
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2005

SOLE: Scalable On-Line Execution of Continuous Queries on SOLE: Scalable On-Line Execution of Continuous Queries on

Spatio-temporal Data Streams Spatio-temporal Data Streams

Mohamed F. Mokbel

Walid G. Aref
Purdue University, aref@cs.purdue.edu

Report Number:
05-016

Mokbel, Mohamed F. and Aref, Walid G., "SOLE: Scalable On-Line Execution of Continuous Queries on
Spatio-temporal Data Streams" (2005). Department of Computer Science Technical Reports. Paper 1630.
https://docs.lib.purdue.edu/cstech/1630

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972236?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SOLE: SCALABLE ON-LINE EXECUTION OF
CONTINUOUS QUERIES ON SPATIO-TEMPORAL DATA STREAMS

Mohamed F. Mokbel
Walid G. Aref

CSD TR #05-016
July 2005

SOLE: SCALABLE ON-LINE EXECUTION OF
CONTINUOUS QUERIES ON SPATIO-TEMPORAL DATA STREAMS

Mohamed F. Mokbel
Walid G. Aref

CSD TR #05-016
July 2005

vldb manuscript No.
(will be inserted bv the ctlitor)

Mohamed F. Mokbel . Walid G. Aref

SOLE: Scalable On-Line Execution of Continuous Queries
on Spatio-temporal Data Streams

the date of receipt and accrptancc sl~ould be inserted later

Abstract This paper pi,csents t , l~e Scalable On-Line
E;cecvtion algorith~ll (SOLE. for short) for co~ltinuous
a r ~ d on-line e~ialuation of concurrei~t contint~ous spatio-
temporal clueries over data strcallls. Inco~lli~lg spatio-
teinporal data streams a.re processed in-memory against
a set of outsta~ldi~lg contil.~uot~s queries. The SOLE algo-
rithm utilizes the scarce ineinory resource efficiently by
keeping track of only the significant objects. In-memory
stored objects are expired (i.e.. dropped) from memory
once they beco~ne ,ins-ign(ficant. SOLE is a scalable algo-
rithm where all the conti~luous ot~tstanding clueries share
the same buffer pool. 111 addit,ion: SOLE is preseilted
as a spatio-temporal join bet.~veen two input streams, a
stream of spatio-temporal ol~jects and a stream of spatio-
t,emporal queries. To cope \vit,h intei.\~als of high arrival
rates of objects and/or queries, SOLE utilizes a self-
tnning approach based on load-shedding where some of
the stored objects are dropped fro111 memory. SOLE is
i~npleinei~ted as a pipelined query operator that can be
co~nbiiled with traditional query operators in a query
exect~tion plan to support a witle variety of contilluous
queries. Performance expe~i~nents based on a real iinple-
mentation of SOLE inside a prototype of a data stream
management system sIlo\v tlle scalability and efficiency
of SOLE in higllly tly~lanlic environn~eilts.

This work \\)as support,ed in part b\; the Nat,ional Sci-
ence Founda.t.ion u ~ ~ d e r Gra.nt.s 11s-0093116. IIS-0209120, and
0010044-CCR.

hlohan~ed F. hlokbel
Departn~e~it of Comput.er Science and Engineering, Univer-
sit,?; of A1innesot.a. h,Iinneapolis. hIN, 55455 E-mail: mok-
belQcs.urnn.edu

\Valid G. Aref
Department of Computer Science. Purdue University, \Vest
Lafayette, IN 47907 E-mail: aref@cs.purdue.edu

1 Introduction

The rapid increase of spatio-temporal applicat,ions calls
for ne\\- query processi~lg techniques lo deal 1vit.11 the
coii t i i~t~ot~s ai.ri\!al of spatio-temporal data streams. Ex-
a~nples of spatio-temporal applicatio~ls include location-
aware services [28]: traffic monitoring [34]. and ei~lianced
911 services [19]. Recent research elforts for contii~t~ous
sl~atio-temporal cluery processing (e.g., see [20-25,33,29,
36:39:41.32:44]) suffer from one or]nore of the follo~vi~lg
dra~vbacks: (1) They rely ~nainly 011 t11e ability of stor-
ing a i d i~ldexii~g spatio-temporal data. Such i~ldexing
schemes fail in practice to cope with high arrival rates of
spatio-ternpoi.al data streams \\lhere only in-memorj- al-
gorithms for conti~luous queries call be realized. (2) Most
of the l~roposed tecliniclt~es are based on lligl~ level im-
pleineiitations 011 top of the database engiile. S11ch high
level i~nplc inei~ta t , io~~ does not scale 11p with the large
niunber of inoving objects in highly dynanlic environ-
mei~ts. (3) hlost of the algorithms are tailored to support
o111~. one qllery type. From a system point of view, it is
illore at.t~,active to ha\;e one unifier] fraine\\:orl< that can
support ~ ~ a r i o u s cjuery types.

On the other side, 1,esearch effort,s in dala strean1
n~anage~~len t syst.eins (e.g.. see [2,G, 10.11.321) focus
mainly on pi,ocessi~lg continuous queries over data
streams. lIo\vevei.. the spatial and tenlpol-al p1,operties
of both data s t r e a ~ l ~ s and continuous queries are over-
looketl. C o ~ ~ t i n t ~ o u s query processi~ig in spatio-te~nporal
strea~ns lias the follo\\:i~ig distinguishing cllal-acteristics:
(1) Queries as \yell as data have t,he ability to continu-
otlsly change their locations. Due to this mobility: an).
delay in pi.ocessing spatio-tempoi.al queries may r e s ~ ~ l t
in an ol~solete alis\\.ei.. (2) An object inq - I)e added to
01. reinovecl fl-oin the ails\ver set of a spat,io-t.empora1
c1uei.y. Coiisider m o ~ i n g \:chicles that move in and out
of a. ce~,tain query region. (3) The comn~o~lly used n~oclel
of slicl'ing-~lindou: queries [3.4.15] does not support con]-
111011 spatio-temporal cl~leries t l ~ a t a.re interested on the
c~u.re~lt state of the d;ataba.se rather than 011 tile ~ t c e n t

vldb manuscript No.
(will be inserted by the editor)

Mohamed F. Mokbel . Walid G. Aref

SOLE: Scalable On-Line Execution of Continuous Queries
on Spatio-temporal Data Streams

the date of receipt and acceptance should be inserted later

Abstract This paper presents the Scalable On-Line
E:recution algorithm (SOLE. for short) for continuous
and on-line evaluation of concurrcnt continuous spatio
temporal queries over data streams. Incoming spatio
temporal data streams are processed in-memory against
a set of outstanding continuous Cjueries. The SOLE algo
rithm utilizes the scarce memory resource efficiently by
keeping track of only the significant objects. In-memory
stored objects are expired (i.e .. dropped) from memory
once they become insigmficant. SOLE is a scalable algo
rithm where all the continuous outstanding queries share
the same buffer pool. In addition, SOLE is presented
as a spatio-temporal join between two input streams, a
stream of spatio-temporal objects and a stream of spatio
temporal queries. To cope with intervals of high arrival
rates of objects and/or queries, SOLE utilizes a se(f
tuning approach based on load-shedding where some of
the stOl'ed objects are dropped from memory. SOLE is
implemented as a pipelined query operator that can be
combined with traditional query operators in a query
execution plan to support a wide variety of continuous
queries. Performance experiments based on a real imple
mentation of SOLE inside a prototype of a data stream
management system show the scalability and efficiency
of SOLE in highly dynamic environments.

This work \Vas supported in part by the National Sci
ence Foundation under Grants IIS-009311G. IIS-0209120. and
0010044-CCR. .

l\lohamed F. Mokbel
I?epartment of Computer Science and Engineering, Univer
sIty of Minnesota. l\-1inneapolis. l\JN, 55455 E-mail: mok
bel@cs.uml1.edu

\Valid G. Aref
Department of Computer Science, Purd ue University, \Vest
Lafayette, IN 47907 E-mail: aref@cs.purdue.edu

1 Introduction

The rapid increase of spatio-temporal applications calls
for nFI\' query processing techniques to deal with the
continuous arrival of spatio-temporal data streams. Ex
amples of spatio-temporal applications include location
aware services [281, traffic monitoring [341, and enhanced
911 sen'iccs [19]. Recent research efforts for continuous
spatio-temporal query processing (e.g., see [20~25,33,29,
36,39,41. 42.'14]) suffer from one or more of the following
drawbacks: (1) They rely mainly on the abilit\· of stor
ing and indexing spatio-temporal d8ta. Such' indexing
schemes fail in practice to cope with high arriv81 rates of
spatio-ternpor81 data streams where only in-memory al
gorithms for continuous queries can be r~alized. (2) ~lost
of the proposed techniques are based on high level im
plement ations on top of the database engine. Such high
level implement ation does not scale up with the large
number of moving objects in highly dynamic environ
ments. (3) 1\lost of the algorithms are tailored to support
only one query type. From a system point of view. it is
more 8ttractive to have one unified franwwork that can
support yarious quer:\, types.

On the other side, research efforts in d8ta stream
management syst.ems (e.g .. see [2,6,10.11.32]) focus
mainly on processing continuous queries oyer data
streams. However. the spatial and t-emporal properties
of both data streams and continuous queries are oyer
looked. Continuous query processing in spatio-temporal
streams h8s the following distinguishing ch8racteristics:
(1) Queries as well as data have the ability to continu
ously change their locations. Due to this ;110bility, any
deby in processing spatio-temporal queries mew result
in an obsolete ans\\w. (2) An object may be added to
or removed from the answer set of a sp8tio-temporal
query. Consider moying vehicles that move in and out
of a certain query region. (3) The commonly used model
of sliding-11'indo1L' queries [3.4,15] does not support com
mon spatia-temporal Cjueries that are interested on the
current statc of the database rather than on the recent

l~istorical state. The current state of a database is a con-
bination of recently received data and old data that has

2 Related Work

not been updated recently.
I11 t.his paper. me propose the Scalrtble On, -L ine

E x e c u t i o n algorithm (SOLE, for short) for contin~~ous
and on-line e\laluation of concurrent continuo~~s spatio-
temporal clueries over spatio-temporal data streams.
SOLE combines the recent advances of both spatio-
temporal continuo~~s query processors and data stream
management systeins. On-line execution is acl~ieved in
SOLE by allowing only in-memory processing of incom-
ing sl~atio-temporal data streams. The scarce memory
resource is efficiently utilized by keeping track of only
those objects that are considered signif icant . Scalabil-
it,)! in SOLE is achieved by using a shared 1~1ffer pool
that is accessible by all outstanding queries. Flu.t.hei--
more. SOLE is presented as a spatio-temporal join be-
t\\reen t , \ \ -~ in l~ut st,reams:, a stream of spatio-t,emporal
objects and a strea.m of spatio-temporal queries. To cope
with inter\rals of very high arri~ral rates of objects and/or
queries. SOLE adopts a s e l f - t u n m g approach based on
load-shedding. The main idea is to dynamically adopt the
notioil of signjf icant objects based on the c ~ ~ r r e n t load.
Thus, in-~nemory stored objects that beco~ne insign,?f-
icani \\-it11 respect to the new notion may be dropped
from memory. In addition, newly incoming objects are
admitted to the system only if they are considered sig-
n i f i cant . The main goal of se l f - tun ing in SOLE is to s11p-
port larger i~unlbers of continuous queries, yet \\:it11 ail
approximate ans\\:er.

Two alternati\-e approaches exist for iinplen~entilig
spatio-temporal algorithnls in database systems: using
table junctions or encapsulating the algoritlin~ into a
pliysica,l pipelined operator. In the first approach. \vllich is
employed by exist,iilg spatio-temporal algorithms. algo-
rithms are inlplemented using SQL table f~ulctio~ls [37].
Since there is no straightforward method of pushing
query predica,tes into table f~~nct ions [38]. t.lle pel-for-
inance of this t,able function is severely limited and the
approach does not give enough flexibility in opt.i~i~iziiig
the issued queries. The second approach, which we adopt
in SOLE: is to define a query operator that can be part,
of the query execution plan. The SOLE operator can be
combined with traditional operators (e.g., join. aggre-
gates. and distinct) to support a wide Yaiiety of spatio-
temporal quelies. In addition. with the SOLE operato~
the query optiinizer can support ~nultiple candidale ex-
ecut,ion plans

The rest of t,l~is paper is organized as follo\\:s: Sec-
tion 2 highlights relat,ed work. The basic concepts of
SOLE are discussed in Section 3. The SOLE a l g o r i t l ~ ~ ~ i
is presented in Section 5. Approxiinate cluer! processing
in SOLE via load shedding a,nd seU t .uning is presented in
Section 6. Experimental results that are based 011 a real
implementation of SOLE inside a data stream manage-
~neilt syst'em are presented in Sectioil 7. Finall!.. Section 8

Up to the a.ut11ors' kno\~letlge. SOLE provides t,he first.
a,ttempt to furnish query processors in data strea.111 man-
agement systenls with the required operators and al-
gorithms to support a scalable execution of concurrent
continuous spatio-temporal queries over spatio-temporal
data streams. Since SOLE bridges the areas of spatio-
te~nporal databases and data s t r ea~n nlanagen~ent sys-
tems: in this section we discuss the related xvork in each
area sepa,rately.

2.1 Spatio- temporal Databases

Existing algorithms for contint~otls spntio-temporal
query processing foctls mainlj- on ~naterializing incom-
ing spatio-temporal data in disk-ba,sed indexing struc-
tures (e.g.: hash ta.bles [9.40]. grid files [14,29,35], the
R-tree 1221. t,he R-tree 123.251. and the TPR-tree [39.
421). Scalable execution of conc~~rrent spatio-temporal
qt~eries is addressed recentl>- for centralized [14,36] and
distribut,ed environ~nent,~ 18.141. Ho\ve\;er. t,he under- , >

lying data structure is either a disk-based gird struc-
ture [14.29] or a disk-based R-tree 18.361. None of these
techniques -deal with the issue of spatio-temporal data
streams Issues of high a r r i ~ a l rates. infinite nature of
data. and spatio-temporal stlearns are o\~erlooked by
tl~ese approaches. With the noti011 of data streams. only
in-memory algoritl~ms and data structures can be real-
ized.

The most related work to SOLE in the coiltext of
spatio-temporal dat,abases is the SINA fi-amework [29].
SOLE has commo~l f~unctionalities wit11 SINA where both
of then1 utilize a shared grid structure to produce in-
cremental results in the form of posit,iue and negat ive
updates. Ho\ve~er: SOLE disting~~ishes itself from SINA
and other spatio-t,empoi.al query processors in the fol-
lo\?;ing aspect,^: (1) SOLE is an ill-memory algorithm
where all data st.]-uctures are memory based. (2) SOLE
is equipped with load sll.edding lechniques to cope with
intervals of high arrival rates of ~noving objects and/or
queries. (3) As a result of t.11e streaming environment;
SOLE deals ~ r i t h new cl~allenging issues? e.g., ~ulcertainty
in query areas: sca.rce memory resources, and approxi-
mate cluery processing. (4) SOLE is encapsulated into
a physical non-blocking pipelined query operator where
t,he result of SOLE is produced one tuple at a time. Pre-
\.iotls spatio-temporal query processors (e.g., SINA) call
be implemented only as a table f~mction \\~here the result
is produced periodically in batches.

2.2 Data Streain hlanagenlent Systems

Existing prototypes for data stream management sys-
teins 11.10.12.321 aim to efficiently support continuot~s conclt~des the paper.

2

historical st8te. The current state of a database is a com
bination of recently received data and old data that has
not been updated recently.

In this paper. we propose the Scalable On-Line
Execution algorithm (SaLK for short) for continuous
and on-line evaluation of concurrent continuom; spatio
temporal queries over spatio-temporal data streams.
SOLE combines the recent advances of both spatio
temporal continuous query processors and data stream
management systems. On-line execution is achieved in
SOLE by allowing only in-memory processing of incom
ing spatio-temporal data streams. The scarce memory
resource is efficiently utilized by keeping track of only
those objects that are considered significant. Scalabil
ity in SOLE is achieved by using a shared buffer pool
that is accessible by all outstanding queries. Further
more. SOLE is presented as a spatio-temporal join be
tween two input streams; a stream of spatio-temporal
objects and a stream of spatio-temporal queries. To cope
with intervals of very high arrival rates of objects 8nc1/or
queries. SOLE adopts a self-tuning approach based on
load-shedding. The main idea is to dynamically adopt the
notion of sigmfieant objects based on the current load.
Thus, in-memory stored objects that become insignJf
ieant with respect to the new notion may be dropped
from memory. In addition, newly incoming objects are
admitted to the system only if they are considered sig
nificant. The main goal of self-tuning in SOLE is to sup
port larger numbers of continuous queries, ~'et with an
approximate answer.

Two alternative approaches exist for implementillg
spatio-temporal algorithms in database systems: using
table Junctions or encapsulating the algorithm into a
physica.l pipelined operator. In the first approach, which is
employed by existing spatio-temporal algorithms. algo
rithms are implemented using SQL table functions [37].
Since there is no straightforward method of pushing
query predicates into table functions [38]. the perfor
mance of this table function is severely limited and the
approach does not give enough flexibility in optimizing
the issued queries. The second approach, which \\-e <tdopt
in SaLK is to define a query operator that can be part
of the query execution plan. The SOLE operator can be
combined with traditional operators (e.g., join, aggre
gates, and distinct) to support a wide variety of spatio
temporal queries. In addition, with the SOLE operator.
the query optimizer can support multiple c8ndidate ex
ecution plans.

The rest of this paper is organized as follows: Sec
tion 2 highlights related worle The basic concepts of
SOLE are discussed in Section 3. The SOLE <tlgorithm
is presented in Section 5. Approximate query processing
in SOLE via load shedding and self tuning is presented in
Section 6. Experimental results that are based on a real
implementation of SOLE inside a data stream manage
ment system are presented in Section 7. Finalh'. Section 8
concludes the paper.

2 Related Work

Up to the authors' knowledge, SOLE provides the first
attempt to furnish query processors in data stream man
agement systems with the required operators and al
gorithms to support a scalable execution of concurrent
continuous spatio-temporal queries over spatio-temporal
data streams. Since SOLE bridges the areas of spatio
temporal databases and data stream management sys
tems, in this section we discuss the related work in each
area separately.

2.1 Spatio-temporal Databases

Existing algorithms for continuous spatio-temporal
query processing focus mainly on materializing incom
ing spatio-temporal data in disk-based indexing struc
tmes (e.g., hash tables [9.40], grid files [14,29;35], the
B-tree [22]. the R-tree [23,25]. and the TPR-tree [39.
42]). Scalable execution of concurrent spatio-temporal
queries is addressed recently for centralized [14,36] and
distributed environments [8.14]. However, the under
lying data structme is either a disk-based gird struc
ture [14,29] or a disk-based R-tree [8,36]. None of these
techniques deal with the issue of spatio-temporal data
streams. Issues of high arrival rates, infinite nature of
data. and spatio-temporal streams are overlooked by
these approaches. \Vith the notion of data streams, only
in-memory algorithms and data structures can be real
ized.

The most related \'lork to SOLE in the context of
spatio-temporal databases is the SINA framework [29].
SOLE has common functionalities with SINA where both
of them utilize a shared grid structure to produce in
cremental results in the form of positive and negat'ive
updates. However, SOLE distinguishes itself from SINA
and other spatio-temporal query processors in the fol
lowing aspects: (1) SOLE is an in-memory algorithm
where all data structures are memory based. (2) SOLE
is equipped with load shedding techniques to cope with
intervals of high arrival rates of moving objects and/or
queries. (3) As a result of the streaming environment,
SOLE deals with new challenging issues, e.g., uncertainty
in query areas, scarce memory resources, and approxi
mate query processing. (4) SOLE is encapsulated into
a physical non-blocking pipelined query operator where
the result of SOLE is produced one tuple at a time, Pre
vious spatio-temporal query processors (e.g., SINA) can
be implemented only as a table function where the result
is produced periodically in batches.

2.2 Data Stream l\lanagement Systems

Existing prototypes for data stream management sys
tems [1.10,12,32] aim to efficiently support continuous

queries over data streams. Ho\vever. the spatial and
teinporal properties of data streams and/or continuo~~s
queries are overlooked by these protot,ypes. R;ith lim-
ited memory resources. existing stream query processors
adopt the concept of slldlng \vindo\~s to limit the num-
ber of tuples stored in-memory to only the recent tu-
ples [3.4.15]. Such nlodel is not appropriate for many
spatio-temporal applications where the focus is on the
current status of the database rat'her than on the recent,
past. The 0111,~ work for cont in~~ous queries over spatio-
teinporal streains is the GPAC algorithm [2i]. However.
GPAC is concerned only with the execution of a single
outstanding cont in~~ous query. In a typical data stream
environment. there is a huge number of outstanding con-
tinuous queries 111 \\-hich GPAC cannol afford.

Scalable execution of continuous queries in tradi-
tional data streams aim to either detect common subex-
pressions [11 .12.26] or share resources a t the operator
level [3.13.161. SOLE exploits both paradigms where
evaltlating m~lltiple spat io-t einporal queries is performed
as a spatio-temporal join bet\veen an object streain and
a query stream \+-11ile a shared meinory resource (buffer
pool) is inaintained to support all continuous queries.
Load shedding in data streain manageinent systems is
addressed recently in [5.43]. The inail1 idea to add a
special operator to the query plan t o regulate the load
by discarding ini important incoming tuples. Load shed-
ding techniques in SOLE are distinguished from other
approaches \+.here in addition to discarding some of the
ii~coming tuples, SOLE voluntary drops some of the tu-
ples stoi-ed in-memory.

The most related 11-ork to SOLE in the context of data
stream management s!.st,eins is t , l~e NiagaraCQ frame-
work [12]. SOLE has coininon functionalities urith Nia-
garaCQ where both of them utilize a shared operator
to join a set of objects x i th a set of queries. However.
SOLE distingt~ishes itself from NiagaraCQ and other
data streain ~nailageillent s\.stems in the following: (1) As
a result of the spatio-teinporal en\~ironment. SOLE has
to deal with new cl~allei~ging issues: e.g., moving queries:
uncertainty in query areas, positive and negative up-
dates to the query r e s ~ ~ l t . (2) In a highly overloaded sys-
tem: SOLE provides approximate results by employing
load sh,edding techniql~es. (3) In addition to sharing the
query operator as in Nia.garaCQ, SOLE share memory
resources a t the opera,tor level.

3 Basic Concep t s i n S O L E

I11 this section. we discuss the basic concepts of SOLE
that inc l~~de: The i n p u t / o ~ ~ t p ~ ~ t model. supporting vari-
ous queries: SOLE pipelined operat,or. and the SQL syn-
tax.

I n p u t . The input to SOLE is two streams: (1) A stream
of spatio-tenlporal data that is sent fi-0111 continuously
inoving objects with the forinat (O I D . Loc. T). where
O I D is the object identifier. and Loc is the cllrrent loca-
tion of the moving object a t tinie 7' hIo\.ing objects are
required to send updates of their locations periodicallj.
Faill~i-e to do so results in considering the moving ob-
ject as disconnected. (2) A streain of conti~iuous quel-ies.
Queries can be sent either froin moving objects 01- from
external entities (e.g., a traffic adininistrato~.). I11 gen-
eral. a query Q is represented as (Q I D . R e g i o n) . \\?l~ei-e
Q I D is t,he query identifier. and Region is the spatial
area covered by Q
O u t p u t . SOLE employs an incremental evaluation
paradigm similar to the one used ill SIKA [29]. The
inain idea is to avoid continuous reeval~~ation of conti11~1-
011s spatio-temporal queries. Instead. SOLE ~~pclates the
query result by computing and sending only updates of
the pre\liously reported answer. SOLE distinguish be-
tween t \ \ : ~ types of query updates: Positive l~pn'oles and
negative .updates. A positive update iiidicates that a cer-
tain object needs to be added to the result set of a cer-
tain c1uei.y. 111 contrast, a negative update indicates that.
a certain object is no longer in t,he answer set of a cer-
tain query. Thus, the output of SOLE is a streain of
tuples urith the for~nat (QID. f: O I D) . ~vllel-e Q I D is
the query identifier tha t would receive this output tuple,
z t indicates whether this output is a positi,ue or negative -
updates. A positive/negative update indicates the addi-
tion/removal of object O I D t,o/fronl cluery Q I D.

3.2 SOLE as a Pipelined Operatoi

SOLE is encapsulated into a physical pipelined operator
that can interact with traditional query operators in a
large pipelined query plan. Havil~g the SOLE opei.atol- ei-
ther in the bottom or in the middle of the query pipeline
requires that all the above operators be equipped with
special mechanisnls to handle negative tuples. Fortu-
nately: recent data stream inanageineilt systems (e.g.,
Borealis [I] : NILE [18]: STREAhI [32]) ha,ve the ability
to process such negative tuples

Basically. negative tuples are processed in traditional
opei.ators as follows: Selection and Join. operators handle
negative tuples in the sa.me \\:a?. as positice tuples. The
only difference is that the output will be in the form
of a negative tuple. Aggregates update their aggregate
functions by considering the received negall.ue tuple. The
Distinct operator reports a negntive tuple at the ontput,
only i f the corresponding positive tuple is in the recently
reported result. For detailed algorithms about haildliilg
the negative tuples in various traditional cluery operators.
the i.eadei is referred to [17].

queries over data streams. However, the spatial and
temporal properties of data streams and/or continuous
queries are overlooked by these prototypes. \iVith lim
ited memory resources, existing stream query processors
adopt the concept of sliding windows to limit the num
ber of tuples stored in-memory to only the recent tu
ples [3,4,15]. Such model is not appropriate for many
spatio-temporal applications where the focus is on the
current status of the database rather than on the recent
past. The only work for continuous queries over spatio
temporal streams is the GPAC algorithm [27]. However,
GPAC is concerned only with the execution of a single
outstanding continuous query. In a typical data stream
environment, there is a huge number of outstanding con
tinuous queries in which GPAC cannot afford.

Scalable execution of continuous queries in tradi
tional data streams aim to either detect common subex
pressions [11,12,26] or share resources at the operator
level [3,13,16]. SOLE exploits both paradigms where
evaluating multiple spatio-temporal queries is performed
as a spatio-temporal join between an object stream and
a query stream while a shared memory resource (buffer
pool) is maintained to support all continuous queries.
Load shedding in data stream management systems is
addressed recently in [5,43]. The main idea to add a
special operator to the query plan to regulate the load
by discarding unimportant incoming tuples. Load shed
ding techniques in SOLE are distinguished from other
approaches where in addition to discarding some of the
incoming tuples, SOLE voluntary drops some of the tu
ples stored in-memory.

The most related work to SOLE in the context of data
stream management systems is the NiagaraCQ frame
work [12]. SOLE has common functionalities with Nia
garaCQ where both of them utilize a shared operator
to join a set of objects with a set of queries. However,
SOLE distinguishes itself from NiagaraCQ and other
data stream management systems in the following: (1) As
a result of the spatio-temporal environment, SOLE has
to deal with new challenging issues, e.g., moving queries,
uncertainty in query areas, positive and negative up
dates to the query result. (2) In a highly overloaded sys
tem, SOLE provides approximate results by employing
load shedding techniques. (3) In addition to sharing the
query operator as in NiagaraCQ, SOLE share memory
resources at the operator level.

3 Basic Concepts in SOLE

In this section. we discuss the basic concepts of SOLE
that include: The input/output modeL supporting vari
ous qneries, SOLE pipelined operator. and the SQL syn
tax.

3

3.1 Input/Output l\Iodel

Input. The input to SOLE is two streams: (1) A stream
of spatio-temporaI data that is sent from continuously
moving objects with the format (OlD, Lac. T), where
01 D is the object identifier, and Lac is the current loca
tion of the moving object at time 1'. l\loving objects are
required to send updates of their locations periodically.
Failure to do so results in considering the moving ob
ject as disconnected. (2) A stream of continuous queries.
Queries can be sent either from moving objects or from
external entities (e.g., a traffic administrator). In gen
eraL a query Q is represented as (Q1D.Region), where
Q1 D is the query identifier, and Region is the spatial
area covered by Q.
Output. SOLE employs an incremental evaluation
paradigm similar to the one used in SINA [29]. The
main idea is to avoid continuous reevaluation of continu
ous spatio-temporal queries. Instead, SOLE updates the
query result by computing and sending only updates of
the previously reported answer. SOLE distinguish be
tween two types of query updates: Positive updates and
negative ·updates. A positive update indicates that a cer
tain object needs to be added to the result set of a cer
tain query. In contrast, a negative update indicates that
a certain object is no longer in the answer set of a cer
tain query. Thus, the output of SOLE is a stream of
tuples with the format (Q1D.±,OlD). where Q1D is
the query identifier that would receive this output tuple,
± indicates whether this output is a positive or negative 0

updates. A positive/ negative update indicates the addi
tion/removal of object 01D to/from query Q1 D.

3.2 SOLE as a Pipelined Operator

SOLE is encapsulated into a physical pipelined operator
that can interact with traditional query operators in a
large pipelined query plan. Having the SOLE operator ei
ther in the bottom or in the middle of the query pipeline
requires that all the above operators be equipped with
special mechanisms to handle negative tuples. Fortu
nately, recent data stream management systems (e.g.,
Borealis [1], NILE [18], STREAI\I [32]) have the ability
to process such negative tuples.

Basically, negative tuples are processed in traditional
operators as follows: Selection and Join operators handle
negative tuples in the same way as positive tuples. The
only difference is that the output will be in the form
of a negative tuple. Aggregates update their aggregate
functions by considering the received negative tuple. The
Distinct operator reports a negative tuple at the ontput
only if the corresponding positive tuple is in the recently
reported result. For detailed algorithms about handling
the negative tuples in various traditional query operators,
the reader is referred to [17].

3.3 Supporting Various Query Types

SOLE is a unified frame\vork that deals \\-it11 range
queries as \\!ell as k-nearest-neighbor (kNN) queries. In
addition SOLE supports both stat,ionary and moving
queries with the same fi-ame\\:o~.k.

Moving Queries. Each moving query is bounded to
a jocal object. For example, if a mo\~ing object A1 sublnits
a query Q that asks about objects within a certain range
of A J . then A.I is considered t,he jocal object of Q. A 1110~-
ing query Q is represented as (QID: FocalID. Region):
\\711ere Q I D is the query identifier, Focal ID is the object
identifier that submits Q I and Region is the spatial area
of Q.

k N N Queries. A kNN cjuery is represented as a
circular range query. The only difference is that the
size of the query range mag grow or s11rink based 011

the nlovenlent of the query and objects of interest. Ini-
tially. a kNN query is sub~nitt,ed to SOLE with t , l~e for-
mat (QID. center. k) 01- (QID. Foca.llD. k) for station-
ary and moving queries, respecti\lely. Tllus, the center of
the query circular region is either sta.t.ed explicitl>. as in
stationary queries or inlplicitly as the current location of
the object Focal ID in case of moving clueries. Once the
kNN query is registered in SOLE, the first incon~ing k.
objects are considered as the initial query answer. The
radius of the circular region is determined by the distance
from the query center to the current kt,h farthest neigh
bor. Once the kNN query determines its init,ial circular
region, the query execution continues as a regl~lar range
query. yet with a variable size. \I:henever a newly con~ing
object P lies inside t,he circular query region, P removes
the kth farthest neighbor fro111 the ails\\-er set (\\-it11 a
negative update) a.nd adds itself to the answer set (with
a positive update). The query circlilar region is sh.runk
t o reflect the new kt11 neighbor. Similarly. if an object
P , that is one of the k neighbors: updates its location
to be outside the circular region. we expand the query
circular region to reflect the fact that P is conside~.ed the
farthest kth neighbor. Notice that in case of expanding
the query region, we do not output a.ny updates.

3.4 SQL Syntax

Since SOLE is inlplenlented as a query operator. we use
the following SQL syntax that in\.oke the processing of
SOLE

SELECT select,-clause
FROM jrom-clnuse
WHERE where-cla.use
INSIDE in-clause
kNN knn-clm~se

The ~n-clause]nay have one of two forins:

- Static range query (x l : yl . e 2 : y2): where (sl : yl) and
(x2: y2) represent the top left and bottoln right cor-
ners of the rectangular range query.

- h.lo~-ing rectangular range query ('A.1': I D : xdist. ydist) t
where 'AT' is a flag indicates that the query is mov-
ing: I D is the identifier of the query ,foca,l point. xdist
is the length of the query I-ectangle: and ydist is the
width of the query rectangle.

Similarly, the knn-clause may 11a.ve one of two foi-111s:

- Static X-NN query (k.sL.: y): where k is the ilu~nber
of the neighbors to be maintained: and (s! y) is the
center of the query point.

- hloving kNN query ('A,ill: k . I D) ; where 'Ad' is a flag
indica.tes that the query is nloving, k is the number of
neighbors to be maintained: and I D is the identifier
of the query jocal point

4 Single Execution of Continuous Queries in
SOLE

To clarify many of the ideas used in SOLE, in this sec-
tion: we present the SOLE in the context of single query
execution 1271. In the next section. \\re sho\\r how SOLE
can be generalized to t,he ca.se of evaluating n~ultiple
concurrent continuous spatio-temporal queries. Assum-
ing that for a query Q: the query answer is stored in
Q.Answer, then: whenever SOLE receives a data input
of object P: SOLE distinguishes among four cases:

- Case I: P E Q.An.swer and P satisfies Q (e.g., Q l
in Figure l a) . As SOLE processes only the 11pdates
of the previously reported result, P will neither be
processed nor will be sent to the user.

- Case 11: P E Q.Ansuier and P does not sa.tisfy Q
(Figure lb) . In this case: SOLE reports a negati.ue
update P'- to the user.

- Case 111: P @ Q.Ai.su!er a.nd P satisfies Q (Fig-
ure l c) . I11 this case: SOLE reports a positive update
to the user.

- Case IV: P @ Q.Answer and P does not sa.tisfy Q
(e.g., Q2 in Figure la) . 111 this case: P has no effect
011 Q. Thus, P will neither be processed nor \\.ill be
sent t o the tiser.

011 the other side, whene\rer SOLE receives an up-
c1a.t.e from a ~ n o \ ~ i ~ l g cluery, it classifies ii~-1ne111ory stored
objects into four ca.tegories C1 to Cq where: (1) C1 c
Q.An.su!er and C1 satisfies the new Q.Region (e.g., white
objects in Figure Id). SOLE does not process any of the
objects in C1. (2) C2 c Q.Ansu:er. & does not sat-
isfy the query ~,egion (e.g., gray objects in Figure Id).
For each data object in C2: SOLE produces a negatl:ve
updat.e. (3) C3 @ Q.A~ssu!er and C3 satisfies the new
Q.Region. (e.g., black objects in Figure Id). For each
data object in Cg, SOLE produces a positive upda.te.
(4) CI, @ Q.Answer and C4 does not. satisfy Q.Region.
SOLE does not process objects in C4.

4

3.3 Supporting Various Query Types

SOLE is a unified framework that deals with range
queries as well as k-nearest-neighbor (kNN) queries. In
addition SOLE supports both stationary and moving
queries with the same framework.

Moving Queries. Each moving query is bounded to
a focal object. For example, if a moving object AI submits
a query Q that asks about objects within a certain range
of M, then 10.1 is considered the focal object of Q. A mov
ing query Q is represented as (QI D, Focal! D, Regi.on),
where QI D is the query identifier, Focal! D is the object
identifier that submits Q, and Regi.on is the spatial area
of Q.

kNN Queries. A kNN query is represented as a
circular range query. The only difference is that the
size of the query range may grow or shrink based on
the movement of the query and objects of interest. Ini
tially. a kNN query is submitted to SOLE with the for
mat (QID,center,k) or (QID. Foca1JD, k) for station
ary and moving queries, respectively. Thus, the center of
the query circular region is either stated explicitly as in
stationary queries or implicitly as the current location of
the object Focal! D in case of moving queries. Once the
kNN query is registered in SOLE. the first incoming k
objects are considered as the initial query answer, The
radius of the circular region is determined by the distance
from the query center to the current kth farthest neigh
bor. Once the kNN query determines its initial circular
region, the query execution continues as a regular range
query, yet with a variable size. \Vhenewr a newly coming
object P lies inside the circular query region, P removes
the kth farthest neighbor from the answer set (with a
negati.ve update) and adds itself to the answer sct (with
a positive update). The query circular region is shrunk
to reflect the new kth neighbor. Similarly. if an object
P, that is one of the k neighbors, updates its location
to be outside the circular region, we expand the query
circular region to reflect the fact that P is considered the
farthest kth neighbor. Notice that in case of expanding
the query region, we do not output any updates.

3.4 SQL Syntax

Since SOLE is implemented as a query operator. we use
the following SQL syntax that invoke the processing of
SOLE.

SELECT select.-clause
FROM from_clause

WHERE where_clause
INSIDE in_clause

kNN knn_clause

The i.n_clause may have one of two forms:

- Static range query (XI, Yl, X2, Y2), where (XI, yJl and
(X2, Y2) represent the top left and bottom right cor
ners of the rectangular range query.
l\loving rectangular range query ('AI', I D, xdi.sL ydi.st),
where 'lI}' is a flag indicates that the query is mov
ing, I D is the identifier of the query focal point. xdi.st
is the length of the query rectangle, and ydist is the
width of the query rectangle.

Similarly, the knn_clause may have one of two forms:

Static kNN query (k, x, y), where k is the number
of the neighbors to be maintained, and (x, y) is the
center of the query point.

- Moving kNN query ('M',k,ID), where 'M' is a flag
indicates that the query is moving, k is the number of
neighbors to be maintained, and I D is the identifier
of the query focal point.

4 Single Execution of Continuous Queries in
SOLE

To clarify many of the ideas used in SOLE, in this sec
tion, we present the SOLE in the context of single query
execution [27]. In the next section, we show how SOLE
can be generalized to the case of evaluating multiple
concurrent continuous spatio-temporal queries. Assum
ing that for a query Q, the query answer is stored in
Q.Answer, then, whenever SOLE receives a data input
of object P, SOLE distinguishes among four cases:

Case I: P E Q.Answer and P satisfies Q (e.g., QI
in Figure 1a). As SOLE processes only the updates
of the previously reported result, P will neither be
processed nor will be sent to the user.
Case II: P E Q.Answer and P does not satisfy Q
(Figure 1b). In this case, SOLE reports a negative
update Y- to the user.
Case III: P ¢: Q.Answer and P satisfies Q (Fig
ure 1c). In this case, SOLE reports a posi.ti.ve update
to the user.
Case IV: P ¢: Q.Answer and P does not satisfy Q
(e.g., Q2 in Figure 1a). In this case, P has no effect
on Q. Thus, P will neither be processed nor will be
sent to the user.

On the other side, whenever SOLE receives an up
date from a moving query, it classifies in-memory stored
objects into four categories C I to C4 where: (1) C 1 C
Q.Answer and C 1 satisfies the new Q.Region (e.g., white
objects in Figure 1d). SOLE does not process any of the
objects in C 1 . (2) C2 C Q.Answer, C2 does not sat
isfy the query region (e.g., gray objects in Figure 1d).
For each data object in C2 , SOLE produces a negative
update. (3) C3 rt Q.Answer and C3 satisfies the new
Q.Region (e.g., black objects in Figure lei). For each
data object in C3 , SOLE produces a positive update.
(4) C4 rt Q.Answer and C4 does not satisfy Q.Region.
SOLE does not process objects in C4 .

(a) Nothing m) Negative (c) Positive (d) Moving Query

Fig. 1 Positlvr/Negali>e updates in SOLE

4.1 Uncertainty in Spat,io-tempoi.al Queries

A key feature of SOLE is to utilize the scarce inein0i-y
resource efficiently by keeping track of only those objects
that satisfy a t least one outstanding cluery. However, a
straightforward application of this feature may result in
uncertainty areas.

The .uncertainty area of a cluery Q is defined as fol-
10\\rs :

Definition 1 The ~mcertainty area of query Q is the
spatial area of Q that mav contain potential moving ob-
~ e c t s that satisfy Q. with Q not being a\vare of the con-
tents of this area.

Figure 2 gives three consecutive snapshots of seven
objects Pl to Pi. a moving range queries Q1. and a k-
nearest-neighbor query (k = 2) Q2 . Two types of uncer-
tainties are distinguished:

Moving query Q1. At time To (Figure 2a): Pl is
outside the area of Q1. Thus: Pl is not physically
stored in the database. Recall that only objects that
satisfy the query region a.re stored in the database. At
time Tl (Figure 2b), Q1 is moved. The shaded area
in Q1 represents its uncertainty area.. Although PI is
inside the new query region, PI is not reported in the
cjuery answer where it is not actually stored. At T2
(Figure 2c): Pl moves o ~ t of the query region. Thus,
PI is never reported a t the query result, although
it was inside the query ~egion in the time interval
[Ti : 7'21.

2. Stationary query Q2. At time To. the answer of ~- .~

Q2 is (P5; P C) . The cluery circular region is centered
at Q2 with its radius being the clistance from Q2 to
P5. Since Pi is outside the cluery spatial region, Pi
is not stored in the data.base. At TI: P5 is moved far
from Q2. Since Q2 is aware only of P5 a.nd P6: ~e
extend the region of Q2 to include the new location
of P5. Thus, an uncertainty area is produced. Notice
that Q2 is unaware of Pi since Pi is not stored in
the database. At T2: Pi moves out of the new query
region. Thus: Pi never appea.rs as an answer of Q2:
although it should have been part of the ans\ver in
t,he time inter\lal [TI : 7;].

4.2 Avoiding Uncertainty in SOLE

SOLE avoids uncertainty areas in spatio-temporal queries
11sing a caching technicl~~e. The main idea is to predict

la1 Snapshot at t ime T,, Ibl Snapshot at t ime TI (c) Snapshot at t i m e T,
9 , . P, are moved . P, .P , .wemoved

Fig. 2 U~~cert.ai~~ty in spatio-temporal queries.

the uncertainty area of a continuous query Q and cnche
in-111en10ry all moving objects that lie in Q's ~u~certai i i ty
area. \\:hei~e\~er an uncertainty area is produced, Ive probe
the in-memory cache and produce the result iininedi-
ately. A conservative approach for caching is to expand
the query region in all directions with the maximtun
possible distance that a moving object can travel be-
t~veen ally t\vo consecnti\le updates. Such conservative
approacl~ coniplet,ely avoids uncertainty areas \\.here it is
guaranteed that all objects in the uncerta.int!~ area a.re
stored in the cnche.

Figure 3 gil-es an example of using caching to avoid
ui~ce~taint!. in moving queries. The shaded area repre-
sents the query i.egioii. The cached area is repl.esented
as a dashed rectangle. AIoving objects that belong to the
query answer or to tlie query's cache area are plotted as
white or gray circles. respectively. At time To (Figure 3a),
two objects satisfy the query answer (P I : P 2) : three ob-
jects are in tlle cache area (P3: P4: P5). and t ~ \ ~ o objects
outside the cache a.rea (PC, Pi). Only objects that either
in the query or t,he cache a.rea, are stored in-memory. At
Tl (Figwe 3b), all objects change their locations. HOW-
ever, I\-e only report PC and P:. The ca.che area is up-
clated to contain (P2: P4: PC). Changes in the cache area
do NOT result in any updates. At T2 (Figure 3c): the
query Q moves ~vitliin its cache area. Two updat,es are
sent to the user: PC andP2 . The cache a,rea is adjusted
to contaiii P3 and Po only. Notice that wit,l~out employ-
ing the cache area. we would miss P: .

The conse~~vn t l ve caching approach requires oilly t.he
knowledge of the ma,xiinum object speed, whicl~ is tvpi-
call!; available ill moving object applications (e.g., mov-
ing cars i n road net\\sork ha\:e limited speeds). This is in
contl.ast to all validity region approaches (e.g., the safe
regio~i [36]. the ~a , l id region [d G] . a.nd the No-Action re-
gion [45]) t.liat require l11e kno\vledge of the locations of
other objects. This information is not available in our
case since SOLE is a\vare only of objects that satisfy the
query predicat,e. Thus. validity region approaches are not
applicable in the case of spatio-teniporal streams.

5

'~----'I .p, (
, 2
1- 3 '

p

(d) Moving Query(e) Positive(b) Negative(a) Nothing

Fig. 1 Positive/Negalive updates in SOLE.

4.1 Uncertainty in Spatio-temporal Queries
ta) Snapshot at time 'I() {b) Snapshot at time T, tel Snapshot at time T..,

Q" ~ are moved. P (. Ij are moved .

A key feature of SOLE is to utilize the scarce memory
resource efficiently by keeping track of only those objects
that satisfy at least one outst anding query. However, a
straightforward application of this feature may result in
uncertainty areas.

The uncertainty area of a query Q is defined as fol
lows:

Definition 1 The uncertainty area of query Q is the
spatial area of Q that may contain potential moving ob
jects that satisfy Q, with Q not being aware of the con
tents of this area.

Figure 2 gives three consecutive snapshots of seven
objects PI to P7 , a moving range queries QI, and a k
nearest-neighbor query (k = 2) Q2. Two types of uncer
tainties are distinguished:

1. Moving query QI. At time To (Figure 2a), PI is
outside the area of QI. Thus, PI is not physically
stored in the database. Recall that only objects that
satisfy the query region are stored in the database. At
time T I (Figure 2b), QI is moved. The shaded area
in QI represents its uncertainty area. Although PI is
inside the new query region, p] is not reported in the
query answer where it is not actually stored. At T 2

(Figure 2c), p] moves out of the query region. Thus,
p] is never reported at the query result, although
it was inside the query region in the time interval
[T],T2]'

2. Stationary query Q2. At time To. the answer of
Q2 is (Ps , P6). The query circular region is centered
at Q2 with its radius being the distance from Q2 to
Ps . Since P7 is outside the query spatial region, P7

is not stored in the database. At T j , Ps is moved far
from Q2. Since Q2 is aware only of Ps and P6, we
extend the region of Q2 to include the new location
of Ps . Thus, an uncertainty area is produced. Notice
that Q2 is unaware of P7 since P7 is not stored in
the database. At T2 , P7 moves out of the new query
region. Thus, P7 never appears as an answer of Q2,
although it should have been part of the answer in
the time interval [T], 72],

4.2 Avoiding Uncertainty in SOLE

SOLE avoids uncertainty areas in spatio-temporal queries
using a caching technique. The main idea is to predict

Fig. 2 Uncertainty in spatia-temporal queries.

the uncertainty area of a continuous query Q and cache
in-memory all moving objects that lie in Q's lU1certainty
area. \Vhenever an uncertainty area is produced, we probe
the in-memory cache and produce the result immedi
ately. A conservative approach for caching is to expand
the query region in all directions with the maximum
possible distance th8t a moving object can travel be
tween any two consecutive updates. Such conservative
approach completely avoids uncertainty areas where it is
guaranteed that all objects in the uncertainty area are
stored in the mche.

Figure 3 gives an example of using caching to avoid
uncertainty in moving queries. The shaded area repre
sents the query region. The cached area is represented
as a dashed rectangle. l\loving objects that belong to the
query answer or to the query's cache area are plotted as
white or gray circles, respectively. At time To (Figure 3a),
two objects satisfy the query answer (p], P2), three ob
jects are in the cache area (P3 ,P4 ,PS), and two objects
outside the cache area (P6 , P7). Only objects that either
in the query or the cache area are stored in-memory. At
T I (Figure 3b), all objects change their locations. How
ever, \ve only report P2- and pi. The cache area is up
dated to contain (P2 , P4 , P6). Changes in the cache area
do NOT result in any updates. At T2 (Figure 3c), the
query Q mOves within its cache area. Two updates are
sent to the user: P3- andP4+. The cache area is adjusted
to cont ain p., and P6 only. Notice that without employ
ing the cache area. we would miss P4+.

The conservative caching approach requires only the
knowledge of the maximum object speed, which is typi
cally available in moving object applications (e.g., mov
ing CRrs in road network have limited speeds). This is in
contrast to all validit:y region approaches (e.g., the safe
region [36], the valid region [46], and the No-Action re
gion [45]) that require the knowledge of the locations of
other objects. This information is not available in our
case since SOLE is aware only of objects that satisfy the
query predicate. Thus. validity region approaches are not
applic8 ble in the case of spatio-temporal streams.

"7 a P- - - - - . - - - '.,

............ J
la) Snapshot at Irme T,, m) Snapshot at tlme TI

AU objects are moved

Fig. 3 Avoidiilg uncertaint~ in SOLE.

- - - - - - - -
. L u.::.. .
,

Ic) Snapshot at tlme T?
The query Is moved

I
Stream of Moving Objects (P) Moving Spatio-temporal

Objects (P) Queries (9)
5 SOLE: Scalable On-Line Execution of
Continuous Queries (a) Separate query plan and (b) Shared operator and shared

buffer for each query buffer pool for all queries

I11 a typical spatio-temporal application (e.g., location- Fig. 4 O\'erview of shared executjoll in SOLE.

aware servers). there are larae numbers of concurrent -
spatio-teml>oral cont inuo~~s queries. Dealing wit11 each

5.2 Shared hlemory Buffer
query as a separate entity (e.g.. as discussecl in Section 4)
wol~ld easily conslune the s~.steni resources and degrade
the system performance. In this section, we present the
scalability of SOLE in terms of handling large numbers
of coiicu~-relit cont.inuous clueries of mixed types (e.g.,
range and kNN queries). Without loss of generality, all
the discussioil in the rest of this paper is presented in
the context of statiollary and mo\~ing range queries. The
applicability to k-ilearest-neigllbor queries is straightfor-
ward as described in Section 3.

5.1 Overview of Shal.ing in SOLE

Figure 4a gives the pipelined execution of N queries (Q1
to Q N) of various t~ .pes wit11 no sharing. i.e.. each query
is considered a separate entity. The inplit data stream
goes through each spatio-temporal quei y operator sepa-
rately. \Vith each operator. we keep track of a separate
buffer that contains all the objects that are needed by
this query (e.g.. objects that are inside the query region
or its cache area). \Vitll a separate buffer for each sin-
gle query. the memory can be exhausted with a small
number of continuous queries.

Figure 4b gives the pipelined execution of the same
N queries as in Figure 4a. yet with the shared SOLE
operator. The problem of evaluating concurrent continu-
ous queries is reduced to a spatio-temporal join between
two streams; a strea,m of n~o \~ ing objects and a stream of
continuous spatio-temporal queries. The sh,ared spatio-
teinporal join ope]-ator 11a.s a shared buffer pool that is
accessible by all continuous queries. The output of the
sh,ared SOLE operator has the form (Q,: *P,) which in-
dicates an additioi~ or removal of object Pj to/from query
Q,. The shared SOLE opel.a.tor is follo\ved by a sp1i.t op-
erator tha t distributes the output of SOLE either to the
users or to the va.rious query operators. The split oper-
ator is similar to the one used in NiagaraCQ [12] and it
is out of the focus of this paper. Our focus is in realiz-
ing: (1) The shared memory buffer, and (2) The sha.red
SOLE spatio-temporal join operator.

SOLE nlaintains a simple grid structure a.s an in-memory
shared buffer pool among all continuous queries and ob-
jects. The shared buffel- pool is logically d i~ ided into two
parts: a query buffer that stores all outstanding contin-
uous queries and an object buffer that is concerned with
n ~ o v i l ~ g object's. In addition t,o the grid struct~u-e. SOLE
employs a hash t,able h to index moving objects based
on their identifers.

To o p t h i z e the scarce memory resource. SOLE ein-
ploys two main techniques: (1) Rather than redundantly
storing a nlo\~ing object P multiple times with each query
Q, t,llat needs P: SOLE st,ores P at most once along with
a reference counter tha.t indicates the number of continu-
ous queries that need P . (2) Rather than storing all mov-
ing object,^. SOLE keeps t,rack \vit,ll only the signijicanl
objects. Insignificanl objects are ignored (i.e.. dropped)
froin memory. Sign(ficant objects are defined as follo\x~s:

Definition 2 A moving object P is considered signif-
icant if P satisfies any of the following two conditions:
(1) There is at least one outstanding continuous query Q
that shows interest in object P (i.e.. P has a non-zero
referelice counter). (2) P is the focal object of a t least
one outstanding continuous query.

\?ie define when a quel-,y Q shows interest in an
object P as follo\vs:

Definition 3 A continuous clue1.y Q is interested in ob-
ject P if P either lies in Q.s spatial area or in Q's cache
area.

Ha\,ing tlle pi.evious definition of srgnuficont objects,
SOLE continuously maintains t,lle fo l lo~~ing assertion:

Assertion 1 Only significant objects are stored in the
shared meiiiory bu,,fler

To always satisfy this assertion. SOLE continuously
keeps track of t,he following: (1) A ne\vIy incolning data
object P is stored in n~einory oi11y if P is significant:
(2) At a,ny time. if an object P that is already st,ored

6

5 SOLE: Scalable On-Line Execution of
Continuous Queries

Stream of Stream of
Moving Spatia-temporal

Objects (P) Queries (Q)

+/- t t +/- t +/-

(b) Shared operator and shared
buffer pool for all queries

(a) Separate query plan and

buffer for each query

t· j. j.
+/- +/-1 +/-1

[fange ~ ~

EJ ~EJEJOp ...r:lIDr

Buffer

1

Stream of Moving Objects (P)

i~--'·";f]
~5:: _ _ _I

e: : _, -.. __ :
::If!:~~~~~~~~~~:
(e) Snapshot at time T~

The query Is moved
(b) Snapshot at lime T1

All objects are moved

Fig. 3 Avoiding ullcertainty in SOLE.

In a typical spatio- temporal application (e.g., location
aware servers), there are large numbers of concurrent
spatio-temporal continuous queries. Dealing with each
query as a separa te entity (e.g., as discussed in Section 4)
would easily consume the system resources and degrade
the system performance. In this section, we present the
scalability of SOLE in terms of handling large numbers
of concurrent continuous queries of mixed types (e.g.,
range and kNN queries). "Vithout loss of generality, all
the discussion in the rest of this paper is presented in
the context of stationary and moving range queries. The
applicability to k-nearest-neighbor queries is straightfor
ward as described in Section 3.

5.1 Overview of Sharing in SOLE

Figure 4a gives the pipelined execution of N queries (QJ
to Q N) of various types with no sharing, i.e., each query
is considered a separate entity. The input data stream
goes through each spatio-temporal query operator sepa
rately. \i\l ith each operator, we keep track of a separate
buffer that contains all the objects that are needed by
this query (e.g., objects that are inside the query region
or its cache area). \.\Iith a separate buffer for each sin
gle query, the memory can be exhausted with a small
number of continuous queries.

Figure 4b gives the pipelined execution of the same
N queries as in Figure 4a, yet with the shared SOLE
operator. The problem of evaluating concurrent continu
ous queries is reduced to a spatio-temporal join between
two streams: a stream of moving objects and a stream of
continuous spatio-temporal queries. The shared spatio
temporal join operator has a shared buffer pool that is
accessible by all continuous queries. The output of the
shared SOLE operator has the form (Q;, ±P)) which in
dicates an additioi1 or removal of object Pj to/from query
Q;. The shared SOLE operator is followed by a split op
erator that distributes the output of SOLE either to the
users or to the various Cjuery operators. The split oper
ator is similar to the one used in NiagaraCQ [12] and it
is out of the focus of this paper. Our focus is in realiz
ing: (1) The shared memory buffer, and (2) The shared
SOLE spatio-temporal join operator,

Fig. 4 Overview of shared execution in SOLE.

5.2 Shared I\lemory Buffer

SOLE maintains a simple grid structure ns an in-memory
shared buffer pool among all continuous queries and ob
jects. The shared buffer pool is logically divided into t\VO
parts: a query buffer that stores all outstanding contin
uous queries and an object buffer that is concerned with
moving objects. In addition to the grid structure. SOLE
employs a hash table h to index moving objects based
on their identifers.

To optimize the scarce memory resource, SOLE em
ploys two main techniCjues: (1) Rather than redundantly
storing a moving object P multiple times with each query
Q; that needs P, SOLE stores P at most once along with
a reference counter that indicates the number of continu
ous queries that need P. (2) Rather than storing all mov
ing objects. SOLE keeps track with only the signi:ficant
objects. Insignificant objects are ignored (i.e.. dropped)
from memory. Significant objects are defined as follows:

Definition 2 A moving object P is considered signif
icant if P satisfies any of the following two conditions:
(1) There is at least one outstanding continuous query Q
that shows interest in object P (i.e., P has a non-zero
reference counter), (2) P is the focal object of at least
one outstanding continuous query.

\i\,ie define when a query Q shows interest in an
object P as follows:

Definition 3 A continuous query Q is interested in ob
ject P if P either lies in Q's spatial area or in Q's cache
area.

Having the previous definition of slgmficani objects,
SOLE continuously maintains the following assertion:

Assertion 1 Only significant objects are stored in the
shared memory buffer

To always satisfy this assertion. SOLE continuously
keeps track of the following: (1) A newly incoming data
object P is stored in memory only if P is significant,
(2) At an~· time. if an object P that is alread~' stored

Procedure Incoi~~i~~gNeu~Object (Object P ; GridCell CP)
Begin

1 . For each Query Q; E C p 4ArD P E QF
(a) P. RefCount++
(b) i f (P E Q,) then output (Q, . +P) .

2. i f (P.RefCoun,t) then store P i n C p an.d in hash table h.

End.

Fig. 6 Pseudo code for receiving a nen- value of P .

Procedure Updat.eObj(Object P,/d,P. GridCell Cpo,, ,Cp)
nhring querj- i Begin

TOS queries
1 . For each query Q, E P.FocolList. UpdateQuery(Qi)
2. Let L be the line (Pold. P)

Stream of stream of spetio- 3. For each quenj QQ2 E (Cpoltl U Cp)
moving objects [PI temporal querlcs (Ql (a) i f Q; intersects L , then

Fig. 5 Shared join operator in SOLE. - i f P 6 Q; then Output (Q, . +P) : i f Pold $! Q;:
P. RefC0un.t + +

- e l s e Ovtpui. (Qi .-P): i f P @ Q; then

in the shared buffer becomes insignificant: we drop P P.RefCount--

immediately from the shared buffer. (b) e l s e i f ~i in.tersects L

Signijcant moving objects are hashed to grid cells - i f P E ~i then P.RefCount++: e l s e
P. RefCoun,t- -

based 011 their spatial locations. An entry of a signij- 4, if (!P .Re f~&nt) then delete an,d ign,ore P: return,
icant moving object P in a grid cell C has the form 5. i f (Cpc,,,l # Cp) then nlove PC,/,/ froln Cpo,, to C p .
(P I D , Loco.tion., Re fCoun, t . FocalList) . P I D and Loco.tionG Update the location. of P o / d to that of P in CP.
are the object identifer and location. respectively. Ref Coun&nd.
indicates the number of queries that are interested in P. Fig . Pseudo code for updating P's locatioll,
FocalList is the list of active moviilg queries that have P
as their ,focal object. Unlike data objects that are stored
in only one grid cell. contiiluous queries are stored in all ory, (2) Update of the location of object P: (3) A new
grid cells that overla'p either the query spatial area or the

query Q. (4) \Ipdate of the regiorl of a
que1.y cache area. A query elltry in a grid cell collt,a'ins query Q. Figures 6: 7. 9: and 10 g i ~ ~ e the pseudo
onl>r the query identifier (QID). The spatial regioll code of SOLE up011 recei\~illg eacll input type. The de-
each query is stored separately ill a global look l l~ table. tails of algorit,hllls are described b e l ~ \ \ ~ . SOLE makes

5.3 Shared Spat'io-temporal Join Operator

use of the follo\ving notations Q indicates the extended
queiy region that covers the cache area so that Q C Q.
CQ. CjQ are the set of grid cells that are covered by Q
and 0: respectively. C p represents a single grid cell that,

O v e r v i e w . Figure 5 puts a magnifying glass over the covers t,he object P.
shared spatial join operator in Figure 4b. For any incoin-
ing data object. say P: the shared spatial join operator I n p u t T y p e I : A n e w o b j e c t P. Figure 6 gives

consults it's query buffer to check if any query is affected the pseudo code of SOLE upon receiviilg a nelv object

by P (either in a positive or a negative way). Based on P in the grid cell C p (i.e.; P is not stored in memory).

the result, ,ve decide either to store in the object buffer P is test,ed against all the queries that are stored in C p

or to ignore p all,j delete old location (if ally) from (Step 1 ill Figllre 6). For each query Qi E CP: 0111~ three

the object buffer. on the other lland? for ally illcolllillg cases can take place: (1) P lies in Qi but not in Q. 111 this

co,ltilluous qLlel.y, say- Q: first we store Q or update Q : ~ case, we need only to illcrease t,he refereilce counter of P
old locatioll (if ally) ill tile query buffer, Then: we to indicate that there is one inore cluer!r interested in P
stilt the object buffer to check if ally of t,he objects needs (Step l a ill Figure 6) . Notice t'hat no output is ~ roduced
to be to or froln Q : ~ allswer, ~~~~d in this case since P does not satisly Qi . (2) P satisfies

this opera,tioll. jll~lllelllory stored objects lllay be- Qi . I11 this case, in addition to iilcreasii1g t,he

insignificant, hellce, are deletecl illllnedjately from countel-. u7e o l ~ t p l ~ t a positive 11pdate that indicates the
the object btlffer. Statiollary queries are s~lblllit,ted di- addition ol' P t'o the answer set of Q, (Step l b ill Fig-

l.ectlJ, to tile spatial joill operator, ,xrllile lllovillg ure 6) . In t,he above tnTo cases. P is storecl in the shared

clueries a,re gellerated from the nlovelnellt of their focal buffer as it is considered significant. (3) P neither satis-

objects. fies Qi nor lies in Q,. Thus, P is simply ignored as it is
A l g o r i t h m . Based on the data stored in the shared insign,ijcant.

buffer: SOLE distinguishes among four types of data in- I n p u t T y p e 11: An u p d a t e o f P. Figure 7 gives
puts: (1) A new data object P that is not stored in inem- the pseudo code of SOLE upon receiving an update of ob-

7

Fig. 7 Pseudo code for updating P's location.

Procedure JncomingNewObject(Object P, GridCell Cp)
Begin

1. For each Query Q, E C p AND P E Q,
(a) P.ReJCount++
(b) if (P E Q,) then output (Q" +P).

2. if (P.ReJCount) then store P in C p and in hash table h.

End.

Fig. 6 Pseudo code for receiving a new value of P.

ory, (2) Update of the location of object P, (3) A new
stationary query Q, (4) An update of the region of a
moving query Q. Figures 6, 7, 9, and 10 give the pseudo
code of SOLE upon receiving each input type. The de
tails of the algorithms are described below. SOLE makes
use of the following notations: Q indicates the extended
query region that covers the cache area so that Q c Q.
CQ, CQ are the set of grid cells that are covered by Q
and Q, respectively. Cp represents a single grid cell that
covers the object P.

Input Type I; A new object P. Figure 6 gives
the pseudo code of SOLE upon receiving a new object
P in the grid cell Cp (i.e., P is not stored in memory).
P is tested against all the queries that are stored in Cp

(Step 1 in Figure 6). For each query Qi E Cp, only three
cases can take place: (1) P lies in Qi but not in Q. In this
case, we need only to increase the reference counter of P
to indicate that there is one more Cjuery interested in P
(Step la in Figure 6). Notice that no output is produced
in this case since P does not satisfy Qi. (2) P satisfies
Qi. In this case, in addition to increasing the reference
counter. we output a positive update that indicates the
addition of P to the answer set of Qi (Step 1b in Fig
ure 6). In the above two cases. P is stored in the shared
buffer as it is considered significant. (3) P neither satis
fies Qi nor lies in Qj. Thus, P is simply ignored as it is
insignificant.

Input Type II: An update of P. Figure 7 gives
the pseudo code of SOLE upon receiving an update of ob-

queries ;
Siplionnry

Stream of spatto
temporal queries (Q)

Str~am of

moving objects (P)

5.3 Shared Spatia-temporal Join Operator

Fig. 5 Shared join operator in SOLE.

Overview. Figure 5 puts a magnifying glass over the
shared spatial join operator in Figure 4b. For any incom
ing data object. say P, the shared spatial join ~perator
consults its query buffer to check if any query is affected
by P (either in a positive or a negative way). Based on
the result, we decide either to store P in the object buffer
or to ignore P and delete P's old location (if any) from
the object buffer. On the other hand, for any incoming
continuous query, say Q, first we store Q or update Q's
old location (if any) in the query buffer. Then, we con
sult the object buffer to check if any of the objects needs
to be added to or removed from Q's answer. Based on
this operation. some in-memory stored objects may be
come insignificant, hence, are deleted immediately from
the object buffer. Stationary queries are submitted di
rectly to the shared spatial join operator. while moving
queries are generated from the movement of their focal
objects.

Algorithm. Based on the data stored in the shared
buffer, SOLE distinguishes among four types of data in
puts: (1) A new data object P that is not stored in mel11-

Pro.cedure UpdateObj(Object Pold,P, GridCell CPo/d,CP)
Begm

1. For each query Qi E P.FocaILisi, UpdateQuery(Qi)
2. Let L be the line (Pold. P)
3. For each query Qi E (CPo / d U Cp)

(a) if Qi intersects L, then
if P E Qi then Output (Qi,+PL if Pold tt Qi:
P.RefCount++
else Output (Qi. - Pl· if P tt Qi then

in the shared buffer becomes insignificant, we drop P P.RefCount--
immediately from the shared buffer. (b) else if Q, intersects L

Significant moving objects are hashed to grid cells - if P E Qi then P.ReJCount++, else
based on their spatial locations. An entry of a signif- 4. P.RefCount--

if (!P.ReJCount) then delete Pold and ignore P, return.
icant movin~ object P in a grid cell C has the form 5. if (CPoid i' Cp) then move Pold from CPo/d to Cpo
(PJ D, Locatwn, RefCou.nt, FocaIList). P J D and Location6. Update the location oj Pold to that oj P in CPo
are the object identifer and location, respectively. RefCou.nEnd.
indicates the number of Cjueries that are interested in P.
FocalList is the list of active moving queries that have P
as their focal object. Unlike data objects that are stored
in only one grid celL continuous queries are stored in all
grid cells that overlap either the query spatial area or the
query cache area. A query entry in a grid cell contains
only the query identifier (QJ D). The spatial region for
each query is stored separately in a global lookup table.

la) All cases of updating P's location m) Actloo taken for each case

Fig. 8 All cases of updating P's 1ocat.ion

Procedure St,at,ional.yQuery(query Q) Begin

- For each grid cell cj E CQ
1. Register Q in c,
2. For each object Pi E cj AND P, E Q

- P. Ref'Countt t: if P E Q then output (Q: + P)
End.

Procedure UpdateQrlery(query Qold: Q) Begin

- For each object Pi E (e ~ , , ~ ~ n e Q)
1. if P, E Qoldthen

- if P, @ Q then (01~tpul (Q.-P,) . if Pi @
0 then (P,.Re,fCoun,l- -: if (!P, .RefCounl)
thendelete(P;)))

2. e lse if Pi E Q then (Output (Q.+P;), if Pi @ Q"/J
then Pi. Re fCoun,tt t)

3. else if P; E Qold AND Pi @ Q then
(P, . Ref'Coun,t--: if (!Pi. RefCount) then
delete(P,))

4. else if Pi E Q AND Pi @ ()old then
Pi. RefCount+t.

- Register Q in cQ - eQ unregisler Q f'roi~, cQ - rQ
End.

Fig. 10 Pseudo code for updating a query.

Fig. 9 Pseudo code for receiling a new query Q

lie in 0. In addit.ion, objects tha t satisfy Q ~.esults in

ject P ' s location. 7:lle old locat,ion of P is retrieved from
the hash table h . First. we evaluate all moving queries
(if any) that have P as their ,focal object (Step 1 in Fig-
ure 7). Then: we check all the queries that, belong to
eitller Cp or Cpr,,,, (Step 3 in Figure 7) against the line
L that connects P and Po/,,. Figure 8a gives]line different
cases for the intersection of L \\;it11 Q where Pold and P
are plotted as white and black circles: respectively. Both
Poll, and P can be in one of the three states: in: cach.e, or
out that indicates that P satisfies Q: in t , l~e cache area of
Q. 01- does not satisfy QQ: respectively. The action taken
for each case is given in Figure 8b. Basically, if there is
no cl~ange of state from Pold to P (e.g.. L1: L5: and Lg):
no act,ion will be taken. If POld was in Q: ho\vever, P
is not, (e.g.; L 2 and Lg) \\re ou tp l~ t the negative update
(Q: -P) . The reference counter is decreased only when
Pold is of interest to Q while P is not (e.g., Lg and LG).
Notice that in the case of L2: we do not need to decrease
the reference counter \\:here althol~gh P does not satisfy
Q: P is still of interest to Q as P lies in ~ i . Also, in
the case of L6: \\re do not need t'o output a negative up-
da.te: ho\vever \\re decrease the reference counter. In this
case, since P and Porlr are not in the a,ns\ver set of Q:
there is no need to update the answer. Similarly, with
a symmetric behavior, \\-e output a positive update in
t,he cases of L1 and Li a.nd we increment the reference
countel- in the cases of L i and Ls. After testing all cases,
\\:e check \\:])ether object P becomes insignificant. If this
is the case, \\re immediately drop P from memory (Step 4
in Figure 7). If P is still signi,fica.nt, we update P ' s lo-
cation and cell (if needed) in the grid structure (Steps 5
and 6 in Figure 7).

Input Type 111: A new query Q. Figure 9 gives
the pseudo code of SOLE 11pon receiving a continuous
statioilary query Q. Basically, \ye register Q in all the
grid cells that are covered by Q. In addition, we test Q
against all data objects tha,t are stored in these cells. We
increase the reference collllter of only those objects that

pl.oducing positive updates.
Input Type IV: An update of Q's region. Fig-

ure 10 gives the pseudo code of SOLE upon receiling
an update of a ~noviilg query region. All stored objects
in all cells that are covered by the old and new regions
of Q are t.est.ed against Q. Figure l l a divides t.he space
covered by the old and new regions of Q into seven re-
gions (RI-Ri). The action taken for any point t,llat lies
in any of these regions is given in Figure l l b . Similar to
Figure 8b. a ~.egion Ri could have any of the t h e e states
in: cache. or OIL^ based 011 whether Ri is inside Q: is in
the cache area of Q: or is outside Q. Basically: no action
is taken for objects in any region Ri that n~aintains its
state for botli Q and Qoid (e.g.: R4). If a region Ri is in-
side Qold: but is not in Q: (e.g., R2 and R3): we olit,put a
negahve update for each object in Ri. We decreinent the
refereilce counter of these objects only if they lie in the
region that is out of the new cache area (e.g.: R z) (Step 1
in Figure 10). Also, the reference counter is clecrenlented
for all objects in the region that are in the old cache area
but are out of the new cache area (e.g.. R1) (Step 3 in
Figure 10). Similarly. the reference counter is increased
for regions R6 and Ri a:hile a positive output is sent for
the points in regions R5 and R6. Notice that whenevel-
we decrement the reference counter for any moving ob-
ject P: we check whether P becomes insignificant. If this
is the case: we iinlnecliately drop P from mernory (e.g.:
Steps 1 aild 3 in Figure 11). Finally: Q is registered in
all the ne\v cells that are covered by the ne\\l region and
not the old region. Similarly, Q is ui~registered from all
cells that are covered by the old region a.nd not the ne\y
region.

6 Approximate Query Processing in SOLE

Even with the scalability features of SOLE, the memory
resource may be exhausted a t intervals of ~mexpect.ed
massive nulnbers of queries ailcl moving objects (e.g..

8

Fig. 8 All cases of updating Vs location.

End.

Fig. 9 Pseudo code for receiving a new query Q.

Procedure 1JpdateQuery(Query Quid, Q) Begin

For each object Pi E (CQold n C Q)

1. if Pi E Qoldthen
if Pi rt Q then (Output (Q. -Pi), if Pi rt
Q then (Pi.RefCount--, if (!Pi.RefCount)
thendelete(Pi)))

2. else if Pi E Q then (Output (Q. +Pi). if Pi rt QOld
then Pi .RefCount+ +)

3. else if Pi E Quid AND Pi rt Q then
(Pi.RejCount--, if (!P;.RefCount) then
delete (Pi))

4. else if Pi E Q AND Pi rt Qold then
Pi.RefCount++.

Register Q in CQ - CQold' unregister Q from CQold - CQ
End.

Fig. 10 Pseudo code for updating a query.

RefCou.nt-

L6
RefCount--

Cncbe '·<,Out·':-IN

fb) Action taken for each case

L]
'e IN

r:...c . L4 +P Lri
o oehe

ic'--f-r:: ,_
Out" +P """"1i

RefCount++ Re{Counl++

(a) All cases of updating p's location

Procedure StationaryQuery(Query Q) Begin

For each grid cell Cj E CQ

1. Register Q in Cj

2. For each object Pi E Cj AND Pi E Q
- P.RefCount++, if P E Q then output (Q, +P)

ject P's location. The old location of P is retrieved from
the hash table h. First. we evaluate all moving queries
(if any) that have P as their local object (Step 1 in Fig
ure 7). Then, we check all the queries that belong to
either Cp or CPold (Step 3 in Figure 7) against the line
L that connects P and Pold. Figure 8a gives nine different
cases for the intersection of L with Q where Pold and P
are plotted as white and black circles, respectively. Both
Pold and P can be in one of the three states, in, cache, or
011t that indicates that P satisfies Q, in the cache area of
Q, or does not satisfy Q, respectively. The action taken
for each case is given in Figure 8b. Basically, if there is
no change of state from Pold to P (e.g., L 1 , L 5 , and L 9),

no action will be taken. If Pold was in Q, however, P
is not, (e.g., L 2 and L 3) we output the negative update
(Q, -P). The reference counter is decreased only when
Pold is of interest to Q while P is not (e.g., L 3 and L6).
Notice that in the case of L 2 , we do not need to decrease
the reference counter where although P does not satisfy
Q, P is still of interest to Q as P lies in Q;. Also, in
the case of L6, we do not need to output a negative up
date, however we decrease the reference counter. In this
case, since P and Pold are not in the answer set of Q,
there is no need to update the answer. Similarly, with
a symmetric behavioL we output a positive update in
the cases of L 4 and L 7 and we increment the reference
counter in the cases of L 7 and L 8 . After testing all cases,
we check whether object P becomes insignificant. If this
is the case, we immediately drop P from memory (Step 4
in Figure 7). If P is still significant, we update P's lo
cation and cell (if needed) in the grid structure (Steps 5
and 6 in Figure 7).

Input Type III: A new query Q. Figure 9 gives
the pseudo code of SOLE upon receiving a continuous
stationary query Q. Basically, we register Q in all the
grid cells that are covered by Q. In addition, we test Q
against all data objects that are stored in these cells. vVe
increase the reference counter of only those objects that

lie in Q. In addition, objects that satisfy Q results in
producing positive updates.

Input Type IV: An update of Q's region. Fig
ure 10 gives the pseudo code of SOLE upon receiving
an update of a moving query region. All stored objects
in all cells that are covered by the old and new regions
of Q are test.ed against. Q. Figure lla divides the space
covered by the old and new regions of Q into seven re
gions (R 1-R7). The action t.aken for any point. that lies
in any of these regions is given in Figure 11 b. Similar to
Figure 8b, a region R; could have any of the three states
in, cache, or out based on whether R; is inside Q, is in
the cache area of Q, or is outside Q. Basically, no action
is taken for objects in any region R; that maintains its
state for both Q and Qold (e.g., R 4). If a region R; is in
side Qold, but is not in Q, (e.g., R 2 and R3), we output a
negative update for each object in R;. We decrement the
reference counter of these objects only if they lie in the
region that is out of the new cache area (e.g., R 2) (Step 1
in Figure 10). Also, the reference counter is decremented
for all objects in the region that are in the old cache area
but are out of the new cache area (e.g .. Rd (Step 3 in
Figure 10). Similarly, the reference counter is increased
for regions R6 and R 7 while a positive output is sent for
the points in regions R 5 and R6 . Notice that whenever
we decrement the reference counter for any moving ob
ject P, we check whether P becomes insignificant. If this
is the case, we immediately drop P from memory (e.g.,
Steps 1 and 3 in Figure 11). Finally, Q is registered in
all the new cells that are covered by the new region and
not the old region. Similarly, Q is unregistered from all
cells that are covered by the old region and not the new
region.

6 Approximate Query Processing in SOLE

Even with the scalability features of SOLE, the memory
resource may be exhausted at intervals of unexpected
massive numbers of queries and moving objects (e.g ..

%ew f
Update

----........--.-...... 4 Statistics
Shared

Join 1 3
Operator (1) Trigger Y

(Memory is almost full)

(2) Update eritcria

la) All cases of updating query region b) Action taken for each case
Load

Fig. 11 All cases of updatil~g Q's region.

during rush hours). 'l'o cope with such intervals: SOLE
Objects Queries

is equipped with a se!f-2,uning approach that tunes t'he
memory load to support a 1a.rge. number of concun-ent Fig. Archit'ecture of in 'OLE.

queries, yet with a.11 approxiinate ails\17er. The main idea -
is to tune the definition of signif icant objects based on
the current work1oa.d. B!. adapting the definition of sig-
n i f i cant objects. the ineinory load \\;ill be sh,ed in two
ways: (1) In-memory stored o1,jects will be re~risit.ed for
the new ineanii~g of s.ignf.fica~zt objects. If a.n insigni,ficnn.t
object is fo~111d: it 11-ill be shed from memory. (2) Soine
of the newly input data will be shed a t the input le~rel.

Figure 12 gives the a.rchitectu1-e of se l f - tun ing ill SOLE.
Once the shared join operator incurs high resource coil-
suinptio~l, e.g.. the ineinory becoines allnost full, the join
operat'or triggers the execution of the load shedding pro-
cedure. The load shedding procedure may consult some
statistics that are collected during the course of execu-
tion to decide 011 a ne\v n~eaning of signif icant 01,jects.
While the shared join operator is running with the ne\v
definition of s.igni,ficanL objects. it may send updates of
the current memory load to t,he load shedding pr0cedm.e.
The load shedding proced1u.e replies back by con tin^^-
ously adopting the notion of sign(fican2 objects based on
the continuously changing nlelnory load. Finally, once
the memory load ret111.11~ to a stable state; the shared
join operator retains the original meaning of signif icant
objects and stops the execution of the load shedding pro-
cedure. Solid lines in Figure 12 indicat,e the m a ~ ~ d a t o r y
steps that should be taken by any load sh.edding tech-
nique. Dashed lines indicate a set of operations that may
or may not be employed based on the underlying load
shedding technique. 111 the rest of this section, we pro-
pose two load shedding techniques, namely q u e r y load
shedding and object load shedding.

wit11 all the cache area. if the systein is st,ill o~erloaded,
ancl we]la.\-e riot reached to the inil l i~n~un permissable ac-
cui-acy yet. we start t,o reduce Q's area itself. T~IIIS: tlle
notion of signif icant objects is adopted to be t,hose tuples
t,liat lie i l l the reduced query area of at 1ea.st one coi~tin-
11011s outstanding query. By reducing the cluer!. sizes of
all outstantling queries, objects that a,re outside of the
reduced area and are not of interest to ail!. other query
are immedia te ly dropped fi-om inenlory anti the corre-
sponding negat ive updates are sent. During the course of
exec~~tion. \ve gradually increase the query size to cope
\vitll the memory load. Finally, when t , l~e system reaches
a stable stat.e: we retain the origi~lal query sizes.

Q u e r y load shedding has two main ad\.antages: (I) It
is intt~iti*e and simple to implenlent where there is no
need to ma.intain any kind of statistical information: and
(2) Ins ign i f icant objects are immediately dropped from
memory. 011 the other side, there are t\vo main disadva11-
tages: (1) The query load shedding process is expensive,
where it scans a.11 stored objects and queries. Tliis ex-
haustive behavior results in pause time intervals where
the system cannot produce output nor process data in-
puts. (2) Alt,hough the query accuracy is gliaranteed (as-
su~ning uniforin data distribution), there is no guarantee
of the a.il1ount of reduced memory. Assume the case that
the reduced area from a query Qi lies completely inside
another query Q,. Thus, even though Qi is reduced, we
cailllot drop tuples from the reduced area \\-here they are
still needed by Qj. Thus, the accuracy of Qi is reduced,
yet the a.mount of memory is not.

6.1 Query Load Shedcling 6.2 Object Load Shedding

The main idea of q u e r y load shedding is to negot ia te the
query region ~vi th the user. R~hene\~er a query. say Q. is
submitted to SOLE, Q specifies t,lle n l i n i n ~ ~ l ~ n acc~rac?.
tha.t is acceptable by Q . Initially. the submitted query
Q is evaluated with complete accuracy. However. when
the systein is overloadecl, Q's accuracy is degraded to its
minimum perlnissible a.ccuracy. Reducing the accuracy
is achieved by shrinking Q's cache a.rea fro111 all direc-
tions to have a smaller cache a]-ea.. After we are done

Tlle main idea of object load shedding is to drop objects
that have less effect 011 the average query accuracy. Thus.
tlie definition of signif icant objects is adopted t,o be tJliose
objects that are of interest to a t 1ea.st k queries (i.e.,
objects with reference counter greater than or equal k).
IVotice that the original definition of signif icant objects
implicitly assumes that k = 1. A key point in object
loa,d shedding is that we do not perform an exhaustive
scan to drop ins ign{ f icant objects. Instead, ins ign i f icant

9

Fig. 11 All cases of updat ing Q's region.

Load

Shedding

- - - - - - -~ Statistics
Update

(2) Update criteria

(I) Trigger
(Memory is almost full)

(5) STOP (Memory is OK)

~3J ~«:'!1~~ !--~~~ --_-~

....c:- - - (4) Update criteria

r---

I

Queries

Exp.ired

Shared

Join
Operator

Objects

Fig. 12 Architecture of self tuning in SOLE.

with all the cache area, if the system is still overloaded,
and we have not reached to the minimum permissable ac
curacy yet. we start to reduce Q's area itself. Thus, the
notion of significant objects is adopted to be those tuples
that lie in the reduced query area of at least one contin
uous outstanding query. By reducing the query sizes of
all outstanding queries, objects that are outside of the
reduced area and are not of interest to any other query
are immediately dropped from memory and the corre
sponding negative updates are sent. During the course of
execution. we gradually increase the query size to cope
with the memory load. Finally, when the system reaches
a stable state, we retain the original query sizes.

Query load shedding has two main advantages: (1) It
is intuitive and simple to implement where there is no
need to maintain any kind of statistical information, and
(2) Insignificant objects are immediately dropped from
memory. On the other side, there are two main disadvan
tages: (1) The query load shedding process is expensive,
where it scans all stored objects and queries. This ex
haustive behavior results in pause time intervals where
the system cannot produce output nor process data in
puts. (2) Although the query accuracy is guaranteed (as
suming uniform data distribution), there is no guarantee
of the amount of reduced memory. Assume the case that
the reduced area from a query Qi lies completely inside
another query QJ' Thus, even though Qi is reduced, we
cannot drop tuples from the reduced area where they are
still needed by Qj. Thus, the accuracy of Qi is reduced,
yet the amount of memory is not.

(b) Action taken for each case

~ewr~-- -----.------ ---,-.,-

(a) All cases of updating query region

during rush hours). To cope with such intervals, SOLE
is equipped with a self-tuning approach that tunes the
memory load to support a large number of concurrent
queries, yet with an approximate answer. The main idea
is to tune the definition of significant objects based on
the current workload. By adapting the definition of sig
nificant objects, the mell1or~' load will be shed in two
ways: (1) In-memory stored objects will be revisited for
the new meaning of sign~ficantobjects. If an insignzficant
object is found, it will be shed from memory. (2) Some
of the newly input data will be shed at the input level.

Figure 12 gives the architecture of self-tuning in SOLE.
Once the shared join operator incurs high resource con
sumption, e.g., the memory becomes almost full, the join
operator triggers the execution of the load shedding pro
cedure. The load shedding procedure may consult some
statistics that are collected during the course of execu
tion to decide on a new meaning of significant objects.
\Vhile the shared join operator is running with the new
definition of signi.ficant objects, it may send updates of
the current memory load to the load shedding procedure.
The load shedding procedure replies back by continu
ously adopting the notion of sign'zficant objects based on
the continuously changing memory load. Finally, once
the memory load returns to a stable state, the shared
join operator retains the original meaning of significant
objects and stops the execution of the load shedding pro
cedure. Solid lines in Figure 12 indicate the mandatory
steps that should be taken by any load shedding tech
nique. Dashed lines indicate a set of operations that may
or may not be employed based on the underlying load
shedding technique. In the rest of this section, we pro
pose two load shedding techniques, namely query load
shedding and object load shedding.

6.1 Query Load Shedding 6.2 Object Load Shedding

The main idea of query load shedding is to negotiate the
query region with the user. \Vhenever a query, sa:y Q. is
submitted to SOLE. Q specifies the minimum accuracy
that is acceptable by Q. Initially, the submitted query
Q is evaluated with complete accuracy. However. when
the system is overloaded, Q's accuracy is degraded to its
minimum permissible accuracy. Reducing the accuracy
is achieved by shrinking Q's cache area from all direc
tions to have a smaller cache area. After we are done

The main idea of object load shedding is to drop objects
that have less effect on the average query accuracy_ Thus,
the definition of significant objects is adopted to be those
objects that are of interest to at least k queries (i.e.,
objects with reference counter greater than or equal k).
Notice that the original definition of significant objects
implicitly assumes that k = 1. A key point in object
load shedding is that we do not perform an exhaustive
scan to drop insigni,ficant objects. Instead, insignificant

objects are lazily dropped \vhene\.ei. they get accessed
later during the course of execution. Such lnz?j bel~aviol.
completely a\.oids the pause tilne intervals in query load
shedding. 111 contrast to query load shedding, in object
load shedding: a7e guaralltee the 1.ec1uced I1lelnol.y load.

Duril~g the course of execut,ion: \ve monitor the inelll-
ory load aild clecrease/increase k accordillgly. Once t,he
syst,em stabilizes and returns to its original st,ate., 11-e set
k = 1 to ret.ain the original executiol~ of SOLE. Dete1.-
mil~ing the t,hreshold value k is acl~ie\~ed by mailltaining
a statistica.1 table S that keeps track of the 11unlber of ob-
jects tha t satisfy a certa.il1 n~lmber of queries. Assmnillg
that \\re will ne\:er drop an object that 11a.s a reference
co~mt,er greater than IV: t,llell S can be represented as
an array of ?1\']lumbers where the jtll entry in S corre-
sponds to the n ~ u ~ ~ b e r of moving objects Lhal are of ill-
terest to j queries. \\:hene\:er the system is o\:erloadecl,
we go through S to get the millimuln k that a,chieves the
required reduced load.

6.3 Loatl Shedding \vitl~ Locking

Degenerate cases may affect se\:erely the bellaviol. of load
sheddillg. Col~sitler t,he case of a query Q that has only
one object P as its ansu-er \\~11ile P is not of interest to
any other quer!.. By applying object load shedclii~g. P mill
be dropped 1~11e1-e it is of intei-est to only one quer!. Q.
Thus, the accuracy of Q is dropped to zero. To allevi-
ate such problem, we use a locking technique. Basically:
each query Q has a tl~reshold n where if Q has less than
n object,s in its a.nswer set.. all the 71 object,^ are locked.
Locked objects cio not participate in the statistical table
S . Once an object is locked. t,he corresponding enti-y in S
is updated. \?71~ene\,er we lazily drop objects fro111 mem-
ory, we make sure tha t we do not drop any locked object.
The concept of lockin,g can also be geileralized to accom-
illodate locking of ilnport,a.nt objects and/or queries.

7.1 Single Execution: Size of the Cache Area
7 Experimental Results

In this section: \Ire st,rldy the performance of various as-
pects of SOLE that includes: the size of the cache area.
the benefit of encapsulating SOLE in a pipeline opera-
tor, the grid size of t,he shared memory buffer-, the scal-
abilit,y of SOLE, and approximate query processing via
load shedding techniques. All the expel.iment,s in this sec-
tioil a.re based on a real in~plementat~io~l of SOLE algo-
rithms and opera,tors inside our prototype clata,base en-
gine for spatio-telnporal st l .eal~~s: PLACE [30,31]. \Ve
run PLACE on Intel Pentium IV CPU 2.4GHz wit11
51 2h4B RAM runllil~g \\;illdo\vs XP. Without loss of gen-
erality: all the presented experiments are conducted on
stationary and n~oving continuous spatio-temporal queries.
Similar results are achieved \\:hell employing continuous
k-nearest-neighbor queries.

Fig. 13 Greater Lafayette. Indiana. USA.

\Ve use the Network-based Genemtor of A4oving Ob-
jects 171 to generat,e a set of mo\ril~g objects and mov-
ing queries in the for111 of spatio-temporal streams. The
input t'o the generator is the road inap of the Greater
Lafayatte (a city in the state of Illdia,na, USA) given in
Figure 13. The output of the generator is a set of nlov-
ing points t , l~at move on the l.oac1 network of the given
cit,y. h.Ioving objects can be cars: cyclists: pedestrians,
etc. Any moving object call be a foa l of a moving query.
Uilless ~nentioned other~vise, we generate 1101< lnovillg
objects as follows: Initially, u:e generate lOIi moving ob-
,jects from the generator, then we run the gellerator for
1000 time ~mits . At each time unit, \ve generate new 100
nloving objects. Moving objects are required to report
their locations every time unit T. Failure to do so results
in disconnecting the moving object from the server.

The rest of this section is organized as follows. Sec-
t,ion 7.1 studies the effect of the cache size and the gain
of llaving SOLE as a pipelined operat,or in terms of single
query execution. In Section 7.3, \\re stud!; the scalability
of SOLE. Finallh Section 7.6 st,udies the performance of
load shedding techniques.

Figures 14a-d give the performance of the first 25 sec-
onds of executing a inovillg query of size 0.5% of the
spa.ce with no cache, 25%) cache: 50%' cache, and conser-
vative cache (i.e., 100% cache), respectively. Our perfor-
inance measure is the query accuracy that is represented
as the percentage of the n~unber of produced tuples to
the actual n~unber that should have been produced if all
mo\~ing objects are materialized into secoildarg storage.
\?Tithout caching (Figure 14a), the query accuracy suf-
fers fro111 continuous fluctuations where sometilnes the
accura.cy drops to 85%. With only 25%# cache the query
accuracy is greatly enhallcecl (Figure 14b). The accuracy
is almost stable with minor fluctuations that degrade the
accuracy to only 95%. A conservati,ue caching would re-
sult in having a single line t l ~ a t al\\iays have 100% accu-
racy.

10

objects are lazily dropped whenewr they get accessed
later during the course of execution. Such lazy behavior
completely avoids the pause time intervals in query load
shedding. In contrast to query load shedding, in object
load shedding, we guarantee the reduced memory load.

During the course of execution, we monitor the mem
ory load and decrease/increase k accordingly. Once the
system stabilizes and returns to its original state., we set
k = 1 to retain the original execution of SOLE. Deter
mining the threshold value k is achieved bv maintaining
a statistical table S that keeps track of the number of ob
jects that satisfy a certain number of queries. Assuming
that we will never drop an object that has a reference
counter greater than N, then S can be represented as
an array of N numbers where the Jth entry in S corre
sponds to the number of moving objects that are of in
terest to J queries. 'Vhenever the system is overloadeeL
we go through S to get the minimum k that achieves the
required reduced load.

6.3 Load Shedding with Locking

Degenerate cases may affect severely the behavior of load
shedding. Consider the case of a query Q that has only
one object P as its answer while P is not of interest to
any other query. By applying object load shedding, P will
be dropped where it is of interest to only one query Q.
Thus, the accuracy of Q is dropped to zero. To allevi
ate such problem, we use a locking technique. Basically,
each query Q has a threshold n where if Q has less than
n objects in its answer seL all the n objects are locked.
Locked objects do not participate in the statistical table
S. Once an object is locked, the corresponding entry in S
is updated. '-\ihenever we lazily drop objects from mem
ory, we make sure that we do not drop any locked object.
The concept of locking can also be generalized to accom
modate locking of important objects and/or queries.

7 Experimental Results

In this section, we study the performance of various as
pects of SOLE that includes: the size of the cache area,
the benefit of encapsulating SOLE in a pipeline opera
tor, the grid size of the shared memory buffer, the scal
ability of SOLK and approximate query processing via
load shedding techniques. All the experiments in this sec
tion are based on a real implementation of SOLE algo
rithms and operators inside our prototype database en
gine for spatio-temporal streams, PLACE [30,31]. We
rlm PLACE on Intel Pentium IV CPU 2.4GHz with
512!\l18 RAI\·l running Windows XP. Without loss of gen
erality, all the presented experiments are conducted on
stationary and moving continuous spatio-temporal queries.
Similar results are achieved when employing continuous
k-nearest-neighbor queries.

Fig. 13 Greater Lafayette, Indiana, USA.

We use the Network-based Generator of Moving Ob
jects [7] to generate a set of moving objects and mov
ing queries in the form of spatio-temporal streams. The
input to the generator is the road map of the Greater
Lafayatte (a city in the state of Indiana, USA) given in
Figure 13. The output of the generator is a set of mov
ing points that move on the road network of the given
city. Moving objects can be cars, cyclists, pedestrians,
etc. Any moving object can be a focal of a moving query.
Unless mentioned otherwise, we generate 110K moving
objects as follows: Initially, we generate 10K moving ob
jects from the generator, then we rlm the generator for
1000 time units. At each time unit, we generate new 100
moving objects. Moving objects are required to report
their locations every time unit T. Failure to do so results
in disconnecting the moving object from the server,

The rest of this section is organized as follows. Sec
tion 7.1 studies the effect of the cache size and the gain
of having SOLE as a pipelined operator in terms of single
query execution. In Section 7.3, we study the scalability
of SOLK Finally, Section 7.6 studies the performance of
load shedding techniques.

7.1 Single Execution: Size of the Cache Area

Figures 14a-d give the performance of the first 25 sec
onds of executing a moving query of size 0.5% of the
space with no cache, 25% cache, 50% cache, and conser
vative cache (i.e., 100% cache), respectively. Our perfor
mance measure is the query accuracy that is represented
as the percentage of the number of produced tuples to
the actual number that should have been produced if all
moving objects are materialized into secondary storage.
Without caching (Figure 14a), the query accuracy suf
fers from continuous fluctuations where sometimes the
accuracy drops to 85%. With only 25% cache the query
accuracy is greatly enhanced (Figure 14b). The accuracy
is almost stable with minor fluctuations that degrade the
accuracy to only 95%. A conservative caching would re
sult in having a single line that always have 100% accu
racy.

(a) No Cache (b) 25% Cache (c) 50% Cache (d) Conser\lati\ie Cache

Fig. 14 Cache area in SOLE.

1 0 0 % Cache --(3--

50% Cache -a--- -
259 Cache +

0 5 1 0 1 5 2 0 2 5

Time

Fig. 15 Cache area in SOLE

Figure 15 gives the memory overhead \\:hen using a
25%: 50%,, or 100% (conservative) cache sizes. The o\:er-
head is computed as a, perceiita,ge fi-om the original query
memorjr requirements. 7111~s a 0%' cache does not incur
any overhead. On avera,ge a 25% ca,che results in only
10% overhead over the original query: \vllile the 50%) a.nd
100% caches result ill 25% and 50% o\~erhead, respec-
tively. As a coinpromise between the cache overhead and
the query accuracy. we use a 25%' cache in SOLE in all
the following experiments.

7.2 Single Execut'ion: Pipelined Query Operators

Consider the query Q: "Contin.uously report all t~-.u,cks
th,at are w ~ t h , ~ n AdyArea:'. MyArea can be either a sta.-
tionary or moving range query. A high level i~nplemen-
tation of this query is to have only a selectio~l operator
that selects only the "trucks'.'. Then, a high le\:el algo-
rithm iinpleinentation wollld take the selection output
and incrementally prodllce the query rest~lt. However. an
encapsulation of SOLE into a pl~ysical pipelined query
operator allows for inore flexible plans. Figure lGa gi\fes
a query evaluation plan \vl~en p ~ ~ s h i n g the SOLE oper-
ator before the selection operator. The following is the
SQL presentation of the querv.

SELECT h,I.ObjectID

(a] SELECTION [b) JOIN

Fig. 16 Pipelined SOLE operators.

FROM hIovingObjects hi
WHERE hI.t,!;pe = "tl-u.ck"
INSIDE AdyArea

Figure 17 compares the high level implementation
of the a,bo\-e quer!- \\rit,ll pipelined INSIDE operator for
bot.11 stationary and mo\;ing queries. The selectivity of
t,he queries varies fi-om 2% to 64%. The selecti\rity of
the selection operator is 5%,. Our measure of compari-
son is the number of t,uples that go through the query
eval~lation pipeline. When SOLE is iinpleinented a t the
applica.tion level: it,s performance is not affected by the
query select,i\!it!;. Ilo\\~e\;er. when INSIDE is pushed before
the selection., it acts as a filter for the query evaluatioil
pipeline, thus, li~niting the tuples through the pipeline
to only the progressive updates. With INSIDE selectiv-
it,y less than 32%1: pushi~lg INSIDE before the selectioil
grea,tly affects the performance. However, with s e l e c t i ~
ity inore than 32%': it would be better to have the INSIDE
operator above the selection operator.

Consider a more complex query plan that contains a
join opei-a.t,or. The qller!: Q: "Continuo.u.sly report Tnov-
ing objects tha,t belong to 7ny ,favorite set of ol~jects and
ili.a,l. lie within A,fyAren:'. A high level implementation of
SOLE \\iould probe a streanling database engine to join
a.11 mo\,ing objects \\lit11 my fa,vorite set of objects. Then,
t,he output of the join is sent to the SOLE algorithm for
furt,her processing. However, with the INSIDE operator,
we can haye a query evaluation plan as that of Figure lGb
where the INSIDE operator is pushed below the Join op-

i~~: nJrJ1r~~:-r~.-...."-~-,,--
~(1 I

1('[' :-l.r~----:....r-'rl.'--~--

~[, ,

11

';:r:i..!'-

3{'

co
I {o ~

,,1_, ~_~_~_

Fig. 16 Pipelined SOLE operators.

(a) No Cache

Fig. 14 Cache area in SOLE.

80

70

~
co 60
:J
0
w 50u
H
W

"" 40

~
0 30.c
H• 20>a

10

(b) 25% Cache

i 00% Cach~ ------G-
50% Cache ~_.

25% Cache ------.-

(c) 50% Cache

(al SELECTION

(d) Conservative Cache

(b) JOIN

10

Time

15 20 25

Fig. 15 Cache area in SOLE.

Figure 15 gives the memory overhead when using a
25%,50%, or 100% (conservative) cache sizes. The over
head is computed as a percentage from the original query
memory requirements. Thus a 0% cache does not incur
any overhead. On average a 25% cache results in onlv
10% overhead over the original query, while the 50% and
100% caches result in 25% and 50% overhead, respec
tively. As a compromise between the cache overhead and
the query accuracy, we use a 25% cache in SOLE in all
the following experiments.

7.2 Single Execution: Pipelined Query Operators

Consider the query Q: "Continuously report a.ll f7'ucks
that are within MyArea ". MyArea can be either a sta
tionary or moving range query. A high level implemen
tation of this query is to have only a selection operator
that selects only the "t7'ucks ". Then, a high level algo
rithm implementation would take the selection output
and incrementally produce the CJuery result. However. ,111
encapsulation of SOLE into a physical pipelined query
operator allows for more flexible plans. Figure 16a gives
a query evaluation plan when pushing the SOLE oper
ator before the selection operator. The following is the
SQL presentation of the CJuery.

SELECT]\1.0bjectID

FROM J\1ovingObjects]\1

WHERE J\1.type =';tmck"

INSIDE MyA rea

Figure 17 compares the high level implementation
of the above query with pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. The selectivit~ of
the selection operator is 5%. Our measure of compari
son is the number of tuples that go through the query
evaluation pipeline. \\Then SOLE is implemented at the
application leveL its performance is not affected by the
query selectivity. However. when INSIDE is pushed before
the selection, it acts as a filter for the query evaluation
pipeline, thus, limiting the tuples through the pipeline
to only the progressive updates. YVith INSIDE selectiv
ity less than 32%, pushing INSIDE before the selection
greatly affects the performance. However. with selectiv
ity more than 32%, it would be better to h~ve the INSIDE
operator above the selection operator.

Consider a more complex query plan that contains a
join operator. The query Q: "Continuously report mov
ing objects that belong to my favorite set of objects and
thai. lie within llIyArea::. A high level implementation of
SOLE would probe a streaming database engine to join
all moving objects with my favorite set of objects. Then,
the output of the join is sent to the SOLE algorithm for
further processing. However. with the INSIDE operator,
we can have a query evaluation plan as that of Figure 16b
where the INSIDE operator is pushed below the Join op-

Query S e l e c t i v i t y

Fig. 17 Pipelined operat,ors wit11 SELECT

< l i d 21-c tilid 9 r

(a) Redundancy (b) Response Time

Fig. 19 Grid Size.

Figure 19 studies the trade-offs for the number of grid
cells in the shared memory buffer of SOLE for 50K inov-

erator, TIle SQL represelltatioll of the abo\re query is as il7g clueries of \ J ~ ~ ~ O U S sizes. Increasing the number of cells

follows: in each dinlension increases the redundancy that result,s
froin replicating the query entry in all overlapping grid
cells. On the other hand: increasing the grid size results

SELECT hI.ObjectID in a bett'er respoilse time. The response time is defined as
the t,iine interval froill the arrival of an object, say P: to

FROM hloving0bjects 1.1: h.IyFavoriteCars F either the time that P amears a t the o u t ~ u t of SOLE or

3 0 0 0

25OOLA

4

,$ 2 0 0 0
a

m
5 1 5 0 0

C

4
a

LC 1 0 0 0

C 5 0 0

0

WHERE 1,l.ObjectID = F.ObjectID

INSIDE AJyArea

0 . 0 2 0 . 0 4 0 . 0 8 0 . 1 6 0 . 3 2 0 . 6 4

Query S i z e

Fig. 18 Pipelined operators xvith Join. 7.3 Scalable Execution: Grid Size

a - -

- SOLE as a n Opera to r + -
SOLE a s a Table Funct ion -A

-

Figure 18 compares the higll level implement~at~ion of
the above query wit11 the pipelined INSIDE operator for
both stationary a.nd moving queries. The selectivity of
the queries varies from 2%) to G4%#. As in Figure 17: t,he
selectivity of SOLE does not affect the perforinance if it
is ilnpleineilted in tlle application level. Unlike the case of
selection operators. SOLE pro\rides a dramatic illcrease
in the performance (around a,n ortler of magnitude) \vIlen
implemented as a pipelined operator. The nia.in reason in
this dramatic ga,iil in performance is the high overhead
incurred whell evaluating the join operation. Thus. the
INSIDE operator filters out the input tuples and limit,
the input to the join operator to only the incremental
positive and negative updates.

vvci-i Z i . C

(b) Table of values

the time that SOLE decides to discard P: IVhen t,he grid
size increases over 100. the response time performance
degrades. Having a grid of 100 cells in each diinensioil
results in a total of 10I< small-sized grid cells, thus. with
each movement of a moving query Q. we need to reg-
istei-Iunregister Q in a large number of grid cells. As
a coinpronlise betvrreen redmlclancy and response time.
SOLE uses a grid of size 30 in each dimension.

-

7.4 Scalable Execution: SOLE Vs. Non-Shared
Executioii

-

-

Figure 20 compares the performance of the SOLE shared
operator as opposed to dealing with each query as a sep-
arate entity (i.e., with no sharing). Figure 20a gives the
ratio of the number of supported queries via sharing over
the 11011-sharing case for various query sizes. Some of the

C O I (T I, 3 0.4 <, 5 0 . 6 0 (I P 0 . 1 I

(a) Ratio

Fig. 20 hlaximum Number of Supported Queries. A

12

8000 ,------~--~---~--~--'"

7000

6000

SOOO

4000

3000

"ill
0. 2000
o

'"

Stationary pipe-lined Query --.-..
Hoving pipe-lined Query ~~

Appl ication level -

(b) Response Time(a) Redundancy

6432

oL---~__~__~__~__---.J

2

l000k==~::::=----

Query Selectivi ty Fig. 19 Grid Size.
Fig. 17 Pipelined operators with SELECT.

SOLE as an Opera tor ____
SOLE as a Tuble Function ----8--

Fig. 20 Maximum Number of Supported Queries.

(b) Table of values

-~

-~ % Single Sharing Ratio

0.01 8184 63446 7.75

0.09 934 8250 8.83

0.25 349 4016 11.51

0.49 186 2577 13.85
0.81 118 2082 17.64

1 103 2007 19.49 J
0.' r, _~ (. 3 V.to Co. ~ Co. 6 0 c,. ~ 0.9 ,

(a) Ratio

:r
, ~,'..r/
j

0.640.320.160.080.04

3000

~
2S00

ill

.~ 2000

'"
ill

:5 1500

.~

~ 1000
ill

go

'" 500

a
0.02

Query $i ze

Fig. 18 Pipelined operators with Join. 7.3 Scalable Execution: Grid Size

erator. The SQL representation of the above query is as
follows:

SELECT 1\LObjectID

FROM 1\1ovingObjects M, 1\lyFavoriteCars F

WHERE M.ObjectID = F.ObjectID

INSIDE MyArea

Figure 18 compares the high level implementation of
the above query with the pipelined INSIDE operator for
both stationary and moving queries. The selectivity of
the queries varies from 2% to 64%. As in Figure 17, the
selectivity of SOLE does not affect the performance if it
is implemented in the application level. Unlike the case of
selection operators, SOLE provides a dramatic increase
in the performance (around an order of magnitude) when
implemented as a pipelined operator. The main reason in
this dramatic gain in performance is the high overhead
incurred when evaluating the join operation. Thus. the
INSIDE operator filters out the input tuples and limit
the input to the join operator to only the incremental
positive and negative updates.

Figure 19 studies the trade-offs for the number of grid
cells in the shared memory buffer of SOLE for 50K mov
ing Cjueries of various sizes. Increasing the number of cells
in each dimension increases the redundancy that results
from replicating the query entry in all overlapping grid
cells. On the other hand, increasing the grid size results
in a better response time. The response time is defined as
the time interval from the arrival of an object, say P, to
either the time that P appears at the output of SOLE or
the time that SOLE decides to discard P. When the grid
size increases over 100, the response time performance
degrades. Having a grid of 100 cells in each dimension
results in a total of 10K small-sized grid cells, thus, with
each movement of a moving query Q, we need to reg
ister/unregister Q in a large number of grid cells. As
a compromise between redundancy and response time,
SOLE uses a grid of size 30 in each dimension.

7.4 Scalable Execution: SOLE Vs. Non-Shared
Execution

Figure 20 compares the performance of the SOLE shared
operator as opposed to dealing with each query as a sep
arate entity (i.e., with no sharing). Figure 20a gives the
ratio of the number of supported queries via sharing over
the non-sharing case for various Cjuery sizes. Some of the

(a) Query area

' , . i
< < . . I i . C (. A I I <I 6 '. (..! U.? i

(b) Cache area (a) Number of queries (b) Query size ki Per-
cent or moving queries

Fig. 21 Data size in t.he query and cache areas. Fig. 22 Response t,il-ne in SOLE

act,ual values a.1-e depicted in the table ill Figni-e 20b. For
snla.11 query sizes (e.g., 0.01%) \vith sharing. SOLE sup-
ports more than GOK queries, n:hich is alrnost 8 tiines
better than the case of non-sharing. 7'he performance of
sharing increases with the query size \\:here it beconles 20
ti~lles better than non-sharing in case of query size 1% of
the space. The inail1 reason of the increasing perforinance
with the size increase is that sharing benefits from the
overlapped areas of continuous queries. Objects that lie
ill any overlapped area are stored only once in the shar-
ing case rather than multiple times in the non-sharing
case. \4:ith small query sizes, overlapping of query areas
is much less than the case of large query sizes.

Figures 21a and 21b give the memory requirenlents
for storing objects in the query region a.nd the query
cache area: respectively: for 1I< queries over lOOK mov-
ing objects. In Figure 21a, for large query sizes (e.g., 1%
of the space), a 11011-shared executioil \vould need a inem-
or? of size lhl objects, while in SOLE. we need, at no st,
a meinory of size lOOK objects. The nlain reasoil is that
\vitli 11011-sha,ring: objects that are needed by multiple
queries are red~~ndant ly st,ored in each query buffer: while
with sharing: each object is stored a t most once in the
slla.red inemory buffer. Thus, in terms of the query area:
SOLE has a ten t,imes perforn~ance advantage over the
non-shared case. Figure 21b gives the memory require-
inent for storing objects in the cache area. The behavior
of the non-sharing case is expected where the ineinory re-
c~uiren~ents increase wit,l~ the increase in the query size.
Surprisingly: the caching overhead in the case of sharing
decreases \\:it11 the increase in the query size. The main
reason is t.hat ~\:ith t,he size increase, t,he ca.ching area of
a certain query is likely to be part of the actual area of
allother query. Thus. objects that are inside tliis caching
area are not considered an overhead, where t,hey are part
of the actual ans\\:er of some other query.

7.5 Scalable Execution: R.esponse Time

Figure 22a gives the effect of the llunlber of collcurre~lt
continuous queries on the performance of SOLE. The
number of queries varies froin 5K to 50K. Our perfor-

mance measure is the average response time. The re-
sponse tiine is defined as t;he tiine iilter~ral fi-om the ar-
rival of object P t,o eit,her the tiine that P appears at,
the output of SOLE or the t,ime that SOLE decides to
discard P. We run the experiment twice: once with only
stationary queries. and the second time wit11 only m o ~ i n g
queries. The increase in response tiine with the nuinber
of queries is acceptable since as r e increase the number
of queries 10 times (fi-0111 5K to 5010. we get only twice
the increase in response tiine in the case of stationary
queries (from 11 to 22 msec). The perforinance of moving
queries has only a slight increase over stationar2- queries
(2 insec in case of 50K qnei-ies).

Figure 22b gives the effect of varying both the cluery
size and the percentage of moving queries on the response
time of the SOLE operator. The nunlber of outstanding
queries is fixed to 30K. The response time increases wit11
the increase in both the query size and the percentage
of moving queries. However, the SOLE operator is less
sensitive to the percentage of moving queries than to the
query size. Increasing the percentage of mo\ring queries
results in a slight increase in response time. This per-
formance indicates that SOLE call efficiently deal with
moving queries in the same performance as with station-
ary queries. On the other hand, increasing the query size
from 0.01% to 1% only doubles the response time (from
around 12 insec to around 24 msec) for va.i.ious moving
percentages.

7.6 Load Shedding: Accuracy in Query Ans\ver

Figures 23a and 23b compare the perforinai~ce of query
and object load shedding techniques for processing 1Ii
and 25Ic queries with vai-ious sizes. respectively. Our per-
formance iileasure is the reduced load to achieve a ceratin
query accuracy. \Vhen the systeiu is overloaded. we vary
the required accuracy froin 0%) to 100%. I11 degenerate
cases, setting the accura,cy t o 100%~ requires keeping the
whole menlory load (100% load) while setting t,he accu-
racy to 0% requires deleting all memory load. The bold
diagonal line in Figure 23 represents the required accu-
racy. I t is "expected" that if we ask for m.%, accurac!,, we

~t>"j;I1Q __

"" ~h"j ,n<) ___

(' - ~

l' (,_ 1 {'. ~ C'.'; CO. r. C', ~ 0.6 (I

(·"cr.,- £, ."C

(a) Query area (b) Cache area (a) Number of queries (b) Query size & Per
cent of moving queries

13

Fig. 21 Data size in the query and cache areas.

actual values are depicted in the table in Figme 20b. For
small query sizes (e.g., 0.01%) with sharing. SOLE sup
ports more than 60K queries, which is almost 8 times
better than the case of non-sharing. The performance of
sharing increases with the query size where it becomes 20
times better than non-sharing in case of quer~' size 1% of
the space. The main reason of the increasing performance
with the size increase is that sharing benefits from the
overlapped areas of continuous queries. Objects that lie
in any overlapped area are stored only once in the shar
ing case rather than multiple times in the non-sharing
case. "Vith small query sizes, overlapping of query areas
is much less than the case of large query sizes.

Figures 21a and 21b give the memory requirements
for storing objects in the query region and the query
cache area, respectively, for 1K queries over lOOK mov
ing objects. In Figure 21a, for large query sizes (e.g., 1%
of the space), a non-shared execution would need a mem
ory of size 1M objects, while in SOLE. we need, at most,
a memory of size lOOK objects. The main reason is that
with non-sharing, objects that are needed by multiple
queries are redundantly stored in each query buffer, while
with sharing, each object is stored at most once in the
shared memory buffer. Thus. in terms of the query area,
SOLE has a t~n times performance advantage over the
non-shared case. Figure 21 b gives the memory require
ment for storing objects in the cache area. The behavior
of the non-sharing case is expected where the memory re
quirements increase with the increase in the query size.
Surprisingly, the caching overhead in the case of sharing
decreases with the increase in the query size. The main
reason is that with the size increase, the caching area of
a certain query is likely to be part of the actual area of
another query. Thus, objects that are inside this caching
area are not considered an overhead, where they are part
of the actual answer of some other query.

7.5 Scalable Execution: Response Time

Figure 22a gives the effect of the number of concurrent
continuous queries on the performance of SOLE. The
number of queries varies from 5K to 50K. am perfor-

Fig. 22 Response time in SOLE.

mance measure is the average response time. The re
sponse time is defined as the time interval from the ar
rival of object P to either the time that P appears at
the output of SOLE or the time that SOLE decides to
discard P. "Ve run the experiment twice: once with only
stationary queries, and the second time with only moving
queries. The increase in response time with the number
of queries is acceptable since as we increase the number
of queries 10 times (from 5K to 50K), we get only twice
the increase in response time in the case of stationary
queries (from 11 to 22 msec). The performance of moving
queries has only a slight increase over stationary queries
(2 msec in case of 50K queri es).

Figure 22b gives the effect of varying both the query
size and the percentage of moving queries on the response.
time of the SOLE operator. The number of outstanding
queries is fixed to 30K. The response time increases with
the increase in both the query size and the percentage
of moving queries. However, the SOLE operator is less
sensitive to the percentage of moving queries than to the
query size. Increasing the percentage of moving queries
results in a slight increase in response time. This per
formance indicates that SOLE can efficiently deal with
moving queries in the same performance as with station
ary queries. On the other hand, increasing the query size
from 0.01 % to 1% only doubles the response time (from
around 12 msec to around 24 msec) for various moving
percentages.

7.6 Load Shedding: Accuracy in Query Answer

Figures 23a and 23b compare the performance of query
and object load shedding techniques for processing II<
and 25K queries with various sizes, respectively. Our per
formance measure is the reduced load to achieve a ceratin
query accuracy. "Vhen the system is overloaded, we vary
the required accuracy from 0% to 100%. In degenerate
cases, setting the accuracy to 100% requires keeping the
whole memory load (100% load) while setting the accu
racy to 0% requires deleting all memory load. The bold
diagonal line in Figure 23 represents the required accu
racy. It is "expected" that if we ask for m% accuracy, we

(a) 1K Queries (b) 25K Queries

Fig. 23 Load Vs. Accuracy.

Fig. 25 Perfornlance of Object Load Sheddil~g.

reduced area. Such tuples are still of int,erest to ot,lier
outstanding queries.

Figure 25 focuses on the performance of object load
shedding. The rec11lil.ed reduced load varies from 10%. to
90% while the number of queries varies from l l i to 321i.
This experiment shonrs that object load sl1edcling is scal-
able and is stable 1~11en i~lcreasing the number of qt~eries.
For example: u~hen reducing the memory load to 90%. we
consistently get an accl~racj~ around regardless of
the number of queries. Such consistent behavior appears
in various reduced loads.

(a) 70% Accuracy (b) 90% Accuracy

7.7 Loa,d Shedding: Scalability wit'l1 Load Shedding
Fig. 24 Reduced load for a certain accuracy.

will need to keep only m.% of the memory load. Thus:
reducing the memory load to he Ion-er than the diago-
nal line is considered a gain over the "expected" behav-
ior. The object load shedding always inaint,ains better
performance than that of the query load shedding. For
example; in the case of II< clueries, to achieve an aver-
age accuracy of 90%,: we need to keep track of only 85%
of the memory load in the case of object load shedding
\vl]ile 97% of the memory is needed in the case of query
load shedding. The perforinance of both load shedding
techniques is worse \vit,h the increase in the number of
queries to 25K. However, the object load shedding still
keeps a good performance where it is allnost equal to
the "expect,ed" performance. The performa.nce of query
load shedding is dra~ilatically degraded where we need
more than 90% of the memory load to achieve only 20%
accuracy.

Figures 24a a i d 24b compare the performance of
query and object load shedding to achieve a,n accuracy of
70% and 90%'; while varying the number of queries froin
21i to 321<. The object load shedding greatly outperfornls
the q.uery load shedding and results in a better perfor-
mance than t,he "expected' reduced load for all query
sizes. The i i i a i ~ ~ reason behind the had performance of
query load slledding is t,l]at in the case of a large number
of queries. there are high overlapping areas. Thus, the
reduced area of a certain query is highly likely to over-
lap otl~er queries. So, even though we reduce the query
area. we cannot drop any of the tuples that lie in the

Figure 26a gives the ra.tio of the number of sl~pportecl
queries with query and object load shedding technic~ues
over the sharing ca,se with no load shedding. All queries
are supported with a n ~ i n i ~ n u ~ n accuracy of go%,. De-
pending on the query size, query load shedding can sup-
port up to 3 times more queries thail the case u.itl1 no
load shedding. This indicates a ratio of up to 60 times
better than the no]]-sharing cases (refer to the table in
Figure 20h). On the other hand: object load shedding has
111uch better scalable performance than that of query load
shedding. \Vit,h object load shedding SOLE can ha.ve up
to 13 times more queries than the case of no load shed-
ding, which indicates up to 260 times than the case of
no sharing.

Figure 26b gives the performance of the query and
object load shedding techniques in terms of ma.inta.ining
the average query accuracy with the arrival of continu-
ous queries. The horizontal access advances with time to
represent the arrival of each conti~luous query. With tight
memory resources. the memory is c o n s ~ ~ ~ n e d completely
with the arrival of a.bout 1200 queries. At this point, the
process of loatd shedding is triggered. The required mem-
ory consuinption level is set to 90%. Since qu.ery load
shedding inlinediately drops tuples from nlemory: the
query a.ccuracy is dropped sharply to 90%). 111 contrast., in
object 1oa.d shedding: the accuracy degrades slonily. With
the a,rrival of more queries, query load shedding ti-ies to
slowly enhance it's perfor~nance. However: the memory
consumption is faster t ' l~an the recovery of query load
shedding. Thus. soon. we mill need to drop sonle more
tuples fro111 memorj. that will result in less accuracy.

14

,.. ~I

~I
(a) IK Queries

Fig. 23 Load Vs. Accuracy.

(a) 70% Accuracy

"'UC-lj" IA'dc:l :;hc'~d;n" - t:
,II:J""" L<'~cl :;hc'dd,n')

(b) 25K Queries

',JUC',' I""ud sh<'ddinQ ---B-
"t'Jec-~ 1"""dSh<'dji,,'l_

(b) 90% Accuracy

Fig. 25 Performance of Object Load Shedding.

reduced area. Such tuples are still of interest to other
outstanding queries.

Figure 25 focuses on the performance of object load
shedding. The reqnired reduced load varies from 10<Jc to
90% while the number of queries varies from lK to 32K.
This experiment shows that object load shedding is scal
able and is stable when increasing the number of queries.
For example, when reducing the memory lond to 90<Jc. \ye
consistently get an accuracy around 94% regardless of
the number of queries. Such consistent behavior appears
in various reduced loads.

Fig. 24 Reduced load for a certain accuracy.

will need to keep only m% of the memory load. Thus,
reducing the memory load to be lower than the diago
nal line is considered a gain over the "expected:: behav
ior. The object load shedding always maintains better
performance than that of the query load shedding. For
example, in the case of lK queries, to achieve an aver
age accuracy of 90%, we need to keep track of only 85%
of the memory load in the case of object load shedding
while 97% of the memory is needed in the case of query
load shedding. The performance of both load shedding
techniques is worse with the increase in the number of
queries to 25K. However, the object load shedding still
keeps a good performance where it is almost equal to
the "expected" performance. The performance of query
load shedding is dramatically degraded where we need
more than 90% of the memory load to achieve only 20%
accuracy.

Figures 24a and 24b compare the performance of
query and object load shedding to achieve an accuracy of
70% and 90%, while varying the number of queries from
2K to 32K. The object load shedding greatly outperforms
the query load shedding and results in a better perfor
mance than the "expected" reduced load for all query
sizes. The main reason behind the bad performance of
query load shedding is that in the case of a large number
of queries, there are high overlapping areas. Thus, the
reduced area of a certain query is highly likely to over
lap other queries. So, even though we reduce the query
area, we cannot drop any of the tuples that lie in the

7.7 Load Shedding: Scalability with Load Shedding

Figure 26a gives the ratio of the number of snpported
queries with query and object load shedding techniques
over the sharing case with no load shedding. All queries
are supported with a minimum accllracy of 90%. De
pending on the qnery size, query load shedding can sup
port up to 3 times more queries than the case with no
load shedding. This indicates a ratio of up to 60 times
better than the non-sharing cases (refer to the table in
Figure 20b). On the other hand, object load shedding has
much better scalable performance than that of query load
shedding. With object load shedding SOLE can have up
to 13 times more queries than the case of no load shed
ding, \vhich indicates up to 260 times than the case of
no sharing.

Figure 26b gives the performance of the query and
object load shedding techniques in terms of maintaining
the average query accuracy with the arrival of continu
ous queries. The horizontal access advances with time to
represent the arrival of each continuous query. \Vith tight
memory resources, the memory is consumed completely
with the arrival of about 1200 queries. At this point, the
process of load shedding is triggered. The required mem
ory consumption level is set to 90%. Since query load
shedding immediately drops tuples from memory, the
CJuery accuracy is dropped sharply to 90%. In contrast, in
object load shedding, the accuracy degrades slowly. With
the arrival of more queries, query load shedding tries to
slowly enhance its performance. However, the memory
consumption is faster than the recovery of query load
shedding. Thus, soon, we will need to drop some more
tuples from memory that will result in less accuracy.

I . . L I
" . , <. 500 i<l<,LI , 5 0 0 :Dull 'LOO 20111,

I l C I:un.bc, s, vue, ,c* ,rnr "r u n n c ,

(a) Ratio (b) Query Arrival

Fig. 26 Scalability \vitll Load Shedding

T h e bellavior continues with txvo contradicting actions:
(1) Query 1oa.d shedding tends t o enhance t h e accuracy
by retaining t h e original query size, and (2) T h e arrival
of more queries cons~unes memory resources. Since t h e
secoild action is faster tllan t h e first one: t h e perfor-
inance has a zigzag behavior tha t leads t o reducing the
query accuracy. O n the other ha.nd. object load shedding
does not, suffer from this drawback. Instead: due t o t h e
smartness of choosiilg victim objects, object load shed-
ding always maintains sufficient. accuracy with ininiin~uin
memory load.

8 Conclusion

We presented t h e Sculnble On.-Line Execution algorithin
(SOLE, for short) for con t . inuo~~s and on-line evaluation
of concun-ent c o n t i n ~ ~ o u s spatio-temporal clueries over
spatio-temporal da,ta streams. SOLE is a n in-memory
algorithin t h a t ut'ilizes the scarce inelnory resources ef-
ficiently by keeping track of only those objects t h a t a re
considered signi$cant. SOLE is a unified framework for
s tat ionary and moving queries t h a t is encapsulated into
a physical pipelined query operator. To cope with in-
tervals of high arrival rates of objects and/or queries,
SOLE utilizes loatl shedding techniques t h a t a.im t o sup-
por t more continuous queries, yet with a n approximate
answer. Two load shedding techniql~es were proposed:
namely: query load shedding and object load shedding.
Experimental results based o n a real iinpleinentation of
SOLE inside a prototype d a t a s t ream inanageinent sys-
ten1 show t h a t SOLE can support u p to 20 tiines inore
continuous queries than the case of dealing with each
query separately. Wi th object loa,d shedding, SOLE can
support up t o 260 t,imes inore queries than t h e case of
n o sharing.

References

1. Abadi: D., Ahmad! Y.. Balakrishnan: H., Ba.lazinska. hl.,
Cetintemel, U.: Cherniack, h l , H\\rang, J.H., Ja.nott.i. J.!
Lindner, W.. hladden: S.: Rasin. A.. St.onebraker, h.1.:

Tatb~ll. N.: Xing: Y.: Zdonik. S.: The Design of the Rore-
alis Stream Processing Engine. In: Proceedings of the In-
bernational Conference on Innovative Data Syste~ns Re-
search: CIDR (2005)

2. Abadi: D.J.: Carney: D. , Cetintemel: U.. Cherniack: hl.:
Convey, C.: Lee, S.. Stonebra.ker, hl.: Tatbul. N., Zdonik,
S.B.: Aurora: A New h,lodel and Architecture for Data
Stream hlanagement. VLDB Journal 12(2) (2003)

3. Arasu, A., Widom, J.: Resource Sliaring in Continuous
Sliding-\Vindo\\f Aggregates. In: Proceedings of the In-
ternational Conference on Very Large Data Bases. \rI,DB
(2004)

-1. Ayad, A.: Naughton: J.F.: Static 0pt.imization of Con-
junctive Queries with Sliding \Vindo\vs Over 1nfi11it.e
St.rean~s. 111: Proceedings of the AChl International Con-
ference on hlanagement of Data: SIGh.IOD (2004)

5. Babcock, B.: Datar: hsl., hlota~ani: R.: Load Shedding for
Aggregation Queries over Data Streams. 111: Proceed-
ings of the International Conference on Data En~ineer-
in:. ICDE (2004)

-
6. Babu. S.. Widom. J . : Continuous Queries o\.er Data

s t r e a k . ' ~ 1 G h . 1 0 ~ Record 30(3) (2001)
7 . Brilllchoff. T.: A Fra.me\\rork for Generating Net.\\.ork-

Bascd \loving Objects. Geolnfornlatica 6(2) (2002)
8. Cai, Y.. Hua: K.A.! Cao. G.: P1,ocessing Range-

hlonitoring Queries on Heterogeneous hlobile Objects.
In: Proceedings of the Internat.iona1 Conference 011 hlo-
bile Data. h?a.nagement: h1Dh.I (200:l)

9. Chakka: V.P., Everspaugh! A.: Patel. 3.31.: Indexing
Large Tra.ject,ory Data Sets with SETI. In: PI-oceedings
of the Internat,ional Conference on Innovative Data Sys-
tems Research, CIDR (2003)

10. Cha.ndrasekaran, S., Cooper. 0.: Deshpailde: A..
Franklin, hl.J., Hellerstein, J.hl.: I-long. \\:.: I<risl~na-
n~urtliy, S.: h?adden: S.: Raman. V.. Reiss: F.: Shah:
h1.A.: TelegraphCQ: Continuous Dataflow Processing for
an Uncerta.in World. In: Proceedings of the International
Conference 011 Innova.t,ive Data. Syst,ems R.esearch. CIDR
(2003)

11. Cl~andrasekaran, S.. Franklin. h.1.J.: PSoup: a s!-stem for
strean~ing queries over streaming data. \ ' L D ~ Journal
12(2): 140-156 (2003)

12. Che l~ ; J.: DeWitt, D.J.. Tian, F.. \\'ang: Y.: Nia-
garaCQ: A Scala.ble Continuous Quer!. System for Inter-
net Databases. In: Proceedings of the ACh.1 International
Conference 011 h?anagelnent of Data.. SIGhIOD (2000)

13. Dobra.: A., Ga.rofa.laltis, h.1.N.. Gehrke, J.: Rastogi. R.:
Static 0pt.imization of Conjunctive Queries \\;it11 Sliding
\Vindo\\~s Over Infinite Streams. In: Proceedings of the
Interna.tiona1 Conference on Extending Database Tech-
nolog~r: EDBT (2004)

14. Gedik, B.! Liu, L.: ILlobiEyes: Distributed Processing of
Continuously hfoving Queries 011 hIo\:ing Object,s in a.
hIobile System. In: Proceedings of the International
Conference on Extendine: Dat.abase T e c l ~ n o l o ~ ~ . EDBT - u.

(2004)
15. Golab, I,.: Ozsu: h1.T.: Processing Sliding \\?indo\\: hlulti-

Joins in Cont.inuous Queries over Data Streams. In: Pro-
ceedings of the International Conference on Very Large
Data Bases, VLDB (2003)

16. Hanlmad. h.1.A.: Franklin. h.1.J.. Aref. \Y.G.: Elma-
garmid, A.K.: Scheduling fbr shared \\:indon: joins over
data st.reams. In: Proceedillgs of the International Con-
ference on Very Large Data Bases. VLDB (2003)

17. Mamn1a.d: h1.A.. Ghanem: T.h.1.: Aref. \\;.G.: Elma-
garmid, A.K., hlokbel, h1.F.: Efficient. pipelined execu-
tion of sliding-\\:indo\\i queries over data strean~s. Tech.
Rep. T R CSD-03-035, Purdue University Department of
Comput.er Sciences (2003)

18. Hamnlad, hl.A., h,Iokbel: h1.F.. Ali. h1.H.. Aref. \\;.G.;
Catlin. A.C.: Ellnagarmid. A.K.: Eltabakh. h1.: Elfek!:.

15

8 Conclusion

TatbuL N., Xing, Y., Zdonik, S.: The Design of the Bore
alis Stream Processing Engine. In: Proceedings of the In
t.ernational Conference on Innovative Data SYstems Re-
search, ClDR (2005) ..

2. Abadi, D.J., Carney, D., CetintemeL U., Cherniack, I'll.,
Convey, C., Lee, S., Stonebraker, I'll., TatbuL N., Zdonik,
S.B.: Aurora: A New 1\lodel and Architecture for Data
Stream 1\lanagement. VLDB Journal 12(2) (2003)

3. Arasu, A., \,yidom, J.: Resource Sharing in Continuous
Sliding-Window Aggregates. In: Proceedings of the In
ternational Conference on Very Large Data Bases, VLDB
(2004)

4. Ayad, A., Naughton, J.F.: Static Optimization of Con
junctive Queries with Sliding Windows Over Infinite
Streams. In: Proceedings of the ACI\I International Con
ference on Management of Data, SIGMOD (2004)

5. Babcock, B., Datar, 1\'1., Motwani, R.: Load Shedding for
Aggregation Queries over Data St.reams. In: Proceed
ings of the International Conference on Data Engineer
ing, ICDE (2004)

6. Babu, S., \Vidom, J.: Continuous Queries over Data
Streams. SIGMOD Record 30(3) (2001)

7. Brinkhoff, 1'.: A Framework for Generating Network
Based I\10ving Objects. GeoInformatica 6(2) (2002)

8. CaL Y., Hua, K.A., Cao, G.: Processing Range
I\lonitoring Queries on Heterogeneous I\lobile Objects.
In: Proceedings of the International Conference on 1\10
bile Data Management, !\IDM (2004)

9. Chakka, V.P., Everspaugh, A., Patel, J.I\I.: Indexing
Large Trajectory Data Sets with SETI. In: Proceedings
of the International Conference on Innovative Data Svs-
tems Research, CIDR (2003) ..

10. Chandrasekaran, S., Cooper, 0., Deshpande, A..
Franklin, I\I.J., Hellerstein, J.I\I., Hong. W., Krishna
murthy, S., Madden, S., Raman, V .. Reiss, F., Shah,
!\I.A.: TelegraphCQ: Continuous Dataflow Processing for
an Uncertain vVorld. In: Proceedings of t.he International
Conference on Innovative Data Svstems Research. CIDR
(2003) ..

11. Chandrasekaran, S., Franklin, l'd.J.: PSoup: a system for
streaming queries over streaming data. VLDB Journal
12(2),140-156 (2003)

12. Chen, J., DeWitt, D.J., Tian, F., \Vang, Y.: Nia
garaCQ: A Scalable Continuous Query System for Inter
net Databases. In: Proceedings of the ACM International
Conference on Management of Data, SIGI\IOD (2000)

13. Dobra, A., Garofa.Jakis, M.N., Gehrke, J., Rastogi, R.:
Static Optimization of Conjunctive Queries with Sliding
\Vindows Over Infinite Streams. In: Proceedings of the
International Conference on Extending Database Tech
nology, EDBT (2004)

14. Gedik, B., Liu, L.: IvlobiEyes: Distributed Processing of
Continuously Moving Queries on I\10ving Objects in a
I\Iobile System. In: Proceedings of the Int.ernational
Conference on Extending Databa.~e Technology, EDBT
(2004)

15. Golab, L., Ozsu, 1\1.1'.: Processing Sliding Window I\lulti
Joins in Continuous Queries over Data Streams. In: Pro
ceedings of the International Conference on Very Large
Data Bases, VLDB (2003)

16. Haml11ad, I\I.A., Franklin. I\I.J .. Aref. W.G., EIma
garl11id, A.K.: Scheduling for shared window joins over
data streams. In: Proceedings of the Internat.ional Con
ference on Very Large Data Bases. VLDB (2003)

17. Hammad, M.A., Ghanem, 1'.1\1., Aref, \V.G., Ell11a
garmid, A.K., I\l0kbel, I\I.F.: Efficient. pipelined execu
tion of sliding-window queries over data st.reams. Tech.
Rep. TR CSD-03-035, Purdue University Department of
Computer Sciences (2003)

18. Hammad, M.A., Mokbel, I\J.F, Ali, I\I.lL Aref. W.G.,
Catlin. A.C., Elmagarmid, A.K., Eltabakh. I\L Elfeky,

L'UC'-,' l.cud ~h<:'dti; n<,;
,'bJ"Cll",,,d~h<:'dd;~Q-

(b) Query Arrival

1,"JC1'..- ~ 1. C

(a) Ratio

References

Fig. 26 Scalability with Load Shedding.

1. Abadi, D., Ahmad, Y., Balakrishnan, H., Balazinska, I'll.,
Cetintemel, U., Cherniack, l'vI., Hwang, J.B., Janotti, J.,
Lindner, vV., 1\ladden, S., Rasin. A., Stonebraker, M.,

We presented the Scalable On-Line Execution algorithm
(SOLE, for short) for continuous and on-line evaluation
of concurrent continuous spatio-temporal queries over
spatio-temporal data streams. SOLE is an in-memory
algorithm that utilizes the scarce memory resources ef
ficiently by keeping track of only those objects that are
considered significant. SOLE is a unified framework for
stationary and moving queries that is encapsulated into
a physical pipelined query operator. To cope with in
tervals of high arrival rates of objects and/or queries,
SOLE utilizes load shedding techniques that aim to sup
port more continuous queries, yet with an approximate
answer. Two load shedding techniques were proposed,
namely, query load shedding and object load shedding.
Experimental results based on a real implementation of
SOLE inside a prototype data stream management sys
tem show that SOLE can support up to 20 times more
continuous queries than the case of dealing with each
CJuery separately. With object load shedding, SOLE can
support up to 260 times more queries than the case of
no sharing.

The behavior continues with two contradicting actions:
(1) Query load shedding tends to enhance the accuracy
by retaining the original query size, and (2) The arrival
of more queries consumes memory resources. Since the
second action is faster than the first one, the perfor
mance has a zigzag behavior that leads to reducing the
query accuracy. On the other hand, object load shedding
does not suffer from this drawback. Instead, due to the
smartness of choosing victim objects, object load shed
ding always maintains sufficient. accuracy with minimum
memory load.

h1.G.: G l~auem, T.M., G\vadera: R . , Ilyas. 1.F.: hlarzouk.
hl . , Xiong, X.: Nile: A Query Processing Engine for Data
Streams (Demo). In: Proceedings of the lnterna.t.ioi~al
Conferelice on Data Engineering, ICDE (2004)

19. http: /~~~~~~v.fcc.gov/9ll/enl~anced/:
20. Hu, .. Xu, .I., Lee, D.L.: A Generic Frame~vork for hlon-

i t~or ing '~ont inuous Spatial Queries over hloving object,^.
In: Proceedings of t he AChl International Confere~ice on
hlanagement of Data., SIGMOD. Baltimore: h lD (2005

21. I~verks, G.S.: Samet, H., Smith, K.: Continuous d -
Nearest Neighbor Queries for Cont.inuousl~- hlo\.ing
Points with Updates. In: Proceedings of the Int,eri iatio~~al
ConPerence on Very Large Dat.a. Bases, VLDB (2003)

22. .Jensen, C.S., Lin, D . , Ooi, B.C.: Query aiid Update
Efficient B+-Tree Based Indexing of hlo\:ing Objects.
In: Proceedings oP the International Conference on Very
Large Data Bases, VLDB (2004)

23. K\von. D. . Lee! S.. Lee; S.: Indexing t h e Current. Posit.ions
of Moving 0bject.s Using the Lazy Update R-tree. 111:
Proceedings 01 t.he International Confere~lce on hlobile
Data. h~lanagenlent, h,lDh,l (2002)

24. Lazaridis. I . : Porkae\\l: K. , hiehrotra: S.: Dynamic
Queries over hslobile Objects. In: Proceedings of the Inter-
national Conference o n - ~ x t e n d i n g Database Techiiolog..
E D B T (2002)

25. Lee. hl.l,.. Hsu. 1V.. Jensen. C.S.. Teo. I<.I,.: S u u u o r t i ~ ~ n
Frequent upda te s 61 R - ~ r & s : ~ ' ~ o t t ' o m - U P ~;;roaclL - - .
111: ~ roceed ings of t he International ConPerence on Very
Large Data Bases. VLDB (2003)

26. hladden. S.. Shah. hl.. Hellerstein. J .h l . . Rarnan. V.:
Cont . i i~uous l~~ adaptive ~on t inuons queries 'over streams.
111: P roceed in~s of the ACM Internat~ional Conference 011

h,lanagement, ;P Data , SIGh4OD (2002)
27. h.lokbel, h1.F.. Aref, 1V.G.: GPAC: Generic and Progres-

sive Processing of hlobile Queries over &.lobile Data . 111:
P roceed in~s of t he Internat,ional Conference on hlobile
Da ta PlanYagelnent. h/IDhl 2005

28. hIokbel.hI.F.,Aref,W.G.. h b am rusch.S.E.l'rabl1akaP
S.: To\\.ards ~cala .b le ~oca.t ion-aware Services: Require-
ments and Research Issues. In: Proceedings of the AChl
Symposium on Advances in Geographic Information Sys-
tems: ACh4 G I s (2003)

29. h,lokbel: h1.F.: Xiong, X . , Aref, 1V.G.: SlN1-2: Scalable
Incremental Processing of Cont~inuous Queries in Spatio-
temporal Databases. In: Proceedings of t he ACI\I Int,er-
nationa.1 Conference on Manaeement of Data. SIGh.lOD .,
(2004)

30. hllokbel, h,l.F., Xiong: X.: Aref, W.G.! Halnbrusch. S.:
Prabhakar, S.. Ha.mma.d, h.1.: PLACE: A Query Processor
for Handling Real-time Spatio-temporal Da ta St.reams
(Denlo). In: Proceedings of t he Int,ernational Conference
on Very Large Data. Rases, VLDB 2004)

31. hlokbel, R1.F.. Xiong, X.: Hamlna 6 : hl.A.. Aref: 1V.G.:
Continuous Query Processing of Spatio-temporal Data
Streams in PLACE. In: Proceedings oP t h e second
workshou on S~atio-Teniuoral Database hlaiianen~ent.

1' S T D B ~ ~ (2004
u

32. h l o t ~ ~ a n i . R.. \,iidoin. J . , Arasu, A , . Babcock. B.. Babu.
S.: ~ a t a r , h'l., hlanku, G.S., ~ l s t o d , C.: Ros~ns te in : J . ;
\Tarma: R. : Query Processing, Approximation. and Re-
source hlanageinent in a. Da.t,a Stream hlanagenlent. Sys-
tem. In: Proceedings of t he International Conference on
Innovat~ive Da ta Syst,ems Research, CIDR (2003)

33. h.louratidis: K.: Papadias; D. , Ha.djieleft.heriou. hl.: Con-
ceptual Part.itioning: Ail Efficiei~t h:Iet,llod for Cont.inu-
ous Nearest Neighbor I\Ionit~oring. 111: Proceedings oP the
AChl International Conference on h'lanagement of Data.
SIGh.IOD. Baltimore: h lD (2005)

34. Nadeem, T.: Dashtinezhad, S.: Liao, C., lftode: L.: Traf-
ficview: A Scalable Traffic hlonitoring System. In: Pro-
ceedings of t.lle International Conrerence 011 hlobile Data
h,lana.gen~ent: hIDhl: pp. 13-26. Berkeley, CA (2004)

35. Patel . J . \ l . . Clleli. Y. . Chakka, V.P.: STRIPES: An Ef-
ficient Index for Predicted Trajectories. In: Proceedings
of the AChl In t e r~~a l iona l ConPerence on hlaila.geinent of
Data, SIGAIOD (2004)

36. Prabllakar. S.: Xia.. Y.. Kalash~iikov. D.V.. Aref, 1V.G.:
Hambrusch. S.E.: Quer)- Indexing and \ielocity Con-
strained Indexing: Scalable Techniques for Continuous
Queries on h,lo\;ing Objects. lEEE Trans. 011 Co~npu t -
ers 51(10) (2002)

37. Reiii\vald, B.. Pirahesh, H.: SQL Open Heterogeneous
Data Access. In: Proceediilgs of the AChd I~~ te rna t iona l
Conference OII Rlaiiagel~~ent of Dat.a: SlGhlOD (1998)

38. Rein\vald, B.: Pirahesli, H.: Krisli1~ai~1oort11~~~ G.: Lapis,
G. . Tran, B.T., Vora. S.: Heterogei~eous query processing
t.hrough sql table functions. 111: Proceedings of the Inter-
nat.iona1 Conference OII Data Engineering: ICDE (1999)

39. Sa.lt.enis. S.: Jensen, C.S.. Lerrtenegger. S.T., Lopez,
h1.A.: Indexing the Positions of Cont~inuously h;loving
Objects. In: Proceedings oP t he ACh4 International Con-
ference on hlanagement of Data. SIGh,IOD (2000)

.40. Song, Z.. Roussopoulos. N. : Hasliiiig hloving 0bject.s. In:
Proceedings of the Iiiternational Conference on hlobile
Data hlanagemellt. h1Dhl (2001)

41. n o . Y. : Papadias. D . : Slien, Q.: Contin~ious Nearest,
Neighbor Search. 111: Proceedings of t he International
Coi~ference on Very Large Data Bases. VLDB (2002)

42. Tao, Y.. Papadias, D.: S I I I ~ . J . : T h e TPR*-Tree: An Op-
timized Spatio-teniporal Access hlethod for Predictive
Queries. In: Proceedings of t he International Conference
on Very Large Data Bases, VLDB (2003)

43. Tatbul! N.: Cetintemel. U.; Zdonik. S.B.: Cherniack, hl.:
Stonebraker, hl.: Load Shedding in a Da.ta Streain hslan-
ager. In: Proceedings of the Internat.iona1 Conference on
Very Large Data Bases: V1,DB (2003)

44. Xiong, X.: h'lokbel, h1.F.: Aref. 1V.G.: SEA-CNN: Scal-
able Processing of Coiitinuous]<-Nearest Neighbor
Queries in Spatio-t,emporal Databases. In: Proceedings of
t he 1nterna.tional Conference 011 Dat.a. Engineering, ICDE
(2005)

45. Xiong, X.: h'lokbel, A.I.F.. .Are[: W.G. , Hambrusch~
S.: Prabhakar, S.: Scalable Spatio-temporal Continuous
Query Processing for Location-aware Services. 111: Pro-
ceedings of the International Conference on Scientific and
Statistical Database hlanagement., SSDBh3 (2004)

46. Zhang. J . , Zhu, hl.: Papadias, D.: Tao, Y.: Lee! D.L.:
Location-based Spatial Queries. In: Proceedings of the
AChI Interna.t.iona1 ConPereiice on h,Iana.gement of Data.,
S1Gh:lOD (2003)

16

19.
20.

21.

22.

23.

24.

25.

26.

27.

28.

29.

30.

31.

32

33.

34.

J\I.G., Ghanem, T.M., Gwadera, R., Ilyas, 1.F., J\larzouk.
]\1., Xiong, X.: Nile: A Query Processing Engine for Data
Streams (Demo). In: Proceedings of the International
Conference on Data Engineering, ICDE (2004)
http://www.fcc.gov1911 lenhanced/:
Hu, B., XU, .1., Lee, D.L.: A Generic Framework for J\lon
itoring Continuous Spatial Queries over J\loving Objects.
In: Proceedings of the ACM International Conference on
Management of Data, SIGMOD. Baltil~lOre, J\.JD (2005)
herks, G.S., Samet, H., Snl1th, K .. Contmuous K
Nearest Neighbor Queries for Continuously J\loving
Points with Updates. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB (2003)
Jensen, C.s., Lin, D., Ooi, B.C.: Query and Update
Efficient B+-Tree Based Indexing of J\loving Objects.
In: Proceedings of the International Conference on Very
Large Data Bases, VLDB (2004)
Kwon, D .. Lee, S., Lee, S.: Indexmg the Current Positions
of Moving Objects Using the Lazy Update R-tree. In:
Proceedings of the International Conference on Mobile
Data Management, MDM (2002)
Lazaridis, 1., Porkaew, K., Mehrotra, S.: Dynamic
Queries over Mobile Objects. In: Proceedings of the Inter
national Conference on Extending Database Technology,
EDBT (2002)
Lee, M.L., Hsu, \V., Jensen, C.S., Teo, I<:'L.: Supporting
Frequent Updates in R-Trees: A Bottom-Up Approach.
In: Proceedings of the International Conference on Very
Large Data Bases, VLDB(2003)
Madden, S., Shah, J\1., Hellerstein, J.J\I., Raman. V.:
Continuously adaptive continuous queries over streams.
In: Proceedings of the ACM International Conference on
J\lanagement of Data, SIGMOD (2002)
MokbeL J\1.F., Aref, W.G.: GPAC: Generic and Progres
sive Processing of Mobile Queries over J\cJobile Data. In:
Proceedings of the International Conference on J\lobile
Data Management, MDM (2005)
Mokbel, M.F., Aref, \V.G., Hambrusch, S.E., Prabhakar,
S.: Towards Scalable Location-aware Services: Require
ments and Research Issues. In: Proceedings of the ACJ\I
Symposium on Advances in Geographic Information Sys
tems, ACM GIS (2003)
J\·lokbel, M.F., Xiong, X., Aref, W.G.: SINA: Scalable
Incremental Processing of Continuous Queries in Spatio
temporal Databases. In: Proceedings of the ACM Inter
national Conference on Management of Data, SIGMOD
(2004)
Mokbel, J\cJ.F., Xiong, X., Aref, \V.G., Hambrusch. S.,
Prabhakar, S., Hammad, J\L: PLACE: A Query Processor
for Handling Real-time Spatio-temporal Data Streams
(Demo). In: Proceedings of the International Conference
on Very Large Data Bases, VLDB (2004)
J\lokbeL J\cJ.F., Xiong, X., Hammacl, M.A., Are£' \V.G.:
Continuous Query Processing of Spatio-temporal Data
Streams in PLACE. In: Proceedings of the second
workshop on Spatio-Temporal Database J\lanagement,
STDBJ\I (2004)
Motwani, R., \Vidom, .1., Arasu, A., Babcock, B., Babu,
S., Datal', M., Manku, G.S., Olston, C., Rosenstein, .1.,
Vanna, R.: Query Processing, Approximation, and Re
source Management in a Data Stream Management Sys
tem. In: Proceedings of the International Conference on
Innovative Data Systems Research, CIDR (2003)
J\·louratidis, K., Papadias, D., Hadjieleftheriou, J\L: Con
ceptual Partitioning: An Efficient Method for Continu
ous Nearest Neighbor Monitoring. In: Proceedings of the
ACJ\I International Conference on Management of Data,
SIGMOD. Baltimore, J\1D (2005)
Nadeem, T., Dashtinezhad, S., Liao, C., Iftode, 1,.: Traf
ficView: A Scalable Traffic Monitoring System. In: Pro
ceedings of the International Conference on J\lobile Data
Management, MDM, pp. 13-26. Berkeley, CA (2004)

35. PateL J.J\J.. Chen. Y. Chakka. V.P.: STRIPES: An Ef
ficient Index for Predicted Trajectories. In: Proceedings
of the ACJ\1 Internat ional Conference on J\lanagement of
Data, SIGJ\IOD (2004)

36. Prabhakar. S., Xia, Y .. Kalashnikov. D.V., Are£' \V.G.,
Hambrusch. S.E.: Query I ndexing and Velocity Con
strained Indexing: Scalable Techniques for Continuous
Queries on Moving Objects. IEEE Trans. on Comput
ers 51(10) (2002)

37. Reinwald, B., Pirahesh, H.: SQL Open Heterogeneous
Data Access. In: Proceedings of the ACJI'I International
Conference on J\lanagement of Data, SIGJ\IOD (1998)

38. Reinwald, B., Pirahesh, H., Krishnamoorthy, G., Lapis,
G .. TraiL B.T., Vora. S.: Heterogeneous query processing
through sql table functions. In: Proceedings of the Inter
national Conference on Data Engineering, ICDE (1999)

39. Saltenis. S., Jensen, C.S .. Leutenegger. S.T., Lopez,
J\1.A.: Indexing the Positions of Continuously Moving
Objects. In: Proceedings of the /l.CM International Con
ference on J\lanagement of Data. SIG!\IOD (2000)

40. Song, Z., Roussopoulos. N.: Hashing Moving Objects. In:
Proceedings of the International Conference on Mobile
Data Management, J\1DJ\1 (2001)

41. Tao. Y., Papadias. D., Shen, Q.: Continnous Nearest
Neighbor Search. In: Proceedings of the International
Conference on Very Large Data Bases, VLDB (2002)

42. Tao, Y., Papadias, D., SUIl . .1.: The TPR*-Tree: An Op
timized Spatio-temporal Access J\lethod for Predictive
Queries. In: Proceedings of the International Conference
on Very Large Data Bases, VLDB (2003)

43. Tatbul, N., CetintemeL D., Zdonik, S.B., Cherniack, J\'I.,
Stonebraker, J\L: Load Shedding in a Data Stream J\·lan
ager. In: Proceedings of the International Conference on
Very Large Data Bases, VLDB (2003)

44. Xiong, X., J\lokbel, J\1.F., Are£' W.G.: SEA-CNN: Scal
able Processing of Continuous l<-Nearest Neighbor
Queries in Spatio-temporal Databases. In: Proceedings of
the International Conference on Data Engineering, ICDE
(2005)

45. Xiong, X., J\·lokbeL M.F., Are£' \V.G., Hambrusch,
S., Prabhakar, S.: Scalable Spatio-temporal Continuous
Query Processing for Location-aware Services. In: Pro
ceedings of the International Conference on Scientific and
Statistical Database J\lanagement, SSDBM (2004)

46. Zhang, .1., Zhu, M., Papadias, D., Tao, Y., Lee, D.L.:
Location-based Spatial Queries. In: Proceedings of the
ACJ\I International Conference on Management of Data,
SIGMOD (2003)

	SOLE: Scalable On-Line Execution of Continuous Queries on Spatio-temporal Data Streams
	Report Number:
	

	tmp.1307986960.pdf.OjLaz

