

Fig. 2 Uncertainty in spatio-temporal queries.

the uncertainty area of a continuous query ¢ and cache
in-memory all moving objects that lie in Q’s uncertainty
area. Whenever an uncertainty areais produced, we probe
the in-memory cache and produce the result immedi-
ately. A conscervative approach for caching is to expand
the query region in all directions with the maximumn
possible distance that a moving object can travel be-
tween any two consecutive updates. Such conservative
approach completely avoids uncertainty areas where it is
guaranteed that all objects in the uncertainty area are
stored in the cache.

Figure 3 gives an example of using caching to avoid
uncertainty in moving queries. The shaded area repre-
sents the query region. The cached area is represented
as a dashed rectangle. Moving objects that belong to the
query answer or to the query’s cache area are plotted as
white or gray circles, respectively. At time Ty (Figure 3a),
two objects satisfy the query answer (P, P2), three ob-
jects are in the cache area (Ps, Py, Ps). and two objects
outside the cache area (Fs, P7). Only objects that either
in the query or the cache area are stored in-memory. At
Ty (Figure 3b), all objects change their locations. How-
ever, we only report Py and P;". The cache area is up-
dated to contain (P, Py, Ps). Changes in the cache area
do NOT result in any updates. At T» (Figure 3c), the
query () moves within its cache area. Two updates are
sent to the user; Py~ andP;. The cache area is adjusted
to contain P; and Py only. Notice that without employ-
ing the cache area. we would miss Pj'.

The conservative caching approach requires only the
knowledge of the maximum object speed. which is typi-
cally available in moving object applications (e.g., mov-
ing cars in road network have limited speeds). This is in
contrast to all validity region approaches (e.g.. the safe
region [36]. the valid region [46]. and the No-Action re-
gion [45]) that require the-knowledge of the locations of
other objects. This information is not available in our
case since SOLE is aware only of objects that satisfly the
query predicate. Thus. validity region approaches are not
applicable in the case of spatio-teniporal streams.

P70 e
‘ oB{) o o :
' [P, : P2 !
' 2 ! 0 P !
% ° p Lok 10 !
\© 6 rooe, !
P . p L Toll I
LA ofg h I

(a) Snapshot at time T,

(b} Snapshot at time T,
All objects are moved

(¢} Snapshot at time T,
The query is moved

Fig. 3 Avoiding uncertainty in SOLE.

5 SOLE: Scalable On-Line Execution of
Continuous Queries

In a typical spatio-temporal application (e.g., location-
aware servers), there are large numbers of concurrent
spatio-temporal continuous queries. Dealing with each
query as a separate entitv (e.g., as discussed in Section 4)
would easily consume the system resources and degrade
the system performance. In this section, we present the
scalability of SOLE in terms of handling large numbers
of concurrent continuous cueries of mixed types (e.g..
range and ANN queries). Without loss of generality, all
the discussion in the rest of this paper is presented in
the context of stationary and moving range queries. The
applicability to k-nearest-neighbor queries is straightfor-
ward as described in Section 3.

5.1 Overview of Sharing in SOLE

Figure 4a gives the pipelined execution of N queries (Q,
to Qn) of various types with no sharing, i.e., each query
is considered a separate entity. The input data stream
goes through each spatio-temporal query operator sepa-
rately. With each operator, we keep track of a separate
buffer that contains all the objects that are needed by
this query {e.g.. objects that are inside the query region
or its cache area). With a separate buffer for each sin-
gle query, the memory can be exhausted with a small
number of continuous queries.

Figure 4b gives the pipelined execution of the same
N queries as in Figure 4a. yet with the shared SOLE
operator. The problem of evaluating concurrent continu-
ous queries is reduced to a spatio-temporal join between
two streams; a stream of moving objects and a stream of
continuous spatio-temporal queries. The shared spatio-
temporal join operator has a shared buffer pool that is
accessible by all continuous queries. The output of the
shared SOLE operator has the form (¢, £P;) which in-
dicates an addition or removal of object P; to/from query
;. The shared SOLE operator is followed by a split op-
erator that distributes the output of SOLE either to the
users or to the various query operators. The split oper-
ator is similar to the one used in NiagaraCQ [12] and it
is out of the focus of this paper. Our focus is in realiz-
ing: (1) The shared memory buffer, and (2) The shared
SOLE spatio-temporal join operator.

Ql Q2 QN

+/_¢ +/—¢ }

g@ ga@

5
Opemater : & Shared.
' Spatio-temporal }!
BufTer ' Join E
Lo AT R

‘ Stream of

+
TP

Stream of
Stream of Moving Objects (P} Moving Spatio-temporal
Objects (P} Queries (@)

(b) Shared operator and shared
buffer pool for all queries

{a) Separate query plan and
buffer for each query

Fig. 4 Overview of shared execution in SOLE.

5.2 Shared Memory Buffer

SOLE maintains a simple grid structure as an in-memory
shared buffer pool among all continuous queries and ob-
jects. The shared buffer pool is logically divided into two
parts: a query buffer that stores all outstanding contin-
uous queries and an object buffer that is concerned with
moving objects. In addition to the grid structure. SOLE
emplovs a hash table h to index moving objects based
on their identifers.

To optimize the scarce memory resource, SOLE em-
ploys two main techniques: (1) Rather than redundantly
storing a moving object P multiple times with each query
Q; that needs P, SOLE stores P at most once along with
a reference counter that indicates the number of continu-
ous queries that need P. (2) Rather than storing all mov-
ing objects. SOLE keeps track with only the significant
objects. Insignificant objects are ignored (i.e.. dropped)
from memory. Significant objects are defined as follows:

Definition 2 A moving object P is considered signif-
icant if P satisfies any of the following two conditions:
(1) There is at least one outstanding continuous query ¢
that shows interest in object P (i.e., P has a non-zero
reference counter), (2) P is the focal object of at least
one outstanding continuous query.

We define when a query) shows interest in an
object P as follows:

Definition 3 A continuous cquery @ is interested in ob-
ject P if P either lies in @’s spatial area or in @’s cache
area.

Baving the previous definition of significant objects,
SOLE continuously maintains the following assertion:

Assertion 1 Only significani objects are stored in the
shared memory buffer

To always satisfy this assertion, SOLE continuously
keeps track of the following: (1) A newly incoming data
object P is stored in memoryv only if P is significant,
(2) At anyv time. if an object P that is already stored

@Q; tP)

+/=

t1)Rend
- al

(1)S1ore
[

Query
| Buffer

JOIN JOIN

with @Store_| i2)Read with®
. Objeet =
Queries (@) %,Q Buffer Objects (P]

s,
&

‘ @1Deletg pl_,)(p‘;..kd | ®Delere| :
object 4 bjects object(s) .

ot T
Moving
1< Focal?
Yes

queries

________ T

Stream of Stream of spatio—
moving objects (P) temporal queries (Q)

Stationary |
queries

Fig. 5 Shared join operator in SOLE.

in the shared buffer becomes insignificant, we drop P
immediately from the shared buffer.

Significant moving objects are hashed to grid cells
based on their spatial locations. An entry of a signif-
icant moving object P in a grid cell C' has the form

(PID, Location, Re fCount, FocalList). PID and Location6.

Procedure IncomingNewObject(Object P, GridCell Cp)
Begin
1. For each Query Q; € Cp AND P ¢ Q,-

(a) P.RefCount++

(b) if (P € Qi) then output (Qi,+P).
2. if (P.RefCount) then store P in Cp and in hash table h.
End.

Fig. 6 Pseudo code for receiving a new value of P.

Procedure UpdateObj(0bject P, P, GridCell Cp,,,,Cp)
Begin
1. For each query Qi € P.FocalList, UpdateQuery(Q;)
2. Let L be the line (Pyq. P)
3. For each query Q; € (Cp,,, UCp)
(a) if Q; intersects L, then
— if P € Q; then Oulpul (Q;,+P), if Poa ¢ Qs,
P.RefCount++
— else OQutpul (Q;.—P). if P €& () then
P.RefCount——
(b) else if (); intersects L
—if P € (: then P.RefCount++,
P.RefCount——
4. if (IP.RefCount) then delete P, and ignore P, return.
5. if (Cp,, # Cp) then move Py from Cp,,, to Cp.

else

Update the location of Poa to that of P in Cp.

are the object identifer and location, respectively. Re fCoungnd.

indicates the number of queries that are interested in P.
FocalList is the list of active moving queries that have P
as their focal object. Unlike data objects that are stored
in only one grid cell. continuous queries are stored in all
grid cells that overlap either the query spatial area or the
query cache area. A query entry in a grid cell contains
only the query identifier (Q1D). The spatial region for
each query is stored separately in a global lookup table.

5.3 Shared Spatio-temporal Join Operator

Overview. Figure 5 puts a magnifying glass over the
shared spatial join operator in Figure 4b. For any incom-
ing data object, say P, the shared spatial join operator
consults its query buffer to check if any query is affected
by P (either in a positive or a negative way). Based on
the result, we decide either to store P in the object buffer
or to ignore P and delete P’s old location (if any) from
the object buffer. On the other hand, for any incoming
continuous query, say @, first we store () or update Q)’s
old location (if any) in the query buffer. Then, we con-
sult the object buffer to check if any of the objects needs
to be added to or removed from Q’s answer. Based on
this operation. some in-memory stored objects may be-
come insignificant, hence, are deleted immediately from
the object buffer. Stationary queries are submitted di-
rectly to the shared spatial join operator, while moving
queries are generated from the movement of their focal
objects.

Algorithm. Based on the data stored in the shared
buffer, SOLE distingnishes among four types of data in-
puts: (1) A new data object P that is not stored in mem-

Fig. 7 Pseudo code for updating P’s location.

ory, (2) Update of the location of object P. (3) A new
stationary query Q. (4) An update of the region of a
moving query Q. Figures 6, 7, 9, and 10 give the pseudo
code of SOLE upon receiving each input type. The de-
tails of the algorithms are described below. SOLE makes
use of the following notations: Q indicates the extended
query region that covers the cache area so that Q) C 0.
Co. CQ are the set of grid cells that are covered by Q
and Q. respectively. Cp represents a single grid cell that
covers the object P.

Input Type 1I: A new object P. Figure 6 gives
the pseudo code of SOLE upon receiving a new object
P in the grid cell Cp (i.e., P is not stored in memory).
P is tested against all the queries that are stored in Cp
{Step 1 in Figure 6). For each query Q; € Cp, only three
cases can take place: (1) P lies in ©; but not in Q. In this
case, we need only to increase the reference counter of P
to indicate that there is one more query interested in P
(Step 1a in Figure 6). Notice that no output is produced
in this case since P does not satisly Q;. (2) P satisfies
(2;. In this case, in addition to increasing the reference
counter. we output a positive update that indicates the
addition of P to the answer set of @Q; (Step 1b in Fig-
ure 6). In the above two cases. P is stored in the shared
buffer as it is considered significant. (3) P neither satis-
fies Qi nor lies in Q;. Thus, P is simply ignored as it is
insignificant.

Input Type II: An update of P. Figure 7 gives
the pseudo code of SOLE upon receiving an update of ob-

.........ﬁ ,,,,, r,., ,,,,, .Pneu
Lyo—>e : ™ Cache”, | . Out -
: : : L —L -
: Lo—»e| | e L Pl -
;0> : T RefCount--
; - Ly0—>e; ¢ I I
: I\ P
Liof : i O [foche R Rsm \
cT " B - efCounl--
L Loj~e L G Iy
_____ Lio—>e Lo—>e | RefCounts+| RefCounts+ - ‘

{a) At cases of updating P's location {b) Action taken for each case

Fig. 8 All cases of updating P’s location.

Procedure StationaryQuery(Query Q) Begin
— For each grid cell ¢; € Cq
1. Register Q in ¢;
2. For each object P; € ¢c; AND P, € Q
— P.RefCount++, if P € Q then output (Q,+P)
End.

Fig. 9 Pseudo code for receiving a new query Q.

ject P's location. The old Jocation of P is retrieved from
the hash table A. First. we evaluate all moving queries
(if any) that have P as their focal object (Step 1 in Fig-
ure 7). Then, we check all the queries that belong to
either Cp or Cp,, (Step 3 in Figure 7) against the line
L that connects P and P,;y. Figure 8a gives nine different,
cases for the intersection of L with Q where P,y and P
are plotted as white and black circles, respectively. Both
P, and P can be in one of the three states, in, cache, or
out that indicates that P satisfies @, in the cache area of
Q. or does not satisfy Q. respectively. The action taken
for each case is given in Figure 8b. Basically, if there is
no change of state from P4 to P (e.g.. L1, Ls, and Lg),
no action will be taken. If P,y was in @, however, P
is not, (e.g., Lo and L3) we output the negative update
(Q.—P). The reference counter is decreased only when
Pq is of interest to @ while P is not (e.g., Lz and Lg).
Notice that in the case of Lo, we do not need to decrease
the reference counter where although P does not satisfy
Q. P is still of interest to Q@ as P lies in Q, Also, in
the case of Lg, we do not need to output a negative up-
date, however we decrease the reference counter. In this
case, since P and P,y are not in the answer set of Q,
there is no need to update the answer. Similarly, with
a symmetric behavior, we output a positive update in
the cases of Ly and L7 and we increment the reference
counter in the cases of Ly and Lg. After testing all cases,
we check whether object P becomes insignificant. If this
is the case, we immediately drop P from memory (Step 4
in Figure 7). If P is still significant, we update P’s lo-
cation and cell (if needed) in the grid structure (Steps 5
and 6 in Figure 7).

Input Type III: A new query Q. Figure 9 gives
the pseudo code of SOLE upon receiving a continuous
stationary query Q. Basically, we register ¢ in all the
grid cells that are covered by Q. In addition, we test Q
against all data objects that are stored in these cells. We
increase the reference counter of only those objects that

Procedure UpdateQuery(Query Q4. Q) Begin

— For each object P; € (Cq,,, N Co)
1. if P; € Qpiathen
— if P ¢ @Q then (Output (Q.—F;), if P; ¢
@ then (Pi.RefCount——. if (IP;.RefCount)
thendelete(P;)))
2. else if P € @ then (Output (Q.+F;). if P; ¢ Qota
then P;.RefCount++)

3. else if P, ¢ Qold AND P ¢ Q then
(P;. RefCount——, if (!P;.RefCount) then
delete(P;))

4. else if P, € @Q AND P; ¢ Qold then
P7-.RefCount++.A i)

— Register Q in Cq — Cq,,, . unregister) from Cq,,, — Co

End.
Fig. 10 Pseudo code for updating a query.

lie in Q. In addition, objects that satisfy @ results in
producing positive updates.

Input Type IV: An update of @Q’s region. Fig-
ure 10 gives the pseudo code of SOLE upon receiving
an update of a moving query region. All stored objects
in all cells that are covered by the old and new regions
of (7 are tested against Q. Figure 1la divides the space
covered by the old and new regions of @ into seven re-
gions (R1-R7). The action taken for any point that lies
in any of these regions is given in Figure 11b. Similar to
Figure 8b, a region R; could have any of the three states
in, cache. or out based on whether R; is inside Q, is in
the cache area of Q, or is outside). Basically, no action
is taken for objects in any region R; that maintains its
state for both @ and Q4 (e.g., R4). If a region R; is in-
side Qyiq, but is not in @, (e.g., Ry and Rg), we output a
negative update for each object in R;. We decrement the
reference counter of these objects only if they lie in the
region that is out of the new cache area (e.g., Ry) (Step 1
in Figure 10). Also, the reference counter is decremented
for all objects in the region that are in the old cache area
but are out of the new cache area (e.g.. R1) (Step 3 in
Figure 10). Similarly, the reference counter is increased
for regions Rg and R; while a positive output is sent for
the points in regions Ky and Rg. Notice that whenever
we decrement the reference counter for any moving ob-
ject P, we check whether P becomes insignificant. If this
is the case, we immediately drop P from memory (e.g..
Steps 1 and 3 in Figure 11). Finally. Q) is registered in
all the new cells that are covered by the new region and
not the old region. Similarly, @ is unregistered from all
cells that are covered by the old region and not the new
region.

6 Approximate Query Processing in SOLE

Even with the scalability features of SOLE, the memory
resource may be exhausted at intervals of unexpected
massive munbers of queries and moving objects (e.g..

(a) All cases of updating query region

(b) Action taken for each case

Fig. 11 All cases of updating Q’s region.

during rush hours). To cope with such intervals, SOLE
is equipped with a self-ituning approach that tunes the
memory load to support a large number of concurrent
queries, yet with an approximate answer. The main idea
is to tune the definition of significant objects based on
the current workload. By adapting the definition of sig-
nificant objects, the memory load will be shed in two
ways: (1) In-memory stored objects will be revisited for
the new meaning of significant objects. If an insignificant
object is found. it will be shed from memory. (2) Some
of the newly input data will be shed at the input level.

Figure 12 gives the architecture of self-tuningin SOLE.

Once the shared join operator incurs high resource con-
sumption, e.g., the memory becomes almost full, the join
operator triggers the execution of the load shedding pro-
cedure. The load shedding procedure may consult some
statistics that are collected during the course of execu-
tion to decide on a new meaning of significant objects.
While the shared join operator is running with the new
definition of significani objects, it may send updates of
the current memory load to the load shedding procedure.
The load shedding procedure replies back by continu-
ously adopting the notion of significant objects based on
the continuously changing memory load. Finally, once
the memory load returns to a stable state, the shared
join operator retains the original meaning of significant
objects and stops the execution of the load shedding pro-
cedure. Solid lines in Figure 12 indicate the mandatory
steps that should be taken by any load shedding tech-
nique. Dashed lines indicate a set of operations that may
or may not be emploved based on the underlying load
shedding technique. In the rest of this section, we pro-
pose two load shedding techniques, namely query load
shedding and object load shedding.

6.1 Query Load Shedding

The main idea of query load shedding is to negotiate the
query region with the user. Whenever a query, say Q. is
submitted to SOLE. @ specifies the minimum accuracy
that is acceptable by Q. Initially, the submitted query
2 is evaluated with complete accuracy. However. when
the system is overloaded. @Q’s accuracy is degraded to its
minimum permissible accuracy. Reducing the accuracy
is achieved by shrinking @Q's cache area from all direc-
tions to have a smaller cache area. After we are done

!

| Update :
"""""""""""" >\ Statisties
Shared

Join ‘ |
Operator (1) Trigger
(Mcmory is almost full)
(2) Update criteri 1
. 'pdate critcna Lo
Expired (3) M Load »
CMN O 0al - .
R SEbER s T 02 - Shedding|
Objects. - - - (4) Updatc criteria

$ A | (5) STOP (Memory is OK)

Objects

Fig. 12 Architecture of self tuning in SOLE.

Queries

with all the cache area, if the system is still overloaded,
and we have not reached to the minimum permissable ac-
curacy vet. we start to reduce @Q’s area itself. Thus, the
notion of stgnificant objects is adopted to be those tuples
that lie in the reduced query area of at least one contin-
uous outstanding query. By reducing the query sizes of
all outstanding queries, objects that are outside of the
reduced area and are not of interest to any other query
are immediately dropped from memory and the corre-
sponding negative updates are sent. During the course of
execution. we gradually increase the query size to cope
with the memory load. Finally, when the system reaches
a stable state, we retain the original query sizes.

Query load shedding has two main advantages: (1) It
is intuitive and simple to implement where there is no
need to maintain any kind of statistical information, and
(2) Insignificanl objects are immediately dropped from
memory. On the other side, there are two main disadvan-
tages: (1) The query load shedding process is expensive,
where it scans all stored objects and queries. This ex-
haustive behavior results in pause time intervals where
the system cannot produce output nor process data in-
puts. (2) Although the query accuracy is guaranteed (as-
suming uniform data distribution), there is no guarantee
of the amount of reduced memory. Assume the case that
the reduced area from a query @Q; lies completely inside
another query @;. Thus, even though Q; is reduced, we
cannot drop tuples from the reduced area where they are
still needed by @;. Thus, the accuracy of @; is reduced,
vet the amount of memory is not.

6.2 Object Load Shedding

The main idea of object load shedding is to drop objects
that have less effect on the average query accuracy. Thus,
the definition of significant objects is adopted to be those
objects that are of interest to at least k queries (i.e.,
objects with reference counter greater than or equal k).
Notice that the original definition of significant objects
implicitly assumes that & = 1. A key point in object
load shedding is that we do not perform an exhaustive
scan to drop insignificant objects. Instead, insignificant

10

objects are lazily dropped whenever they get accessed
later during the course of execution. Such lazy behavior
completely avoids the pause time intervals in query load
shedding. In contrast to query load shedding, in object
load shedding, we guarantee the reduced memory load.

During the course of execution, we monitor the mem-
ory load and decrease/increase k accordingly. Once the
system stabilizes and returns to its original state, we set
k = 1 to retain the original execution of SOLE. Deter-
mining the threshold value k is achieved by maintaining
a statistical table S that keeps track of the number of ob-
jects that satisfy a certain number of queries. Assuming
that we will never drop an object that has a reference
counter greater than N, then S can be represented as
an array of N numbers where the jth entry in .S corre-
sponds to the number of moving objects thal are of in-
terest to j queries. Whenever the system is overloaded,
we go through S to get the minimum % that achieves the
required reduced load.

6.3 Load Shedding with Locking

Degenecrate cases may affect severely the behavior of load
shedding. Consider the case of a query @Q that has only
one object P as its answer while P is not of interest to
any other query. By applving object load shedding, P will
be dropped where it is of interest to only one query Q.
Thus, the accuracy of @ is dropped to zero. To allevi-
ate such problem, we use a locking technique. Basically,
each query @ has a threshold n where if @ has less than
n objects in its answer set, all the n objects are locked.
Locked objects do not participate in the statistical table
S. Once an object is locked, the corresponding entry in S
is updated. Whenever we lazily drop objects from mem-
ory, we make sure that we do not drop any locked object.
The concept of locking can also be generalized to accom-
modate locking of important objects and/or queries.

7 Experimental Results

In this section. we study the performance of various as-
pects of SOLE that includes: the size of the cache area.
the benefit of encapsulating SOLE in a pipeline opera-
tor, the grid size of the shared memory buffer, the scal-
ability of SOLE, and approximate query processing via
load shedding techniques. All the experiments in this sec-
tion are based on a real implementation of SOLE algo-
rithms and operators inside our prototype database en-
gine for spatio-temporal streams, PLACE [30,31]. We
run PLACE on Intel Pentium IV CPU 2.4GHz with
512MB RANM running Windows XP. Without loss of gen-
erality, all the presented experiments are conducted on
stationary and moving continuous spatio-temporal queries.
Similar results are achieved when employing continuous
k-nearest-neighbor queries.

Fig. 13 Greater Lafayette, Indiana, USA.

We use the Network-based Generator of Moving Ob-
jects 7] to generate a set of moving objects and mov-
ing queries in the form of spatio-temporal streams. The
input to the generator is the road map of the Greater
Lafayatte (a city in the state of Indiana, USA) given in
Figure 13. The output of the generator is a set. of mov-
ing points that move on the road network of the given
city. Moving objects can be cars, cyclists, pedestrians,
etc. Any moving object can be a focal of a moving query.
Unless mentioned otherwise, we generate 110 moving
objects as follows: Initially, we generate 10X moving ob-

jects from the generator. then we run the generator for

1000 time units. At each time unit, we generate new 100
nioving objects. Moving objects are required to report
their locations every time unit 7. Failure to do so results
in disconnecting the moving object from the server.

The rest of this section is organized as follows. Sec-
tion 7.1 studies the effect of the cache size and the gain
of having SOLE as a pipelined operator in terms of single
query execution. In Section 7.3, we study the scalability
of SOLE. Finally, Section 7.6 studies the performance of
load shedding techniques.

7.1 Single Execution: Size of the Cache Area

Figures 14a-d give the performance of the first 25 sec-
onds of executing a moving query of size 0.5% of the
space with no cache, 25% cache, 50% cache, and conser-
vative cache (i.e., 100% cache), respectively. Our perfor-
mance measure is the query accuracy that is represented
as the percentage of the munber of produced tuples to
the actual number that should have been produced if all
moving objects are materialized into secondary storage.
Without caching (Figure 14a), the query accuracy suf-
fers from continuous fluctuations where sometimes the
accuracy drops to 85%. With only 25% cache the query
accuracy is greatly enhanced (Figure 14b). The accuracy
is almost stable with minor fluctuations that degrade the
accuracy to only 95%. A conservative caching would re-
sult in having a single line that always have 100% accu-
racy.

11

§o0 e e o :
) ;h}y"ﬁ T
sy TP

ro ff B

Peteeatage @l el

I‘J-L P

a) No Cache 25%. Cache
(a) No Cacl (b) 25% Cach

Fig. 14 Cache area in SOLE.

80 ' '
100% Cache —G—
50% Cache —&—

70 25% Cache —@—

Overhead Percentage

Time

Fig. 15 Cache area in SOLE.

Figure 15 gives the memory overhead when using a
25%, 50%, or 100% (conservative) cache sizes. The over-
head is computed as a percentage from the original query
memory requirements. Thus a 0% cache does not incur
any overhead. On average a 25% cache results in only
10% overhead over the original query, while the 50% and
100% caches result in 25% and 50% overhead. respec-
tively. As a compromise between the cache overhead and
the query accuracy. we use a 25% cache in SOLE in all
the following experiments.

7.2 Single Execution: Pipelined Query Operators

Consider the query Q:“Continuously report all trucks
that are within MyArea”. MyArea can be either a sta-
tionary or moving range query. A high level implemen-
tation of this query is to have only a selection operator
that selects only the “trucks”. Then, a high level algo-
rithm implementation would take the selection output
and incrementally produce the guery result. However. an
encapsulation of SOLE into a physical pipelined query
operator allows for more flexible plans. Figure 16a gives
a query evaluation plan when pushing the SOLE oper-
ator before the selection operator. The following is the
SQL presentation of the query.

SELECT M.ObjectID

(c) 50% Cache (d) Conservative Cache

Com

(a) SELECTION (b} JOIN

Fig. 16 Pipelined SOLE operators.

FROM MovingObjects N
WHERE M.tvpe = “fruck”
INSIDE MyArea

Figure 17 compares {he high level implementation
of the above guery with pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. The selectivity of
the selection operator is 5%. Our measure of compari-
son is the number of tuples that go through the query
evaluation pipeline. When SOLE is implemented at the
application level, its performance is not affected by the
query selectivity. However. when INSIDE is pushed before
the selection. it acts as a filter for the query evaluation
pipeline, thus, limiting the tuples through the pipeline
to only the progressive updates. With INSIDE selectiv-
ity less than 32%, pushing INSIDE before the selection
greatly affects the performance. However, with selectiv-
ity more than 32%, it would be better to have the INSIDE
operator above the selection operator.

Consider a more complex query plan that contains a
join operator. The query @Q: “Continuously report mov-
ing objects that belong to my favorite sei of objects and
that lie within MyArea”™. A high level implementation of
SOLE would probe a streaming database engine to join
all moving objects with my favorite set of objects. Then,
the output of the join is sent to the SOLE algorithm for
further processing. However, with the INSIDE operator,
we can have a query evaluation plan as that of Figure 16b
where the INSIDE operator is pushed below the Join op-

12

8000 —
b
. 7000 Stationary Pipelined Query —@&—
g Moving Pipelined Query —%—
6000 F Application level —
&
& 5000 g
@
S5 4000
1=
3000
w
s
2 2000
2
&
1000 i
o . . .
2 [8 16 32 64
Query Selectivity
Fig. 17 Pipelined operators with SELECT.

3000
g 2500
=1
@
,5 2000 SOLE as an Operator —&— A
o SOLE as a Table Function ——&—
@
S 1500 f
[
—
w 1000 |
[
—
)
& 500 ./’
o e @ L
0.02 0.04 0.08 0.16 0.32 0.64
Query Size
Fig. 18 Pipelined operators with Join.

erator. The SQL representation of the above query is as
follows:

SELECT M.ObjectID

FROM MovingObjects M. MyFavoriteCars F
WHERE M.ObjectID = F.ObjectID

INSIDE MyArea

Figure 18 compares the high level implementation of
the above query with the pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. As in Figure 17, the
selectivity of SOLE does not affect the performance if it
is implemented in the application level. Unlike the case of
selection operators, SOLE provides a dramatic increase
in the performance (around an order of magnitude) when
implemented as a pipelined operator. The main reason in
this dramatic gain in performance is the high overhead
incurred when evaluating the join operation. Thus. the
INSIDE operator filters out the input tuples and limit
the input to the join operator to only the incremental
positive and negative updates.

71
i j i
s
§ By
Sls /
\,
| S
10 &0 a0 100 7o 180 * 1] o o 3¢ RO rac¢ 170 140
o o
(a) Redundancy (b) Response Time
Fig. 19 Grid Size.
o Saring =
o
H P Single | Sharing [Ratio
g 0.01) 8184 | 63446 | 7.75
g - 0.09] 934 | 8250 | 8.83
£ 0.25| 349 | 4016 | 11.51
2 049 186 | 2577 | 13.85
ok 081 118 | 2082 | 17.64
. 1] 103 | 2007 | 15.49 }

S 63 b4 G5 0.6 07 0.8 0.9)
wuery Siie

(a) Ratio (b) Table of values

Fig. 20 Maximum Number of Supported Queries.

7.3 Scalable Execution: Grid Size

Figure 19 studies the trade-offs for the number of grid
cells in the shared memory buffer of SOLE for 50K mov-
ing queries of various sizes. Increasing the number of cells
in each dimension increases the redundancy that results
from replicating the query entry in all overlapping grid
cells. On the other hand, increasing the grid size results
in a better response time. The response time is defined as
the time interval from the arrival of an object, say P, to
either the time that P appears at the output of SOLE or
the time that SOLE decides to discard . When the grid
size increases over 100, the response time performance
degrades. Having a grid of 100 cells in each dimension
results in a total of 10K small-sized grid cells, thus. with
each movement of a moving query @, we need to reg-
ister /unregister Q in a large number of grid cells. As
a compromise between redundancy and response time,
SOLE uses a grid of size 30 in each dimension.

7.4 Scalable Execution: SOLE Vs. Non-Shared
Execution

Figure 20 compares the perforimance of the SOLE shared
operator as opposed to dealing with each query as a sep-
arate entity (i.e., with no sharing). Figure 20a gives the
ratio of the number of supported queries via sharing over
the non-sharing case for various query sizes. Some of the

13

. (%3
Choing —o—
o Ehortng —F—

Avea

0.0 T

0.0
0.04
©.0z 1
o.or //

6.1

b ool S

(<] re Shu:i?
a.c .

Hambey af Parals 1 Caehn dvens (M)

humber of Foinle ia ey

13
0.3 0.4 C.% 0.6 © [N TR SN)

[

Gy 06 ¢

wuory 520

(a) Query area (b) Cache area

Fig. 21 Data size in the query and cache areas.

actual values are depicted in the table in Figure 20b. For
small query sizes (e.g., 0.01%) with sharing. SOLE sup-
ports more than 60K queries, which is almost 8 times
better than the case of non-sharing. The performance of
sharing increases with the query size where it becomes 20
times better than non-sharing in case of query size 1% of
the space. The main reason of the increasing performance
with the size increase is that sharing benefits from the
overlapped areas of continuous queries. Objects that lie
in any overlapped area are stored only once in the shar-
ing case rather than multiple times in the non-sharing
case. With small query sizes., overlapping of query areas
is much less than the case of large query sizes.

Figures 2la and 21b give the memory requirements
for storing objects in the query region and the query
cache area, respectively, for 1K queries over 100K mov-
ing objects. In Figure 21a, for large query sizes (e.g.. 1%
of the space), a non-shared execution would need a mem-
ory of size 1M objects, while in SOLE, we need. at most,
a memory of size 100K objects. The main reason is that
with non-sharing, objects that are needed by multiple
queries are redundantly stored in each query buffer, while
with sharing, each object is stored at most once in the
shared memory buffer. Thus, in terms of the query area,
SOLE has a ten times performance advantage over the
non-shared case. Figure 21b gives the memory require-
ment for storing objects in the cache area. The behavior
of the non-sharing case is expected where the memory re-
quirements increase with the increase in the query size.
Surprisingly, the caching overhead in the case of sharing
decreases with the increase in the query size. The main
reason is that with the size increase, the caching area of
a certain query is likely to be part of the actual area of
another query. Thus, objects that are inside this caching
area are not considered an overhead, where they are part
of the actual answer of some other query.

7.5 Scalable Execution: Response Time
Figure 22a gives the effect of the number of concurrent

continuous queries on the performance of SOLE. The
number of queries varies from 5K to 50K. Our perfor-

.8 0.2 1

A
Sespate T meoc

510 s Zuopsoumoan o snoan

Bumber of Querics (hl

(a) Number of queries (b} Query size & Per-

cent ol moving queries

Fig. 22 Response time in SOLE.

mance measure is the average response time. The re-
sponse time is defined as the time interval from the ar-
rival of object P to either the time that P appears at
the output of SOLE or the time that SOLE decides to
discard P. We run the experiment twice; once with only
stationary queries, and the second time with only moving
queries. The increase in response time with the number
of queries is acceptable since as we increase the number
of queries 10 times (from 5K to 50K). we get only twice
the increase in response time in the case of stationary
queries (from 11 to 22 msec). The performance of moving
queries has only a slight increase over stationary queries
(2 msec in case of 50K queries).

Figure 22b gives the effect of varying both the query
size and the percentage of moving queries on the response _
time of the SOLE operator. The number of outstanding
queries is fixed to 30K. The response time increases with
the increase in both the query size and the percentage
of moving queries. However, the SOLE operator is less
sensitive to the percentage of moving queries than to the
query size. Increasing the percentage of moving queries
results in a slight increase in response time. This per-
formance indicates that SOLE can efficiently deal with
moving queries in the same performance as with station-
ary queries. On the other hand, increasing the query size
from 0.01% to 1% only doubles the response time (from
around 12 msec to around 24 msec) for various moving
percentages.

7.6 Load Shedding: Accuracy in Query Answer

Figures 23a and 23b compare the performance of query
and object load shedding techniques for processing 1K
and 25K queries with various sizes, respectively. Our per-
formance measure is the reduced load to achieve a ceratin
query accuracy. When the system is overloaded, we vary
the required accuracy from 0% to 100%. In degenerate
cases, setting the accuracy to 100% requires keeping the
whole memory load (100% load) while setting the accu-
racy to 0% requires deleting all memory load. The bold
diagonal line in Figure 23 represents the required accu-
racy. It is “expected” that if we ask for m% accuracy, we

14

e B S A A s e

2t g

D vy taws Chedding - @
CEjeel Lood Thedding

cdding - G
<h:

4 o m s 28 an " m i i En s

Aeeurans Aecuracy

(a) 1K Queries (b) 25K Queries

Fig. 23 Load Vs. Accuracy.
300 — — o0 = —rT |
ca [t wery loud Shedding O ot
vbiect tood Shodding —e—
-
Tz e = “«
.‘:E < /././/4——7
L1
€ - 7 - R "‘ Guery loud Shedding —B—
" i . 1E)ect loud Shedding —e—
: 1 B 10 1% To Bl i : o L 10 15 20 bl 30
Homber tuer e 11 Nomber b e (1
(a) 70% Accuracy (b) 90% Accuracy
Fig. 24 Reduced load for a certain accuracy.

will need to keep only m% of the memory load. Thus,
reducing the memory load to be lower than the diago-
nal line is considered a gain over the “expected” behav-
ior. The object load shedding always maintains better
performance than that of the query load shedding. For
example, in the case of 1K queries, to achieve an aver-
age accuracy of 90%, we need to keep track of only 85%
of the memory load in the case of object load shedding
while 97% of the memory is needed in the case of query
load shedding. The performance of both load shedding
techniques is worse with the increase in the number of
queries to 25K. However, the object load shedding still
keeps a good performance where it is almost equal to
the “expected” performance. The performance of query
load shedding is dramatically degraded where we need
more than 90% of the memory load to achieve only 20%
accuracy.

Figures 24a and 24b compare the performance of
guery and object load shedding to achieve an accuracy of
70% and 90%, while varying the number of queries from
2K to 32K. The object load shedding greatly outperforms
the guery load shedding and results in a better perfor-
mance than the “expected” reduced load for all query
sizes. The main reason behind the bad performance of
query load shedding is that in the case of a large number
of queries, there are high overlapping areas. Thus, the
reduced area of a certain query is highly likely to over-
lap other queries. So, even though we reduce the query
area, we cannot drop any of the tuples that lie in the

Fig. 25 Performance of Object Load Shedding.

reduced area. Such tuples are still of interest to other
outstanding queries.

Figure 25 focuses on the performance of object load
shedding. The required reduced load varies from 10% to
90% while the number of queries varies from 1K to 32K.
This experiment shows that object load shedding is scal-
able and is stable when increasing the number of gueries.
For example, when reducing the memory load to 90%. we
consistently get an accuracy around 94% regardless of
the number of queries. Such consistent behavior appears
in various reduced loads.

7.7 Load Shedding: Scalability with Load Shedding

Figure 26a gives the ratio of the number of supported
queries with query and object load shedding techniques
over the sharing case with no load shedding. All queries
are supported with a minimum acclracy of 90%. De-
pending on the query size, query load shedding can sup-
port up to 3 times more queries than the case with no
load shedding. This indicates a ratio of up to 60 times
better than the non-sharing cases (refer to the table in
Figure 20b). On the other hand, object load shedding has
much better scalable performance than that of queryload
shedding. With object load shedding SOLE can have up
to 13 times more queries than the case of no load shed-
ding. which indicates up to 260 times than the case of
no sharing.

Figure 26b gives the performance of the query and
object load shedding techniques in terms of maintaining
the average query accuracy with the arrival of continu-
ous queries. The horizontal access advances with time to
represent the arrival of each continuous query. With tight
memory resources, the memory is consumed completely
with the arrival of about 1200 queries. At this point, the
process of load shedding is triggered. The required mem-
ory consumption level is set to 90%. Since query load
shedding immediately drops tuples from memory, the
query accuracy is dropped sharply to 90%. In contrast, in
object Joad shedding, the accuracy degrades slowly. With
the arrival of more queries, query load shedding tries to
slowly enhance its performance. However, the memory
consumption is faster than the recovery of query load
shedding. Thus, soon, we will need to drop some more
tuples from memory that will result in less accuracy.

15

Guers 1cod Sheading —E—
1= chocrl teué Thesaong - @ -

vuery loud Shoedding - =
vbyect Loud Shedding ——

500 000 1800 7060

Mumber ¢f (uerics lonc ot b LiRc!

(a) Ratio

(b) Query Arrival

Fig. 26 Scalability with Load Shedding.

The behavior continues with two contradicting actions:
(1) Query load shedding tends to enhance the accuracy
by retaining the original query size, and (2) The arrival
of more queries consumes memory resources. Since the
second action is faster than the first one, the perfor-
mance has a zigzag behavior that leads to reducing the
query accuracy. On the other hand, object load shedding
does not suffer from this drawback. Instead, due to the
smartness of choosing victim objects, object load shed-
ding always maintains sufficient accuracy with minimum
memory load.

8 Conclusion

We presented the Scalable On-Line Execution algorithm
(SOLE, for short) for continuous and on-line evaluation
of concurrent continuous spatio-temporal queries over
spatio-temporal data streams. SOLE is an in-memory
algorithm that utilizes the scarce memory resources ef-
ficiently by keeping track of only those objects that are
considered significant. SOLE is a unified framework for
stationary and moving queries that is encapsulated into
a physical pipelined query operator. To cope with in-
tervals of high arrival rates of objects and/or queries,
SOLE utilizes load shedding techniques that aim to sup-
port more continuous queries, yet with an approximate
answer. Two load shedding techniques were proposed,
namely, query load shedding and object load shedding.
Experimental results based on a real implementation of
SOLE inside a prototype data stream management sys-
tem show that SOLE can support up to 20 times more
continuous queries than the case of dealing with each
query separately. With object load shedding, SOLE can
support up to 260 times more queries than the case of
no sharing.

References

1. Abadi, D., Ahmad, Y., Balakrishnan, H., Balazinska, M.,
Cetintemel, U., Cherniack, M., Hwang, J.H., Janotti, J.,
Lindner, W., Madden, S., Rasin. A.. Stonebraker, M.,

2500 3000

10.

11.

12.

13.

14.

15.

16.

17.

18.

. Cai,

Tatbul, N., Xing, Y.. Zdonik. S.: The Design of the Bore-
alis Stream Processing Engine. In: Proceedings of the In-
ternational Conference on Innovative Data Systems Re-

search, CIDR (2005)

. Abadi, D.)., Carney, D., Cetintemel. U.. Cherniack, N..

Convey. C., Lee, S.. Stonebraker, M.. Tatbul. N., Zdonik,
S.B.: Aurora: A New Model and Architecture for Data.
Stream Management. VLDB Journal 12(2) (2003)

. Arasu, A., Widom, J.: Resource Sharing in Continuous

Sliding-Window Aggregates. In: Proceedings of the In-
ternational Conference on Very Large Data Bases, VLDB
(2004)

. Ayad, A., Naughton, J.F.: Static Optimization of Con-

junctive Queries with Sliding Windows Over Infinite
Streams. In: Proceedings of the ACM International Con-
ference on Management of Data, SIGMOD (2004)

. Babcock, B., Datar, M., Motwani, R.: Load Shedding for

Agegregation Queries over Data Streams. In: Proceed-
ings of the International Conference on Data Engineer-
ing, ICDE (2004)

. Babu, S., Widom, J.: Continuous Queries over Data

Streams. SIGMOD Record 30(3) (2001)

. Brinkhoff, T.: A Framework for Generating Network-

Based Moving Objects. Geolnformatica 6(2) (2002)

Y.. Hua, K.A., Cao, G.: Processing Range-
Nonitoring Queries on Heterogeneous Nobile Objects.
In: Proceedings of the International Conference on Mo-
bile Data Management, MDM (2004)

. Chakka, V.P., Everspaugh, A., Patel, J.)\.: Indexing

Large Trajectory Data Sets with SETI. In: Proceedings
of the International Conference on Innovative Data Sys-
tems Research, CIDR (2003)

Chandrasekaran, S., Cooper. O., Deshpande, A.,
Franklin, M.J., Hellerstein, J.N., Hong. W., Krishna-
murthy, S., Madden, S., Raman. V.. Reiss, F., Shah,
NLA: TelegraphCQ: Continuous Dataflow Processing for
an Uncertain World. In: Proceedings of the International
Conference on Innovative Data Systems Research. CIDR
(2003)

Chandrasekaran, S., Franklin, M.J.: PSoup: a system for
streaming queries over streaming data. VLDB Journal
12(2), 140-156 (2003)

Chen, J., DeWitt, D.J.. Tian, F.. Wang, Y.: Nia-
garaCQ: A Scalable Continuous Query System for Inter-
net Databases. In: Proceedings of the ACM International
Conference on Management of Data, SIGMOD (2000)
Dobra, A., Garofalakis, M.N., Gehrke, J.. Rastogi. R.:
Static Optimization of Conjunctive Queries with Sliding
Windows Over Infinite Streams. In: Proceedings of the
International Conference on Extending Database Tech-
nology, EDBT (2004)

Gedik, B., Liu, L.: MobiEyes: Distributed Processing of
Continuously Moving Queries on Moving Objects in a
Mobile System. In: Proceedings of the International
Conference on Extending Database Technology, EDBT
(2004

Go]ab), L., Ozsu, M.T.: Processing Sliding Window Multi-
Joins in Continuous Queries over Data Streams. In: Pro-
ceedings of the International Conference on Very Large
Data Bases, VLDB (2003)

Hammad, M.A., Franklin. M.J.. Aref. \W.G., Elma-
garmid, A.K.: Scheduling for shared window joins over
data streams. In: Proceedings of the International Con-
ference on Very Large Data Bases, VLDB (2003)
Hammad, M.A., Ghanem, T.N., Aref, W.G., Elma-
garmid, A.K., Mokbel, N.F.: Efficient pipelined execu-
tion of sliding-window queries over data streams. Tech.
Rep. TR CSD-03-035, Purdue University Department of
Computer Sciences (2003)

Hammad, M.A., Mokbel, M.F., Ali, M.H., Aref. W.G.,
Catlin, A.C., Elmagarmid, A.K., Eltabakh. M., Elfeky,

16

19.
20.

21.

22.

23.

24.

25.

26.

28.

29,

30.

31.

32.

33.

34.

M.G., Ghanem, T.M., Gwadera, R., llyas, 1.F., Marzouk.
M., Xiong, X.: Nile: A Query Processing Engine for Data
Streams (Demo). In: Proceedings of the International
Conference on Data Engineering, ICDE (2004)
httpﬁ/www.fcc.gov/9ll/enhanced/:

Hu, H., Xu, J., Lee, D.L.: A Generic Framework for Non-
itoring Continuous Spatial Queries over Moving Objects.
In: Proceedings of the ACM International Conference on
Management of Data, SIGMOD. Baltimore, MD (2005
Iwerks, G.S., Samet, H., Smith, K.: Continuous K-
Nearest Neighbor Queries for Continuously Mloving
Points with Updates. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB (2003)
Jensen, C.S., Lin, D., Ooi, B.C.: Query and Update
Efficient B+-Tree Based Indexing of Moving Objects.
In: Proceedings of the International Conference on Very
Large Data Bases, VLDB (2004)

Kwon, D.. Lee, S., Lee, S.: Indexing the Current Positions
of Moving Objects Using the Lazy Update R-tree. In:
Proceedings of the International Conference on Mobile
Data Management, MDM (2002)

Lazaridis, 1., Porkaew, K., Mehrotra, S.: Dynamic
Queries over Mobile Objects. In: Proceedings of the Inter-
national Conference on Extending Database Technology.
EDBT (2002)

Lee. M.L., Hsu, W., Jensen, C.S., Teo. K.L.: Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach.
In: Proceedings of the International Conference on Very
Large Data Bases, VLDB (2003)

Madden, S., Shah, M., Hellerstein, J.M., Raman. V.
Continuously adaptive continuous queries over streams.
In: Proceedings of the ACM International Conference on
Management of Data, SIGMOD (2002)

. Mokbel, M.F., Aref, W.G.:. GPAC: Generic and Progres-

sive Processing of Mobile Queries over Mobile Data. In:
Proceedings of the International Conference on Mobile
Data Management, MDM (2005

Mokbel, M.F., Aref, W.G., Hambrusch, S.E., Prabhaka¥,
S.: Towards Scalable Location-aware Services: Require-
ments and Research Issues. In: Proceedings of the ACN
Symposium on Advances in Geographic Information Sys-
tems, ACM GIS (2003)

Mokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable
Incremental Processing of Continuous Queries in Spatio-
temporal Databases. In: Proceedings of the ACM Inter-
national Conference on Management of Data, SIGMOD
2004

%\/Iokb)e], M.F., Xiong, X., Aref, W.G., Hambrusch, S.,
Prabhakar, S., Hammad, M.: PLACE: A Query Processor
for Handling Real-time Spatio-temporal Data Streams
(Demo). In: Proceedings of the International Conference
on Very Large Data Bases, VLDB (2004)

Mokbel. M.F., Xiong, X., Hammad, M.A., Aref, \W.G.:
Continuous Query Processing of Spatio-temporal Data
Streams in PLACE. In: Proceedings of the second
workshop on Spatio-Temporal Database Nanagement.
STDBM (2004{

Motwani, R.. Widom, J., Arasu, A., Babcock, B.. Babu,
S.. Datar, M., Manku, G.S., Olston, C., Rosenstein, J.,
Varma, R.: Query Processing, Approximation, and Re-
source Management in a Data Streaim Management Sys-
tem. In: Proceedings of the International Conference on
Innovative Data Systems Research, CIDR (2003)
Mouratidis, K., Papadias, D., Hadjieleftheriou, N.: Con-
ceptual Partitioning: An Efficient Method for Continu-
ous Nearest Neighbor Monitoring. In: Proceedings of the
ACNMI International Conference on Management of Data,
SIGMOD. Baltimore, MD (2005)

Nadeem, T.. Dashtinezhad, S., Liao, C., Iftode, L.: Traf-
ficView: A Scalable Traffic Monitoring System. In: Pro-
ceedings of the International Conference on Nobile Data
Management, MDM, pp. 13-26. Berkeley, CA (2004)

35.

36.

38.

39.

40.

41.

42,

43.

44.

45.

46.

Patel, J.M.. Chen. Y., Chakka, V.P.. STRIPES: An Ef-
ficient Index for Predicted Trajectories. In: Proceedings
of the ACMI International Conference on Management of
Data. SIGMOD (2004)

Prabhakar. S., Xia. Y.. Kalashnikov, D.V., Aref, W.G.,
Hambrusch, S.E.: Query Indexing and Velocity Con-
strained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. 1EEE Trans. on Comput-
ers 51(10) (2002)

. Reinwald, B., Pirahesh, H.: SQL Open Heterogeneous

Data Access. In: Proceedings of the ACM Iuternational
Conference on Management of Data, SIGMOD (1998)
Reinwald, B.. Pirahesh. H.. Krishnamoorthy, G., Lapis,
G.. Tran, B.T.. Vora. S.: Heterogeneous query processing
through sql table functions. In: Proceedings of the Inter-
national Conference on Data Engineering, ICDE (1999)
Saltenis, S., Jensen, C.S.. Leutenegger. S.T., Lopez,
M.A.: Indexing the Positions of Continuously Moving
Objects. In: Proceedings of the ACM International Con-
ference on Management of Data. SIGNOD (2000)
Song. Z., Roussopoulos, N.: Hashing Moving Objects. In:
Proceedings of the International Conference on Mobile
Data Management. MDN] (2001)

fa0. Y., Papadias. D., Shen, Q.: Continuous Nearest
Neighbor Search. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB (2002)
Tao, Y., Papadias, D.. Sun. J.: The TPR*-Tree: An Op-
timized Spatio-temporal Access Method for Predictive
Queries. In: Proceedings of the International Conference
on Very Large Data Bases, VLDB (2003)
Tatbul, N., Cetintemel. U., Zdonik. S.B., Cherniack, M.,
Stonebraker, M.: Load Shedding in a Data Stream Man-
ager. In: Proceedings of the International Conference on
Very Large Data Bases, VILDB (2003)
Xiong, X., Mokbel, M.F., Aref, W.G.: SEA-CNN: Scal-
able Processing of Continuous K-Nearest Neighbor
Queries in Spatio-temporal Databases. In: Proceedings of
the International Conference on Data Engineering, ICDE
(2005)
Xiong, X., Mokbel. M.F., Aref, W.G., Hambrusch,
S., Prabhakar, S.: Scalable Spatio-temporal Continuous
Query Processing for Location-aware Services. In: Pro-
ceedings of the International Conference on Scientific and
Statistical Database Management, SSDBM (2004)
Zhang, J., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.:
Location-based Spatial Queries. In: Proceedings of the
ACM International Conference on Management of Data,
SIGMOD (2003)

	SOLE: Scalable On-Line Execution of Continuous Queries on Spatio-temporal Data Streams
	Report Number:
	

	tmp.1307986960.pdf.OjLaz

