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Abstract

Several emerging applications warrant mining and discovering hidden frequent pat-

terns in time series databases, e.g., sensor networks, environment monitoring, and

inventory stock monitoring. Time series databases are characterized by two features:

(1) The continuous arrival of data and (2) the time dimension. These features raise

new challenges for data mining such as the need for online processing and incremental

evaluation of the mining results. In this paper, we address the problem of discovering

frequent patterns in databases with multiple time series. We propose an incremental

technique for discovering the complete set of frequent patterns, i.e., discovering the

frequent patterns over the entire time series in contrast to a sliding window over a

portion of the time series. The proposed approach updates the mining results with the

arrival of every new data item by considering only the items and patterns that may be

affected by the newly arrived item. Our approach has the ability to discover frequent

patterns that contain gaps between patterns’ items with a user-defined maximum gap

size. The experimental evaluation illustrates that the proposed technique is efficient
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and outperforms recent sequential pattern incremental mining techniques.

Keywords: Time series databases, frequent patterns, incremental mining.

1 Introduction

Several emerging applications warrant mining and discovering hidden patterns in time se-

ries databases, e.g., sensor networks, stock prices, environment monitoring, and inventory

stock monitoring. A general form of time series databases is that the database consists of

sequences of itemsets. For example, inventory stock databases consist of sequences of cus-

tomers’ transactions where each transaction is a set of items. However, a special form of

time series databases consists of sequences of items instead of itemsets. There are several

time series applications, e.g., sensor networks, stock prices, and environment monitoring

that generate sequences of simple items, e.g., numeric values. Thus, it is crucial to provide

for these applications algorithms that are more efficient than general sequence mining algo-

rithms, e.g., [7, 13, 14, 19]. Our focus in this paper will be on mining time series databases

that consist of sequences of items.

A time series database consists of one or more time series where each time series is a

collection of items ordered based on their timestamps. Time series databases are character-

ized by two features: (1) The continuous arrival of data and (2) the time dimension. These

features introduce several challenges to data mining techniques. For example, since items

are arriving continuously to the database, it will be very expensive to perform multiple scans

over the data to discover interesting patterns. Instead, mining techniques need to incremen-

tally update the mining results as data arrives, e.g., [7, 13, 14]. The timing constraint and

the order among the items also add more challenges to data mining techniques. For example,

mining techniques that discover frequent patterns in market-analysis databases, e.g., [2, 11],

assume that there is no order among the items in the same transaction. Such techniques

are not suitable for mining time series databases in which the order among the items is of

concern. Another challenge is that patterns of interest may contain gaps [19], i.e., patterns’
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items are not necessarily contiguous, which makes the discovery of such patterns a difficult

task.

In this paper, we propose an incremental algorithm for discovering the complete set

of frequent patterns in time series databases, i.e., we discover the frequent patterns over

the entire time series in contrast to applying a sliding window over a portion of the time

series. The proposed approach has the ability to discover frequent patterns that contain

gaps between patterns’ items with a maximum user-defined gap size. With the arrival

of each new data item, the algorithm updates the existing mining results incrementally.

We define a set of states for the patterns in the database depending on whether they are

frequent or non-frequent. Based on the transitions among these states, the algorithm takes

certain actions to update the existing frequent patterns. To allow gaps within the frequent

patterns, the algorithm maintains data structures that store information about the most

recent portion of each time series that can contribute to the discovery of future frequent

patterns. The size of this portion depends on the user-defined maximum gap size. To

achieve scalability, the proposed algorithm uses the external memory with efficient indexing

and searching mechanisms to handle the case in which the size of the time series database

cannot fit entirely into memory.

The contributions of this paper are summarized as follows:

1. We propose an incremental algorithm for discovering the complete set of frequent

patterns in time series databases. The algorithm updates the existing frequent patterns

with the arrival of each new item to the database.

2. We allow the frequent patterns to contain gaps. The maximum gap size between any

two consecutive items is less than a user-defined gap threshold.

3. We introduce several optimization techniques to enhance both the processing time and

storage requirements of the proposed algorithm. For example, we define a property
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of the time series frequent patterns that significantly reduces the number of candidate

patterns, i.e., patterns likely to be frequent, that we need to process.

The rest of the paper proceeds as follows. In Section 2, we discuss the related work. In

Section 3, we present our terminology and the problem definition. In Section 4, we introduce

the data structures that we maintain during the execution of the algorithm. We present the

details of the proposed algorithm in Sections 5 and 6. Section 7 contains the experimental

results and performance evaluation. We conclude the paper in Section 8.

2 Related Work

Mining time series databases has been studied from different perspectives including seg-

menting and approximating time series data, e.g., [18, 22], indexing time series data for fast

similarity search [6, 8], and mining pattern similarity in time series for the purpose of clus-

tering, classification, or identifying trends [5, 12, 15, 21]. With respect to sequential pattern

mining, which is our focus in this paper, several non-incremental techniques have been pro-

posed for mining sequential patterns, e.g., [3, 9, 10, 19]. Most of them depend on the Apriori

property proposed in [2]. These techniques assume a static database and perform multiple

scans over the data to discover sequential patterns. GSP [19] is an Apriori-like technique

that allows the incorporation of gap constraints within the sequential patterns. More recent

approaches for mining sequential patterns are the pattern-growth approaches [16, 4]. Pre-

fixSpan [16] is based on generating the sequential patterns recursively. Its main advantage

is in the use of projected databases instead of the candidate generation step. PrefixSpan is

shown to be faster than Apriori-like techniques including GSP. However, PrefixSpan does

not allow gap constraints. GenPrefixSpan [4] is a generalization of PrefixSpan that allows

sequential patterns to include gaps.

Unlike non-incremental mining, incremental mining for sequential patterns received less

attention. ISM [14] is an algorithm for incremental sequence mining which is based on
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SPADE [24]. ISM mines the database after transforming it into a vertical layout represen-

tation. ISM maintains two lists; “maximally frequent sequences” and “minimally infrequent

sequences”. The main drawback of ISM is the large storage overhead due to the vertical

layout representation of the database and the large size of the maintained lists. Recently,

two incremental techniques, IncSpan [7] and IncSP [13], have been proposed. IncSpan [7]

maintains two thresholds, min supp and µ*min supp, where µ ≤ 1. All the patterns with

support ≥ min supp are considered frequent patterns and are stored in FS list, whereas all

the patterns with support between min supp and µ*min supp are considered semi-frequent

patterns and stored in SFS list. These two lists are searched for any newly formed candidate

pattern to get its support. If the pattern is not found in either lists, then a database scan is

performed to get the pattern’s support. IncSP [13] divides the candidate patterns into two

sets, Xk which is the set of candidate patterns that are currently frequent in the database

and Xk’ which is the set of candidate patterns that are currently not frequent. For the

patterns in Xk, IncSP simply updates their count since IncSP maintains a list of the cur-

rently frequent patterns. However, IncSP needs to perform a database scan for the patterns

in Xk’ because it does not keep information about these patterns. IncSpan and IncSP are

shown to outperform ISM with respect to both storage requirements and processing time.

We should note that all incremental techniques assume batch updates for the database, i.e.,

the database is updated with batches of items. This assumption may not be suitable for

some applications such as monitoring and online decision making.

A key distinction between our algorithm and the existing algorithms, e.g., IncSpan and

IncSP, is that we focus on mining sequences of items instead of itemsets. This is motivated by

the wide range of applications that generate sequences of items, e.g., sensor networks, stock

prices, and environment monitoring applications. Using the proposed algorithm is shown to

be more efficient than using the general sequence mining algorithms for such applications.
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3 Terminology, Assumptions, and Problem Definition

We assume a database D consisting of m time series; D = (T1, T2, · · ·, Tm). Each time

series Ti is composed of a sequence of items associated with timestamps and the items are

sorted in an ascending order based on their timestamps; Ti = (t1, t2, t3, · · ·). A new data

item which arrives to a time series is appended at the end of this time series. The size of

the database |D| is defined as the total number of items that arrived to all time series in the

database. A pattern P of length l is defined as a sequence of l items; P = (p1, p2, · · ·, pl).

A time series Ti is said to contain pattern P with a gap threshold g if the items in P appear

in Ti in the same order and the gap between any two consecutive items is less than or equal

to g, i.e., there exist integers i1, i2, ..., il such that i2 ≤ i1 + g + 1, i3 ≤ i2 + g + 1, · · ·, il ≤

il−1 + g + 1 and p1 = ti1, p2 = ti2, · · ·, pl = til.

The relative support of a data item, say a, in the database is defined as the number of

times a appears in the database divided by |D|. Similarly, the relative support of a pattern,

say P, in the database is defined as the number of times P appears in the database divided

by (|D| - |P| + 1); where |P| is the pattern’s length. Given a user-defined minimum support

threshold min supp, a pattern is said to be frequent if the support is greater than or equal

to min supp, and non-frequent otherwise.

In this paper, we address the following problem: given a database D, a minimum sup-

port threshold min supp, and a maximum allowed gap threshold g, we need to discover the

complete set of frequent patterns in D. Furthermore, as D is updated with the arrival of new

data items, we need to update the discovered frequent patterns as well.

There exist various gap constraints other than maximum gap, e.g., exact gap, minimum

gap, and unlimited gap. Each of these gap constraints has its own applications and usage. The

exact gap constraint requires prior knowledge from users about the exact distance between

the related items. Moreover, exact gap does not accommodate for unexpected and noise

events that may occur because the number of such events is usually unknown. The minimum
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new_born non-frequent 

aged 

Figure 1: Patterns’ state transitions

SID SEQUENCE EXPANDED 
s1 (20) False 
s2 (30) False 
s3 (50) True 
s4 (50, 30) False 
 
                (a) LDS_Ri 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

KEY  ENDING_SEQ 
20 (s1) 
30 (s2, s4) 
50 (s3) 
10 NULL 

 
                     (b) LDS_Li 

Figure 2: LDS data structure

gap and unlimited gap are suitable for applications that allow items that are far away from

each other, over the time dimension, to be related. Maximum gap, which we use in this

paper, balances between the previous constraint types. It allows users to specify a maximum

distance between the related items and accommodates for unexpected and noise events.

With the arrival of new items to the database, the frequency of the existing patterns

changes. We define three states for the patterns in the database; non-frequent, new-born,

and aged (See Figure 1). Initially, all patterns are non-frequent. When enough instances of

the same pattern arrive to the database, i.e., the pattern’s support exceeds min supp, that

pattern switches to the new-born state. The next arrival of an instance of a new-born pattern

switches that pattern to the aged state. A frequent pattern may switch from the new-born

or aged state to the non-frequent state if the pattern’s support relative to the increasing

database size becomes less than min supp. These states and transitions will determine the

actions taken by the algorithm upon the arrival of each new data item.

4 Data Structures

In this section, we describe the data structures that we maintain during the mining process.

These data structures are of 2 types: (1) a local data structure, LDS, that is maintained

separately for each time series in the database, and (2) a global data structure, GDS, that

is shared by all time series in the database. LDS stores the most recent portion of each

time series which may affect the discovery of the frequent patterns. The size of this portion

depends on the gap threshold g. GDS stores the database items in a way that is more suitable

for the mining algorithm and the frequent patterns discovered so far in the database.
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4.1 LDS Data Structures

LDS keeps information about the most recent g items in each time series since these items

may contribute to future frequent patterns. For each time series in the database, Ti,

we maintain a counter, COUNT(Ti), that reflects the current number of data items in

Ti. COUNT(Ti) is incremented whenever a new data item arrives to Ti. In addition to

COUNT(Ti), LDS of Ti contains two tables, LDS Ri and LDS Li, that store the intermedi-

ate mining results found in the most recent g data items of Ti.

LDS Ri stores the frequent patterns that end with an item appearing in the most recent

g data items in Ti. An example of LDS Ri is given in Figure 2(a). Each row in LDS Ri

corresponds to one frequent pattern. SID is a unique identifier for each frequent pattern.

SEQUENCE contains the frequent pattern’s items. EXPANDED is a Boolean flag that

specifies whether the corresponding pattern is expanded to generate longer patterns or not.

LDS Li contains one entry for each data item in the most recent g items in Ti. An

example of LDS Li is given in Figure 2(b). KEY lists the most recent g data items sorted

based on their relative positions in the time series, i.e., the most recent item in Ti is at the

top of LDS Li and the gth item in Ti is at the bottom of LDS Li. For a certain KEY, k,

ENDING SEQ contains the identifiers (which correspond to SID in LDS Ri) of all frequent

patterns that end with k. If k does not terminate any frequent patterns, then its correspond-

ing ENDING SEQ will be NULL. For example, assume a time series Ti = (· · ·, 10, 50, 30,

20) which has the following frequent patterns: S1 = (20), S2 = (30), S3 = (50), S4 = (50,

30), and g = 4, then the entries of LDS Ri and LDS Li are as given in Figure 2.

4.2 GDS Data Structures

GDS data structures consist of two tables; GDS Q and GDS H. GDS Q is an alternative

representation of the time series data that is more suitable for the mining algorithm. An

example of GDS Q is given in Figure 3(a). KEY lists, in a sorted order, all items that appear
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KEY COUNT DATA 
10 3 (T1, 1), (T2, 2, 4) 
20 5 (T1, 2, 4), (T2, 3, 5), (T3, 2) 
30 4 (T1, 3), (T2, 1, 6), (T3, 4) 
40 2 (T3, 1, 5) 
60 1 (T1, 5) 
85 2 (T2, 7), (T3, 3) 

  
                 (a) GDS_Q                                            
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
FP_SEQ COUNT DATA 
(10, 20) 3 (T1, 2), (T2, 3, 5) 
(20, 30) 3 (T1, 3), (T2, 6), (T3, 4)  

 
 
 
 
 
                                 (b) GDS_H 
 

Figure 3: GDS data structures for all time series

in the database. For each KEY, k, COUNT represents the number of times k appears in the

database, while DATA stores the time series identifiers in which k appears along with k’s

position(s) in each time series. These positions are kept sorted in an ascending order.

GDS H stores all frequent non-singleton patterns found so far in the database. An exam-

ple of GDS H is given in Figure 3(b). GDS H differs from GDS Q in that GDS H stores the

frequent non-singleton patterns instead of the data items, i.e., KEY in GDS Q is replaced

with FP SEQ, and DATA in GDS H stores the ending position(s) of the corresponding fre-

quent pattern in each time series sorted in an ascending order.

For example, assume that the database consists of three time series: T1 = (10, 20, 30,

20, 60), T2 = (30, 10, 20, 10, 20, 30, 85), and T3 = (40, 20, 85, 30, 40), min supp = 3, and g

= 2, then the content of GDS Q and GDS H is as shown in Figure 3. Notice that although

patterns (10), (20), and (30) are frequent, they are not stored in GDS H because they are

singleton patterns and their information can be retrieved directly from GDS Q.

5 Mining the Complete Set of Frequent Patterns

The proposed algorithm needs to update the frequent patterns upon the arrival of each new

data item. The algorithm decides which actions to take based on the occurrence of one

or more of the events illustrated in Figure 4. In this section, we define each event, and in

Section 5.1, we describe the actions taken by the algorithm upon detecting a certain event.

When a new instance of item k arrives to the database, k’s state will be either non-

frequent, new-born, or aged, which correspond to Events 1, 2, and 3, respectively, as illus-

trated in Figure 4. If k is new-born or aged frequent, then k may expand an already existing
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Non-frequent New-born aged

Non-frequent New-born aged

k’s state?

(P+k)’s state?

Form pattern (P+k)
Remains
frequent

Other frequent patterns T
that do not contain kk

T’s state?

Switch to 
non-frequent

k arrives to the database

(Event 7)(Event 6)(Event 5)

(Event 4)
(Event 3)(Event 2)(Event 1)

Figure 4: Events detected by the algorithm

Forming pattern (P + k) Counting pattern (P + k) 
Input: item k which arrived to time series Ti 
 

Output: candidate patterns (P + k) 
 

Steps: 
- I = the set of the most recent g items in Ti 

(obtained from LDS_Li) 
- S = the set of all frequent patterns that end 

with items in I (obtained from LDS_Ri) 
- For each pattern P in S  

- Return (P + k) 
 

Input: frequent pattern P and frequent item k 
 

Output: the count and position(s) of  (P + k) in the database 
 

Steps: 
- If (P + k) exists in GDS_H Then  

-  Return the position(s) and the count of (P + k) 
- Lk = k’s entry in GDS_Q 
- Lp = P’s entry in GDS_H 
- Join Lk and Lp. An occurrence of   (P + k) is found if: 

- (k’s position in Lk � P’s position in Lp + g +1) 
and (k and P are in the same time series) 

- Return the position(s) and the count of (P + k) 
 

Figure 5: Forming and counting pattern (P + k)

frequent pattern P to form a new candidate pattern (P + k); where ’+’ is the concatena-

tion operation. The state of (P + k) will be either non-frequent, new-born, or aged, which

correspond to Events 5, 6, and 7, respectively, as illustrated in Figure 4. The arrival of k

increases the size of the database. Hence, an already frequent pattern T may switch to the

non-frequent state if T’s support becomes less than min supp (Event 4).

To detect k’s state upon the arrival of k, the algorithm retrieves COUNT(k) from k’s

entry in GDS Q. If there is no entry for k in GDS Q, then a new entry is added to GDS Q

with COUNT(k) = 1. Based on COUNT(k), we decide whether k is non-frequent, new-born,

or aged frequent. To detect (P + k)’s state, the algorithm searches for (P + k) in GDS H

which stores the frequent patterns discovered so far in the database. If we find (P + k) in

GDS H, then (P + k) is an aged frequent pattern. Otherwise, we get the support of (P + k)

in the database using a Counting procedure that is described in Section 5.2. If the support of
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(P + k) is equal to or greater than min supp, then (P + k) is new-born frequent. Otherwise,

(P + k) is non-frequent. For clarity, we present in Figure 5 a high level description of how

the algorithm forms (P + k) and how the Counting procedure gets the count of (P + k).

5.1 Events Handling

5.1.1 New Arrivals of Non-Frequent Items and Patterns - (Events 1 and 5)

Handling Events 1 and 5 is straightforward. For Event 1, k is not frequent and cannot

contribute to any frequent patterns. Therefore, we only need to add or update the entry of

k in GDS Q, and add an entry for k in LDS Li with ENDING SEQ = NULL. For Event 5,

if we find that a candidate pattern (P + k) is non-frequent, we simply discard this pattern

without any further processing.

5.1.2 New Arrivals of Aged Frequent Items and Patterns - (Events 3 and 7)

When an aged frequent item k arrives to time series Ti there are two possibilities in which k

can contribute to the set of frequent patterns, Backward Expansion and Forward Expansion.

• Backward Expansion

k may expand already existing frequent patterns, e.g., P, to form pattern (P + k) (See

Figure 5: Forming pattern (P + k)). A frequent pattern P that can be expanded by k

has to satisfy the following two conditions: (1) P has to appear in the same time series

as k, i.e., Ti, and (2) the gap between k and the last item in P is less than or equal

to g. To retrieve all the frequent patterns that can be expanded by k we scan LDS Li,

which contains the most recent g items in Ti, and for each item, e.g., x, we retrieve

all the frequent patterns ending with x from LDS Ri. Recall that ENDING SEQ in

LDS Li cross references SID in LDS Ri. For each retrieved frequent pattern P we form

pattern (P + k) and check the following:
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1. If (P + k) is in GDS H, then (P + k) is an aged frequent pattern (Event 7). We

increase COUNT(P + k) in GDS H and add the new position to the DATA field.

Then we insert (P + k) into LDS Ri and update the k’s entry in LDS Li.

2. If (P + k) is not found in GDS H, then the Counting procedure gets the count

of (P + k) by joining the two lists, Lk and Lp (See Figure 5: Counting pattern

(P + k)). Based on the retrieved count we process (P + k) as either a new-born

frequent pattern (Event 6) or a non-frequent pattern (Event 5).

Notice that Backward Expansion is the procedure that extends the frequent patterns

to generate longer patterns and allows the patterns’ items to have a maximum gap of

size g between any two consecutive items.

• Forward Expansion

Since k is a frequent item, then the items that will come after k in Ti may expand k

or any frequent pattern that ends with k. Therefore, when k arrives to Ti we insert k

into the top of LDS Li, pushing all the entries in LDS Li one step down and deleting

the bottom entry. The ENDING SEQ(k) will contain all the frequent patterns ending

with k (they are discovered during the Backward Expansion procedure). The k’s entry

remains in LDS Li until the next g items arrive to Ti. After that k’s entry will reach

the bottom of LDS Li and it will be dropped automatically. When k’s entry is dropped,

all the frequent patterns ending with k in LDS Ri will be also dropped.

5.1.3 New-born Frequent Items and Patterns - (Events 2 and 6)

Handling Events 2 and 6 is similar to handling Events 3 and 7, except that Events 2 and

6 require extra steps to be performed because the new-born items or patterns have just

switched their state from non-frequent to new-born frequent. For Event 2, when we detect

that an item k is a new-born frequent item, we apply the Backward Expansion and Forward
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Most recent 
instance of k 

g 

The active region 
of each time series k

x 

k
x 

k
x 

Tl 

Tj 

Ti 

Figure 6: Reprocessing the instances in the active region of each time series

Expansion procedures to k as discussed in the previous section. However, the other instances

of k that came to the database before the newly arrived instance are handled as being non-

frequent and we may need to reprocess some of these instances to reflect that k is now

frequent. The following Claim allows us to limit this extra processing to the minimal cost.

Claim 1: The only instances of k in the database that we need to reprocess are the instances

that appear in the active region of each time series in the database; where the active region

of a time series is the most recent g data items of that time series.

We explain the intuition behind Claim 1 by an example. Assume we have three time

series in the database, Ti, Tj, and Tl, where the most recent arrival of k is in Ti as illustrated

in Figure 6. When k arrives to Ti, k switches from a non-frequent state to a new-born state.

Therefore, we insert k into LDS Li along with all the frequent patterns that end with k.

However, the k’s instance which belongs to Tj is still in LDS Lj with ENDING SEQ =

NULL (because when this instance is processed k was non-frequent). Therefore, we need

to insert an entry in LDS Rj indicating that k is a frequent item, and then we update the

ENDING SEQ value in LDS Lj. On the other hand, the k’s instance which belongs to Tl

is already dropped from LDS Ll because more than g items came to Tl after k. We do not

need to reprocess such instance because it cannot contribute to any future frequent patterns.

To find the instances of k that belong to an active region of a time series, we scan the k’s

entry in GDS Q, which contains all the positions of k in all time series, and reprocess those

instances as demonstrated in the example.

With respect to patterns, and following the same claim, any candidate pattern (P + k)
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that is not found in GDS H and is discovered via the Counting procedure to be frequent, i.e.,

(P + k) is a new-born frequent pattern, will be processed as follows. A new entry for (P +

k) is inserted into GDS H with all ending positions of (P + k) in the database. Recall that

the Counting procedure reports the count and positions of a given pattern. Then we insert

(P + k) into LDS Ri and update the k’s entry in LDS Li. Additionally, for any instance of

(P + k) that ends in the active region of any time series, e.g., Tj, we need to insert that

instance into LDS Rj and reflect it in the k’s entry in LDS Lj.

5.1.4 Switching from the Frequent State to the Non-Frequent State - (Event 4)

When an item k switches from the frequent to the non-frequent state no extra processing is

needed. The reason is that we keep k’s entry in GDS Q whether k is frequent or non-frequent.

To detect patterns that switch to the non-frequent state we need to scan GDS H and check

the support of each pattern P. If P’s support is less than min supp, then P is non-frequent

and P ’s entry in GDS H is deleted. However, scanning GDS H with the arrival of every

item to the database is very expensive. Therefore, we delay the detection of the patterns

that became non-frequent until they are first referenced. For example, assume pattern P is

in GDS H and P changes its state to be non-frequent. When P is first referenced, we search

for P in GDS H, if P is found, then we compare P’s current support against min supp. If we

find P frequent, then we process it as an aged frequent pattern. Otherwise, we detect that

P is now non-frequent and delete its entry from GDS H.

5.2 The Counting Procedure

The Backward Expansion (Section 5.1.2) is the procedure that extends the frequent patterns

to generate longer patterns in the form of (P + k); where P is a frequent pattern and k is

a frequent item. Given a pattern (P + k), the Counting procedure returns the count and

the ending positions of (P + k) in the database. A sketch for the Counting procedure is
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Algorithm 1 The Counting Procedure

//Search for P + k in GDS H

1 - IF (P + k exists in GDS H) and (support of (P + k) ≥ min supp ) THEN

2 //P + k is an aged frequent pattern (Event 7)

3 - Increment COUNT(P + k) in GDS H and update the DATA field

4 - Return the count and positions of P + k

5 - ELSE IF (P + k exists in GDS H) and (support of (P + k) < min supp ) THEN

6 //P + k switched to be a non-frequent pattern (Event 4)

7 - Increment COUNT(P + k) in GDS H and update the DATA field

8 - IF (support of (P + k) is still less than min supp) THEN

9 - Delete (P + k) entry from GDS H

10 - END IF

11 - Return the count and positions of P + k

12 - ELSE //P + k is not in GDS H

13 - Let Lk = k’s entry in GDS Q

14 - IF (P is a singleton frequent pattern) THEN

15 - Let Lp = P’s entry in GDS Q

16 - ELSE

17 - Let Lp = P’s entry in GDS H

18 - END IF

19 //Merge join Lp and Lk lists. The join condition is:

20 //(k’s position in Lk ≤ P’s position in Lp + g + 1) and (k and P are in the same time series)

21 - Let Lout = Lp ./ Lk

22 - IF (support of (P + k) ≥ min supp) THEN

23 //P + k is a new-born frequent pattern (Event 6)

24 - add entry for P + k in GDS H

25 - Return the count and positions of P + k

26 - ELSE

27 //P + k is a non-frequent pattern (Event 5)

28 - Return the count and positions of P + k

29 - END IF

30 - END IF
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presented in Figure 5. The complete procedure is presented in Algorithm 1.

The procedure searches for (P + k) in GDS H, if the pattern is found, then we check the

support of (P + k) to determine if it is aged frequent or non-frequent (Lines 1-11). If (P +

k) is not found in GDS H, then we join the k’s entry in GDS Q with the P’s entry in GDS Q

(if P is a singleton item) or in GDS H (if P is a non-singleton item) to find the count and

positions of (P + k) in the database (Lines 12-30). The join between k’s entry and P’s entry

(Line 19-21) consists of a single pass over both entries since the entries are sorted. Notice

that the join condition allows for a maximum gap of size g between P and k.

Correctness Proof (Algorithm 1):

We prove that Algorithm 1 returns the correct frequency and positions of (P + k) in the

database based on the following facts: (1) P is a frequent pattern or item, (2) k is a frequent

item, (3) list Lp contains the complete list of all P’s ending positions in the database, and

(4) list Lk contains the complete list of all k’s positions in the database. If either of facts (1)

or (2) is not correct, then (P + k) would not have been formed in the first place. List Lp is

the P’s entry in GDS Q or GDS H (Lines 14-17 in Algorithm 1), and list Lk is the k’s entry

in GDS Q (Line 13 in Algorithm 1). We divide the proof into two cases.

Case 1 (P+k is not found in GDS H): In this case, we join Lp and Lk to get the

frequency and positions of (P + k). Since Lp and Lk are complete lists, then the obtained

frequency and positions of (P + k) are correct.

Case 2 (P+k is found in GDS H): We prove this case by Induction. (P + k) is added

initially to GDS H when (P + k) is found to be frequent for the first time. This step

is performed by joining Lp and Lk which corresponds to Case 1 that is proved correct.

Assuming that the current frequency and positions of (P + k) in GDS H are correct, then a

new arrival of (P + k) to the database will increment the frequency of (P + k) and add the

new position to Lp . Therefore, the updated frequency and positions in GDS H are correct.

We propose three different approaches, termed Normal-Join, Enhanced-Join, and Optimized-
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Join, for handling the case in which the Counting procedure detects that (P + k) is not

frequent. We describe the three approaches in the next subsections.

5.2.1 Normal-Join

In the Normal-Join approach, the Counting procedure discards any non-frequent patterns

without storing them (Lines 26-29 in Algorithm 1). The Counting procedure presented in

Algorithm 1 corresponds to the Normal-Join approach. Normal-Join does not require any

extra storage. However, our experiments in Section 7 show that most of the mining time is

spent in performing the expensive join operations. For example, assume we have min supp

set to 50 and the support of (P + k) is 20. This means that for the next 30 appearances of (P

+ k), we perform the join operation to get the support of (P + k), and subsequently discard

this pattern as it is still non-frequent. To address this issue, we propose the Enhanced-Join

and Optimized-Join approaches that significantly improve the mining time.

5.2.2 Enhanced-Join

In the Enhanced-Join approach, the Counting procedure stores the encountered non-frequent

patterns in a new data structure, termed Candidate Frequent Patterns (CFP). CFP consists

of two columns, Pattern which stores the patterns in the form P + k, and P Count which

stores the pattern’s frequency. CFP does not store the pattern’s positions. The Counting

procedure presented in Algorithm 1 is slightly modified in the following way. If the procedure

does not find (P + k) in GDS H, then it searches for (P + k) in CFP. If (P + k) does not exist,

then the procedure performs the join operation. Otherwise, the procedure only increments

P COUNT(P + k) in CFP and if the support exceeds min supp, then we delete (P + k)’s

entry from CFP and insert it into GDS H.

In the Enhanced-Join approach, the number of join operations that may be applied to

any pattern (P + k) until it becomes frequent is at most 2. The worst case is that after the

first join operation (P + k) is found to be non-frequent, and hence it is inserted into CFP.
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The second join operation is performed when (P + k) becomes frequent and move from CFP

to GDS H. The second join operation is performed to get the ending positions of (P + k).

Our experiments in Section 7 show that the Enhanced-Join approach outperforms the

Normal-Join approach by more than one order of magnitude with respect to the mining

time. However, the Enhanced-Join approach suffers from the dramatic increase in the size of

CFP. This drawback motivates the Optimized-Join approach, described in the next section.

5.2.3 Optimized-Join

Similar to Enhanced-Join, Optimized-Join stores the encountered non-frequent patterns in

CFP. Optimized-Join deploys two storage optimization techniques to reduce the size of the

CFP list: (1) Eliminating unnecessary candidates, and (2) Candidate storage compaction.

(1) Eliminating Unnecessary Candidates

A candidate pattern has the form (P + k); where P is a frequent pattern and k is

a frequent item. However, it is not necessary that (P + k) be a real candidate, i.e., a

candidate to be frequent. If (P + k) is not a real candidate, then we can detect that (P + k)

is non-frequent even without storing (P + k) in CFP or counting its support in the database.

The Apriori property [2] states that a pattern of length t is a candidate frequent pattern

only if all its sub-patterns of length t− 1 are already frequent. The Apriori property is used

to significantly reduce the number of candidate patterns. However, the Apriori property is

not valid for time series frequent patterns due to the order of the patterns’ items and the

gap constraints within the patterns. For example, assume that the database consists of two

time series; T1 = ( · · ·, a, b, c, x1, d, · · ·, a, b, c, x2, d) and T2 = ( · · ·, a, b, c, x3, d), g

= 1, and min supp = 3. Then, pattern (a, b, c, d) is frequent, while, pattern (a, b, d) is

non-frequent because the gap between b and d exceeds g. Although the Apriori property is

not valid for the time series frequent patterns, the following Claim holds.

Claim 2: A pattern S of length t is a real candidate only if the two sub-patterns S1 and
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Frequent Pattern 
(10) 
(20, 10) 
(30, 20, 10) 
(40, 30, 20, 10) 
(90, 40, 30, 20, 10) 
(40, 20, 10) 
(50, 10) 
(20, 50, 10) 
(40, 20, 50, 10) 
(70, 20, 50, 10) 

 
(a) Frequent patterns 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Candidate Pattern Counting Procedure Result 
(10, 80) Frequent 
(20, 10, 80) Not Frequent 
(30, 20, 10, 80) Not Frequent 
(40, 30, 20, 10, 80) Not Frequent 
(90, 40, 30, 20, 10, 80) Not Frequent 
(40, 20, 10, 80) Not Frequent 
(50, 10, 80) Not Frequent 
(20, 50, 10, 80) Not Frequent 
(40, 20, 50, 10, 80) Not Frequent 
(70, 20, 50, 10, 80) Not Frequent 

 
                  (b) Candidate patterns 
 

Figure 7: Counting procedure results

 
Pattern Inserted into  

(10, 80) GDS_H 
(20, 10, 80) CFP 
(30, 20, 10, 80) CFP 
(40, 30, 20, 10, 80) CFP 
(90, 40, 30, 20, 10, 80) CFP 
(40, 20, 10, 80) CFP 
(50, 10, 80) CFP 
(20, 50, 10, 80) CFP 
(40, 20, 50, 10, 80) CFP 
(70, 20, 50, 10, 80) CFP 

 
   (a) The Enhanced-Join approach 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

 
Pattern Inserted into  

(10, 80) GDS_H 
(20, 10, 80) CFP 
(30, 20, 10, 80) Ignored 
(40, 30, 20, 10, 80) Ignored 
(90, 40, 30, 20, 10, 80) Ignored 
(40, 20, 10, 80) Ignored 
(50, 10, 80) CFP 
(20, 50, 10, 80) Ignored 
(40, 20, 50, 10, 80) Ignored 
(70, 20, 50, 10, 80) Ignored 
 
       (b) The Optimized-Join approach 

Figure 8: Algorithm actions

S2 of length t − 1 are already frequent; where S1 and S2 are equal to S without the leftmost

and the rightmost data items, respectively.

The reason that only sub-patterns S1 and S2 have to be frequent is because any other

sub-pattern of S of length t − 1 will drop items from the middle of S, and this may violate

the gap constraint imposed by the problem definition. Continuing with the example above,

since pattern (a, b, c, d) is frequent, then patterns (a, b, c) and (b, c, d) have to be frequent.

Based on Claim 2, for a pattern (P + k) to be a real candidate, the two sub-patterns P

and (P’ + k) have to be already frequent; where P’ equals to P without the leftmost data

item. The first sub-pattern, i.e., P, is guaranteed to be frequent from the definition of the

candidate patterns, thus it remains to check if (P’ + k) is frequent or not. If (P’ + k) is

frequent, then (P + k) is a real candidate. Otherwise, (P + k) is not yet a real candidate.

In Optimized-Join, CFP will contain only the real candidates that are not yet frequent.

The following example demonstrates how we can significantly reduce the size of CFP

based on Claim 2. Assume that the frequent patterns ending with a data item (10) are as

given in Figure 7(a). Let the data item coming after (10) be (80) which is found to be a

frequent data item. Item (80) will extend the frequent patterns ending with (10) to generate

the candidate patterns represented in Figure 7(b). Each of these patterns is checked by the

Counting procedure to determine if the pattern is frequent or not. The results from the

Counting procedure are given in Figure 7(b) and the actions taken by the Enhanced-Join

and Optimized-Join approaches are given in Figures 8(a) and 8(b), respectively. Notice that
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Enhanced-Join inserts all the candidate non-frequent patterns into CFP, whereas, Optimized-

Join inserts only the two real candidates, i.e., (20, 10, 80) and (50, 10, 80), into CFP.

We present the Counting procedure with the optimization of Eliminating Unnecessary

Candidates in Algorithm 2.

Correctness Proof (Algorithm 2): The proof of correctness of Algorithm 2 is similar

to that of Algorithm 1 except for the case in which (P + k) is not found in GDS H and is

found in CFP. We prove this case by Induction. The first time (P + k) is added to the CFP

list is performed by joining Lp and Lk, where (P + k) is found to be infrequent. Since Lp

and Lk are complete lists, then the frequency of (P + k) stored in CFP is correct. Assuming

the current frequency of (P + k) in CFP is correct, then each new arrival of (P + k) will

increment the frequency in CFP until (P + k) becomes frequent. Therefore, the frequency

of (P + k) in CFP is always correct. When (P + k) becomes frequent, we join Lp and Lk to

get the ending positions of (P + k) in the database and move (P + k) from CFP to GDS H.

Since Lp and Lk are complete lists, then the obtained positions are also correct.

(2) Candidate Storage Compaction

The proposed algorithm assumes discrete data items. Without loss of generality, the data

items domain can be mapped to a contiguous range of integer values. This mapping allows us

to compress the CFP list to achieve further storage reduction in addition to the Eliminating

Unnecessary Candidates optimization. The following example demonstrates how the Storage

Compaction technique works. Assume that the candidate patterns stored in CFP (after

applying the Eliminating Unnecessary Candidates optimization) are as given in Figure 9(a),

and min supp = 50. Instead of storing each candidate pattern separately, we can group the

patterns based on P to form contiguous ranges instead of individual items as illustrated in

Figure 9(b). Each entry in the compressed CFP represents a group of candidate patterns,

and the group support (g supp for short) represents the upper bound for the supports of the

patterns participating in the group. This means that as long as g supp is less than min supp,
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Algorithm 2 The Counting Procedure: Eliminating Unnecessary Candidates

//Search for P + k in GDS H

1 - IF (P + k exists in GDS H) and (support of (P + k) ≥ min supp ) THEN //P + k is aged frequent (Event 7)

2 - Increment COUNT(P + k) in GDS H and update the DATA field

3 - Return the count and positions of P + k

4 - ELSE IF (P + k exists in GDS H) and (support of (P + k) < min supp ) THEN //(Event 4)

5 - Increment COUNT(P + k) in GDS H and update the DATA field

6 - IF (support of (P + k) is still less than min supp) THEN

7 - Delete (P + k) entry from GDS H

8 - END IF

9 - Return the count and positions of P + k

10 - ELSE //P + k is not in GDS H

11 //Check if P + k is a real candidate

12 - Let P’ = P without the leftmost data item

13 - IF (P’ + k exists in GDS H) and (support of (P’ + k) ≥ min supp ) THEN //P + k is a real candidate

14 - IF (P + k exists in CFP) THEN

15 - Increment P COUNT(P + k) in CFP

16 - IF (support of (P + k) ≥ min supp ) THEN

17 - Move P + k from CFP to GDS H //Needs a join operation

18 - Return the count and positions of P + k

19 - ELSE

20 - Return the count of P + k

21 - END IF

22 - ELSE //P + k is not in CFP

23 - Let Lk = k’s entry in GDS Q

24 - IF (P is a singleton frequent pattern) THEN

25 - Let Lp = P’s entry in GDS Q

26 - ELSE

27 - Let Lp = P’s entry in GDS H

28 - END IF

29 //Merge join Lp and Lk lists. The join condition is:

30 //(k’s position in Lk ≤ P’s position in Lp + g + 1) and (k and P are in the same time series)

31 - Let Lout = Lp ./ Lk

32 - IF (support of (P + k) ≥ min supp) THEN //P + k is a new-born frequent pattern (Event 6)

33 - add entry for P + k in GDS H

34 - Return the count and positions of P + k

35 - ELSE //P + k is non-frequent but a real candidate

36 - add entry for P + k in CFP

37 - Return the count of P + k

38 - END IF

39 - END IF

40 - ELSE //P + k is non-frequent and is not a real candidate

41 - Return (P + k) is non-frequent

42 - END IF

43 - END IF
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Candidate Pattern P + k Pattern’s Support 
(30, 50) + 10 24 
(30, 50) + 11 20 
(30, 50) + 12 13 
(30, 50) + 13 5 
(30, 50) + 14 41 
(30, 50) + 17 20 
(30, 50) + 18 33 
(30, 50) + 19 17 
 
              (a) Uncompressed CFP 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Candidate Group P + [ki …kj] Group’s Support 
(30, 50) + [10 … 14] 41 
(30, 50) + [17… 19] 33 

 
 
 
 
 
 
         
                (b) Compressed CFP 

Figure 9: The frequent and candidate patterns

Candidate Group P + [ki …kj] Group’s Support 
(30, 50) + [10 … 14] 41 
(30, 50) + [15 … 15] 28 
(30, 50) + [17… 19] 33 

 
                          (a) Add separate entry 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Candidate Group P + [ki …kj] Group’s Support 
(30, 50) + [10 … 15] 41 
(30, 50) + [17… 19] 33 

 
 
 (b) Merge with the predecessor entry 

Figure 10: The insertion of entry ‘(30, 50) + [15 · · · 15]’

then it is guaranteed that none of the group’s patterns are frequent.

Applying the compression procedure incrementally, i.e., with the arrival of new data

items, is a simple process. The CFP list is sorted based on pattern P and the entries

corresponding to P are sorted based on k. Therefore, adding a pattern to CFP involves

only checking the predecessor and the successor entries of the newly added entry for possible

merging. For example, assume that we need to insert pattern ‘(30, 50) + 15’ with support 28

into CFP (Figure 10). First, we insert a separate entry, i.e., ‘(30, 50) + [15 · · · 15]’, into its

proper position in CFP (Figure 10(a)) and then we check the predecessor and the successor

entries for possible merging. We find that entry ‘(30, 50) + [15 · · · 15]’ can be merged with

its predecessor entry (Figure 10(b)). Notice that the group support of the newly constructed

entry, i.e.,‘(30, 50) + [10 · · · 15]’ is the maximum support of the two merged entries.

In the case of inserting a pattern that already exists in CFP, e.g., pattern ‘(30, 50) + 12’,

we only increment the support of the entry in which the given pattern is participating, e.g.,

increment the support of entry ‘(30, 50) + [10 · · · 14]’ in Figure 9(b) to be 42. It can be the

case that ‘(30, 50) + 12’ is not the pattern that has support 41 in the group. However, since

we do not know the exact support of each pattern, we need to increment the group support

to keep it always as the upper-bound for the supports of the patterns inside the group.
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It remains to discuss how the Counting procedure handles the case in which g supp of

an entry in CFP exceeds min supp. We introduce two states for each entry in CFP, termed

Safe and Unsafe. The Safe state means that, most probably, the candidate patterns in the

CFP entry are still not frequent, whereas the Unsafe state means that, most probably, one

or more of the candidate patterns in the CFP entry are close to be frequent. We have two

extreme cases. The pessimistic case assumes that the support distribution among the entry’s

candidate patterns is very skewed. Therefore, the pessimistic case assumes that an entry is

Safe as long as the entry’s g supp is less than min supp, i.e., it is guaranteed that none of

the entry’s patterns are frequent, and the entry is Unsafe otherwise. Whereas, the optimistic

case assumes that the support distribution among the entry’s candidate patterns is uniform.

Therefore, the optimistic case assumes that an entry is Safe as long as the entry’s g supp is

less than (C * min supp), where C is the number of candidates in that entry, and the entry

is Unsafe otherwise.

The Counting procedure compromises between the two extreme cases by defining a factor

F ≥ 1, such that an entry’s state in CFP is determined by the following equation:

State =































Safe g supp < min spp

Safe g supp/C < min spp/F

Unsafe Otherwise

This means that an entry is considered Safe if g supp is less than min supp or the average

pattern’s support in the entry, i.e., (g supp/C), is less than (min supp/F). Notice that the

optimistic case corresponds to F = 1, and the pessimistic case corresponds to F = C.

The action that the Counting procedure takes when an entry, say e, in CFP becomes

Unsafe is to delete e from CFP. As a result, any appearance of a pattern that was part of e

will cause the Counting procedure to perform a join operation to compute the exact pattern’s

support. The Counting procedure will perform this join operation because the pattern is a

real candidate and it is neither in GDS H nor in CFP.
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The effect of F on the algorithm performance is as follows: If F is very small (close to

1), then the detection of a frequent pattern may be delayed because we may consider an

entry to be Safe while it contains frequent patterns. If F is very large, then we may pay

extra processing time for deleting Unsafe entries and performing extra join operations while

the patterns of the deleted entries have low support. Since the best value for F depends

on the distribution of the data which may change over time, we propose a heuristic that

dynamically adjusts F . The heuristic works as follows:

• F will have a large initial value, e.g., 20, which is very pessimistic.

• The Counting procedure will mark the Unsafe entries as deleted instead of physically

deleting them. These entries are kept, for a while, only to vote for either incrementing,

decrementing, or fixing the value of F , and then they will be physically deleted. We do

not take the marked entries into account while searching for a given pattern in CFP.

• The database is logically divided into batches, e.g., batches of size 500 items. At the

end of each batch, i.e., after the arrival of each 500 items, the marked entries in CFP

will vote for F . Based on the collected votes F will be updated and the marked entries

will be physically deleted from CFP.

• A marked entry e in CFP votes for F based on one of the following rules:

1. If at least one of e’s patterns appears in the database (after e is marked) and the

Counting procedure finds that the pattern’s support is larger than or equal to

min supp, then e votes to increment F (region C).

2. If at least one of e’s patterns appears in the database (after e is marked) and the

Counting procedure finds that the pattern’s support is between µ*min supp and

min supp, where µ < 1, then e votes to keep F at the current value (region B).

3. Otherwise, e votes to decrement F (region A).
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The choice of µ determines the size of regions A and B. We found experimentally that

setting µ to 0.75 is a reasonable choice.

• After collecting the votes from all the marked entries, the value of F will be updated

based on the following rules:

1. If there is at least one vote to increment F , then F will be incremented.

2. If there is at least one vote to fix F or there are no votes (there are no marked

entries), then F will not change.

3. Otherwise, F will be decremented.

The heuristic is eager to increment or fix F than to decrement F . This is because we want

to decrement F only when we are almost sure that the detection of the frequent patterns

will not be affected, i.e., delayed. In Section 7 we show that this heuristic works very well

when we dynamically adjust the value of F .

6 Memory Management

The data structures maintained by the algorithm are divided into (1) local data structures

that include LDS Ri, and LDS Li for each time series Ti, and (2) global data structures that

include GDS Q, GDS H, and CFP. We assume that the local data structures can fit entirely

into the main memory since their size is usually very small. However, the size of GDS Q

and GDS H can be large and may exceed the available main memory. Therefore, we need

to use the external memory to store parts of these global structures in case they cannot fit

entirely into memory.

The idea is to allocate a fixed partition for each of GDS Q and GDS H in the main

memory. Then, whenever we need to add a new entry to GDS Q or GDS H and the corre-

sponding partition is full, we move a subset of the least recently referenced entries from that

partition to disk. The size of the subset to be moved to the disk is a heuristic parameter
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and we evaluate its effect on the algorithm performance in Section 7. Basically, if the subset

size is too small, then the memory partition fills up very quickly and data is moved to the

disk more frequently. If the subset size is too large, then the memory is under utilized and

more disk operations are needed. To keep track with which entries are the least recently

referenced, we add a Timestamp column to both GDS Q and GDS H. A timestamp of an

entry is updated whenever that entry is referenced, i.e., the entry’s pattern is referenced by

the algorithm.

The search for a given key k in GDS Q proceeds as follows. First, we search for k among

the main memory entries. If k is not found, we search for k on the disk. To allow efficient

disk-based operations over GDS Q, we build a B-tree index over the KEY column of GDS Q.

The B-tree index scales very well with the increase in the number of keys in the database

and allows fast retrieval of a given key entry from disk. If k is found on the disk, we copy

k’s entry to the main memory and update the entry’s timestamp. Copying an entry from

the disk to the memory may require moving a subset of the least recently referenced entries

of the targeted partition to the disk if the partition is full.

For the GDS H structure, the main operations we perform are searching for and deleting

a given pattern p. Building an index over GDS H is slightly more complex than that over

GDS Q because the FP SEQ column in GDS H is a multi-dimensional key. Therefore, we

define a function key fun() that computes a single value for each pattern in FP SEQ, and

we build a B-tree index over these computed values. An example of key fun() is to sum the

keys of a given pattern. The search for a given pattern p in GDS H proceeds as follows.

First, we search for p among the main memory entries. If p is not found, we search the

B-tree index for key fun(p). The index may return multiple entries that match key fun(p)

because many patterns may map to the same indexed value. Therefore, we need to scan

the returned entries to find the pattern matching p (if it exists). If p is found on the disk,

we copy p’s entry to the main memory and update the entry’s timestamp. The deletion
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of a given pattern p from GDS H requires deleting p from both the main memory and the

disk. A pattern that turned to be non-frequent in GDS H is deleted when the pattern either

re-appears or becomes among the least recently referenced patterns in GDS H.

With respect to the CFP list, the size of CFP can be limited to the available main

memory without a need to swap entries between the main memory and the disk. The reason

is that CFP is an auxiliary list that speeds up the algorithm. Unlike GDS Q and GDS H,

deleting entries from CFP does not affect the mining results completeness. Therefore, we

allocate a memory partition for CFP, and when we need to add a new entry to CFP and the

memory partition is full, we delete the least recently referenced entry in CFP to make room

for the new entry. To keep track with which entry is the least recently referenced, we add

a Timestamp column to CFP. A timestamp of an entry is updated whenever that entry is

referenced by the algorithm.

7 Performance Evaluation

In this section, we study the performance of the various join approaches of the proposed

algorithm, i.e., Normal-Join, Enhanced-Join, and Optimized-Join. We also compare the

proposed algorithm with two recent incremental techniques; IncSpan [7] and IncSP [13].

The dataset used in the experiments is generated using a Synthetic Classification Data

Set Generator from Simon Fraser University (SCDS) [1, 17]. SCDS generates synthetic data

sets of various distributions. The dataset consists of 500,000 items distributed over 5 time

series with 250 distinct keys. The 500,000 items are generated as pairs, each pair consists of

a time series identifier that is uniformly distributed over interval [1...5] and a value that is

uniformly distributed over interval [1...250]. We vary the values of the following parameters:

(1) the minimum support threshold (min supp), and (2) the maximum gap size (g). In the

case of Optimized-Join, we assign F an initial value of 20 which will change dynamically

during the execution.
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(b) CFP storage requirements

Figure 11: Comparison of the proposed join approaches with varying min supp

We study the performance of the Normal-Join, Enhanced-Join, and Optimized-Join ap-

proaches in Figures 11 and 12. In Figure 11, we fix g = 2 and vary min supp from 0.5%

to 5%. Figure 11(a) illustrates that Enhanced-Join and Optimized-Join achieve significant

time improvement over Normal-Join. This is because they store the candidate patterns in

the CFP list and hence avoid many join operations. In Figure 11(b), we present the CFP

storage requirements for the various join approaches. The storage overhead of Enhanced-Join

drops quickly with the increase of min supp because the number of frequent patterns and the

candidate patterns drops significantly. Notice that Optimized-Join has a peak at min supp

= 2% which appears due to the increase in the number of CFP entries. The reason for this

increase is not because the number of real candidate patterns increases, but because many

patterns that are real candidates at min supp = 1% are not real candidates at min supp

= 2%. As a result, many of the CFP entries could not merge together as they could not

form contiguous ranges any more. With further increase in min supp, the number of real

candidate patterns in CFP becomes smaller and the size of CFP decreases.

In Figure 12, we study the performance of the three join approaches with fixed

min supp = 1% and g varying from 1 to 5. With the increase in g, the number of discovered

frequent patterns increases, and hence the mining time and the storage requirements also

increase. The figure demonstrates the efficiency of the Optimized-Join approach over the
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(b) CFP storage requirements

Figure 12: Comparison of the proposed join approaches with varying g

Distribution of F  values over the database batches 

0

15

30

45

60

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F  Value

%
 o

f b
at

ch
es

 

(a) F distribution using the heuristic

Effect of F  on the Performance

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

F  Value

R
el

at
iv

e 
P

er
fo

rm
an

ce

 Relative Time
Relative Accuracy 

Relative Storage 

 

(b) Algorithm performance with fixed F

Figure 13: The performance of the heuristic for adjusting F

Enhanced-Join and Normal-Join approaches.

In Figure 13, we study the effect of F on the algorithm performance. We set min supp

= 1% and g = 3. In Figure 13(a), we present the distribution of the values of F over the

database batches, i.e., we count the percentage of batches in which F is assigned a certain

value. The figure shows that in most of the batches F has the values 8 or 9. This means

that the heuristic finds the initial value of F (which is 20) large and decrements F until F

reaches a value that suits the data distribution. The smallest value assigned to F is 6, which

means that when F = 6 the heuristic detects a delay in detecting the frequent patterns and

hence increments F again.

To check how well the heuristic works, we repeat the same experiment while fixing F to
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a certain value, i.e., F does not change during the algorithm execution (Figure 13(b)). We

define the relative accuracy of the algorithm as the number of discovered frequent patterns

using the Candidate Storage Compaction optimization divided by the number of discovered

frequent patterns without using the optimization. The relative time is defined as the time

using the Candidate Storage Compaction optimization divided by the time without using the

optimization. Similarly, the relative storage is defined as the CFP size using the Candidate

Storage Compaction optimization divided by the CFP size without using the optimization.

The figure illustrates that the algorithm reaches 100% relative accuracy with 20% storage

saving at F = 7. If F > 7, the algorithm pays extra processing time without gaining

more accuracy due to considering many CFP entries UnSafe and deleting them although the

patterns’ support in these entries is low. If F < 7, the accuracy of the algorithm as well as

the mining time and the storage requirements decrease. This is because most of the CFP

entries will be considered Safe although they may contain frequent patterns. As a result,

CFP will be very compacted (entries can merge together) and the number of join operations

will be small. From Figures 13(a) and 13(b) we conclude that the heuristic performs very

well by assigning F to values 8 and 9 most of the time which is very close to the optimal

value 7 (a bit more pessimistic).

We now compare our Optimized-Join technique against two incremental techniques; Inc-

Span [7] and IncSP [13]. IncSpan and IncSP are shown to outperform ISM [14], GSP [19],

and PrefixSpan [16]. IncSpan and IncSP assume a database that consists of sequences of

itemsets. The support of a pattern P is computed as the percent of sequences that contain

P . We slightly modified IncSpan and IncSP to make them comparable with our technique

as follows. We set the itemset size to 1 such that the database sequences consist of singleton

items instead of itemsets. The support definition is updated to the definition introduced in

Section 3. The incremental update for the mining results is performed with the arrival of

every new item instead of a batch update.
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(b) Storage requirements

Figure 14: The effect of varying min supp

We first compare the three algorithms by fixing the gap size and varying min supp.

Figure 14(a) compares the mining time taken by IncSpan, IncSP, and Optimized-Join. For

IncSpan, we set the buffer ratio µ to 0.8 as suggested by [7]. We set g = 3 and vary min supp

from 0.5% to 5%. The figure illustrates that Optimized-Join is much faster than IncSpan and

IncSP. IncSP is the slowest because the candidate generation phase is performed on multiple

phases. Additionally, scanning the database multiple times to get the support of the new

candidate patterns is a very expensive operation. IncSpan has a better mining time than

IncSP due to buffering the semi-frequent patterns which saves many database projections.

However, checking every pattern in the frequent and semi-frequent lists with every update

in addition to the database projection are still a significant overhead. Optimized-Join is the

fastest because the LDS data structures allow fast candidate generation. The CFP list saves

many database scans, and if a database scan is necessary, the Counting procedure performs

the scan as a fast join operation between two lists.

With respect to storage requirements, we focus on the temporary storage required by

each technique, i.e., storage other than the input database and the output frequent patterns.

The temporary storage of Optimized-Join consists of the LDS data structures and the CFP

list. The temporary storage of IncSpan consists of the semi-frequent patterns buffer (SFS)

and the projected databases. The temporary storage for IncSP consists of the candidate

31



Mining Time

0

60

120

180

240

300

360

420

1 2 3 4 5

Max gap size (g )

Ti
m

e(
se

c)

Optimized-Join
IncSP
IncSpan
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(b) Storage requirements

Figure 15: The effect of varying gap size g

hash-tree. Figure 14(b) illustrates that IncSP has the lowest storage overhead while IncSpan

is the highest. The reason is that IncSpan stores all the patterns with support between

min supp and µ*min supp, where µ is set to 0.8, in the SFS list. The number of these semi-

frequent patterns is large. Also, the size of the projected databases adds additional storage

overhead. The Optimized-Join requires a little bit more storage than IncSP because of the

CFP list. This can be justified by the efficient mining time our technique has. However,

this storage overhead is much less than IncSpan due to applying the storage optimization

techniques discussed in Section 5.2.3.

In Figure 15, we illustrate the effect of varying g from 1 to 5 and fixing min supp to 1%.

The experiment yields results similar to the previous comparison. Figure 15(a) illustrates

that Optimized-Join has the least mining time, while IncSP has the worst mining time. This

is because IncSP performs several phases to generate the candidates and several database

scans to get their support. Figure 15(b) illustrates that IncSpan has a significant storage

overhead compared to Optimized-Join and IncSP. The is because the size of the semi-frequent

patterns list grows dramatically with the increase of g.

To evaluate the disk-based performance of the algorithm we used PostgreSQL [20] to

facilitate the disk-based processing. We implemented GDS Q and GDS H as tables inside the

database and built the B-tree indexes over the tables as described in Section 6. The update
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(a) Varying the subset size moved to disk
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(b) Varying the number of distinct keys

Figure 16: Disk-based Processing

and search operations over GDS structures are implemented as database calls. We did not re-

evaluate the relative performance for the Optimized-Join, Enhanced-Join, and Normal-Join

approaches because it depends mainly on the CFP list which still resides entirely in the main

memory. The disk-based performance comparison against IncSpan [7] and IncSP [13] is not

possible because both algorithms do not provide a mechanism for the disk-based processing.

We present the disk-based performance of the proposed algorithm in Figure 16. In

Figure 16(a), we measured the mining time while varying the size of the subset moved to the

disk when a memory partition is full. The subset size is a percentage of the partition size.

We set g = 3 and min supp = 1%. The figure illustrates that if the subset percentage is very

small, e.g., 1%, or very large, e.g., 50%, then the algorithm performs many database calls

and takes more mining time than needed. Indeed, in the former case, the memory fills up

very rapidly and many database calls are performed to free part of the memory. However,

in the latter case many of the entries moved to the disk are soon referenced and retrieved

again from disk, therefore many unnecessary database calls are performed.

In Figure 16(b), we test the scalability of the algorithm by varying the number of distinct

keys in the database. We set g = 3, min supp = 1%, and the subset percentage moved to

disk = 5%. The figure illustrates that as the number of distinct keys increases the mining

time decreases. The reason is that with the increase in the number of distinct keys the
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frequency of each key in the database decreases, and hence the number of frequent patterns

significantly decreases.

8 Conclusion

We presented a new incremental mining algorithm for discovering the complete set of fre-

quent patterns with a user-defined maximum gap constraint in time series databases. The

incremental nature of the proposed algorithm makes it efficient and scalable for mining con-

tinuously updated data, where the arrival of each new data item triggers certain events that

update the existing mining results. We introduced several optimization techniques to en-

hance both the processing time and storage requirements of the proposed algorithm. In par-

ticular, we proposed three approaches, namely Normal-Join, Enhanced-Join, and Optimized-

Join, for efficient implementation of the proposed algorithm. The Optimized-Join approach

shows significant improvement over the other two approaches. We presented a disk-based

mechanism that allows the proposed technique to scale efficiently with the increase in the

database size. We compared the Optimized-Join approach with two recent incremental tech-

niques IncSpan and IncSP. The experiments illustrate that our approach outperforms both

techniques in terms of the mining time and requires a little bit more storage than IncSP.
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