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Abstract 

In many m~iltidimensional systems, including models of computer and network sys- 
tems and particle systems, t,he eqnilibrillm distribution of state probabilities anti other 
performance measl~res hinges on t,he explicit numerical deterrnination of a normaliza- 
tion constant. When the nornializat,ion constant is the a s11n1 of simple, computable 
functions defined on lattice-points in a constrained space, which is the case for a large 
class of problems, we show that, t.he normalization constant can be obtained in a time 
that is directly proportior~al to the size of the space. 1% present an algorithm that is a 
tree-based variant of dept,h-first search which minimizes the usage of a stack, offering ef- 
ficient execution for problems in many dimensions. Using simple complexity arguments 
as well as experimental resnlts, we show that the algorithm offers run-tirnes that are a 
many-fold improvement over previously proposetf nlultitfimensional recurrences. 
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1 Introduction 

Normalization constants hold the key to the solution of a host of problems pertaining to the 

design of systems based on dynamic entities (packets, jobs) which compete for resources 

(buffers, network links, processors). In the performance analyses of computer and com- 

munication systems, these critical constants appear in expressions for state probabilities in 

closed queueing networks. They are critical because the understanding of system behaviour 

hinges on state probabilities which, in turn, cannot be evaluated without knowledge of the 

appropriate normalization constants [l, 21. Indeed, we motivate the basic problem using an 

example involving packet-loss probabilities in broadband networks [3], though the solution 

technique may be exploited in more general situations, i.e., whenever a discrete multidi- 

mensional probability needs to be evaluated over a well-defined region in n-dimensional 

space. Our proposed solution makes no assumptions other than that the contribution of 

each lattice-point in the normalizing space and the normalizing space both be well-defined. 

Broadly speaking, there are two classes of methods that have been developed for the 

computation of normalization constants, more generally known as partition functions [4, 51. 

When dimensionality (e.g., number of packets, queueing chains or resources) is small, the 

standard method is to exploit recursion [ 6 ] ,  such as in the evaluation of convolutions [7], and 

when dimensionality is large, useful methods based on asymptotic expansions of integral 

representations have been very successful [8, 91. A very different, and also highly successful 

approach, is the numerical inversion of the generating function of-the partition function [lo]. 
This technique has its roots in the early transform inversion work of Dubner and Abate [l I ] .  

An excellent survey and example of generating function inversion can be found in [12]. 

The approach we take is direct and algorithmic, without the complexity of numerical 

inversion or the exploitation of special structure in recursive schemes. In effect, we present 

an algorithm that views the space as a tree of lattice points and visits each lattice point 

in turn, without repetition. The advantage is simplicity and robustness. The method 

is applicable in very general situations, but a marked disadvantage is that its run-time 

complexity is directly proportional to the size of the space (i.e., number of lattice-points) 

over which the partition function is enumerated. Even so, the technique is a significant 

improvement over certain other methods, such as the multidimensional recurrence proposed 

in [13], and we have found run-times to be small for high-dimensional problems. The 

computational results serve as a reminder that direct, algorithmic approaches can be highly 

effective in many problems for which more intricate methods are chosen, perhaps often, as 

a matter of routine. 

1 Introduction

Normalization constants hold the key to the solution of a host of problems pertaining to the

design of systems based on dynamic entities (packets, jobs) which compete for resources

(buffers, network links, processors). In the performance analyses of computer and com

munication systems, these critical constants appear in expressions for state probabilities in

closed queueing networks. They are critical because the understanding of system behaviour

hinges on state probabilities which, in turn, cannot be evaluated without knowledge of the

appropriate normalization constants [1,2]. Indeed, we motivate the basic problem using an

example involving packet-loss probabilities in broadband networks [3], though the solution

technique may be exploited in more general situations, i.e., whenever a discrete multidi

mensional probability needs to be evaluated over a well-defined region in n-dimensional

space. Our proposed solution makes no assumptions other than that the contribution of

each lattice-point in the normalizing space and the normalizing space both be well-defined.

Broadly speaking, there are two classes of methods that have been developed for the

computation of normalization constants, more generally known as partition functions [4, 5].

When dimensionality (e.g., number of packets, queueing chains or resources) is small, the

standard method is to exploit recursion [6], such as in the evaluation of convolutions [7], and

when dimensionality is large, useful methods based on asymptotic expansions of integral

representations have been very successful [8, 9]. A very different, and also highly successful

approach, is the numerical inversion of the generating function of·the partition function [10].

This technique has its roots in the early transform inversion work of Dubner and Abate [11].

An excellent survey and example of generating function inversion can be found in [12].

The approach we take is direct and algorithmic, without the complexity of numerical

inversion or the exploitation of special structure in recursive schemes. In effect, we present

an algorithm that views the space as a tree of lattice points and visits each lattice point

in turn, without repetition. The advantage is simplicity and robustness. The method

is applicable in very general situations, but a marked disadvantage is that its run-time

complexity is directly proportional to the size of the space (i.e., number of lattice-points)

over which the partition function is enumerated. Even so, the technique is a significant

improvement over certain other methods, such as the multidimensional recurrence proposed

in [13], and we have found run-times to be small for high-dimensional problems. The

computational results serve as a reminder that direct, algorithmic approaches can be highly

effective in many problems for which more intricate methods are chosen, perhaps often, as

a matter of routine.
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In brief, the space of interest is a convex polytope in n-dimensions, and the integration 

of probabilities over all lattice points in this space requires a time which is proportional to 

the number of such points in the space. A key point is that as the number of constraints 

defining the polytope increases, for n fixed, the number of lattice points tends to decrease, 

thus reducing the algorithm's run-time. Further, it is possible to  prune the search so that 

traversal along any one dimension can stop whenever the contribution of lattice-points to 

the normalization constant is below some acceptable threshold. This offers a parameter- 

sensitive method for reducing run-time complexity. 

2 Normalization Constants 

We follow the conventions established in [3, 141 and consider a broadband network with m 

links, with link j having a capacity of Cj resource units, for 1 5 j 5 m. There are n distinct 

classes of calls supported by the network, and a call of class k is characterized by an offered 

load pk and a bandwidth requirement of r j , k  on link j, where the latter is zero when link 

j is not used by a class-k call. Let the vector rj  = (rj:l, . . . , rj,,) denote the bandwidth 

requirements of the distinct classes on link j, 1 5 j 5 m, and let the state of the system be 

represented by the vector X = (XI , .  . . , X,), where component Xk captures the number of 

class-k calls in progress. 

The system can be seen to  move between states in the set S = {x I x 2 0), where each 

component xi of the state vector x belongs to the set of nonnegative integers. If a call is 

always accepted whenever there is capacity to  handle the call, and blocked calls are always 

cleared, then under appropriate assumptions on the nature of the call-arrival process, the 

probability that the system is in a given state x is obtained as 

provided that link-capacities are infinite. Let Zj;k = rj;kXk be a random variable rep- 

resenting the occupancy level of link j, due to demands exercised by calls of type k, so 

that 

whenever r j , k  > 0 and z = irj,k for some nonnegative integer i ,  and the probability is 

defined as zero otherwise. When link capacities are finite, complications arise because the 

state-space becomes restricted. That is, the set of permissible states shrinks to 

In brief, the space of interest is a convex polytope in n-dimensions, and the integration

of probabilities over all lattice points in this space requires a time which is proportional to

the number of such points in the space. A key point is that as the number of constraints

defining the polytope increases, for n fixed, the number of lattice points tends to decrease,

thus reducing the algorithm's run-time. Further, it is possible to prune the search so that

traversal along anyone dimension can stop whenever the contribution of lattice-points to

the normalization constant is below some acceptable threshold. This offers a parameter

sensitive method for reducing run-time complexity.

2 Normalization Constants

We follow the conventions established in [3, 14] and consider a broadband network with m

links, with link j having a capacity of Cj resource units, for 1 ::; j ::; m. There are n distinct

classes of calls supported by the network, and a call of class k is characterized by an offered

load Pk and a bandwidth requirement of rj,k on link j, where the latter is zero when link

j is not used by a class-k call. Let the vector rj = (rj,l,···, rj,n) denote the bandwidth

requirements of the distinct classes on link j, 1 ::; j ::; m, and let the state of the system be

represented by the vector X = (Xl, ... ,Xn ), where component X k captures the number of

class-k calls in progress.

The system can be seen to move between states in the set S = {x I x ~ O}, where each

component Xi of the state vector x belongs to the set of nonnegative integers. If a call is

always accepted whenever there is capacity to handle the call, and blocked calls are always

cleared, then under appropriate assumptions on the nature of the call-arrival process, the

probability that the system is in a given state x is obtained as

(1)P{X = x}
n XkII e-Pk Pk J

k=l Xk·

provided that link-capacities are infinite. Let Zj,k = rj,kXk be a random variable rep

resenting the occupancy level of link j, due to demands exercised by calls of type k, so

that

Pkz/rj,k
P{Z· k = z} = e-Pk (2)

J, (zjrj,k)!

whenever rj,k > 0 and z irj,k for some nonnegative integer i, and the probability is

defined as zero otherwise. When link capacities are finite, complications arise because the

state-space becomes restricted. That is, the set of permissible states shrinks to
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where rj . x = zk rj,kZk for 1 5 j < m. The steady-state distribution must now be 

normalized by conditioning on the probability mass of the constrained space R, so that the 

probability that the constrained syst,em is in state x at equilibrium is given by 

where f (xk, pk) = e-Pkpkxk/~k! ,  and the value of the normalization constant 

is what we are interested in explicitly determining. Once the value of G is known, 

a number of quantities of interest can be computed - such as, for example, queue-size 

distributions or blocking probabilities for the system. For example, the set of blocking- 

states for a class-k call is given by those states in R that violate capacity, i.e., 

where uk is an n-vector with a 1 in the k-th component and zeros elsewhere. If Yk is a 

Bernoulli random variable which takes on the value 1 when a class-k call is blocked and 

takes on value 0 otherwise, the blocking probability of a class-k call is given by 

The set R defined in Equation (3) is responsible for complicating the space over which the 

sum of products in Equation (5) is evaluated, for without such a complication, approxi- 

mation and other convolution schemes may be exploited [7]. In effect, the normalization 

constant G is a sum of joint probabilities over the restricted space R in n-dimensions. We 

now focus on the space of interest, generated by the system of constraints 

yielding a nonnegative and bounded region because rj:k >_ 0, V j ,  k. In the remainder of the 

paper we present a tree-based search scheme that computes normalization constants, such 

as the one defined in Equation (5), by a systematic traversal of lattice-space. The algorithm 

(3)

where rj . x = Lk Tj,kXk for 1 ~ j ~ m. The steady-state distribution must now be

normalized by conditioning on the probability mass of the constrained space R, so that the

probability that the constrained system is in state x at equilibrium is given by

1 n Xk 1 n

7f(x) - II e- Pk~ G II f(Xk, Pk)
G k=l Xk! k=l

where f(Xk,Pk) = e-Pkpk xk /Xk!, and the value of the normalization constant

(4)

G L
xER

(5)

is what we are interested in explicitly determining. Once the value of G is known,

a number of quantities of interest can be computed - such as, for example, queue-size

distributions or blocking probabilities for the system. For example, the set of blocking

states for a class-k call is given by those states in R that violate capacity, i.e.,

(6)

where Uk is an n-vector with a 1 in the k-th component and zeros elsewhere. If Yk is a

Bernoulli random variable which takes on the value 1 when a class-k call is blocked and

takes on value 0 otherwise, the blocking probability of a class-k call is given by

P(Yk = 1)
P{X E Sd
P{X E R}

(7)

The set R defined in Equation (3) is responsible for complicating the space over which the

sum of products in Equation (5) is evaluated, for without such a complication, approxi

mation and other convolution schemes may be exploited [7]. In effect, the normalization

constant G is a sum of joint probabilities over the restricted space R in n-dimensions. We

now focus on the space of interest, generated by the system of constraints

(8)j = 1,,·, ,m
n

LTj,k 'Xk ~ Cj

k=l

yielding a nonnegative and bounded region because Tj,k ::: 0, Vj, k. In the remainder of the

paper we present a tree-based search scheme that computes normalization constants, such

as the one defined in Equation (5), by a systematic traversal of lattice-space. The algorithm
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Figure 1: Example of a sample space for two dimensions 

is insensitive to the particular form of the normalization, though its run-time depends on 

the constrained lattice-space in Equation (3). We begin by presenting basic depth-first 

search schemes and a significant modification that results in an efficient tree-search. We 

present the algorithm in detail, along with an example, and conclude with a brief report of 

our experiences with its run-time performance. 

3 Basic depth-first search 

Consider an algorithm that covers the space R by systematically visiting each lattice point 

in the set. At each point, properties of the point may be considered and its contribution 

toward the sum making up constant G evaluated. Starting from a well-defined location 

within R -- the origin, for example - lattice points may be visited in a certain order, at 

each step verifying that the lattice point being considered is indeed a member of R. This 

check is simple and entails verifying that the coordinates of the point in question satisfy the 

constraints in (8). When all points in R have been visited, the algorithm terminates and 

returns the computed value of G. 

A simple algorithm for traversing the space R is a recursive depth-first search [15, 

161. The algorithm starts from a point inside the sample space (e.g., the origin) and then 

recursively visits each of its neighbours, moving in all possible directions. A flag may be 

0 0 000 0 0

• 000 0 0

•• • 0 00

•• • 00

•• • 00

• • • 00

•• • 0

• • • 0

"X1

Figure 1: Example of a sample space for two dimensions

is insensitive to the particular form of the normalization, though its run-time depends on

the constrained lattice-space in Equation (3). We begin by presenting basic depth-first

search schemes and a significant modification that results in an efficient tree-search. We

present the algorithm in detail, along with an example, and conclude with a brief report of

our experiences with its run-time performance.

3 Basic depth-first search

Consider an algorithm that covers the space R by systematically visiting each lattice point

in the set. At each point, properties of the point may be considered and its contribution

toward the sum making up constant G evaluated. Starting from a well-defined location

within R- the origin, for example - lattice points may be visited in a certain order, at

each step verifying that the lattice point being considered is indeed a member of R. This

check is simple and entails verifying that the coordinates of the point in question satisfy the

constraints in (8). When all points in R have been visited, the algorithm terminates and

returns the computed value of G.

A simple algorithm for traversing the space R is a recursive depth-first search [15,

16]. The algorithm starts from a point inside the sample space (e.g., the origin) and then

recursively visits each of its neighbours, moving in all possible directions. A flag may be
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used at each location to ensure that each point is visited only once. The pseudo-code for 

this algorithm is given in Figure 2, where the number of dimensions n is represented by 

ndim. 

DFS (v) { 
Mark v e r t e x  v  a s  " v i s i t e d " ;  

f o r  ( d i r e c t i o n  = 1; d i r e c t i o n  < ndim; d i r e c t i o n + + ) {  

Increment G by normal izat ion-f  unc t ion  f (v) ; 

v1 = v + u n i t - v e c t o r ( d i r e c t i 0 n ) ;  

i f  (v' E R  and v1 is "not v i s i t e d " )  t h e n  

DFS(V') ; 

main() { 
I n i t i a l i z e  a l l  v e r t i c e s  a s  "not v i s i t e d " ;  

G = 0. 

DFS ( o r i g i n )  ; 

1 

Figure 2: Recursive dfs 

The nonrecursive variant of this algorithm can be implemented using a stack. Starting 

from an interior point, the algorithm visits lattice-points along one dimension, repeatedly 

pushing each point onto a stack, until it arrives at the boundary and has exhausted all 

points in this direction. Points are then popped off the stack, one by one, and the process 

is repeated using each point as a starting point, until the entire space has been covered. 

The algorithm ends when there are no more points to push onto the stack, and the stack is 

found empty. 

Besides avoiding the inefficiencies of recursion, this algorithm has the advantage that 

each point is approached from only one possible direction, since the stack implicitly keeps 

track of directions, ensuring that lattice-points are visited in order. If each point is viewed 

as a node in a graph, and edges define a nearest-neighbour relation, the effect is to reduce 

used at each location to ensure that each point is visited only once. The pseudo-code for

this algorithm is given in Figure 2, where the number of dimensions n is represented by

ndim.

DFS (v) {

Mark vertex v as "visited";

for (direction = 1; direction ~ ndim; direction++){

Increment G by normalization-function f(v);
Vi = V + unit_vector(direction);

if (Vi E R and Vi is "not visited") then

DFS(v') ;

}

}

mainO {

Initialize all vertices as "not visited";

G=O.

DFS(origin);

}

Figure 2: Recursive dfs

The nonrecursive variant of this algorithm can be implemented using a stack. Starting

from an interior point, the algorithm visits lattice-points along one dimension, repeatedly

pushing each point onto a stack, until it arrives at the boundary and has exhausted all

points in this direction. Points are then popped off the stack, one by one, and the process

is repeated using each point as a starting point, until the entire space has been covered.

The algorithm ends when there are no more points to push onto the stack, and the stack is

found empty.

Besides avoiding the inefficiencies of recursion, this algorithm has the advantage that

each point is approached from only one possible direction, since the stack implicitly keeps

track of directions, ensuring that lattice-points are visited in order. If each point is viewed

as a node in a graph, and edges define a nearest-neighbour relation, the effect is to reduce
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the number of edges between the lattice points and eliminate the need for a "visited" flag. 

Pseudo-code for the nonrecursive version is given in Figure (3) .  

v = origin 

direction = 1 

not-exit = TRUE; 

while (not-exit) { 

if (v is in R){ 
Increment G by normalization-function f (v) ; 

if (direction < ndim) 
PUSH(v, direction + 1) ; 

v = v + unit-vector(directi0n); 
1 
else { 

if (POP (v, direction) == EMPTY) 

not-exit = FALSE; 

1 

Figure 3: Nonrecursive dfs 

While both algorithms are simple, they suffer from performance problems caused by their 

huge reliance on stack space. Indeed, each requires as much stack space as the maximum 

number of points encountered over all directions traversed. For example, a simple graph 

consisting of a single line in a single dimension, but with lo6 lattice points along that line, 

would generate a stack requirement of lo6 stack cells. In actuality, both algorithms are 

variants of classical depth-first search in the sense that both exploit the structure of the 

search-space. While the classical algorithms do not rely on any sense of "direction" during 

traversal, the above algorithms start at a special lattice-point and travel only in increasingly 

positive directions. It is not necessary to mark points that have been visited, though we 

leave the marking procedure in-place because of its association with classical depth-first 

search. 

Because the space R is both non-negative and convex, and bounded by coordinate planes 

in n-dimensions, it is possible to modify the depth-first traversal and make it considerably 

more efficient. In the following section we propose a search algorithm that makes more 

the number of edges between the lattice points and eliminate the need for a "visited" flag.

Pseudo-code for the nonrecursive version is given in Figure (3).

v = origin

direction = 1

not-exit = TRUE;

while (not_exit) {

if (v is in R){

Increment G by normalization-function f(v);

if (direction < ndim)

PUSH(v, direction + 1);

v = v + unit_vector (direction) ;

}
else {

if (POP (v, direction) == EMPTY)

not_exit = FALSE;

}

Figure 3: Nonrecursive dfs

While both algorithms are simple, they suffer from performance problems caused by their

huge reliance on stack space. Indeed, each requires as much stack space as the maximum

number of points encountered over all directions traversed. For example, a simple graph

consisting of a single line in a single dimension, but with 106 lattice points along that line,

would generate a stack requirement of 106 stack cells. In actuality, both algorithms are

variants of classical depth-first search in the sense that both exploit the structure of the

search-space. While the classical algorithms do not rely on any sense of "direction" during

traversal, the above algorithms start at a special lattice-point and travel only in increasingly

positive directions. It is not necessary to mark points that have been visited, though we

leave the marking procedure in-place because of its association with classical depth-first

search.

Because the space R is both non-negative and convex, and bounded by coordinate planes

in n-dimensions, it is possible to modify the depth-first traversal and make it considerably

more efficient. In the following section we propose a search algorithm that makes more
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efficient use of the stack. 

4 Depth-First Tree Search 

We propose a modification to the standard depth-first search algorithm to provision it with 

certain desirable characteristics. The algorithm must be non-recursive, exploit optimizations 

to minimize the number of graph-edges traversed, and ultimately reduce usage of the stack 

to a minimum. The optimization will be achieved by exploiting the special property of 

the set R and: for that purpose, we formalize some concepts that were introduced only 

informally in the previous two algorithms. 

Instead of using a generalized graph to  represent the neighborhoods of lattice-points in 

R, we use a tree. We will construct a tree such that each lattice-point in the tree is visited 

just once. The origin is taken to be both the root of the tree and the starting point of 

the traversal; movement is always in a positive direction, and one lattice-point is consumed 

at each step. All edges in the tree will be the unit vectors of the given dimension n, and 

vertices of the tree will be the lattice-points that are connected by edges. Since only positive 

values are considered for the unit vectors, all edges are presumed to be directed edges and 

there are no back-edges. Finally, the tree is constructed in such a way that each point is 

reachable only via a single edge. That is, each point can be approached from only one 

direction. This minimizes the number of edges traversed while searching for points not yet 

visited, consequently eliminating repeated visits to lattice-points. 

The tree T representing lattice-points in R is constructed as follows. Initially, T is 

defined to be empty. In the very first step the origin in R is added to T and taken to  be 

the root of the tree. Next, starting from a lattice-point (vertex) v already in the tree (e.g., 

the origin) one edge E (v + v') and one vertex v' are added to the tree T, if the traversal 

allows a move from lattice-point v to  lattice-point point 91' in R .  Repeating this procedure 

recursively for all lattice-points and each permissible direction, the tree T is eventually 

completed. In essence, T is a tree because each vertex acts as the root of a new sub-tree. 

Clearly, the order in which dimensions are traversed, and the allowable directions, ultimately 

determine how the tree is built - a procedure that depends on both the algorithm as well 

as R .  The permissible directions are made to depend on the vertices, so that the result of 

the traversal is a tree. 

The concept of degree is important for understanding the algorithm, and so we present 

the following definitions. 

efficient use of the stack.

4 Depth-First Tree Search

We propose a modification to the standard depth-first search algorithm to provision it with

certain desirable characteristics. The algorithm must be non-recursive, exploit optimizations

to minimize the number of graph-edges traversed, and ultimately reduce usage of the stack

to a minimum. The optimization will be achieved by exploiting the special property of

the set R and, for that purpose, we formalize some concepts that were introduced only

informally in the previous two algorithms.

Instead of using a generalized graph to represent the neighborhoods of lattice-points in

R, we use a tree. We will construct a tree such that each lattice-point in the tree is visited

just once. The origin is taken to be both the root of the tree and the starting point of

the traversal; movement is always in a positive direction, and one lattice-point is consumed

at each step. All edges in the tree will be the unit vectors of the given dimension n, and

vertices of the tree will be the lattice-points that are connected by edges. Since only positive

values are considered for the unit vectors, all edges are presumed to be directed edges and

there are no back-edges. Finally, the tree is constructed in such a way that each point is

reachable only via a single edge. That is, each point can be approached from only one

direction. This minimizes the number of edges traversed while searching for points not yet

visited, consequently eliminating repeated visits to lattice-points.

The tree T representing lattice-points in R is constructed as follows. Initially, T is

defined to be empty. In the very first step the origin in R is added to T and taken to be

the root of the tree. Next, starting from a lattice-point (vertex) v already in the tree (e.g.,

the origin) one edge E (v ----7 v') and one vertex v' are added to the tree T, if the traversal

allows a move from lattice-point v to lattice-point point v' in R. Repeating this procedure

recursively for all lattice-points and each permissible direction, the tree T is eventually

completed. In essence, T is a tree because each vertex acts as the root of a new sub-tree.

Clearly, the order in which dimensions are traversed, and the allowable directions, ultimately

determine how the tree is built - a procedure that depends on both the algorithm as well

as R. The permissible directions are made to depend on the vertices, so that the result of

the traversal is a tree.

The concept of degree is important for understanding the algorithm, and so we present

the following definitions.
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Degree of a vertex: The number of edges emanating from a vertex. Recall that we 

use directed edges. By definition, only one edge reaches into a vertex, though many 

edges reach out of it. 

Degree of an edge: The direction of the edge. 

Degree of a t ree :  The degree of the root of that tree. 

Degree of a branch: A branch is a collection of consecutive lattice-points possessing 

the same degree. The degree of a branch will be the degree of its lattice-points. 

The Algorithm 

When the algorithm runs, it implicitly builds tree T. It utilizes the following rules to  assign 

each lattice-point a degree when it visits the point: 

Degree of root = ndim. 

Degree of a vertex: The direction of the edge reaching the vertex. Observe that 

this edge is unique. This also defines the number of edges emanating from the vertex. 

Degree of the  edges: The edges emanate in up to K distinct directions, 1,2, . . . , K ,  

where K is the degree of the starting vertex. The degree simply the direction. 

An illustration of vertex and edge degrees in three dimensions is given in Figure 4, based 

on the definition of degree and the rules presented above. The resulting tree is of degree 3. 

Observe that there are unseen edges present at boundary vertices, which are vertices lying 

outside but are neighbours of vertices in R. Boundary vertices have 3 edges. This also 

applies for vertices of degree 1 and 2 at the boundary. 

During traversal, when the algorithm encounters a vertex of degree K ,  K > 1, it proceeds 

to traverse the edges emanating from the vertex in the natural order 1,2, . . . , K .  While the 

degree of a vertex is the number of edges emanating from the vertex, it also the label of 

the direction that must be traversed from that vertex. A stack is used to guarantee that 

traversal occurs in this specific order. Upon finding lattice-points of degree greater than 

one, along traversed edges, the algorithm invokes the above procedure recursively, storing 

points that have already been encountered in the stack alongside the additional information 

detailed below. The algorithm repeatedly compares the degree of a point to the direction 

being traversed, stopping only when the K-th direction has finally been traversed. Direction 

• Degree of a vertex: The number of edges emanating from a vertex. Recall that we

use directed edges. By definition, only one edge reaches into a vertex, though many

edges reach out of it.

• Degree of an edge: The direction of the edge.

• Degree of a tree: The degree of the root of that tree.

• Degree of a branch: A branch is a collection of consecutive lattice-points possessing

the same degree. The degree of a branch will be the degree of its lattice-points.

The Algorithm

When the algorithm runs, it implicitly builds tree T. It utilizes the following rules to assign

each lattice-point a degree when it visits the point:

• Degree of root = ndim.

• Degree of a vertex: The direction of the edge reaching the vertex. Observe that

this edge is unique. This also defines the number of edges emanating from the vertex.

• Degree of the edges: The edges emanate in up to K distinct directions, 1,2,. _. ,K,

where K is the degree of the starting vertex. The degree simply the direction.

An illustration of vertex and edge degrees in three dimensions is given in Figure 4, based

on the definition of degree and the rules presented above. The resulting tree is of degree 3.

Observe that there are unseen edges present at boundary vertices, which are vertices lying

outside but are neighbours of vertices in R. Boundary vertices have 3 edges. This also

applies for vertices of degree 1 and 2 at the boundary.

During traversal, when the algorithm encounters a vertex of degree K, K > 1, it proceeds

to traverse the edges emanating from the vertex in the natural order 1,2, ... ,K. While the

degree of a vertex is the number of edges emanating from the vertex, it also the label of

the direction that must be traversed from that vertex. A stack is used to guarantee that

traversal occurs in this specific order. Upon finding lattice-points of degree greater than

one, along traversed edges, the algorithm invokes the above procedure recursively, storing

points that have already been encountered in the stack alongside the additional information

detailed below. The algorithm repeatedly compares the degree of a point to the direction

being traversed, stopping only when the K -th direction has finally been traversed. Direction
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Figure 4: Degree of root, edges, and vertices 

1, a special case, is traversed without pushing any point onto the stack. By following these 

rules for traversal, utilization of the stack is kept to a minimum. 

The stack, which enables the traversal to be done nonrecursively, is used to store records 

containing the following items: 

The coordinates of a lattice-point. 

The direction, or edge, that is going to be traversed, after popping a lattice-point off 

the stack. 

The degree of the lattice-point. 

The stack stores a lattice-point with multiple edges (i.e., degree greater than one) and 

the next direction to be traversed by the algorithm when this point is popped off the stack. 

Whenever a boundary of R is met, a lattice-point is popped off the stack and the next edge 

of that lattice-point is considered for traversal. This procedure is repeated until all edges 

have been traversed. The degree of the lattice-point is stored on the stack to enable simple 

detection of a termination condition. The root is a special case that is handled at the very 

start of the algorithm - by pushing it onto the stack, if the tree possesses a degree greater 

than one. 

As an illustration, Figure 5 shows the implicit tree that is obtained when the sample 

space of Figure 1 is traversed. Although the traversal algorithm doesn't explicitly construct 

Figure 4: Degree of root, edges, and vertices

1, a special case, is traversed without pushing any point onto the stack. By following these

rules for traversal, utilization of the stack is kept to a minimum.

The stack, which enables the traversal to be done nonrecursively, is used to store records

containing the following items:

• The coordinates .of a lattice-point.

• The direction, or edge, that is going to be traversed, after popping a lattice-point off

the stack.

• The degree of the lattice-point.

The stack stores a lattice-point with multiple edges (i.e., degree greater than one) and

the next direction to be traversed by the algorithm when this point is popped off the stack.

Whenever a boundary of R is met, a lattice-point is popped off the stack and the next edge

of that lattice-point is considered for traversal. This procedure is repeated until all edges

have been traversed. The degree of the lattice-point is stored on the stack to enable simple

detection of a termination condition. The root is a special case that is handled at the very

start of the algorithm - by pushing it onto the stack, if the tree possesses a degree greater

than one.

As an illustration, Figure 5 shows the implicit tree that is obtained when the sample

space of Figure 1 is traversed. Although the traversal algorithm doesn't explicitly construct
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and return a tree, the implicit but transient tree built during the search is critical for visiting 

lattice-points efficiently. Thus, the tree is merely a series of edges and vertices, where leaves 

are lattice-points outside R but neighbors of points in R .  In Figure (5), these are the 

grey vertices lying immediately beyond the boundary of R, as seen from within the set. 

Although this is not shown, recall that the permissible directions are the unit vectors of zl 

and 22. The pseudo-code for the tree-based algorithm is given in Figure 6. 

X2 

x 
ROOT 

Figure 5: Tree defined by the space shown in Figure 1 

4.1 A Sample Traversal 

Consider the setup shown in Figure 5. The algorithm begins with curr-dim = I,  ndim 

= 2, and v = (0,O). The vertexledge and degree record [(0,0), 2, 21 is pushed onto the 

stack, and lattice-points (1,O)  through (8,O) are traversed, one by one. Lattice-point (8,O) 

lies immediately outside the set specified by the constraints, and so lattice-point (0,O) is 

popped off the stack, along with curr-dim = 2 and degree = 2. Because next-dim = 3, 

which is greater than degree = 2, the point (0,O) is not pushed onto the stack again. 

At the next step, lattice-point (0,l) is obtained and found to lie inside R .  Because 

curr-dim = 2, which is greater than 1, the record [(0,1), 2, 21 is pushed onto the stack. 

Next, curr-dim is set to 1, and lattice-points (1,l)  through (7,l) are traversed. Because (7,l)  

lies outside the constrained set, lattice-point (0,l) is popped off the stack, with curr-dim 

= 2 , degree = 2 and next -dim = 3. Point (0,l) is not pushed again onto the stack. 

and return a tree, the implicit but transient tree built during the search is critical for visiting

lattice-points efficiently. Thus, the tree is merely a series of edges and vertices, where leaves

are lattice-points outside R but neighbors of points in R. In Figure (5), these are the

grey vertices lying immediately beyond the boundary of R, as seen from within the set.

Although this is not shown, recall that the permissible directions are the unit vectors of xl

and x2. The pseudo-code for the tree-based algorithm is given in Figure 6.

ROOT

Figure 5: Tree defined by the space shown in Figure 1

4.1 A Sample Traversal

Consider the setup shown in Figure 5. The algorithm begins with curLdim = 1, ndim

= 2, and v = (0,0). The vertex/edge and degree record [(0,0), 2, 2] is pushed onto the

stack, and lattice-points (1,0) through (8,0) are traversed, one by one. Lattice-point (8,0)

lies immediately outside the set specified by the constraints, and so lattice-point (0,0) is

popped off the stack, along with curr_dim = 2 and degree = 2. Because next_dim = 3,

which is greater than degree = 2, the point (0,0) is not pushed onto the stack again.

At the next step, lattice-point (0,1) is obtained and found to lie inside R. Because

curLdim = 2, which is greater than 1, the record [(0,1), 2, 2] is pushed onto the stack.

Next, curLdim is set to 1, and lattice-points (1,1) through (7,1) are traversed. Because (7,1)

lies outside the constrained set, lattice-point (0,1) is popped off the stack, with curLdim

= 2 , degree = 2 and next_dim = 3. Point (0,1) is not pushed again onto the stack.
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v = o r i g i n ;  

no t -ex i t  = TRUE; 

degree = ndim; 

curr-dim = 1 ;  

G = normal iza t ion- func t ion  f (v); 

/ /  t h i s  pushes t h e  r o o t  p o i n t  i n  t h e  s t a c k  i f  necessa ry  

i f  (ndim > 1) 

PUSH (v ,  2 ,  degree)  ; 

while  (no t -ex i t )  { 

/ /  go i n  d i r e c t i o n  curr-dim -- edges and v e r t e x e s  have degree curr-dim 

v = v + uni t -vector(curr-dim) ; 

Increment G by normalizat  ion-f unct  ion f (v) ; 

// always f o r c e  a s t a r t  wi th  d i r e c t i o n  1 (next-dim = 2) 

i f  (curr-dim > 1){ 

PUSH(V, 2 ,  curr-dim) ; 

curr-dim = 1 ;  

} 
1 
e l s e  { 

i f  (POP (v ,  curr-dim, degree) == EMPTY) 

not-exit=FALSE; 

e l s e  { 
next-dim = curr-dim + 1 ; 

// push on s t a c k  f o r  l a t e r  d i r e c t i o n  

i f  (next-dim 5 degree)  

PUSH(point , next-dim, degree)  ; 

Figure 6: Tree-based lattice traversal 
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v = origin;

not_exit = TRUE;

degree = ndim;

curr_dim = 1;

G = normalization-function f(v);

II this pushes the root point in the stack if necessary

if (ndim > 1)

PUSH (v, 2, degree);

while (not_exit){

II go in direction curr_dim -- edges and vertexes have degree curr_dim

v = v + unit3ector(curLdim);

if (v is in R){

Increment G by normalization-function f(v);

II always force a start with direction 1 (next_dim 2)

if (curLdim > 1) {

PUSH(v, 2, curr_dim);

curr_dim = 1;

}

}

else {

if (POP (v, curr_dim, degree)

else {

EMPTY)

noLexit=FALSE;

curLdim + 1;

}

}

II push on stack for later direction

if (nexLdim :::; degree)

PUSH (point , next_dim, degree);

}

Figure 6: Tree-based lattice traversal

12



Lattice points (0,2) through (0,7) are processed in a similar manner, so that neighboring 

points of degree one are always traversed. Lattice-point (0,8) is determined to  be at the 

boundary, since it lies outside the constrained set. At this point the stack is empty, and the 

algorithm terminates. 

Stack Size 

Consider the building of a tree of degree D .  In the worse case, the algorithm pushes a 

sequence of lattice-points of degree D,  D - 1, D - 2,. . . ,3 ,2  onto the stack. Direction 1 is 

not pushed, but traversed. That means that the size of the stack thus generated is bounded 

from above by D - 1, i.e., a t  most the number of dimensions minus one. 

Proof of Correctness 

Up to this point, we focused on minimizing the processing of lattice-points in terms of 

edge-traversals and stack-space. We now need to prove that the algorithm touches all 

lattice-points in the set R. For ndim = 1, it is clear that the entire constrained space is 

traversed, because the algorithm systematically moves from the origin, along direction 1, 

up until the boundary of the graph. The result is a tree of degree 1. 

Now assume that the algorithm covers all of the lattice-points given by a tree of degree 

D. If we build a tree of degree ( D  + I ) ,  the algorithm proceeds by constructing a branch 

of degree ( D  + 1) in which all ver-tices are roots of trees in dimension D. The branch of 

degree ( D  + 1) starts at the origin and goes in direction ( D  + I ) ,  up until the boundary 

for dimension ( D  + 1). This effectively enables all the lattice-points in that direction to be 

covered. Since those points are the roots of trees of degree D l  and they cover all points of 

dimension D ,  all points in the set R are covered. 

Upon effectively building a tree of degree ( D  + I ) ,  the algorithm adds one branch that 

ties together trees of degree D .  This idea is illustrated in Figure 7, for a tree of degree 3. 

In turn, trees of degree 2 are constrlicted by a branch that ties together trees of degree one. 

Complexity 

Let R* be the set of lattice-points x E R for which equality is attained for at least one 

constraint in the system given in (a), and define the boundary b(R) to be the set of lattice- 

points that are not in R but are neighbours of points in R*.  Let d be the number of 

lattice-points in R U b(R). During the traversal of any set R, the algorithm must touch 

points in b(R) while querying lattice-points for membership in R .  At the boundary it is 

Lattice points (0,2) through (0,7) are processed in a similar manner, so that neighboring

points of degree one are always traversed. Lattice-point (0,8) is determined to be at the

boundary, since it lies outside the constrained set. At this point the stack is empty, and the

algorithm terminates.

Stack Size

Consider the building of a tree of degree D. In the worse case, the algorithm pushes a

sequence of lattice-points of degree D, D - 1, D - 2, ... ,3,2 onto the stack. Direction 1 is

not pushed, but traversed. That means that the size of the stack thus generated is bounded

from above by D - 1, i.e., at most the number of dimensions minus one.

Proof of Correctness

Up to this point, we focused on minimizing the processing of lattice-points in terms of

edge-traversals and stack-space. We now need to prove that the algorithm touches all

lattice-points in the set R. For ndim = 1, it is clear that the entire constrained space is

traversed, because the algorithm systematically moves from the origin, along direction 1,

up until the boundary of the graph. The result is a tree of degree 1.

Now assume that the algorithm covers all of the lattice-points given by a tree of degree

D. If we build a tree of degree (D + 1), the algorithm proceeds by constructing a branch

of degree (D + 1) in which all verotices are roots of trees in dimension D. The branch of

degree (D + 1) starts at the origin and goes in direction (D + 1), up until the boundary

for dimension (D + 1). This effectively enables all the lattice-points in that direction to be

covered. Since those points are the roots of trees of degree D, and they cover all points of

dimension D, all points in the set R are covered.

Upon effectively building a tree of degree (D + 1), the algorithm adds one branch that

ties together trees of degree D. This idea is illustrated in Figure 7, for a tree of degree 3.

In turn, trees of degree 2 are constructed by a branch that ties together trees of degree one.

Complexity

Let R * be the set of lattice-points x E R for which equality is attained for at least one

constraint in the system given in (8), and define the boundary b(R) to be the set of lattice

points that are not in R but are neighbours of points in R *. Let d be the number of

lattice-points in R U b(R). During the traversal of any set R, the algorithm must touch

points in b(R) while querying lattice-points for membership in R. At the boundary it is
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Figure 7: Recursive definition of a degree-3 tree 

able to verify that it has indeed arrived at a limit in some direction. Considering stack 

processing, each lattice-point is visited a number of times that is equal to its vertex degree, 

and is also equal to the number of edges emanating from that vertex. This includes edges 

reaching outside the constrained set for boundary peints. Thus, the run-time g ( d )  of the 

algorithm is given by 

from where, by associating each lattice-point with the edge used to reach that point, we 

can conclude that d  = E - 1. This is because each lattice-point is approached only once, 

so that every point has one approaching edge, except for the origin which is the start point 

and has no approaching edge. 

Thus, the run-time complexity is given by g ( d )  = d, implying that the execution time is 

directly proportional to the number of points in the constrained set R. Indeed, this appears 

to be a marked improvement over the generating function-based recursion proposed in [13] 

which offers a run-time complexity of O ( n  njmZl Cj  ) and a space complexity of O(njm=l C j ) .  

In contrast, observe that the stack-space requirement of the tree-search algorithm is bounded 

from above by n - 1. 

Direct application of the classical depth-first search algorithm is impractical because it 

Figure 7: Recursive definition of a degree-3 tree

able to verify that it has indeed arrived at a limit in some direction. Considering stack

processing, each lattice-point is visited a number of times that is equal to its vertex degree,

and is also equal to the number of edges emanating from that vertex. This includes edges

reaching outside the constrained set for boundary peints. Thus, the run-time g(d) of the

algorithm is given by

(9)

from where, by associating each lattice-point with the edge used to reach that point, we

can conclude that d = E - 1. This is because each lattice-point is approached only once,

so that every point has one approaching edge, except for the origin which is the start point

and has no approaching edge.

Thus, the run-time complexity is given by g(d) = d, implying that the execution time is

directly proportional to the number of points in the constrained set R. Indeed, this appears

to be a marked improvement over the generating function-based recursion proposed in [13]

which offers a run-time complexity of O(n OJ=l Cj ) and a space complexity of O(Oj=l Cj ).

In contrast, observe that the stack-space requirement of the tree-search algorithm is bounded

from above by n - 1.

Direct application of the classical depth-first search algorithm is impractical because it
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indiscriminately pushes new points onto the search stack. This is a serious limitation because 

it can cause the stack to grow rapidly, bounded only by d. The tree-based search, on the 

other hand, consistently moves in the same direction until the set boundary is reached, 

without pushing points onto the stack. When the algorithm traverses any direction other 

than direction 1, it moves at most one step in that direction, pushes the corresponding 

lattice-point onto the stack and then immediately begins a traversal of directions 1 through 

K. In this way, the algorithm forces the traversal to start at direction 1 each time such 

a "new" vertex is found, drastically reducing usage of the stack. Further, whenever the 

algorithm considers a vertex of degree D,  the edges that will be traversed before popping 

that vertex off the stack will each have degree at most D - 1. After the vertex is popped 

off the stack, the algorithm moves in the direction D.  This guarantees the upper bound on 

stack requirements, as claimed above. 

5 Experimental Results 

While the complexity of the algorithm suggests that the procedure may not be feasible 

when the size of the constrained set R is prohibitively large, in terms of the number of 

lattice-points it contains, the procedure is feasible when (a) d is of reasonable size, (b) the 

number of constraints m is moderate or large, relative to the number of dimensions n ,  and 

(c) the parameters (i.e., pk)  along each dimension are such that the tree-building procedure 

enables run-time pruning, so that traversals along certain directions can be terminated when 

lattice-points yield meager contributions to the total sum G. In this section we present the 

results of a set of experiments showing how the size of an average constrained set varies 

with the dimension of the problem space. In each case the exact number of points in the 

lattice-space was determined explicitly, without any use of pruning. 

Experiment 1. 

We ran the traversal algorithm on randomly constructed constrained regions in n-dimensional 

space, where 2 5 n 5 100. A total of 840 such runs were made using uniformly randomly 

generated constraints and coefficients, and run-times were measured and graphed against 

the total number of points. The constant G was computed using all the points in each 

space, and the number of points traversed ranged from 10 to 25 x lo6, with the number of 

points within the randomly generated sets R ranging from 6 to 17 x lo6. 

In Figure 8 is shown the result of this run-time measurement. In applying a linear 

regression to the measured points, a correlation coefficient of 0.95 was obtained, suggesting 

indiscriminately pushes new points onto the search stack. This is a serious limitation because

it can cause the stack to grow rapidly, bounded only by d. The tree-based search, on the

other hand, consistently moves in the same direction until the set boundary is reached,

without pushing points onto the stack. When the algorithm traverses any direction other

than direction 1, it moves at most one step in that direction, pushes the corresponding

lattice-point onto the stack and then immediately begins a traversal of directions 1 through

K. In this way, the algorithm forces the traversal to start at direction 1 each time such

a "new" vertex is found, drastically reducing usage of the stack. Further, whenever the

algorithm considers a vertex of degree D, the edges that will be traversed before popping

that vertex off the stack will each have degree at most D - 1. After the vertex is popped

off the stack, the algorithm moves in the direction D. This guarantees the upper bound on

stack requirements, as claimed above.

5 Experimental Results

While the complexity of the algorithm suggests that the procedure may not be feasible

when the size of the constrained set R is prohibitively large, in terms of the number of

lattice-points it contains, the procedure is feasible when (a) d is of reasonable size, (b) the

number of constraints m is moderate or large, relative to the number of dimensions n, and

(c) the parameters (i.e., Pk) along each dimension are such that the tree-building procedure

enables run-time pruning, so that traversals along certain directions can be terminated when

lattice-points yield meager contributions to the total sum G. In this section we present the

results of a set of experiments showing how the size of an average constrained set varies

with the dimension of the problem space. In each case the exact number of points in the

lattice-space was determined explicitly, without any use of pruning.

Experiment 1.

We ran the traversal algorithm on randomly constructed constrained regions in n-dimensional

space, where 2 ::; n ::; 100. A total of 840 such runs were made using uniformly randomly

generated constraints and coefficients, and run-times were measured and graphed against

the total number of points. The constant G was computed using all the points in each

space, and the number of points traversed ranged from 10 to 25 X 106 , with the number of

points within the randomly generated sets R ranging from 6 to 17 X 106 .

In Figure 8 is shown the result of this run-time measurement. In applying a linear

regression to the measured points, a correlation coefficient of 0.95 was obtained, suggesting
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a run-time directly proportional to d. The result of an experiment showing the correlation 

between the total number d of points traversed and the subset of points lying strictly within 

the set R (i.e., d - I b(R) I ) ,  is shown in Figure 9. Again, this suggests that, on average, the 

number of points on the boundary is directly proportional to the number of points within 

the constrained set, with the constant of proportionality being approximately 112. While 

the ratio (d - Ib(R)l)/d can be surprisingly large in particular cases, the ratio seems to be 

about 112 on average, and at present we have no explanation for this phenomenon. 

The determination of the number of points d within an arbitrary set R is a nontrivial 

problem. Since the run-time complexity of the algorithm is O(d), it is instructive to get 

a handle on how d varies with the parameters defining set R, at least in some "average" 

sense. We accomplished this experimentally in the following manner. First we fixed Cj  = C, 

for 1 < j < m, without suffering any loss in generality as far as measures of run-time 

are concerned. Second, values of the constraint coefficients r j : k  were generated uniformly 

randomly from integers in the set (1,. . . ,101, for 1 < j < m, and 1 < k < n. A single 

application of the depth-first tree algorithm on a randomly generated "problem-space" (i.e., 

one complete set of randomly generated constraint coefficients rj.:k, V ( j ,  k)) offered a single 

observation of the algorithm's run-time, for fixed n and C. The independent generation of 

30 such problem-spaces, with associated tree traversals, offered 30 observations from which 

an average, maximum, minimum and standard-error were obtained, for fixed n and C. The 

next step was to repeat the procedure for different values of n and C,  in order to study the 

effect of dimens<onality on run-time. 

Experiment 2. 

The objective here was to  examine the relationship between dimensionality n and the num- 

ber of lattice-points d the algorithm must traverse, on average. Runs were made for n = 2, 

3, 5, 7, 8, 9, 11 and 12, with C = 100, and m = n, with average, maximum, minimum and 

standard deviation obtained over 30 independent runs on uniformly randomly generated 

constrained spaces, as before. The results of this experiment can be seen in Figure 10 and 

also in in Table 1, which presents the minimum (dmin) and maximum (dm,,) sizes of the 

constrained sets, along with average size 2 and standard-error (ad)  over 30 independent 

runs, for each value of n. 

The last last-two columns of the table present relative efficiency ratios 7 = d / n c n  and 

qmax = dma,/nCn for the run-times given by the worst case and average case complexity, 

respectively, of our tree-based search algorithm; here, nCn is the actual number of operations 

a run-time directly proportional to d. The result of an experiment showing the correlation

between the total number d of points traversed and the subset of points lying strictly within

the set R (i.e., d -lb(R)I), is shown in Figure 9. Again, this suggests that, on average, the

number of points on the boundary is directly proportional to the number of points within

the constrained set, with the constant of proportionality being approximately 1/2. While

the ratio (d - Ib(R)I)/d can be surprisingly large in particular cases, the ratio seems to be

about 1/2 on average, and at present we have no explanation for this phenomenon.

The determination of the number of points d within an arbitrary set R is a nontrivial

problem. Since the run-time complexity of the algorithm is O(d), it is instructive to get

a handle on how d varies with the parameters defining set R, at least in some "average"

sense. We accomplished this experimentally in the following manner. First we fixed Cj = C,

for 1 S; j S; m, without suffering any loss in generality as far as measures of run-time

are concerned. Second, values of the constraint coefficients rj,k were generated uniformly

randomly from integers in the set {1, ... ,10}, for 1 S; j S; m, and 1 S; k S; n. A single

application of the depth-first tree algorithm on a randomly generated "problem-space" (i.e.,

one complete set of randomly generated constraint coefficients Tj,k, V(j, k)) offered a single

observation of the algorithm's run-time, for fixed nand C. The independent generation of

30 such problem-spaces, with associated tree traversals, offered 30 observations from which

an average, maximum, minimum and standard-error were obtained, for fixed nand C. The

next step was to repeat the procedure for different values of nand C, in order to study the

effect of dimensi~malityon run-time.

Experiment 2.

The objective here was to examine the relationship between dimensionality n and the num

ber of lattice-points d the algorithm must traverse, on average. Runs were made for n = 2,

3, 5, 7, 8, 9, 11 and 12, with C = 100, and m = n, with average, maximum, minimum and

standard deviation obtained over 30 independent runs on uniformly randomly generated

constrained spaces, as before. The results of this experiment can be seen in Figure 10 and

also in in Table 1, which presents the minimum (dmin) and maximum (dmax ) sizes of the

constrained sets, along with average size d and standard-error (ad) over 30 independent

runs, for each value of n.

The last last-two columns of the table present relative efficiency ratios fj = d/ncn and

'fJmax = dmax/nCn for the run-times given by the worst case and average case complexity,

respectively, of our tree-based search algorithm; here, nCn is the actual number of operations
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required by the generating-function based multidimensional recurrence presented in [13]. I t  

is interesting to note that both ratios converge rapidly to 0 for relatively small but increasing 

n ,  with the average case converging slightly faster. The multidimensional scheme developed 

in [13] recurses up to Cj times, 1 < j < m, where each Cj is a component in an n-vector; the 

tree-algorithm is less sensitive to these inequality bounds. Also, compare the stack-space 

complexity n of the tree-algorithm to the space complexity Cn of the recurrence in [13], 

which is a direct result of the need to utilize recurrence history in computing new values. 

We use C in the efficiency ratios because Cj = C Vj, to simplify our experiments. 
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Figure  10: Number of points traversed vs. dimension n 

Table  1: Statistics on n versus d 

Vmax 

0.0315 

0.000651 

5.05e-07 

4.37e-10 

1.23e-11 

1.72e-13 

8.02e-17 

1.41e-18 

2 

3 

5 

7 

8 

9 

11 

12 

dmin 

80 

384 

4714 

49813 

141599 

298454 

2012261 

4599583 

dm,, 

630 

1953 

25271 

305678 

985526 

1549614 

8824529 

16895489 

- 
d 

210.97 

847.23 

11755.10 

124870.77 

348653.33 

792181.23 

4366967.33 

9223994.53 

a d  

24.06 

76.21 

933.58 

12644.34 

38856.70 

67874.05 

336553.11 

601605.51 

- 
rl 

0.010548 

0.000282 

2.35e-07 

1.78e-10 

4.36e-12 

8.8e-14 

3.97e-17 

7.69e-19 

required by the generating-function based multidimensional recurrence presented in [13]. It

is interesting to note that both ratios converge rapidly to 0 for relatively small but increasing

n, with the average case converging slightly faster. The multidimensional scheme developed

in [13] recurses up to Cj times, 1 ::::: j ::::: m, where each Cj is a component in an n-vector; the

tree-algorithm is less sensitive to these inequality bounds. Also, compare the stack-space

complexity n of the tree-algorithm to the space complexity cn of the recurrence in [13],

which is a direct result of the need to utilize recurrence history in computing new values.

We use C in the efficiency ratios because Cj = C Vj, to simplify our experiments.
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Figure 10: Number of points traversed vs. dimension n

n dmin dmax d (Jd fj 'rJmax

2 80 630 210.97 24.06 0.010548 0.0315

3 384 1953 847.23 76.21 0.000282 0.000651

5 4714 25271 11755.10 933.58 2.35e-07 5.05e-07

7 49813 305678 124870.77 12644.34 1.78e-l0 4.37e-l0

8 141599 985526 348653.33 38856.70 4.36e-12 1.23e-11

9 298454 1549614 792181.23 67874.05 8.8e-14 1.72e-13

11 2012261 8824529 4366967.33 336553.11 3.97e-17 8.02e-17

12 4599583 16895489 9223994.53 601605.51 7.6ge-19 1.41e-18

Table 1: Statistics on n versus d
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Experiment 3. 

The goal of this experiment was to examine the relationship between the average number 

of available resource units (C),  the average size T of the constraint coefficients r j , k ,  and the 

number of points in the constrained set, on average. We proceed by graphing the ratio 

y = C/T versus the number of points in the constrained set, for y = 5, 10, 15, 20, 30, 40, 

and 50, T = (1 + 10)/2 = 5.5, and m = n. The results of this experiment can be seen 

in Figure 11, where the average number of points in a constrained set is graphed against 

dimension n. 
le+10 I I I I I 

Figure 11: Number of points traversed vs. y 

Experiment 4. 

The goal of this experiment was to examine the effect of an increasing number of constraints 

on run-time, for a fixed dimensionality n. That is, we measured the relationship between 

b = m l n  and the number of points in the constrained set, on average. Runs were made for 

a fixed value of n = 8, with y ranging from 10 to 25 in steps of 5. The ratio b took on the 

values 118, 114, 112, 1, 2, 3, and 4. The results of this experiment are shown in Figure 12, 

where the average number of points in a constrained set is graphed against selected values 

of y, for increasing b. Observe that beyond some point, an increasing number of constraints 

m reduces run-time complexity, but with diminishing returns. 

Experiment 3.

The goal of this experiment was to examine the relationship between the average number

of available resource units (C), the average size T of the constraint coefficients Tj,k, and the

number of points in the constrained set, on average. We proceed by graphing the ratio

'Y = C/T versus the number of points in the constrained set, for'Y = 5, 10, 15, 20, 30,40,

and 50, T = (1 + 10)/2 = 5.5, and m = n. The results of this experiment can be seen

in Figure 11, where the average number of points in a constrained set is graphed against

dimension n.
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Experiment 4.

The goal of this experiment was to examine the effect of an increasing number of constraints

on run-time, for a fixed dimensionality n. That is, we measured the relationship between

0= min and the number of points in the constrained set, on average. Runs were made for

a fixed value of n = 8, with 'Y ranging from 10 to 25 in steps of 5. The ratio 0 took on the

values 1/8, 1/4, 1/2, 1, 2, 3, and 4. The results of this experiment are shown in Figure 12,

where the average number of points in a constrained set is graphed against selected values

of 'Y, for increasing o. Observe that beyond some point, an increasing number of constraints

m reduces run-time complexity, but with diminishing returns.
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Figure 12: Number of points traversed vs. 6 

6 Conclusions 

We have found the proposed algorithmic procedure to be effective in computing normal- 

ization constants over fairly large spaces, on average, as indicated by our experiments. For 

example, computing the normalization constant over a space of about d = 10 x lo6 lattice- 

points takes roughly five minutes on a 336 MHz Sun enterprise-server. The advantage of 

using such a simple and direct procedure should not be overlooked, since the algorithm is 

robust and only needs the specification of function(s) to be evaluated, and the definition of 

the space over which a sum is to be computed. 

Though the run-times offered by the tree-based algorithm are much smaller than those 

given by algorithms based on previously proposed multidimensional recurrences, we do 

not wish to overstate our case, since it is possible for some problems to offer truly large 

constrained spaces. When the number of lattice-points d in such spaces is prohibitively large, 

direct application of the algorithm may not be feasible. We are currently investigating 

pruning-based approximation schemes for such situations, and also techniques for better 

estimating run-time complexity of the algorithm for a given problem. 

'(=25 --
'(=20 ---)(---
'(=15··"···
'(=10 .. {J

... _- ..... _-._- ....

1e+09

1e+08

1e+07

-0 1e+06

100000

10000

1000
0 2 3 4 5 6 7 8 9

Figure 12: Number of points traversed vs. 0

6 Conclusions

We have found the proposed algorithmic procedure to be effective in computing normal

ization constants over fairly large spaces, on average, as indicated by our experiments. For

example, computing the normalization constant over a space of about d = 10 X 106 lattice

points takes roughly five minutes on a 336 MHz Sun enterprise-server. The advantage of

using such a simple and direct procedure should not be overlooked, since the algorithm is

robust and only needs the specification of function(s) to be evaluated, and the definition of

the space over which a sum is to be computed.

Though the run-times offered by the tree-based algorithm are much smaller than those

given by algorithms based on previously proposed multidimensional recurrences, we do

not wish to overstate our case, since it is possible for some problems to offer truly large

constrained spaces. When the number of lattice-points d in such spaces is prohibitively large,

direct application of the algorithm may not be feasible. We are currently investigating

pruning-based approximation schemes for such situations, and also techniques for better

estimating run-time complexity of the algorithm for a given problem.
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