
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2001

Minimizing Latency and Jitter for Large Scale Multimedia Minimizing Latency and Jitter for Large Scale Multimedia

Repositories Through Prefix Caching Repositories Through Prefix Caching

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Rahul Chari

Report Number:
01-018

Prabhakar, Sunil and Chari, Rahul, "Minimizing Latency and Jitter for Large Scale Multimedia Repositories
Through Prefix Caching" (2001). Department of Computer Science Technical Reports. Paper 1515.
https://docs.lib.purdue.edu/cstech/1515

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972214?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

MINIMIZING LATENCY AND JITTER FOR LARGE SCALE
MULTIMEDIA REPOSITORIES THROUGH PREFIX CACffiNG

Sunil Prabbakar
Kabul Chari

Department of Compuler Sciences
Purdue University

West Lafayette, IN 47907

CSD TR #01-018
October 2001

Minimizing Latency and Jitter for Large Scale

Multimedia Repositories through Prefix Caching *

Sunil Prabhakar Rahul Chari

Department of Computer Sciences

Purdue University

West Lafayette, IN 47907

U.S.A.

{sunil, rchari}@cs.purdue.edu

Abstract

Multimedia data poses challenges for efficient storage and retrieval due to its large size and

playback timing requirements. For applicat;ions that store very large volumes of multimedia

data, hierarchical storage offers a scalable and economical alternative to store data on magnetic

disks. In a hierarchical storage architecture data is stored on a tupe or optical disk based tertiary

storage layer with the secondary storage disks serving as a cache or buffer. Due to the need

for swapping media on drives, retrieving multimedia data from tertiary storage can potentially

result in large delays before playback (startup latency) begins as well as during playback (jitter).

In this paper we address the important problem of reducing startup latency and jitter for very

large multimedia repositories. We propose that secondary storage should not be used as a

cache in the traditional manner - instead, most of the secondary storage should be used to

permanently store partial objects. Furthermore, replication is employed at the tertiary storage

level to avoid expensive media switching. In particular, we show that by saving the initial

segments of documents permanently on secondary storage, and replicating on tertiary storage,

startup latency can be significantly reduced. Since we are effectively reducing the amount of

secondary storage available for buffering the data from tertiary storage, an increase in jitter may

be expected. However, our results show that the technique also reduces jitter, in contrast to

the expected behavior. Our techni.que exploits the pattern of data access. Advance knowledge

of the access pattern is helpful, but not essential. Lack of this information or changes in access

patterns axe handled through adaptive techniques. Our study addresses hoth single and multiple

user scenarios. Our results show that startup latency can be reduced by as much as 75% and

jitter practically eliminated through the use of these techniques.

1 Introduction

Multimedia data poses challenges for efficient storage and retrieval due to its large size and play­

back timing constraints. Consequently the problem of multimedia storage bas received significant

·Work supported by , N8F CAREER grant No. 118-9985019, and NSF Grant 9988339-CCR

1

attention from the research community. Due to the need for efficient retrieval, the research has

focussed chiefly on magnetic disk technology. The falling cost per megabyte for disk storage has

made it possible to store data for many applications on disk. However, for applications that need

to store very large amounts of data, storing only on magnetic disks is still too expensive. Examples

of such applications include telemedicine, online multimedia manuals, and television broadcast for

which the storage requirements can easily exceed several tens of terabytes. For example, a small

sample of video and image data from the MedInstitute in Indianapolis constitutes 200GB of data.

The total requirements for storage are well over ten terabytes and will continue to grow as more

patient data is collected in digital format. Even though the cost of disk storage has dropped sig­

nificantly, and will likely continue to do so in the future, the storage requirements are also growing

at a similar pace. The desire to store in digital format very high quality medical multimedia data

for all patients, and automatically captured high quality images of the universe [23] are examples

of applications with ever-growing storage needs. Such large volumes of data are typically stored on

tertiary storage such as automated tape libraries [24J or CDjDVD jukeboxes [16]' Even with the

availability of a large amount of disk space, the use of tertiary storage allows cheap scalability to

even larger data volumes.

Tertiary storage offers much cheaper storage than magnetic disks. This is achieved through a

large number of cheap media sharing a small number of expensive drives. On the flip side, data

access on tertiary storage can suffer from large latencies if media need to be swapped on drives or

tape needs to be rewound. Typical access times for magnetic disks are on the order of milliseconds

whereas the access time for magnetic tapes can vary from a few milliseconds to a minute or more.

If the tape holding the requested data is not loaded on a drive, it is necessary to rewind a currently

loaded tape, eject it, place it back on the rack, pick up the requested tape, load it, and seek to

the appropriate location before data transfer can begin. These operations are very slow due to

the mechanical motion required. It should be noted that the streaming rate for tertiary storage is

comparable to that of disks, however the latency for random access can be very much higher.

Large delays in accessing data can result in high startup latency (time that elapses between

the submission of the request and the beginning of the retrieval) or jitter (delays in data arter

playback has begun). In order to reduce startup latency and jitter, careful management of storage

is essential. This is especially important when multiple users access the repository concurrently. In

this paper we present novel techniques for the efficient management of large volumes of multimedia

documents on secondary and tertiary storage. Due to the large amount of data to be stored, data

primarily resides on tertiary storage. The disks that make up the secondary storage layer typically

serve as a cache. Data that is retrieved from tertiary storage is temporarily stored on disk. A

replacement policy such as LRU or LFU is typically used to make room for the new data.

We propose that secondary storage should not be used as a cache in the traditional sense ­

instead, most of the secondary storage should be used to permanently save parts of multimedia

documents or objects. At the tertiary storage level, we propose the use of replication to avoid

expensive media switching. In particular, we show that by saving the initial segments of documents

permanently on secondary storage, and replicating on tertiary storage, the startup latency can be

2

significantly reduced. Since we are effectively reducing the amount of secondary storage available

for buffering the data from tertiary storage, an increase in jitter may be expected. However, we

show that our technique reduces jitter in contrast to the expected behavior. Although advance

knowledge of the access pattern is helpful, it is not essential for our techniques. We show how the

observed access patterns can be used to determine and tune the placement.

The rest of the paper is organized as follows. In Section 2 we summarize the related work.

Section 3 presents our new approaches for disk caching and tertiary placement. A description of

the system model is presented in Section 4. Section 5 gives details experimental results and Section

6 concludes the paper.

2 Related Work

Although the issue of storing multimedia data on tertiary storage bas been addressed by several

researchers, the problem of reducing startup latency and jitter in a multi-user setting has not been

studied. A cache replacement technique for managing secondary storage buffers when multimedia

objects are stored on tertiary storage has been developed by Ghandeharizadeh et al [7]. The

study is limited to a single-user, single-disk personal computer system. In Section 5 we show that

their scheme is not effective in a multi-user, multi-disk system - giving poorer performance than a

simple LFU cache replacement scheme. The use of a pipelining mechanism that avoids the need for

complete materialization of an object on disk before initializing playback is presented in [6]. The

basic idea is to divide an object into multiple slices and overlap the retrieval of one slice with the

playback of the previous slice. This reduces latency delays during playback but does not reduce

the startup delay. This technique can be applied orthogonally to our technique to reduce jitter

(note that in our experiments we find that jitter is negligible with our replication scheme). In order

to mask network latency and loss, prefix caching of the initial segments of multimedia streams

at proxy servers has been proposed [21]. The study addresses network issues such as workload

smoothing through caching for multimedia data. The problems of latency and jitter for retrieval

of data at the server are not addressed.

Storing video on hierarchical storage has also been studied in [26 , 27]. The study addresses I/O

bandwidth issues at the various levels of the storage hierarchy. The problems of high startup latency

for access to tertiary storage and jitter are not addressed. Scheduling schemes for tertiary storage

libraries are discussed in [5, 9, 15, 18] - any of these techniques can be applied in conjunction with

our research to further improve performance. In [12] a prefetching algorithm based upon Markov­

chain prediction of access is developed. Placement schemes for data on tertiary storage libraries

have been proposed based upon independent document access probabilities and no replication

[2, 25]. Optimal arrangement of cartridges and file-partitioning schemes for carousel-type systems

are investigated in [22]. Placement schemes for data on optical disks are developed in [4]. Both

these studies do not address the issues of multimedia data. We show that use of replication can

significantly reduce the need for expensive switching of media on tertiary storage resulting in

significant improvements. The cost of replication on tertiary storage is minimal. Models of tape

3

Figure 1: Example of a Document

systems and tertiary storage system parameters can be found in [8, 11J.

3 Hot Objects and Prefix Caching

In this study we address the problem of multimedia storage not only for individual objects but also

for multimedia documents that are composed by sharing a collection of objects. In this section we

first explain the nature of multimedia documents. This is followed by a description of the proposed

prefix caching, and tertiary placement schemes. Finally, a discussion of adaptive placement is

presented.

3.1 Multimedia Documents

An example of a multimedia document is an online technical manual consisting of images, video,

and audio clips. Similarly, a news report consisting of a sequence of several stories with clips is

another example. A document specifies the layout of the multimedia objects as well as the timing

relationships between them. For example a video segment is played after a previous video or anima­

tion is completed. Several approaches for describing multimedia documents have been developed

including graph models, Petri-Net models, and object-oriented models [1, 13]. An example of a

Petri-Net description is shown in Figure 1. The document begins with the display of video1 followed

by the simultaneous display of vide02 and audio2, followed by vide03. The objects that make up

documents can be shared among multiple documents. The document may not be stored as a single

object, rather it can be composed dynamically from its constituent objects at the time that it is to

be retrieved. In order to playback a document, the physical objects that make up the document

need to be retrieved in the order that they appear in the document. For ease of exposition, we will

present the discussion in terms of documents in the remainder of the paper. However it should be

noted that the ideas discussed are equally applicable to repositories that do not have the notion of

documents.

Information about the access patterns for multimedia data is a very important input for efficient

storage and retrieval of data. Popularity of documents can be captured simply by the probability

of access. In addition to direct access to documents (such as by identifying the document directly),

users may access documents based upon links from other documents (e.g HTML documents with

links to other documents, or hyperlinks between manual pages). Such access is also very common

in a browsing scenario whereby users simply follow links of interest. A user would typically begin

4

by accessing a document and then possibly following some number of interesting links. If none of

the links in the document are interesting, the user may access a document not connected by links

from the current document.

A Browsing Graph (BG) [14J can be used to capture such access patterns. The browsing graph

consists of labeled nodes and labeled edges. Each node represents a document and the label of

the node gives the probability that the node will be accessed independent of the previously visited

document. A directed edge between two nodes represents a link from one document to the other

and the edge label gives the probability that the edge would be followed. The sum of the probability

of all edges going out of a document is not necessarily LO, since it is possible that none of the edges

will be followed. This model is similar to that used by the Coogle search engine for assigning

weights to documents in the world-wide-web [10].

3.2 Hot Prefixes and Disk Caching

Due to the large volume, data resides primarily on tertiary storage. Typically, the disks are used as

a cache to temporarily hold data after it has been retrieved from tertiary storage. The disks also act

as a buffer for holding data that is to be played later. When the disk cache is full, documents need

to be replaced in order to make room for newly requested ones. A document replacement policy

such as Least Recently Used (LRU) or Least Frequently Used (LFU) can be used to choose which

documents to replace. These policies however, are not well suited for multimedia documents. In

(7] a cache replacement policy is proposed for caching continuous media data on secondary storage.

Instead of replacing entire objects, the tail ends of objects are replaced from the disk cache when

space is needed.

We propose an alternative use of the secondary storage. The total disk space is divided into

two sets - the HOT CACHE and the BUFFER. The buffer is used as above to temporarily store

data that has been retrieved from tertiary storage. A replacement policy such as LFU is used to

manage the buffer. The hot cache is used to permanently hold a special subset of objects: those

having a high temperature or HOT OBJECTS. In the context of documents, an object refers to

each multimedia component that makes up the document, e.g. a video or audio clip. The ideas can

be easily applied even if no documents are defined on the objects. For large multimedia objects,

only a subset (prefix) of the object needs to be stored on disk. The entire object is stored on tape.

Thus only the prefixes of hot objects would be stored in the HOT CACHE.

The intuition behind permanently saving hot objects in disk is to mask the high access latency

of tertiary storage. A request for a document can suffer a large startup latency if the document is

not available on disk. Due to the large size of documents, it is not possible to save most documents

on disk. The high startup latency can be masked by having only a small initial portion of the

document stored on disk. When the document is requested, playback can begin immediately from

disk with very little delay. Concurrently, the document is retrieved from tertiary storage. The

playback of the portion of the document saved on disk overlaps with the access latency before the

requested document can be read from tertiary storage.

5

The "heat" of an object is determined using prior information about the access of the objects.

This could simply be the observed frequency of access of each document. Given the probability of

access of each document, we can compute the heat of an object as the sum of the access probabilities

of all documents that contain the object. However, for the purposes of hot caching, we only want to

save on disk those objects that occur early in the document. Therefore an object's heat is calculated

as the sum of access probabilities of only those documents in which it occurs early. An object is

considered to occur early in a document if it lies within the initial segment of the document. The

initial segment, or DELTA, can be defined as a fixed amount of time, or as a fixed fraction of the

document's total playing time. Delta is a parameter that can modeled to suit a system based on its

resources. In theory it is possible to use a different value of DELTA for different objects of classes

of objects. However, the main purpose of caching the DELTA prefix is to mask the latency of

tertiary storage access. This latency is dominated by the exchange of media and seek times_ Hence

it is likely to be relatively constant independent of the nature of the data items or the workload.

For this reason, we propose the use of a constant value of DELTA governed by the nature of the

tertiary storage system and disks. In Section 5 we consider the choice of DELTA as a fraction of

the length of an object (i.e. the length of the prefixes for objects are chosen to be proportional to

their entire length). From the results we see that a single choice of DELTA gives similar results

to the variable choice alternative. For the case of individual multimedia objects with no notion of

documents, only the initial DELTA segment of the object is saved on disk. The llheat" of an object

is simply the cumulative access to the object.

In the proposed scheme, the heat of each object is calculated as explained above. The hot cache

is then filled with prefixes of objects in the order of their heat, beginning with the hottest. An

important point is that objects that are shared by several documents are saved only once in the

hot cache. The fraction of disk storage reserved for hot objects is denoted by B. The remainder

of the storage is used as a buffer between secondary and tertiary storage. Any of the traditional

cache management schemes can be used to manage this buffer.

3.3 Tertiary storage placement

Tertiary storage is characterized by cheap storage with high access latency. The goal of placement

on tertiary storage is to reduce latency. The major component of latency is the time for switching

media on drives. In [25J it is shown that a placement whereby the objects are placed sequentially

in decreasing order of their access probabilities is optimal. This result, however, is based upon

the assumption that objects are accessed independently. This assumption is not true in practice.

The access is based upon documents, not independent objects. The popularity of an object is

determined by the access to all documents in which the object is contained. Thus it is possible if

we follow the placement of [25], the objects for documents get distributed among multiple media

resulting in extremely poor performance due to multiple switches.

We avoid this problem by ensuring that the access of a document incurs at most a single media

switch. This is achieved by replication of objects. Instead of saving a single copy of each object on

G

tertiary storage, we replicate objects so that a complete document is stored on a single medium.

Thus each object is replicated as many times as the number of documents it occurs in. Replication

on tertiary storage has a low overhead because storage is cheap. Note that on secondary storage,

there is no replication of objects. The entire set of objects needed for a document can now be

found placed together on a single medium. Of course, multiple documents can be stored on the

same medium. In fact, we use the algorithm of [25] to determine which documents to place on

which media using the access probability of documents. Documents are placed in decreasing order

of their access probabilities.

3.4 Adaptive Placement

A key component of the proposed storage management schemes is knowledge of the access pattern.

Although it is useful to know this a priori, it is not critical to the success of the proposed approach.

Such information can easily be gathered from the system by keeping track of document requests.

Based upon the observed access pattern, the choice of hot objects can be altered accordingly. In

Section 5 we show the effectiveness of this adaptive placement in response to changes in the access

pattern. In the complete absence of access information, the placement can begin with an initial

guess for the hot objects followed by progressive refinement as user requests are serviced.

4 System Model

The model of our system is shown in Figure 2. The functionality of each module and its relation­

ship with the other modules in the system is explained below. Every request for a document is

decomposed into requests for the component objects. The Disk Lookup module performs a lookup

of all the objects currently residing on disk to determine if any of the requested physical objects

are presently in secondary storage. This includes objects in the hot cache as well as those in the

buffers. Note that the disk buffer handles objects not documents. Thus it is possible that some

objects are retained in the buffer while other objects from the same document are replaced. Based

on the results of the disk lookup, all the objects not found on disk are searched for in tertiary

storage. The Tertiary Lookup module determines the location of the requested objects on tape.

The information about the location of the constituent objects on disk and tertiary storage is passed

on to the Scheduler.

The scheduler orders the requests for fetching the objects into main memory in the order of

their occurrence in the document. This is done taking into consideration the buffer space available.

Each user has an allocated buffer space in main memory to hold the requested objects before they

are sent on the network. As objects are fetched into main memory, the buffer space allotted to the

corresponding user decreases. Unavailability of buffer space results in the request being kept on

hold until an object from the same document is played and the space occupied by that object is

released. The scheduler also takes into account the time at which an object is required during the

playback using a delay estimation module. The delay estimation module takes into consideration

7

':Disk laY,oui: .

. , , '~'.

Updalablrlla,
Inloa"",w~lo

Inlo On ,artillry
obj""'"

I
W~IBIO I
ro'L(Q'"•.. ... • CO..

, :'. ". ':-
,'C~. . ,',

Figure 2: Block Diagram of System

the current status of the system resources and produces an estimate of the time required to fetch

the data from disc and tapes.

The request is sent to a drive chosen on the basis of the request queue on each drive. If the

required tape is already loaded and is currently in use, the estimation module does not factor in the

load time but estimates the delay based on the length of the queue for the tape and the size of each

waiting request. The playing of the requested document is delayed until the data that is readily

available from disk can mask the fetch time of the data from tertiary storage. Delaying the start

increases the startup latency but reduces jitter that would be observed if there is a break between

the consumption of data on disk and the arrival of data from tertiary storage. On completion of

the delay estimation, the scheduler sends the requests to the Disk Fetch unit and the Tertiary Fetch

unit.

The Buffer Manager keeps track of the data stored on the buffer disks and also the amount

of space available to buffer data from tertiary storage. The buffer manager uses an LFU policy

for object replacement from the buffers. Once the data is available in main memory it is ready to

be sent to the user over the network. The system assumes the availability of a fixed bandwidth

network connection out of the server. Based on the playing time of each object and its size, the

bandwidth requirement for that object is determined. If sufficient bandwidth is available the object

8

is transmitted. Otherwise, the playback of the document is delayed until sufficient bandwidth is

available.

5 Experimental Results

In this section we demonstrate the effectiveness of prefix caching and replication towards reducing

startup latency and jitter. The results are based upon a detailed CSIM [20] simulation model of the

system described above. The disk specifications for the model are based on the HP 97560 disk drive

[19J. The tape library is modeled on the Exabyte EXB-480 tape library configured with Exabyte

Mammoth drives [3]' Further details of the tape simulator can be found in [17]. The secondary

storage is configured with 20 disks each of capacity 2GB, giving a total of 40GB of disk storage. The

division of the disk storage into hot prefix cache and buffer is achieved by dedicating entire disks to

either of the two uses. The tertiary storage component is modeled on a robotic tape library with four

Exabyte drives. Some of the important parameters for the disks and tape simulation are provided

in Table 1. The experiments were conducted on a synthetic collection of 10,000 multimedia objects

of average size 100 Megabytes and a playback rate of 8MB/second. The tape library is configured

with 1000 tapes each of size 10GB, giving a total of lOTB of tertiary storage. It should be noted

that the capacity of each disk is deliberately chosen to be small compared to currently available

disk drives. This is done to compensate for the small number of multimedia objects considered in

the experiments. Experiments with larger numbers of objects took too long to complete. Therefore

the amount of disk or cache capacity WM reduced accordingly. In practice, larger disks would be

used for caching larger volumes of tertiary-resident data.

The set of documents and the access pattern is generated M follows. The number of component

objects in each document is chosen from a uniform distribution between 3 and 20. The corre­

sponding number of objects are chosen following the access probability of the objects. Since we

are dealing with multimedia objects, the access probability of objects follows a Zipf distribution.

The document access probabilities are also assigned following a Zipf distribution. In order to cap­

ture the effects of links between documents, we introduce the notion of edges between documents.

To determine the edges, the documents are divided into clusters. The number of documents in a

cluster is uniformly distributed between 2 and 20. Some (5%) of the documents are considered to

be outliers that do not belong to any cluster. For each document, a death probability, Pd, is picked

uniformly distributed between 0.05 and 0.2. This is the probability that the user does not follow

any of the links from this document. Edges to other documents within the cluster are created and

assigned probabilities that are uniformly distributed so M to add to 1 - Pd.

It is important to note that although the access pattern is an input to the placement algorithm,

it is not crucial that this pattern be accurate. As we have mentioned earlier, if the access pattern is

unknown or changes after the placement, the system can adapt to the observed access pattern by

adjusting which objects get placed in the hot cache. Experimental evidence to support this claim

is presented in Subsection 5.7.

Based upon the structure of the documents, and their access probabilities a placement of data

9

I MeaningValuers)Parameter

DISK SIMULATION PARAMETERS

ROT..8PEED 4002 Rotational speed RPM

SEC..8IZE 512 Size of sector in bytes

SEC_TR 72 No. of sectors per track

CYLINDERS 1962 No. of cylinders

TR-CYL 19 No. of tracks per cylinder

TRKSKEW 8 Track skew in sectors

CYSKEW 18 Cylinder skew in sectors

CNTRL_TIME 1.2 Controller overhead (ms)

CAPACITY 2 GB Disk storage capacity

TAPE SIMULATION PARAMETERS

RWD_OVHD 0.0083 seconds Rewind Overhead

SEEK-OVHD 0.0083 seconds Seconds

SEEK..8PEED (RWD_SPEED) 103 (103) MB/s Tape seek (rewind) rate

EJECT_TIME 2 seconds

LOAD_TIME 4 seconds Time to load a tape on a drive

PICK_TIME 1 second Time for rahat to grab a tape

PUT_TIME 1 second Time for robot to drop a tape

MOVE_TIME 1 second Time for robot to move

XFER..8PEED 3.0 MB/s Tape transfer speed

NUM_TAPES 1000 Total number of tapes

TAPE-CAP 10 GB Tape cartridge capacity

Num of Drives 4

Table 1: Table of Parameters

on tertiary and secondary storage is generated. In each experiment, we run multiple concurrent

streams of requests, each corresponding to a different user. Each stream begins by requesting a

starting document following the access probability for the documents. As soon as this document is

retrieved, the user chooses to either follow one of the edges or to pick another document following

the document access probabilities. This choice is based upon the edge probabilities and the death

probability of the currently accessed document. In each test we first warm up the caches by running

1000 requests. Following this, we run another 1000 requests based upon which we compute the

average startup latency or average jitter observed by the requests.

In the following experiments we study the performance of prefix caching and the impact of the

following parameters: DELTA, number of hot object vs. buffer disks, number of simultaneous

users in the system, available network bandwidth, and the access pattern. The performance of

the PIRATE cache replacement scheme designed for a single-user, single-disk environment is also

presented.

10

.00 _.-
Dd!IloS" ...-

.~
o.t!o.Wll. -D"

..
]:

I =

~ '00,
•• ,~

j
'00

Figure 3: Startup Latency for Delta as Percentage

..,

....
I ~.

I ,.,
~ =,
•
~

,.
•< ,~....

=,

.~ ,---------------.,------,_.­
Dofto.1001<1:s -+­
ll<Ifto.l500"", -D"

Figure 4: Startup Latency for Delta as Time

5.1 Impact of Hot Object Caching

We begin by studying the effectiveness of the hot object technique in reducing the startup latency.

Figure 3 shows the average latency as the number of concurrent users is varied for three different

choices of DELTA (the size of the "prefix"). The graph for DELTA = 0 represents the performance

for no hot object caching where all disks are used as buffers. The other two graphs show the

performance with hot object caching for DELTA equal to 5% and 15% of the total time of each

document (i.e. an object is considered to be in the prefix of the document if it occurs within

the first 5% or 15% of the document). The number of users was varied from 1 to 10. As can

be seen from the graph, prefix caching considerably reduces the startup delay. The difference in

performance between the 5% and 15% values of DELTA is not significant. The number of cache

disks was maintained at 8 and the number of buffer disks was 12. The alternative choice of DELTA

as a fixed amount of time was also studied. Figure 4 shows the results for DELTA as 100 seconds

11

and 150 seconds. Similar results are seen, except that these values are not as effective as the 5%

or 15% choices for DELTA. This is easily explained by the fact that with DELTA = 5%, the

corresponding average value in seconds is about 250. For the remainder of the experiments, we fix

DELTA to be 150 seconds, unless specified otherwise.

5.2 Impact on Jitter

-<­DcII.>.IOO -+-
CkO".I~ -c--

I
I
i,
<

••

.~
•, , ~ 5 e 7

Nln'bor 01 S&7UIor>oolD lisen • ..
Figure 5: Average Jitter for Delta as Time

..

..
.~

.,
I
I 0,15

t, ..
.~

•, , ~ S e 7
Nln'bor.1 SitTUIor>ooLIIII..n

-<­DelIo05" .,•.
OoIl.>.\S"," -0·-

•

Figure 6: Average Jitter for Delta as Percentage

While a reduction in the average startup latency due to hot object caching is not unexpected, the

impact on jitter is not obvious. By designating some of the disks as hot object disks we effectively

reduce the number of disks available as buffers for saving data fetched from tertiary storage. This

reduction could adversely affect the jitter. Figures 5 and 6 show the average jitter observed for the

same settings as the above experiments. We see that for both choices of DELTA, the observed

12

jitter is in fact lower than that without hot object caching. In fact, there is no observed jitter with

hot object caching. The combination of hot objects caching and replication of objects on tertiary

storage is the primary reason for this reduction. Under our scheme the playback of a document

is not started until the disk resident objects for the objects can completely mask the latency of

bringing the document onto a drive in the tape. Once this happens, the entire document is retrieved

from tape in a sequential read resulting in no jitter. Note that startup latency could be further

reduced as the cost of some increase in jitter if we begin the playback of disk resident components

earlier without regards to completely masking the tertiary latency.

5.3 Comparison to PIRATE

The Partial Replacement Technique (PIRATE) cache management scheme proposed in [7J is spe­

cially designed for the management of multimedia objects on a secondary, tertiary storage hierarchy.

The PIRATE scheme is developed and tested for a single l.L'ler environment with a single buffer disk.

In order to test the performance of this scheme for the multi-user, multi-disk environment, it was

necessary to adapt the scheme.

In our implementation of PIRATE, we choose the granularity of replacement as blocks of size

equal to tape blocks. The original scheme proposes that each object be divided up into fixed sized

units called blocks. The replacement occurs in block units. Since we need to migrate the scheme

to a set of disks rather than a single disk, the choice of the disk becomes a factor that comes into

play. The original scheme takes into consideration the frequency of access, called the "heat", to

choose victims. We also use the same parameter to choose a victim. We scan through the disk

resident objects and choose the object having the lowest access value as the victim. This victim

determines our choice of the disk that will provide the set of victims to be partially replaced to

accommodate the incoming object. This may not be the best choice because in an environment

with multiple disks the objects are scattered across the buffers and frequency of access of a single

object may not be sufficient indication of the nature of the objects on that disk. Another approach

could be to determine the average access frequency of objects in each disk and choose the disk

having the lowest average frequency of access of objects. Then we select replacement objects from

this disk. However this would involve considerable overhead in the presence of a number of disks.

So with out' choice of the disk storing the LFU object, the objects on the disk are scanned to

select victims. Victims are selected in ascending order of access frequency starting with the least

frequently accessed object and the tail-end block of each victim is replaced. The notion of "slice"

in the original PIRATE algorithm is taken to be a set of 10 blocks. If the disk resident portion of

the object is less than 10 blocks than that object is not a candidate for replacement.

While servicing user requests, if the scheduler detects a request to an object that is partially

disk resident then a fetch for the remaining portion of the object from the tape is scheduled as

a fetch consecutive to the fetch from disk. The tape placement is considered and the fetch start

position on tape is calculated from the start of the entire object and the portion resident on disk.

Since the documents on tape are stored in full replication, there may be multiple occurrences of

13

,~

,
~, "

....~\\
~

I '\I =

• = \ ..._._-,
•
~ =•<

=
,,,

Figure 7: Performance of PIRATE versus LFU

the same object on tape. A bad selection of the object from tape can result in the overhead of

unloading and loading of a new tape. To avoid this we use the document ID as a parameter in

addition to the object ID to select the current tape. This increases the probability of selecting a

tape that is already loaded or one that will be required to be loaded for other accesses too.

Tn Figure 7 the average startup latency of the PIRATE replacement scheme versus the simple

LFU replacement is presented. The experiment is conducted with 10 concurrent users. The results

for varying numbers of requests is shown. Surprisingly, we find that for even as few as 600 requests,

the PIRATE scheme docs not outperform the simple LFU scheme. This is in contrast to the results

presented in [7] for a single user environment. The poor performance of PIRATE can be traced to

the increased tertiary storage accesses as the number of requests increases. Since with increased

requests it is necessary to replace objects on disk, PIRATE replaces small sections of several objects

instead of replacing entire objects. Consequently, most objects in the cache are incomplete resulting

in the need to access tertiary storage for the remainder, no matter how small it is_ As the number

of objects accessed increases, the performance degrades even more. Since the PIRATE scheme did

not perform better than LFU, it will clearly give poor performance as compared to our hot object

caching scheme too. Consequently, no direct comparison is necessary.

5.4 Number of Hot Prefix Disks

The fraction of disks used for hot object caching is an important parameter. In this experiment we

study the impact of this parameter. Figure 8 shows the average startup latency as the fraction of

disks used as hot cache buffers in increased_ Initialy, as the number of hot object disks is increased,

there is a reduction in the average latency due to the benefit of latency masking. However, as we go

beyond 14 disks, the latency begins to increase again. This increase is due to the greatly reduced

amount of space available for buffering leading to delays. From the graph we see that a choice of

14 out of a total of 20 disks is optimal for caching hot objects.

14

~

~

"'
]: ,.
f•
~

,.
••
! ,.
~

".

"'
,.

• , ft.'012,•
N.m>er 01 D!>ks for Hoi P",~..

,. I. 2<1

Figure 8: Impact of Number of Hot Cache Disks, (B)

5.5 Choice of DELTA

~

"'
"'••

~
,.,

j
,.

•• ,.
j

"'

"'

prefol~l>'"08""'r.. .r.....,2 __
preb~i>I:I.'5 -c·,

-"" .-.... ."

Figure 9: Impact of DELTA

In this experiment we study the impact of DELTA for different numbers of hot cache disks.

Figure 9 shows the average latency as a function of DELTA. The value of DELTA is varied from 0

to 250 in steps of 50. The number of simultaneous users in the system was maintained at 10. Three

sets of graphs are shown for the number of hot cache disks as 8, 12, and 15. The plot shows that

with the increase in the value of DELTA there is a considerable decrease in the startup delay. This

can be attributed to the fact that with a larger delta the number of objects cached in the hot cache

increases resulting in larger document prefixes being available for fast retrieval and transmission.

We can see that the performance for different choices of hot cache disks is very similar with respect

to DELTA. Thus DELTA can be chosen independently. If the number of disks is hot cache disks

is chosen to be 15 (as suggested by the previous experiment), a choice of DELTA to be around

15

250 seconds gives good performance.

5.6 Network Bandwidth

,. ,

I
\.. ,

~ \,
1

,.
\,

•
~

,, ,. \<

• \,
~.

L·......
•, , , , . ,

E\oRIRldlh A.......10 (MW.)
..

Figure 10: Impact of available network bandwidth

In this experiment the impact of the available total network bandwidth available for transmission

is studied. The bandwidth was varied from 1MB/sec to 10MB/sec - which is a reasonable value

for a 10/100 Ethernet node. The number of simultaneous users in the system was maintained at

10. Figure 10 shows the startup latency as a function of the bandwidth. As expected, for low

bandwidth, the latency is very high as the network becomes a bottleneck. However with increase

in the total bandwidth available, the latency drops sharply. Clearly for larger numbers of users,

the 10MB/s bandwidth will be inadequate. We can safely assume that with a Gigabit Ethernet,

the network will not be a bottleneck even for larger numbers of users.

5.7 Adapting to Variations in Access Pattern

In the preceding experiments it is assumed that the access probabilities of documents are known a

priori. Based upon this information, the hot cache placement is determined. We now investigate

the impact of variations in the access pattern and also the ability of the adaptive placement scheme

to adjust to these variations. We begin by considering a drastic change in the access pattern.

Figure 11 the average latency is plotted versus DELTA is shown as the access pattern is changed

randomly. We observe that there is an increase in the access latency as a result of the change.

However, it is interesting to note that even with a very different access pattern than the one used

to determine the placement, the use of hot object caching is effective in reducing latency.

In Figures 12 and 13 we study the impact of limited random changes in the document access

probabilities and the edge probabilities respectively. In each experiment the placement is generated

based upon an initial access pattern. Next, a random subset of 10% of the- nodes (edges) are chosen

and their probabilities are altered by 10%, 20%, etc. The performance is tested using this altered

16

Figure 11: Impact of Random Changes in Browsing Graph

access pattern. The frequency of access to documents based upon this altered graph is captured

and a new placement is made based only upon these observed frequencies (with no other knowledge

of the changed access pattern). Using this adapted placement, the performance is again measured.

This is repeated for varying degrees of changes from the original access pattern.

,.

'",.
I
I ,.
•, ,.•,,,
<

'"
".

Figure 12: Impact of Changes in Edge probabilities

In each graph we observe that by adapting to the observed pattern of access, we are able to

reduce the latency. It is interesting to note that the increase in the latency is not large, even with

50% change in the probabilities.

6 Conclusion

In this paper we address the important problem of reducing startup latency and jitter for very

large multimedia document repositories. The study explores a multi-user, multi-disk environment.

17

=

".
,.

f
~, ,.,
~• ,."•! ,ro

,.
,ro

• , w ~ ~ ~ ~

P<mIfIlIII/CI <Iw1go 11 nxIo pR>babiill..

. -

Figure 13: Impact of Changes in Node probabilities

To the best of our knowledge, this is the first study to explore these issues. We proposed the use

of a large portion of the secondary storage as a permanent store for document prefixes in contrast

to its customary use as a buffer. We also propose the use of replication on tertiary storage to

avoid expensive media exchanges. The effectiveness of these approaches in reducing both startup

latency and jitter is shown through extensive experimentation using a detailed simulator. The hot

prefix placement scheme is also shown to easily adapt to variations in the access parameters. In our

experiments the startup latency is reduced by as much as 75% and jitter is practically eliminated.

Qur results show that by reserving a large portion of the disk cache for the prefixes of the hottest

objects, we are able to achieve very significant improvements in startup latency. Moreover, despite

the reduction in available disk buffers, there is no increase in jitter due to replication on tertiary

storage.

References

[lJ E. Bertino and E. Ferrari. Temporal synchronization models for multimedia data. Transactions

on Knowledge and Data Engineering, 10(4), 1998.

[2] Stavros Christodoulakis, Peter Triantafillou, and Fenia Zioga. Principles of optimally placing

data in tertiary storage libraries. In VLDB'97, Proceedings of 23rd International Confer­

ence on Very Large Data Bases, August 25~29, 1997, Athens, Greece, pages 236-245. Morgan

Kaufmann, 1997.

[3J Exabyte. Products. http://www.Exabyte.CO M:80jProductsj, Oct. 1996.

[4] D. A. Ford and S. Christodoulakis. Optimizing random reterievals from elv format optical

disks. In Proceedings of the Int. Conf. on Very Large Data Bases, pages 413-22, Barcelona,

Spain, September 1991.

18

[5] C. Georgiadis, P. Triantafillou, and C. Faloutsos. Scheduling and performance of robotic tape

libraries in video server environments. Technical report, Multimedia Systems Institute of Crete

(MUSIC), Technical University of Crete, Crete, Greece, 1997.

[6] S. Ghandeharizadeh, A. Dashti, and C. Shahabi. Pipelining mechanism to minimize the latency

time in hierarchical multimedia storage managers. Computer Communications, 18:170-184,

march 1995.

[7] S. Ghandeharizadeh and C. Shahabi. On multimedia repositories, personal computers, and

hierarchical storage systems. In Proc. oj ACM Int. ConJ_ on Multimedia, 1994.

[8] B. K. Hillyer and A. Silberschatz. On the modeling and performance characteristics of a

serpentine tape. In SIGMETRICS, pages 170-9, Canada, 1996.

[9] B. K. Hillyer and A. Silberschatz. Random I/O scheduling in online tertiary storage. In Proc.

ACM SIGMOD Int. Con]. on Management of Data, Canada, 1996.

[10] Urs H6lzle. Google: Fun with linux and clustering. Seminar, Purdue University, September

2001.

[11] Theodore Johnson and Ethan L. Miller. Performance measurements of tertiary storage devices.

In Ashish Gupta, Oded Shmueli, and Jennifer Widom, editors, VLDB'98, Proceedin9s oj 24rd

International Conference on VenJ Large Data Bases, August 24-27, 1998, New York City, New

York, USA, pages 50-61. Morgan Kaufmann, 1998.

[12] Achim Kraiss and Gerhard Weikum. Vertical data migration in large near-line document

archives based on markov-chain predictions. In Matthias Jarke, Michael J. Carey, Klaus R.
Dittrich, Frederick H. Lochovsky, Pericles Loucopoulos, and Manfred A. Jeusfeld, editors,

VLDB'97, Proceedings of 23rd International Conference on Very Large Data Bases, August

25-29, 1997, Athens, Greece, pages 246-255. Morgan Kaufmann, 1997.

[13] Y-M. Kwon, E. Ferrari, and E. Bertino. Modeling spatio-temporal constraints for multimedia

objects. Knowledge and Data Engineering, 1999.

[14] T. D. C. Little and A. Ghafoor. Synchronization and storage models for multimedia objects.

Journal on Selected Areas in Communication, 8(3):413-4237, 1990.

[15] S. More, S_ Muthukrishnan, and E. Shriver. Efficiently sequencing tape resident jobs. In Proc.

ACM Symp. on Principles oj Database Systems, 1999.

[lG] Powerfile. Products. http;//www.dvdchanger.com. Jun. 2001.

[17] S. Prabhakar. An overview of current tertiary storage technology and research. Master's thesis,

University of California, Santa Barbara, 1998.

19

[18J S. Prabhakar, D. Agrawal, A. EI Abbadi, and A. Singh. Scheduling tertiary I/O in database

applications. In Proc. of the 8th International Workshop on Database and Expert Systems

Applications, pages 722-727, Toulouse, France, September 1997.

[19] C. Ruemmler and J. Wilkes. An introduction to disk drive modeling. IEEE Computer,

27(3P7-28, March 1994.

[20] H. D. Schwetman. CSIM: A C-based, process-oriented simulation language. In Proceedings of

the 1986 Winter Simulation Conference, pages 387-396, December 1986.

[21] S. Sen, J. Rexford, and D. Towsley. Proxy prefix caching for multimedia streams. In Proc. of

Infocomm, 1999.

[22] S. Seshadri, D. Rotem, and A. Segev. Optimal arrangements of cartridges in carousel type

mass storage systems. The Computer Journal, 37(10):873-887, 1994.

[23J A. S. Slazay, P. Z. Kunst, A. Thakar, J. Gray, D. Slutz, and R. J. Brunner. Designing

and mining multi-terabyte astronomy archives: The sloan digital sky survey. In Proc. ACM

SIGMOD Int. Conf. on Management of Data, pages 451-462, Dallas, Texas, May 2000.

[24J StorageTek. Automatic tape libraries. http://www.storagctek.com/produets/tape. Jun. 2001.

[25J P. Triantafillou, S. Christodoulakis, and C. Georgiadis. Optimal data placement on disks:

A comprehensive solution for different technologies. Technical report, Multimedia Systems

Institute of Crete (MUSIC), Technical University of Crete, Crete, Greece, 1996.

[26J P. Triantafillou and T. Papadakis. Exploiting tertiary storage for performance improvement in

video-an-demand servers. Technical report, Multimedia Systems Institute of Crete (MUSIC),

Technical University of Crete, Crete, Greece, 1998.

[27J Peter Triantafillou and Thomas Papadakis. On-demand data elevation in hierarchical mul­

timedia storage servers. In VLDB'97, Proceedings of 23rd International Conference on Very

Large Data Bases, August 25-29, 1997, Athens, Greece, pages 226-235. Morgan Kaufmann,

1997.

20

	Minimizing Latency and Jitter for Large Scale Multimedia Repositories Through Prefix Caching
	Report Number:
	

	tmp.1307986960.pdf.D8iDi

