View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2004

Change Tolerant Indexing for Constantly Evolving Data

Reynold Cheng
Yuni Xia

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Rahul Shah

Report Number:
04-006

Cheng, Reynold; Xia, Yuni; Prabhakar, Sunil; and Shah, Rahul, "Change Tolerant Indexing for Constantly
Evolving Data" (2004). Department of Computer Science Technical Reports. Paper 1590.
https://docs.lib.purdue.edu/cstech/1590

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CHANGE TOLERANT INDEXING FOR
CONSTANTLY EVOLVING DATA

Reynold Cheng
Yuni Xia
Sunil Prabhakar
Rahul Shah

Department of Computer Sciences
Purdue University
West Lafayeite, IN 47907

CSD TR #04-006
February 2004
(Revised July 2004)

Change Tolerant Indexing for Constantly Evolving Data
Technical Report CSD TR# 04-006

Reynold Cheng Yuni Xia

Sunil Prabhakar

Rahul Shah

Department of Computer Science, Purdue University.
West Lafayelte
IN 47907-1398, USA
Email: {ckcheng,xia,sunil,rahul} @cs_purdue.edu

Abstract

Index siniciives are designed ra optimize search perfor-
mance, while at the same rime supporiing efficient dara up-
dates. Although nor explicii, existing index siruciires are
tvpically based upent the assumption thar the rare of ripdates
will be small compared 10 the rate of querving. This as-
stption is not valid in streaming data environmeins stch
as sensor and moving object databases. where npdares are
received incessamely. In fact, for many applications, the raie
of npdates may well exceed the rate of querying. In such en-
vironmenss, index striccinres suffer from poor performance
e te the large overhead of keeping the index updated with
the latest deta, move in awell behaved, bur restriciive man-
ner fe.g. in straight lines with constant velociny), In this
paper, we propose ahd develop an index strucinre thar is
explicitly designed e perform well for both querving and
wpdating. We present techniques for aliering the dexign of
an index in order to optimize for both updates and query-
ing. The paper is developed with the example of R-irees,
but the ideas can be exiended to other index strucinres as
well. We present the design of the Change Toleranl R-rree,
an experimental evaluation.

1 Introduction

Index structures are used to inyprove query performance
by limiting Lhe amount of dara that needs (o be examined in
order lo generale an answer. Static index struclures such
as the ISAM fGle format [L1] are not designed 10 handle
updates to he data very well and can lead to poor query
performance as a result ol updates. Dynamic index struc-
tures. such as the B-tree and R-tree. are designed o adapt
the index structure as dala is updated so as te continue to
provide pood query performance. Existing (dynamic) index
structures perform satisfactorily for traditional database ap-

plications where updates are infrequent in comparison (o
gucrics.

LEmerging applications such as sensor-based sireaming
databases. represemt a drastic shift from this raditional
behavier. These applications are characterized by virtu-
ally constarl updates to the data, and relatively infrequent
querying, In this selling, existing index structures are com-
petled to expend large amounts of resources in simply keep-
ing the index updated with the latest valucs of the data.
'The cost of updating the index dominales the advantage of
improved query performance through (he use of the index.
One feasible solution is 10 reduce the need for updates
the index. Recent eflorts at indexing moving object data re-
duce the need [or index updates by assuming that objects
will move in a well behaved, but restrictive manner (e.g. in
straipht lines with constant velocity) [12]. This solution is
noi pencrally applicahle since the assumplion is not rcason-
able lor many applications.

In this paper. we address the problem of efficient index
update where updale raies are high. We drop the traditional
approach of processing vpdates with the goal of improved
query performance. Instead. we propose and develop index
struclures that are explicitly designed (o perlorm well for
both querying and updating. We begin by observing that
mest index struclures inherently tolerale some change in
the data values being indexed. The first step is (herefore
to exploil this "tolerance™ 10 avoid an index (without mak-
ing any restrictions on (he nature of change of the data).
Nex1. we preseni lechniques for altering the design of the in-
dex in order Lo optimize for boih vpdates and queries. This
is achicved by balancing (he need for efficient scarch (the
common criterion for index design} with the cost of updatcs.

As we shall see, the two goals of improved query perfor-
mance and improved vpdate performance are directly op-
poscd to cach other; improving update performance is typ-
ically at the cost of query performance (and vice versa).
The paper presents an index sinuciere thal is designed lor

high updale cnvironments — achieving significantly beuer
update perlformance at the cost of stightly poorer query per-
tfoermance - and superior overall performance as compared
lo existing methods. The paper is developed with the exam-
ple of R-trees. bul the ideas can be extended w olher index
structures as well.

The main contributions ol this paper are:

1. The introduction of Change Tolerant index structures
that oplimize for frequent updates and queries and the
design and development of change tolerant R-(rees.

2. An cxperimental evaluation and validation of the per-
formance, and adaplability of these index siruciures.

The rest of this paper is organized as follows. In Sce-
tion 2 we discuss the inherent tolerance of index struclures
to updlittes and study how this can be exploited lo avoid in-
dex updates. In Section 3 the design of a change olerant
R-tree is discussed. Scction 4 presents experimental results.
Section 5 discusses relied work and Scetion 6 concludes

the paper.
2 Change Tolerance of Indexes

The main motivation for our change tolerant indexes
comes from dalu which chinges slowly but constanily with
respecl [o time for most periods of lime. followed by shon
perinds of time when the dati may show a major variation.
In nalure (e.g.. weather sysiems), these major variations arc
tikely to be cansed by some underlying events. which arc
relatively infrequent.

Consider an index over people in a ¢ily. For most of
the time a large fraction of these people are inside a build-
ing. They may change their locations but these variations
arc not big. They are confined 10 limiled range of space for
a long time. Then. sometimes, when they are on the road.
the chinges in their locations are rapid. However, this hap-
pens for relatively shorter periods of time lor mosl people.

The situalion can also be extended 10 sensor data, Con-
sider temperature and pressure sensars. The index conlains
lemperature and pressure values of many different places,
For each place. the variation in these parameters againsi
time is not rapid for most of the time. However. during
cvenings ar during special events like thundersiorms, they
can change rapidly. They finally settle around heir new val-
ucs.

We can exploit this property of changing dalta to build
betler indexes. In some of the models for changing data.
the daia variations are moedeled as a smoolh siraight ling
wilh constanl rate of change. lor example, indexes hasel
on kinelic data structures [5] assume mobility of abjects in
straight lines with some velocity. Qur model does nol as-
sume dita changes are well heliaved. The changes are ran-
dom, but they are restricted in smabl range of values and in
only a [ew moments rapid changes occur. The rapid changes

2]

are followed by another set of small changes — again the
changes are confined and random.

2.1 Tolerance to Change

Many index structures are inherently lolerant 1o the
changes in data values without requiring a change in the
index struclure. Consider the case of an R-1ree index [7].
The R-(ree is a height balanced tree which can be seen as a
eeneralization of the B-tree for indexing objects in multidi-
mensional space. Each node of the R-tree (internal as well
as leaf node) represents a hyper-rectanple in dimensions.
The leaf level rectangles contain objects, and (he rectangles
Tor internal nodes contain the rectangles at one level below.
The boundaries of the rectangles are made as tight as possi-
ble. There is an abject on each boundary face (hyperplane in
d dimensions) of each of these rectungles. These rectangles
ure cilled Mininenn Bounding Recrangles or MBRs. Un-
like the B-Tree, the MBRs ol nodes at the same level in an
R-Tree are allowed to overlap, Hence searching an ohject
mily involve lraversing several paths in this tree. When a
node becomes overfull it undergoes a split, Elficient heuris-
lics and pruning are uscd to reduce the expecled number of
paths visited by subsequent scarches.

Given any specific entry in a leaf node of the wree, the
Minimum Bounding Rectangle {MBR) of the entry for thit
leaf node in its parent node represents the “wolerance’™ of the
index to changes in the values of the objects pointed to by
the leafl node. In particular, it an object’s localion remains
witltin this MBR. the index is correct wilhout rcquiring an
update. Under normal R-tree operations, such an update is
processed by searching the index and updating the loculion
of the objecl. In order to aveid this cxpense for each update,
it is desirable (o be able to perform a cheap update in cases
where the index does not change.

The R-tree is very often used as an index on spatial coor-
dinates. Typical updates on R-trees are insertions and dele-
tions. While performing a deletion operation on the space
altribute, the object is first searched (based wpon its spatial
coordinates) and then deleted. However, if the deletion op-
eration directly provides a pointer 10 the page in which the
object is stored, then the cost for scarching in the R-tree can
be saved. For example, if a deletion is by a different (non-
spatial) auribute, say cbject identificr {id). we can maintain
a sccondary index on Jjd. This secondary index siwores, for
each id. the pointer to the pape containing the correspond-
ing object in the R-tree.

When the R-tree is used to index constantly evolving
data such as the locations of mobile objects, the types and
the frequencies of the updates can be very dilTerent. For
example. most vpdates can be of the form—abject with id
i moves [rom its current location {x;.3} 1o new location
(x3.¥2). This can be handled in an R-lree by first deleting

Figure 1. Secondary hash-index structure

this object from its current location and then re-inserting it
in the new location. However. il Ihe new location is in the
same MBR. the change tolerant property of the R-tree can
be exploied. Additionally, the secondary index on id can
be used w reduce 1he search cost associaled with deletion
and insertion.

Hence. in conjunction with the R-wree. we maintain a sec-
ondary hash index on id [or handling updates. This is the
basic tdea applied in the lazy-update R-trees [10]. Figure |
shows an example of this secondary index structure. The
secondary index (on the right) is simply an array of poinlers
lo leal pages of the R-lree with ane entry for each object
ordered by id. Thus. all the updares where the new location
is in (he same MBR as the old location can be accomplished
with a constant number of L/Os. Note that the R-tree siruc-
lure does not change due 10 such updates (only the localion
ol the updated object is changed in the corresponding leal
node). This kind of secondary structure is essential when
updates are [requent. 1 most objects remain within their
MDBRs. mosl updates can be handled through the secondary
hash index while the R-tree index is used w process spatial
queries,

2.2 Optimizing for Updates

In the previous subsection. we saw thal the available tol-
erance of an index o data change can be used 1o improve
update performance with no impact on search performance,
In this scction we explore the possibility of altering the de-
sign of the index struclure 1o increase the available lolerance
of an index while bulancing the potential increase in the cost
for querying. Again. we locus on R-lrees as the running cx-
ample.

Given a set of daa, the structire of an R-tree index for
this dana is determined by two critical parameters: the node
size. and the order of inserts and deletes. The node size is

chosen 10 be i multiple of disk blocks. The siruciure that
results is largely determined by split of an overfull node
into two nodes. The R-tree (like other index structures) at-
tempts to find a split of the children ol the overfull node in
order Lo achieve balance (each of the split nodes has roughly
the same number of children), and improve search perfor-
mance. It is assumed that the area of the resulting MBR
ol cach child is proponional 1o the mumber of queries that
will access the corresponding node. Consequently, the goal
is lo minimize this area. Other structures such as R*-lrees
use a slightly more complicated decision process Lo deter-
mine the split, but with Lthe same goal of minimizing the ex-
pected number of gueries thal will intersect with the result-
ing nodes. In cither case, the impact of the split on future
updales is not taken into account. Ior example, the split
may resultl in a situation wherein objecls frequently cross
from ene MBR 10 another — thereby resulting in a high up-
date cosl.

Tn the traditional R-tree. the MBR is tight (ie. it is
the smallest reclangle thal contains all vnderlying objects).
This implies that there is at leasl one object louching each
side of the MBR (otherwise it would shrink [urther). Having
a small MBR improves search performance and pruning. In
situations where the objects move constantly, these bound-
iiry objects are likely 10 move in and out of the MBR very
{requenlly. Each time an ohject leaves the MBR. it has (o
be re-inserted (either inw a different MBR or stays in (he
same MBR aller expansion). Note that the use of lazy up-
dating through the secondary index discussed above docs
nol climinate this cost. Thus, MBR boundaries being tight
to the objects improves the search pertormance but can re-
sult in a high update cost. The concept of having slightly
larper MBRs than needed (that is, the MBR is no longer a
minian bounding rectangle) is explored in | 10]. We shall
call this structure the o-tree, which is essemtially in R-tree
with “loose™ MBRs, The idea is that whenever an MBR
needs to be expanded. we expand it by 0% more than its
minimum size. Thus, the boundary objects get some lec-
wiy to move and stay within the same MBR, Naturally, (his
implies poorer query performance.

The intwition behind these indexes is as follows: The
design of the MBRs of the index should not be governed
solely by the current values of the data being indexed. In-
stead, the MBRs should be designed based upon the nature
of changes 10 data values. For example. if changes from
one parlicular value to ancther are very common, the in-
dex struclure should tolerate this change with minimal cost.
Naturally, this may lead to increased query cost. Thereflore.
the cost savings for updates should be balanced apainst cost
increases lor queries. We will discuss how this can be done
in delails in the next section.

3 CT-R-tree-the change tolerant index

The CT-R-tree we develop is an extension ol the R-(ree
that is lolerant to frequent data changes. The structure of
this index is based on R-tree. where the data is hierarchi-
cally arranged in bounding reciangles (MBRs). The key
idea is to design the MBRs such that updates that cross
MRBR boundaries are notl common. While the future updates
(or queries) cannot be predicied, we asssmc that the past be-
havior is a good indicator of events in the futurc.! With this
in mind, our alporithm wtilizes the history of updaites o cre-
ate a CT-R-tree, in order 1o facilitale future updates. 1n this
section, we Hrst describe how the index is crealed. (ollowed
by a discussion of index maintenance operalions.

3.1 Crealing a Cr-R-Trce

The creation procedure ol CT-R-1ree cin be summarized
by four steps:

[. ldentification of MBRs (called quasi-siatic regions
fgs-regions)} that maximize the “wlerance™ of the in-
dex to update. A gs-region is simply a range of the
domain which encloses numerous updates. Updartes
that chanpe the value from one ¢s-region to another
should he relalively infrequent (since these are cxpen-
sive updates). For the case of moving objects, these
are regions of space in which objects tend 1o remain
lor it long period of time. gs-regions are generated by
consulting the history ol updales rececived from each
object {Section 3.1.1).

. Using gs-repions found in siep 1. construcl a structure
called the update graph, which depicls traffic among
gs-regions (Section3.1.2).

3. The update graph is used w merge the gs-regions (Sec-

tion 3.1.3).

4. Creation of an “emply” R-Iree structure using lhe iden-
tificd gs-regions as MBRs at the leaf level, and inser-
tions of current dala values Lo generate the CT-R-(ree
(Section 3.1.4).

Let us now investigale these steps in further delails.

(28]

3.1.1 Phase 1: ldentifying nhject qs-regions

This phase results in the identification of rectangular re-
gions of the domain thal are small and enclose several up-
dates of an object. These reclangles are essentially gs-
regions. since they represent ranges of values where the dala
changes constanlly in a confined space. We begin by di-
viding the vpdate trail ol cuch object into pieces that do

I'Note that 1be design of existing index strctures is based upon a pre-
diction of luture queries unier the assumption thal queries are wniform!y
distributed €1.e. the area of a MBR is a rough indicator of how often it will
be accessed by queries).

nol have very large changes over a short pericd of time.
As an example, consider Figure 2(a). where some individ-
ual object trails are segmenled into gs-regions, The con-
necled bold lines show the update trails of ohjecis, The
dashed boxes represent the bounding reciangies for initial
gs-repions. For ease of exposition, we use an example of
mobile objects in two-dimensional space 1o describe the
scenario. However, the algorithms presented here are ap-
plicable to the general case of any multidimensional duta
where the movement of an object represents the change in
data value.

Formally. let Q. 0-..... O, be n moving objecls.
Let H; denole the wail hiswory of object ¢;, Then
H; is a set of points {(x1.3ia-40)- - (g Yig-tig) -0
(Xiqgt- ¥ty }: where 11 is the time when the kth lo-
cation updaie (x, ;.3) occurs, and |74 is the the wlal num-
ber of samples in Hy. Let B;(j. k) be the bounding rectangle
(MBR} for O; which encloses {{x; ;. j}..... (xig-¥ix)} in
I Let A;{j. &) be the area of B;{j. k). Furlher. let di(f.&) be
the diameter (i.e. diagonal} of B;(j.k). We assume that /4
is ordered by increasing values of r; 4’5, Figure 3 describes
the algorithm for this phase.

Input: 1y
Ol]l[)l.ll: ”."J-tf.!
je— it
2B (1. 1) —{xa.3a0)
3. for k =2 w0 |fH;| do
AL Let Bi(j. k) be the MBR alter expanding
Bi{j.k— 1) 10 include (.o p)
B. il (. K) > Ty;, and -

AVESEAVE S|
D) Al 1) > 7 then

o i f_ —1; > Time and A;{j.&) < Ty then
i By —Bi(j.k—1)
Wty — e — ¥
Wid — 141

b. else Discard B;(5 k— I}

c. j—k

d. Bi(f. 7} — (xiee¥ia)

Figure 3. Identifying gs-regions for object 0;
{Phase 1).

The algorithm “grow”s MBRs to enclose the samplcs
while tracing lhe history records, and il an MBR satisfics
certitin crileria. it is “frozen™ and qualified as a gs-region
for Q;. We mainlain a list of gualificd MBRs for each ob-
ject &, where we denole the /th MBR of this list by B;;.
Let A;; be the area of B;;. and 7;; the time objeey G; speat
inB;;.

Step 1 introduces the variable 7. which indicates the time
t; at which the oldest sumple is included in the ih MBR

(a)

{b)

Figure 2. {a} Initial qs-regions from object trails. {b) Object update graph.

(Bi). Both j and f arc set to 1. and the first MBR. B; ;.
contains only the first sample, (x;1,¥7.1) (Step 2).

Step 3 scans the (rail of the object in increasing order
of lime, identifying gs-regions on the way. In Step 3(A).
B;; is expanded to include the kth sample of H;. Step 3(B)
decides if B;; should be frozen as a gs-region, based on the
following conditivns:

d;i(j-&) > Ty (1)
di(j.EY—di(j k=1
(J.k) — dilJ }>Tmn: @
fr—1H_)

That is to say, after cxpanding B;{j.k} to some paricular
thresheld diameter Zy, il B:{j.k) grows at the rate faster
Lthan 7., we stop it from growing further. "This relies on the
fact that after the initial prowth of the rectangle, if there is a
sudden increase in growth rate of (he region, the object has
started moving faster and 1hus should not be considered as
lying in a gs-region. As long as these two condilions are nol
violated, B;; conlinues 10 grow 1o enclose more samples,
Steps (a) 1o (d) in 3(B} take care of the simation when
B;; ceases to grow. Firsl, we decide whether B;; should be
considered as a gs-region (steps () and (bY). B;; is only
qualified as a gs-region when
1. & —¢; is larger than 7p;,y. This verifics O; has slayed
long enowgh in B;;. Singleton reclangles, such as those
labeted “a’, “b’. *c”, and 'd’, in Figure 2(a), are also
eliminated.
. The area of By;, i.c., Ay, 18 smaller than 7,,,.,. This re-
moves reclangles that are 100 large, whose dead space
may lead 1o poor query performance.

i~

in which case we *“freeze™ B;; (step (a)(i)) and calculme 1; ;.
which is the lime spem by the object in B;; (step (b)(ii)).

Steps (c) and {d) create ancw MBR(B; ;). which only con-
lains the kth sample. The whole process is repeated again
until all the samples in H; are cxhausted. al which time we
oblain a sequence of gs-regions lor ;. 1'or the sake of con-
venicnee. let C; denote the number of gs-regions generated
[rom ;.

3.1.2 Phase 2: Crealing an update graph

l.fori— 1 1wondo
A while 3.k ¢ [1.C;] such that

G jfAi < T+ T/ (A jx) and

TafAie < {T;+ T}/ A ja) and A g < Ty do
a. Expand B to include B;
b. Replace common links of 8; ; and 8,1

by a single link. and updale the weight of the link

Co T Tij+ T

Figure 4. Merging qs-regions (Phase 2).

We can represent the sequence of rectangutar gs-regions
just generated as a chain graph with the se1 of MBRs B;;
as vertices and link belween cach consecutive rectangles
in this sequence (initially each edge is assumed o have a
weight). Figure 2(b) shows (his chain graph for Lhe exam-
ple histories shown in Figure 2(a) {noie that not ail nodes
and edges of this graph are shown lor the purpose of clar-
ity).

We now discuss how to cluster the chain graph of cach
object lo obain (he object update graph, where the clus-
lering is based on grouping subsets of vertices (i.e., rect-

angular gs-regions). Figure 4 illusirales the details of how
the gruph is formed for cach object. Define the term “resi-
dent density™, which is the otil amount of vnte that objecis
spends inside the gs-region (T;4). divided by the area of the
qs-region. We see that Step 1(A) chooses any j and % in
[1.C;] such 1hat 1he following condilions hold:

T /A < T+ T/ (A (3)
Tin Ak < {Tij+ T)/ {Ai))
Ai.j.k < ?;IH.'G (5)

where A; ;; dencte the area of the new recungle that
tightly encloses B; ; and B; ;. These three conditions enlorce
the rule that the pair ol rectangles are merped only when
the resulting “resident density™ of (he resulting reclangle is
greater than each of the “resident densities”™ of the individ-
ual rectangles. Moreover, reclanples are only merged when
there is sufficiemt overlap.

When all these conditions are satisfied. B; ; is expanded
Lo include 8; . (Step (a)). Further. the links that are destined
lo the sume qs-region from B; ; and B;; are replaced by a
single link (Step (b)), with the weight ol the new tink up-
daled as the sum of Lhe weights of the links being replaced,
The time value 1; ; is then assigned to be the sum of all e
individital (ime values ol the merging reclangles (Siep (©)).
Notice that the algorithm merges the rectangles in acbitrary
order. until nong of them satisfies the above criteria. This
process is repeated for every object (Siep 1).

Once the updale graphs lor all objects are generated, we
lake the union of all these graphs. A merging procedure
similar 1o Step 1(A) in Figure 4 is applied (o this unified
graph. This merging pives a us a set of gs-regions as rect-
angles and a graph on il called the updare graph. The time
value of each reclangle gives the total amount of time 1hat
objecls spent in thal rectangle, and the weight of link (i. j)
between two rectangles § and j in the vpdate praph gives
the total number of updates hetween B; and B;. Finally, we
scale down all the edge weights by the facwor of 11y, where
ITor = Max(t; 1, (i.c., the longest duration of Lhe trail histo-
ries), Each edge weight now rellects the number of updates
belween two (s-regions per unit time.

3.1.3 Phase 3: Merging gs-regions via update graph

In the previous phase. merging occurs only when gs-regions
have reasonable amount of overlap. In other words, two
rectangles Lthat do not overlap will not bc merged by the
above phase. However, there could be lwo unmerped rect-
angles hetween which a large number of objects move. In
such a situalion, it is reasonable (0 merge (hese reciangle 1o
form a single MBR and save updalte cost. In this stape, we
use the update graph 1o detect such ocecurrences., and merg-
ing qs-regions if nocessary.

6

1
I |
al —] I
55
=
53

1

Figure 5. Merged gs-regions.

The high volume of traffic belween gs-regions by itsell
cannot puaraniee a good merpe. This is because these rect-
angle can be far apart. in which case the merging of these
qs-regions into a single MBR will result in a very large
MBR. with lots of dead space. I this happens, many queries
will hit this MBR unnccessarily. resulting in higher query
cost. Thus there is a trade-off between merging gs-regions
and query cosi.

We caplure the effect of the various factors that con-
tribule to this rade-off. Lel A4 be the increasc in area due
1o the merging operation, A be the lotal arci spanned by the
structure, and r, be the query arrival rate. Then, we expeel
that r,AA/A queries per unit lime will hit the dead space.
This represents the loss due 1o this merge. On the other
hand. if the weight of (he edge between thesc two gs-regions
in the update graph is w. then w is the rate of updales cansed
by not merging these reclangles, Let €, and C,, be the scal-
ing fuctors for queries and updates respectively. Then we
merge lwo gs-regions if the following criterion holds:

. AA
Cipy > Cq.l'q]— ()]
Figure 5 shows the gs-regions as a resull of these merging
steps for the example history,

3.1.4 Phase 4: Crealing a structural R-tree

Given the set of gs-regions identified in the earlier phases,
we first create an R-tree index on these gs-regions. This is
achieved by inserting the gs-regions into an emply R-tree.
This forms a Struciural R-iree, where the leal level of (his
R-Iree comatns the gs-regtons. Note that bulk loading wech-
niques [3] for R-tree can be applied here with appropriate
modifications, bt since this is not the focus of Lhis paper,
we choose repeated insertions. a simpler method. We arc
nel concerned here with the cost of constructing the index.

E--------------_-_-_-_-_-_-_I;?-_:----------E
N 51 : :
b 1]
e 1]
N 52 :
= | peme——ee--e—-w
" "
R "
: ;
) ! .
; : S
[D A3 :
[]]
{ A2 | Ao |
[sr]se]fsafse J[[_JC_T 1

Figure 6. Structural R-free over gs-regions

since index construction is seen as an offline process. We
arc more interesled in the online query and update perlor-
mance of the index. IFigure 6 shows the simctural R-(ree
that results for our nmning example.

Using the stmciural R-tree. we creale the change lolerant
R-tree (CT-R-Tree) over current data. The structural R-tree
docs not index data — i1 indexes gs-regions. We bepin by
inserting the cumrent data values inlo the structural R-iree,
treating the leaf level nodes of this index as one level above
the leaf for the C7T-R-Tree. The gs-regions in the leaves
of the structural R-tree serve as the parent MBRs for the
data being inserted. Although these MBRs serve a similur
purpose as MBRs in a regular R-tree. they are treated spe-
cially in two respects: (i) they are never removed from the
index (i.e. they are allowed 1o be underfull — in fact they
are all empty at the beginning ol the CT-R-Tree construg-
tion)* and (ii) they are not split when overflull — this avoids
the high cost for updates. Thus there is a possibly unlimited
overflow buffer {which can span multiple pages) attached 10
these MBRs, as in the X -tree [6].

We also attach a linked list of overflow buffers to each in-
temal {non-leal) MBR. When an object’s new position does
not fall in any of the qs-region MBRs (MBRs at lcaf level).
it is stored in the lowest internal node whose MBR contiins
the new location, The objects which are stored in the in-
wemal node buffers are likely 10 be those whose valees are

“For now we assume U movement paltems of objecls is never un-
changed. T2 gs-reglon becomes useless due lo movement pallern changes.,
it is possible 10 remove the gs-region from the CFR-tree. We will discuss
this in Appenidix A.

0

L

L

L
L] M
{=] '
h L] - .
. 5z °d :
s e e e '
Ll y
R —r u
: . o
' 1 y
: [] y
» ::
' *2 { s
v 1 'y
, ! I :
. H .
RI L S £

Figure 7. The Change Tolerant R-tree

changing rapidly. Usually, there are relatively fewer objects
of this kind unless the movement patterns of objects change
significantly. In case any linked list overflow buffers he-
comes loo large, it is converted 10 an o-R-trec. This issue
will be addressed again in Appendix A.

To conclude, objects can be stored in the internal nodes.
and each MBR (leaf or internal) has a special pointer 10 its
sct of buffer pages. Figure 7 shows the structure of CT-R-
tree for our example. This index has four levels as opposed
1o the three levels of the structural R-tree of Figure 6. Ex-
amples of data points are shown in the top fipure of the do-
main. The nwxles shown in dashed lines are either linked
lists of overflow buffers or «-R-trees for the intemal nodes.
The data objects are inserted at the ncw leaf level of (his
tree.

Along with this structure we also maintain a secondary
lash-index. Lach eniry in this hash-index consists of Lwo
fields: (1} object id and (2) a pointer (o the page in R-tree
which conlains its location. This siructure is the same as the
secondary index described in Section 2.1, Figure | shows
the structure. When we inserl an object into the CT-R-Tree,
it is also simullaneously inseried into the hash-index and the
pointer in its corresponding entry in the hash index is set 1o
the page in the CT-R-tree where it is stored. More delails
ol insertions and olker dynamic operations are presented in
the next subscction.

3.2 Dynamic operalions

Once Lhe index structure is created for rectangular gs-
regions, they are usually not deleted. even if they are emply.
Thus the structure of the index is basically imacl even when
objects ure inseried or deleted. Query processing is similar
lo that of the R-tree while updates, insertions and delelions
are handled differently. We now describe how these oper-
ations are supporled. Although all these operations are de-
scribed in terms of a lwo-dimensional space struclure. they
can he extended 1o multiple dimensions.

Insert{o). Insen object o with lecation {p.v.o.y) inlo (he
index. Determine all the leaf level MBRs (gs-regions) that
contain this point. If multiple MBRs contain the point, we
choose the ene with minimum arca {10 opiimize query per-
formance). The object is inserted into the first non-full page
ol this MBR. H all pages are [ull, & new page is allocated
and the object is inserted into it. If none ol the leal-level
MBRs contain the point. a lowest level MBR thal contains
this point is chosen. TF more than one such MBRs exist, the
one with minimum area is chosen. Note that the overflow
buffer associated with an internal node can be in the form
of cither & linked list or an o-R-tree, If the number of pages
of the linked list is less than 73, after insertion, the point is
inseried to the linked list. Gtherwise, an e-R-tree is created,
10 which all data in the linked list arc moved. The -R-tree
is then attached to the internal node. Subsequent insertions
10 the internal node will be directed to the o-R-tree, Finally.
the cntry for o in the hash-index is updaed Lo point 1o the
pape which contains o.

Delete{o). Scarch the hash-index for 0. Delete ¢ irom (he
pape und deallocate the page if it is empty. Set the hash-
index entry for o Lo null.

UpdateLoe{o. (x). (), {x2,¥2)). Consult (he hash index for
@. Sel 0.x = x2.0.y = ¥32. If (x2.32) does not belong to the
same MBR. perform Delere(o) and fnseri(o).

Search(x.¥). Scarching for poin {x.¥) follows the search
pattern of R-tree. Since objects can also be siwored in the
internal nodes, the search visits the se1 of buffer pages at
each inernal node. If the overflow buffer is a linked list. the
search checks all the pages since the data in the linked list
is unordered. If it is an ¢-R-(ree, an R-tree range scarch is
performed.

RangeScarch((v .y). (x2.32)) This is similar 10 Search.
Each MBR which intersects with the rectangle (lower leil
{x1.31} and upper right {x2.y2)} qualifies.

As long as traffic pattemns do not change, Lhe gs-repions
discovered by our alporithms remain valid, and our index
bchaves well. However. when the pattern of movement
changes. previously undiscovered gs-regions may appear.
Many objccls may not fall imo a gs-repion, and they are
accumulated in the ¢-R-trees of inernal nodes, We can de-
tect which MBRs of these a-R-trees which show stability.

change them into ¢s-regions. and insert them 10 the milin
structure of the C¥-R-tree. Details can be found in Ap-
pendix A.

4 Experimental Results

We perlormed an extensive simulation study on the per-
formance of change-tolerant indexing. We implemented the
CT-R-tree, and compared its performance with three vari-
anis of R-trees. A study of the sensitivity of the CT-R-tree to
varicus paramelers was also conducled. Below we discuss
the simulation model, followed by the experimental resulis,
The experiment results for changing traffic palterns can be
found in Appendix A.

4.1 Simulation Modcl

Our experiments are bascd upon dala generated by (he
City Simulator 2.0 [8] developed independemily al IBM,
The City Simulator simulates the realistic molion of up to |
million people (M,;) people moving in a city. The inpul 10
the simulator is a map of a city, We used (he sample map
provided with the simulator that medels a cily contiining
71 buildings, 48 roads. six road imersections and one park.
FEach building is three-dimensional and comains a number
of floors, The simulator models the movement of objecls
within the building and on the roads and park. To penerate
reasonable movement and occupation of buildings, the sim-
vlator keeps truck of two condilions based on parameters
Ty and Toppre: The simulator ensures that the fraction of
people at the ground level lies hevween Ty and Toppry.

Each ohject reports its localion te the server at an average
ralc of A,,. Before recording the simulation results, the sim-
ulalor cnters a warm-up phase, where al most N,.r,, samples
for each object are generated. or at least T, of the popu-
lation are in the ground level of buildings, Nexl, the simu-
latlor records the location updates of cach object in a trace
file, which comains the timestamp of the update and the
spatial ceordinates of the object at that lime. The Lrace file
serves as the data source for our cxperiments. It captures,
for each objecy, a wtal of Ny + Nypgae 1ocation updates.
We use the first M, updates as the history profile. The first
Ny — 1 records are used 1o penerate an R-ree composed of
gs-regions. The Ny;,-th sample is then inserted to the R-tree
lo produce the C7-R-tree. Once the CT-R-ree is buill, the
remaining Ny pgae Samples are modeled as dynamic updales
lo ke CT-R-iree. as well as other R-tree variants. Al lhe
same time, range queries are generated al an average rate of
Xq- Each range query has the shape of a square. with central
point chosen randomly within the city area and size equal to
i fruction f, of the ity area. It should be noted that the city
map is used only by the Cily Simulator 1o generale realislic

movement of objects - it is nol used for the pencration of
the CT-R-1ree index structure.

Since these are disk-based index structures, the number
of page 1/0s is the natural metric lor measuring the perfor-
mance of the indexes. We measure the number of pape [/0s
for reads and writes of hoth dynamic updaies and queries
during the simulation. We do no1 distinguish between se-
quential page VOs and random page /(s — each page is
treated equaltly. 'This is likely o be a disadvaniage for the
Ci-R-tree since its node bulfer pages may ofien he mulii-
ple pages long. unlike the other wees for which the nodes
are always the samc size. Each page has a size of Sy,
wilh a fan-out ef My . The secondary index of the CT-R-
tree {i.e.. the hash table) with size Sy We assume all tree
structures and (he hash lable are stored on disk.

The City Simulator is implemented in Java and run under
Windows XP. The programs for generating the CT-R-tree
are writlen in C++ and Java, and the lestbed is run on a
UNIX server. Although we locus on the perfonnmance of
dJynamic updates and queries. it is worth notice that the lime
required to penerate the CT-R-tree using the hislory profiles
is wsually less than len minutes. Also, since this process
cin be done in an offline fashion. it does not intermupl the
processing of online updates. Table | shows the parameters
ol the simulation model. the paramcters of the CT-R-tree.
as well as their corresponding values.

4.2 Results

Here we present the simutation results of the CT-R-tree.
Four index structures are cvaluated in our experiments: (i)
the traditional R-tree [15]; (ii) the traditional R-tree aug-
menied wilh lazy updaling vsing the secondary index strue-
ture shown in Fipure |. We call this fazy-R-tree; (iii) the
o-iree which is essentially an R-tree with lazy updating
ind cxpanded MBRs (i.e. the MBRs are not minimal, but
widened, by a lactor of o (we used o = 0).]1 in our experi-
ments); i {iv) the CT-R-tree.

4.2.1 EfTcet of Update/Query Ratio

We begin by studying the relutive performance of the vari-
ous index structures as the number of queries and updates
is varied. Figure 8 shows (he total number of page IFOs per-
formed for query and update for the R-uree. the fazy-R-tree,
the a-tree and the CT-R-tree. The performance is measured
under 1the same query peneration rate bul diflferent update
arrival rutes. To generate a slower updaie rale, some loca-
tion samples are skipped. 1t should be noted that this graph
uses a Log-scale on both axes. As the ratio of update rate
over the query rate (abbreviated as update/qucery ratio) is in-
creased from 107" 10 10%, all four indexes show an increase
in the number of I/0s, This is because increasing the update

rite implies more demands on the index, and consequently
more [/Os are needed.

When the update/query ratio is low. the CT-R-tree 1akes
aboul 2 lines as many as 1/Q0s than Lhe other R-lree varjians,
Recall that the R-tree and the lazy-R-trce uses MBRs. which
are light bounds over the enclosed objects’ values. On the
other hand. the C7-R-tree employs gs-regions that do not
necessarily enclose as fightly as MIBRs. When a query is ex-
eculed. its query region potentially has less overlap with the
R-tree’s MBRs than with gs-regions. This results in fewer
scarches and better performance. With an o of 0.1, the ex-
panded MBR of the @-tree is slightly larger than the other
R-trees. Thus it also suffers the same problem as the C7-
R-tree and its performance is worse than the R-irees. The
advanlage of using the secondary structure in the fazy-R-
Iree gives il a minor cdge over the wradilional R-treg since
it saves the cost of accessing the R-ree when an updated
object remnains inside he same leaf node.

Towards the ripht end of the graph, when the update
workload dominates the query workload, the CT-R-tree
registers a significant improvement over other R-trec vari-
ants. In fact, once the update/query ratio crosscs over 5.6,
the number of 1/Os needed by all three R-trees increases
sharply, whereas the CT-R-tree gracefully handles the high
update burden. When updates are much more freguent than
queries, which is a typical scenario in sensor and moving
objecl databases, the R-tree suffers from expensive updates.
The distinclion belween the R-tree and the Jazy-R-tree be-
gins to show in this high updale setting as the secondary
index yiclds significam gains from cheaper updates. The o-
trec improves [urther over the lazy-R-tree since it can han-
dle more updaies through the secondary index on account
of its more lax MBR. The Ci-R-tree clearly outperforms
the other indexes in this high updale environment since its
structure is inherenly designed 1o maximize tolerance 1o
changes in object values. The advamtage of belier update
performance more than compensates for the slightly poorer
query performance.

The CT-R-tree works the best under high update rates
because it is aware of the presence of gs-regions. and uses
them to cluster the search space. Further, these gs-regions
are not split further into smaller vnits. Therefore. when an
objcct moves inside the gs-region. no matter how lrequently
il reports its valuc. only the secondary index is consulied
and the current value is direcily updated in the leaf node, As
the update/query tatio increases, the improvemem over R-
trees is more cbvious. In particular, when Lhe update/query
ratio is 1000, the number of I/Os required by the CT-R-tree
is only 1/dih that ol (he u-tree. 1/71h that of the fazv-R-tiee,
and 1/27th that of the R-1ree,

Param | Default | Meaning H
Simulation parameters

Ay 5,000 Locatien updale rate (sec™1)

Toturt 13 Stan threshold

Trin 0.09 Fill threshold

Tempry 0.5 Empuy threshold

Nopj g i of muviny objects

Mot 2000 Max sumples skipped before recording

Mujur 110 # of historic samples (per ubject)

Nupdme | 20 # of online updales {per ohjecl)

lq 50 Query amrival rale (sec” h

Sy 0.1 Query size (% of the cily area)
CT-R-tree paramelers

Tiiu 25 Disiance threshold in Eqn 1 (m)

Trure] Max growth rate of qs-region (m/sec)

o 300 Min time objecis in gs-region (sec)

Toarear 22500 Max area of gs-region (m?)

Cy 1 Query scaling lactor (Eyn 6)

C, 1 Update Sealing [actor {Eyn 6)

Spuge 1096 Size of a page (byles)

Nemen 20 # of entrics (per page)

Stash 8 Size of sccondary index (Mbytes)

Table 1. Parameters and baseline values.

4.2.2 Effect of Query Size

Since e Jazy-R-iree maintains tighler bounding reclangles
than the a-ree and the CT-R-lree, it is expecled w outper-
form them for querying. In this experiment, we examine
more precisely how well the lozy-R-tree outperforms the
two indexes by measuring the ratio of the query IFOs ol two
trees over the query 1/Os lor the fazy-R-tree. Note that the
fuzy-R-1ree and the traditional R-tree have identical query
performance, Figure 9 shows the ratios over different query
sizes. The query size is varied [rom 0.1% 10 2% of the do-
main. We observe that both the o-tree and the CT-R-tree
require more qucry [/0s than the R-ree, Also, the CT-R-
iree needs more query I/Os than the a-tree. As the query
size increases, their performance slarls o converge 1o that
of the R-tree. The reason is that with a large query area, the
probahility tha a given region will be covered by a query in-
creases, Thus the advantage of having a smaller area MBR
reduccs. To see this, consider a very large query that covers
95% of the space — it is highly likely that most MBRs will
overlap with this query and therelore need 1o be searched.
In that case, searching a gs-region in (he C7-R-1ree is even
ntore elfeclive than scarching in the R-tree, because a ¢s-
region does nol limil how many objects are stored inside.
On the other hand, MBRs nced to be split when they are
over-full. so thal more access paths are necessary. Thus the
performance of CT-R-(ree improves over large query size.
Although the CT-R-tree does not perform as well for
queries as the other two indexes, we can see from Fig-

T
Mires - =

CHBrer
Fol S Lasg 1T -—-we-- S
Foha Miree D--

b

) 2|
¥ w0t . 1
A
5 F
?‘
RINT S

Log | O eate gue ry ranl

Figure 8. Total IfO vs. Update/Query Ratio

ure 10 that il is the elear winner in 1erms ol overall perfor-
mance {lotal number of 1/0s). The C7T-R-tree is designed
lor databases with more updates than gqueries. Its loss in
query performance is compensated with a significant gain
in update performance, resulling in three-fold improvement
over the o-tree, and four-lold improvement over the lazy-R-
tree. consistently over all query sizes considered.

CT A Piee ——
oA -—

oy A¥ b

Fhay e =i mrar

Figure 9. Query [/O ratio vs. Query Size

4.2.3 Scalability of CT-R-trce

Tn this experiment. we study the scalability of the CT-R-
tree. The number of 1/Os for the fazy-R-tree and 1he C7-
R-tree are reported [or up 1o 500K objects (Figure 11). We
observe lhal (he CT-R-tree perfomns betier than the fazy-R-
tree as 1he number of objects is increased from the baseline
valuc (100K). This shows that the C7-R-tree scales with
the number of objecls. A closer look at the graph reveals
that the pedormance pap between the two indexes widens
with increasing number of objects. The rationale is 1wo-
lokl: First, when more objects are maimained in the system.
more updale requesls are generated. As discussed in 42,1,
the performance of the R-tree degrades more than that of the

Tele 1w
L
|

o

ol .. ' "
e ay [" H
[A P

Figure 10. Total /O vs. Query Size

CT-R-tree. Second, (he city plan is fixed. Injecting more ob-
jects 1o the eity implies a higher population density. Muany
objects are close 1o each other. so that they have a higher
chance of being clustered 10 the same MBR. As a result, an
MBR gels [ull cusily. and more splils are necessary (0 main-
tain the R-tree. A CT-R-tree does nol have lo perform any
split operalions, even when the density of objects is high. It
therefore requires fewer 1/0s.

-

burs

. k]
',

",

",

s =

wrl o -

s 4
0—________. - .
] va B = am L) < -~ .

mtar of DE pab |

Figure 11. Total IO vs. Number of objects

4.2.4 Sensitivily to Parameter Valucs

This sel of experiments siudies the sensitivity of the C¥-R-
lree 10 ils parameter vilues, namely Ty, Trarer Tarean 00K
Ttime- These parameters are used in the first step of idenii-
fying gs-regions, so their values can be critical Lo the per-
formance resulls. We examine the YO performance of the
CT-R-trec over a wide range of values for these paramceters.
The results for T,y and T, are shown in Figures 12(a)
and (b) respectively. The results for Ty, and T, showed
trends very similar to those for 7,,,,,. and the graphs are om-
milled due (o space constriints. Each praph plois the num-
ber of page 1/0s for query and update for the CT-R-tree as
& function of the respeclive parameter.

In general, these graphs illusirate Nat curves for updaie,
query and overill YO performance. over a wide range of

values. This indicales that the CT-R-lrce is not sensilive (o
these parameters and therefere it is not critical 10 choose
precise pirameter values for the CT-R-Tree to work effi-
ciently. As long as the parameter values are “reasonable”,
the C7-R-tree behaves well. Special care needs 10 be taken
in choosing a value for T,.,. though. In panicular. one
needs (o avoid choosing a value that is oo small, othenwvisc
the number of ys-regions may be 100 small, or gs-regions
may lend (o be smaller than they should be. Many objects
that should be in a gs-repion miy lhen not be able to hit
one of these small gs-regions. They are forced to be placed
in the overflow pages of the interal nodes. feading 1o poor
performance,

We also studied the cffect of changing (ralfic patterns
on o-R-tree experimentilly. Their results are shown in Ap-
pendix A,

5 Related Work

Developing an efficient index structure for conslantly
evolving data ts an imponant research issue for dalabases.
Most works in this arca so far focus on moving objeet envi-
ronments, where the positions of objects keep changing. As
a simple approiich, multi-dimensional spatial Index struc-
ires can be used for indexing the posilions of moving ob-
jecls. However, they are not cfficient because of [reguent
and numerous updale operations.

To reduce the number of updales, many approaches de-
scribe a moving object’s localion by a linear funciion, and
the index is updated only when the parameters of (he [unc-
tion change, for example, when the moving object chanpes
its speed or direction. Saltenis et al. [12] proposed Lhe time-
parameterized R-tree (TPR-1ree). In (his scheme, the posi-
tion of a moving point is represented by a relerence position
and a corresponding velocity vector. The MBRs ol the tree
vary with time as a function of the enclosed objects. When
splitting nodes. the TPRree considers both the positions of
the moving points and their velocitics. Later, Tao et a) [13]
presented TPR™-tree, which extends the idea of TPR-trees
by employing a differcnt sel of insertion and deletion algo-
rithms in order 10 minimize the query cost. Kollios ctal. 9]
proposed an elficient indexing scheme using partition trees.
Tayeb et al. [14] introduced ke issue of indexing moving
objects 10 query the present and [uture positions and pro-
poscd PMR-Quadiree for indexing moving objects. Apar-
wal cL al.| 1] propased various schemes based on Lhe dual-
ily and developed an etficient indexing schemc o answer
approximate nearest-neighbor queries. The problem of all
these lechniques is that there hardly exists a good [unction
for describing the objecls” movements in reality. In many
applications. the mevement ol abjects is complicaled and
non-linear, [n sich situations, the approaches based on a lin-
car funciion cannot werk efficiently— the function changes-

Fawna]

e
=y
Tad
LLLTL]
L Lt e - -
Lt -1
g
= W b
2y
[LLLLL]
ol a0 . ‘ ' -
n 2 1 L3 H
Mlan priwth et i chom ropmmd e
(w

ik [1Y

[LELNT Y

l‘|\.|.;l< b
Chary
Jroaney Twad
RN \ - -
wn - -
EuT)
ot UL
P N N N
I L U 15 i)} 0
Ny g 0f vhrm TepRT
)]

Figure 12. Performance for (a) 7,.,., and (b) 7,,..

1oo often. Approximation technique using threshold such as
maximal velocity has been proposed o reduce the update
cosl. However, this approximation 1echnique can decrease
the efficiency ol the index.

In the computalional geometry community. kinetic dala
struclures [5] were introduced for maobile diti. These arc
main memory structures that assume hat the objecls move
in a rectilinear motion with certain velocilies. The updates
arc in the form of change in velocity or direction of an ob-
jecl. A kinelic event occurs when objects change their ve-
lecities or dircetions or when the combinatorial structure
changes e.g. when lwo points cross cach othier. The idea
is that the structure only needs to be updiated when such
a kinetic event occurs. These data siniciures were applied
to selve geometry problems like closest pair. convex bull
and voronoi diagram problems efficiently while objects are
moving continuously. Kinelic space partitioning tree (or
cell-rees) were introduced by [2]. Bascd on this notion
of kinelic data structures, Agarwal et al. |[1] proposed
kinetic version of kd-tree, where the medians are dynam-
ically maimained. However, most works have been in the
main memory data structures. For extemnal memory, Apar
wal et al. [1] applied this idea 10 external range trees [4] and
bounds on guery performance are proved.

6 Conclusion and Future Work

Traditionally, index structures are optimized for im-
proved query performance in the presence of less frequent
updales, For envireniments such as sensor and moving ob-
Jject databases where data is constantly evolving traditicnal
index structures give poor performance. We introduced the
notion of Change Toleranr indexing for these high updme
environments. Change tolerant indexes optimize for both
query and update performance. We developed the algo-
rithms [or creation and use of a change wlerant R-1ree in-
dex. Experimental results showed the superior performance

of the proposed index siruciure. The proposed CT-R-tree
trades slightly poorer query performance for much superior
update perlormance resulting in betler overall performance.

The performance was also found to be robust with regards

10 number of objects und gueries, and query sizes. We ob-
serve that the generic idea of change tolerant indexing can
be applied 10 other index structures. Pretiminary ideas for
extensions 1o other structurcs were outlined, Tn fulure work,
we will siudy change (olerant versions of these other index
structures in more detail,

References

[11 P. K. Aparwal. L. Arge. and). Erickson. Indexing moving
poiots. In Sver. en Principles af Database Systems, pages
175-186. 2004),

P. M. Agarwal.], Tirickson, and L.). Guibas. Kinclic binary

space panitions for inlersecling segments and disjoint trian-

gles. In Symposivm on Discrete Algorithms. pages 107-116,

19Y8.

L. Arge, K. H. llinrichs, ¥ Vahrenhold, and J. 8. Vitter. Ef-

ficient bulk operations on dynamic r-trecs, Algerithmica.

3301):104-128. May 2002.

L. Arge. V. Samoladas, and J. 5. Viller. On two-dimensional

indexability and optimal runge search indexing, 1n Proc. of

ihe ACM Sym. Principles of Database Systems,, pages 346—

357. 1999,

[51 1. Basch, L. Guibas, and J. Hershberger. Data structures for
mobile data. Svinposiien on Discrete Algorithms. 1997,

6] 5. Berchiold, D, A, Keim. and H. P Kreigel. The X-tree: An
index structure for high-dimensional data. In 22nd. Confer-
ence on Very Large Dartabases, pages 28-39, Bombay. India.
1996.

171 A. Gutman. R-rees: A dynamic index structure for spatial
searching. Proc. of the ACM SIGMQD Int'l, Conf., 1984.

18]). Kaufman_). Myllymaki, and J. Jackson, IBM City Simula-
1or 2.0, htp:/fwwwalphaworks. ibm com/lech/citysimulator,

[91 G. Kollios. D). Gunopulos. and V. 1. Tsotras. On indexing
mobhile objects. In Sym. on Principles of Database Systems.
pages 261-272, 1999,

(2]

13]

M1

[10} D, Kwon. 8. J. Lee, and 8. Lee. Indexing the current po-
sitions ol moving ohjecis vsing Lhe lazy update R-tree. Jred
Imternational Conference on Mobile Data Management. Jan
2002,

R. Ramakrishnan and J. Gehrke, Datarabase Managemeni

Sysiems, WeGraw-Hill, 2000,
[12) S. Salienis. C. Jensen, S. Leutencgger, and M. Lopez. In-

dexing the position of conlinuously moving objecls. Proc. of

ACM SIGMOD, 2004).
Y. Tao. D. Papadias. and). Sun. The TPR*-irce: An opli-

mized spatio-temporal access method for predictive queries.
Procevdings of the 20 International Conference on Very

Large Darabases{ VLDR), pages T90-802, 2003.

I, Tayeb. O. Ulusey. and O, Wollson. A quadiree-based dy-
namic attribule indexing method. The Computer Jonrnad,
pages 185-200, 1998,

University of Calitomnia. Riverside. Spatial index i-
brury version 0.44.2h (uva). bupifiwwwes.ucredw mar-
ivhfspatialindes/.

(1]

[13

[14]

{15}

Appendix A: Adaptation to Changing Patterns

Recall that we build the C7-R-tree by consulling history
records of the ubjects. The structure of the CT-R-iree, once
builw. is basically unchanped. In essence, we assume lolure
changes of data follow the discovered patterns (in the form
ol gs-regions). This assumplion may not hold. however, il
the patiemns do change. For example, a parly of people may
gatker around for a few hours and dismiss afterwards. The
qs-regions discovered is then be no longer useful. Simi-
larly, new qs-regions can be created afier the CT-R-tree is
construcied. To handle (hese problems. we may rebuild the
CI-R-tree periedically. running as a backpround process.
and then switch (o the new Lree once it is built, Bt since
the cosl of construction is high, we cannot afford 10 rebuild
it very often. In (his section, we discuss how 10 change the
C7-R-trec temporarily to handle unexpected traffic pattern
changes.

We described in Section 3.2 that the overflow bulfer is
switched from the linked list to the ¢2-R-tree when the linked
list is longer than Tj;;. This is the first measure o handle
movement paliemn changes. Usually the portion of iiems
that need 10 be placed in the overflow bufier is litlle (as ver-
ified by our experiments). and thus a linked list suffices.
However. if uraffic pattern changes, the linked 1ist miy grow
indefinilely and degrade index performance. This is why an
upper bound 7}, is placed on (he length of the linked list.
and an ¢-R-tree, an adaptive structure, is used Lo replace the
linked list when it is excessively lonp.

A.1 Discovering new gs-regions online

Another purpose of using the o-R-tree as the overltow
butfer is that it facilitates discovery ol new, albeit approx-
imate, qs-regions. The MBR of the o-R-tree is actually
(1+c) larger than its acal size, and is thus more wlerant
than the MBR of the R-tree. We may thus treat the MBR
of the o-R-ree’s leaf node as an approximale gs-region if
the ohjects located there itlusirale some properties of a gs-
region. The identificd MBR can then be migrated (o the
CT-R-lree as ils new leal node.

In order to detect if a leaf-node MBR X; of the overllow
0-R-tree behaves tike a gs-region. we store the following
information in the node;

» The lime gs-region behavior is observed, 5. Initially, ;;
1§ oo,

¢ The number of objects in the leaf node, ;. with an
inilial value of 0.

When an insertion 1o X; is made at time ¢, »; is incre-
meated. Then we perform additional checks on the follow-
ing conditions:

Lo > T.‘fn'uf et
2. Area of the MBR of the leal node < T

where Zpyp uew 18 the minimum number of objects in
Xiv and Toype 15 the area constraint defined belore in Sec-
tion 3.1.1. I these conditions are satisfied, # is sel to r, and
insertion is completed.

On subsequent insertions, conditions (1) and (2) are
checked again, 1 any of (hem are nol salisfied, then # is
resel 10 o, indicating that the node does not behave like a
gs-region. Otherwise. the following additional condition is
checked:

31— i > T}I’ﬂf—”—ﬂlf

Here Tjpyj—pime denotes the minimum amount of time
that (1) and (2) are satisfied. Thal is. we require (1) and
(2) 1o hold over a period T, frime-

1l condilion (3} is salisfied. X; (and 11s associated objects)
is removed [rom the ¢-R-tree and re-inserded 1o 1he strue-
turat R-tree as a new gs-region. No change (o the hash lable
is mecessary. We remark that the gs-regions so discovered
may only approximate the rue gs-regions. They are only
used as lemporary measures when a complete analysis of
qs-regions is not feasible.

A2 Deleling a gs-region

When a qs-repion is no longer useful due to a chanpe
in traffic patiern. it may be remeved to improve query per-
tormance. Let the upper hound of the number of limes an
objeet 1s removed from each qs-region be Trnme PEr unit
time. We obscrve that cvery time an objecl is removed from
a qs-region, lhe object has violated the supposed stabtlity of
the gs-region. When the removal rale is greater than Trnave.
itindicates that the gs-region is pot gqualified for holding ob-
jects. and i1 cannol save updates. Thus. we can check the re-
mwoval rate of a gs-repion every Lime an object gels deleted,
ind remove the gs-region if necessary. All ilems in the gs-
region are re-inseried Lo the CT-R-tree.

Nolice that even il a gs-region is not wsed now. it docs
nol necessarily mean that the gs-region is not used again.
In particular, il there is a periodic patlern, e.g., the office
is occupled between 9-5 every day, we may relain the gs-
region representing the office space in the lree for future
use. Whether deleting a gs-region is beneficial depends on
the requircncnts.

A.3 Rchuilding a C7-R-iree

Since the MBRs in 1lie ¢-R-1ree are not true gs-regions,
and some gs-regions may not even be discovered. the
scheme we just proposed can only approximate the perfor-
mance of an actval CT-R-wree. However, it can be used as
a temporary measure 10 adapl lo changing patterns, and is

14

much cheaper than the cost of constructing the whole CT-
R-1ree. We still need o rebuild the C7-R-tree [ils structure
changes toe much. For example. we may start the rebuild-
ing process il the number of gs-regions being deleted or in-
serted is loo high. New history records that are no1 used [or
constructing the tree can be used. The rebuilding process
should be run in background. with no interference 1o the
currenl index. Once the rebuilding is compleled. the new
index is used immedialely.

A.4 Experimenial Results

N —————————— -~ . P
b | g W o L e e —
e IR LT B i o e e — e ©

e vy

I
s

LI

;

r [X) [el Ll a1 1 Exy ’
Lo 0 Lonmak ey 1w)

Figure 13. Total /O vs. Update/Query Ratio

We experimentally sludy 1he effect of changing traffic
patterns on Lthe performance of the C7-R-tree. using the ba-
sic seltings mentioned in Seclion 4.1. A CT-R-tree is first
built bused on their movement records in the city plan. Then
we pencrate a set of movement records based on a new city
plan, with five buildings removed and five buildings cre-
aled. Since an objecl now cannot cater the regions where
buildings are destroyed, but they can cnter buildings which
originally do not exisl, some gs-repions are no longer valid,
while new gs-regions are created,

The index ereated based on the first sel of records is nsed
to test its efficiency in sloring the localions of objects which
move arcund in the second city. Its performance in shown
in the curve “Changed Behavior/Unchanged gs-repions™ in
Figure 13. The second curve “Chinged Behavior/New gs-
regions™ illustrates the performance of the index when we
apply the approximate gs-region detection algorithm men-
tioned in this section. As we can see, over a lirge range
of update/query ratios, the C7-R-tree performs consistently
better after the gs-region detection algorithm is applied. We
thus show experimentally 1hat the C7-R-lree can adapt to
changing traffic patterns.

	Change Tolerant Indexing for Constantly Evolving Data
	Report Number:
	

	tmp.1307986960.pdf.ltWu3

