
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

2004

Change Tolerant Indexing for Constantly Evolving Data Change Tolerant Indexing for Constantly Evolving Data

Reynold Cheng

Yuni Xia

Sunil Prabhakar
Purdue University, sunil@cs.purdue.edu

Rahul Shah

Report Number:
04-006

Cheng, Reynold; Xia, Yuni; Prabhakar, Sunil; and Shah, Rahul, "Change Tolerant Indexing for Constantly
Evolving Data" (2004). Department of Computer Science Technical Reports. Paper 1590.
https://docs.lib.purdue.edu/cstech/1590

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972208?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

CHANGE TOLERANT INDEXING FOR
CONSTANTLY EVOLVING DATA

Reynold Cheng
Yuni Xia

Sunil Prabhakar
Rahul Shah

Department of Computer Sciences
Purdue University

West Lafayeue, IN 47907

CSD TR 1104-006
February 2004

(Revised July 2004)

Change Tolerant Indexing for Constantly Evolving Data
Technical Report CSD TR# 04-006

Reynold Cheng Yuni Xia Sunil Prabhakar Rahul Shah
Depnrtment of Computer Science, Purdue University.

West Lafayette
IN 47907-1398, USA

Email: {ckcheng,xia,sunil,nthul}@cs.purdue.edu

Abstract

Illdex stmcl/lrcs are designed TO optimize search perfor
/lIlII/Cr, while allhe ~-(lllle ,ime :il/pparrilll; effidem data IIp

dales. A/lholl~h IlUl explicit. exis/illg index Slrl/CfllreS [lrc
typically based IIPOIJ Ihe llS_\llmplioll 111m/hi' rare ofupdmes
will be small compared to rhe fml! of (fuery;ng. 11lis as
sumption is 1101 valid ill srrcwllil/g dl/Ill cJl6romllcms ~-/lcl1

as sensor alld mol'illg objeclllll/almses. where uptimes are
received incesSGm/): Infac/Jor lilli/I)' {/ppficmiol/s, Ihe f(lfC

ofupdates lIIay well exceed Ille rare ojqueryillg. III SIlch el/
\'irollmcm,\', i/ldex slrUCfllres sl1f!er from poor performallce
dlle tn IlIe /lIr~e ol'erhelld ofkeepillg the index IIpdmed lVilh
the fmesr datll. JIIOl'e ill (I we" betwl"ed, but restrictil'e JlllIJ/

lIer (e.g. in slraight filles with ("(lIIsl(lIIt !·etu';ly). II/ this
paper, Ire propose alld del.'dop fill index .wmclllre thar is
e.,p/icitly designed 10 pelform welf fnr /JOlh qlfer)'iJl~ (I/ld
updalil/g. We prescllt techniques for afleriJlg tile de.l·igll of
tll/ iJldex ill order 10 optimi:.ejor burh updates and query
iI/g. The poper is del'etoped with rhe example of R-trees.
bll/ the ideas C(1Il be eXlf!/lded to olher illdex Slmelllres as
welt. We preseJl/ Ihe desi~1I of Ihe Change Tolerant R-rree.
all e.,perilllemaf el'afl/aliol/.

] Inlroduction

Index structures are used lO improve query perfonnance
by limiting the amount of dam thm needs 10 be examined in
order 10 generate an answer. Stalic index structures such
as Ihe ISAM Ille formm [I t J arc not designed lO handle
updates to lhe dala very well and can le.,d to poor query
performance as a result of updales. Dynamic index stnlC
tores. such as the R-tree al\d R-tree. are designcd to adapt
the index structure as data is updaled so as to continue to
provide good query performance. Existing (dynamic) index
structures perform satisfactorily for traditional datahase ap-

plicmions where lIpuntes arc infret]ueot in comparison to
queries.

Emcrging applications such as sensor-b,lsed streaming
databases. represem a drastic shift from lhis tradition,11
behavior. These applications are characterized by virlu
ally constant updMes to the data. and relatively infrequent
querying. In this selling, existing index structures are com
pelled [0 expencllarge amounts of resources in simply keep
ing the index updated with the latest values of Ihe data.
The cost of updating the index dominates the advantage of
improvcd query performance through lhe use of the index.
One feasible solution is to reduce the need for updates to

Ihe index. Recent efforts <It indexing moving object data re
duce the need for indcx updates by assuming that objects
will move in a well behaved. but restrictive manner (e.g. in
stf<light lines with conslant velocity) [12]. This solution is
nol generally applieahle since the assumption is not reason
able for JIl;my 'Ipplications.

In this paper. \\'e ilddress the prohlem of efficient index
update where update rates are high. We drop the traditional
approach of processing updates with the goal of improved
(Illery performance. Instead, we propose <lnd develop index
structures that me explicilly designed 10 perfonn well for
both quel)'ing and updating. We begin by observing that
most index ~tructures inherently tolerale some change in
[he data values being indexed. The nl'5t step is lherefore
to exploit this "tolerilnce" to avoid an index (wilhom lllak
ing any restriclions on lhe nature of change of llle dala).
Next. we preseJ1l1echniques for altering the design of the in
dex in order to oplimize for both updates and queries. This
is achieved hy halancing lhe need for efficient search (the
comlllon critcrion for index design) wilh the cosl of updates.

As we shall sec, the two goals of improved query perfor
mance and improved update perfonnanee are direclly op
posed to each OIher: improving updnte performance is typ
ic,llly at Ihe cosioI' query perfOnTI,lllCe (and vice versa).
The pilper presents an index slructure thaI is designed for

high upd,lle en\'irunments - achieving significantly beller
upd,lte pcrfonn,mcc al the cosl of sligluly [lOorer query per
formance - and superior ovcrall performance as compared
10 exisling melhods. Thc papcr is developed with the exam
ple of R-trees. but the ideas can be cxtcnded to olher index
slruclUres as well.

TIle main eontribllliOlls of this paper nre:
I. The introduclinn of ClllIlIge Tolemlll inde.x strocturcs

that optimize for frequent updates and queries ,md the
dcsign and development of change IOlerant R-lrees.

2. An experimental evaluation and valid,llion of the pcr
fonnance, ,md adaplabilily of these index SlrUCllires.

Thc rest of Ihis pilper is organi7ed as follows. In Scc
lion 2 wc discuss the inherem tolerance of index slJ1lclures
to updates ,md study how this can he exploited lo avoid in
dex updales. In Section J the desigo of a chaoge loleranl
R-tree is discussed. Section <I presems exrerimental results.
Section 5 discllsses related work and Sectioo 6 concludes
the parer.

2 Change Tolerance of Indexes

The nmin motiv,llion for our change tolerant inde;.;:es
comes from dala which changes slowly hut cons!antly with
respeCL to time for most periuds of limc. foJlmved by short
periods ot' time when the dala may show a major variation.
In nalure (e.g.. weather syslems), lhese major v<lri<ltions arc
likely to he caused by some underlying evcnts. which <Ire
reJntivcly infrclluem.

Consider an index over people in a cily. For mOSl of
lhe time a large fraclion of lhcse flCople are inside a build
ing. They llIay ch,mge their locations but these variations
are not big. They are confined to limiled range of space for
a long time. Then. somelimes, when they <lrc on the road.
the changes in !heir locmions are rapid. However, Ihis hap·
pens for rcl<ltivcly shorter periods of lime for mOSl people.

The silLlalion can also be eXiended 10 sensor data. Con
sider temperalure and prcssure sensors. nle index conlains
lemperalure and pressurc v<llucs of many different places.
For each place. the v:lriatiun in these parameters againsl
time is not rapid for mOSl of Ihe time. However. during
evenings or during special evenls like lhuoderslOrms. they
can change rapidly. They finally seUle around their new val
ues.

We can exploit Ihis property of changing dala to build
beller indexes. In sume of the models for ch<lnging dala.
Ihe d,lIa varialions are modeled as a smoolh slraight line
willi conSlanl rale of ch,mgc. For example, indexes based
on kinetic data Slructures [5j assuJIle mobilily of objects in
sITaighl lines Wilh sOllie velocity. Our JIlodel does nol as
sumc dat,1 dmnges are well hehaved. The cll<1llges arc r,m
£10m, but they arc restricled in smal] range of values and in
only a few momenls rapid changes occur. The rapid c1l<1nges

2

arc followed by <lnother sct of small changes - again lhe
changes arc confined and random.

2.1 Tolerance 10 eh.lUge

Many index slructures are inherenlly loleuml 10 Ihe
changes in d,lta values without requiring a change in the
index slruclure. Consider the case of an R-tree index 17J.
The R-lree is a height balanced tree which can be seen as ,I
generalization of the H-lrce for indexing ohjects in multidi
mensional space. Each node of Ihe R-Iree (illlemal ns weB
as leaf node) represenls a hyper-rectangle in II dimensions.
The leat' level rectangles contain ohjecK and lhe rectangles
for inlernal nodes comain the rect,mgles alone level below.
The houndaries of the rectimgles are made as lighl as possi
ble. There is an objeci on each boundal)' fare (hyperplane in
d dimensions) of each of lhese rrrtangles. These reclangles
arc railed MinimulJI Hmmdillg Rectangles or M13Rs. Un·
likc the 13-Tree, the MBRs of nodes at the same level in an
R-Tree arc alluwed 10 overlap. Hence searching ,m object
Illay involve lraversiog several palhs in lhis trce. \Vhen a
node becomes ovcrfull il undergoes a splil. Efficienl heuris
lics and pruning ,Ire used to reduce lhe expecled numbcr of
palhs visited by subsellUen! searches.

Given any specific eolly in a leaf node of the Iree, the
Minimum Bounding Rect,mgle (MBR) of lhe entry for Ih;lt
leaf node in its parent node represcnts the "tolerance" of the
index to changes in Ihe values of the objects pointed to by
the leaf node. In particular, if an object's localion remains
wilhin this MBR. tlle index is correct wilhout requiring an
update. Under nonn"l R-Iree operatioos, such an update is
processed by searching the index and updating lhe localion
of the objecl. In order to nvoid this expense for each updale,
it is desirable lo be <lble to perfonn a cheap update in cases
where the index does not change.

The R-tree is very often used as illl index on spatial COOf
din<lles. Typical updates on R-Irees arc insertions and dele
tions. While performing a delelion operation on the space
allribllle, Ihe objecl is first searched (based upon ils spatial
coordinates) and then deleled. However, it' the deletion op
eration directly provides a poioter to lhe page in which lhe
objecl is stored, thenlhe cost for searching in Ihe R-tree can
be saved. For example, if il deletion is by a differenl (non
spatial) anribute, say objecl identifier (id). we can maintain
a secundary index 011 id. This secondary index slores, for
each id. the pointer to the page containing the rorrespond
ing object in the R-tree.

When the R-tree is used !O index constanlly evolving
data such as the locations of mobile objecls, Ihe types and
the frequencies of the updales can be very diJTerenl. For
example. 1Il0slupdates can be of Ihe form---object wilh id
i moves from its current locatiun (xl.)'l) to new localion
(X~ ..\-l). This can be handled in <In R-lree by first deleting

Figure 1. Secondary hash-index structure

2.2 Optimizing for Upd3tCS

Tn the traditional H.-tree. (he MBR is liglll (i.e. it is
the smallesl rectangle lhal contains ,Ill underlying objects).
This implies thalthere is ill least one object louching each
side oFlhe MBR (otherwise it would shrink further). lhlving
a small MBR improves search perfonnance and pruning. In
siluations whcrc the objects move constantly, lhese bound
ary objects arc likely to move in and am of lhe MER very
frequenlly. Eaeh time ,m objecl leaves the MBR. it has lo
be re-inserted (either imo a diffcrent MBR or stays in lhe
same MBR aner expansion). Note lhat the usc of lazy up
daling through the secondary index discussed above doe~

nol eliminate Ihis cos\. Thus, MER boundaries being tight
to the objects improves the search performance but call re
sult in a high update cos!. The concepl of having slighlly
larger "M"BRs than needed (that is, lhe MER is no longer a
minimum bounding rectangle) is explored in [I OJ. We shall
call this slruclure the a-lree, which is essentially ,Ill R-lree
wilh "loose'· MBRs. The idea is that whenever an MilR
needs lO be expanded. we expand il by a% more lhan its
minimum size. TIms. the boundary objecls get some lee
way to move imd slay wilhin the same MBR. Naturally, this
implies poorcr qucry pcrformance.

chosen to be a multiplc of disk hlocks. The SlfllClure thaI
results is largely dctermined hy split nf an overfull node
into two nodes. The H.-lree (like other index structures) at
tempL~ to find a split of the children of the ovcrfull nude in
nrder to achieve balance (each of the split nodes has roughly
the same number of children), and improve search perfor
mance. It is assumed lhal the aren of the resulling MBR
of each child is proportional 10 the Ilumber of queries lh,lI
will <leeess the corre.~ponding node. Consequenlly, the go,}1
is to minimize this area. Other slruClllres sl1ch as R *-lrees
use <I slightly mure complicated decision process to deter
mine the split, bill with the same goal of minimizing the ex
pecled number of queries thal will intersect with Ihe result
ing nolles. In either case. the impact of the splil on future
updates is not laken into <lccoun!. For example, the split
lllay result in a siluation whercin objects frequemly cross
from one MRR to anolher -lhereby resulting in a high up
dale COSl.

..
""'

,,---

~
::,--

03 5~T02 $2 .,':. S4 iii!r: :
", ", 010

.f. '" '" ",,"

: . 0' ,_~ .~ ::~~~~ ~ ~~~~~~~~~~~~~ ~ ~ ~ ~ ~ ~ ~ ~H~~F"'
: ;- - .~---------------------------------~: :::
,-.---- --,- --------- --- ----- ----- ----------_.' :::
------- --'-- --------- ------ -- -- --- -------------"

" "'. ------ -- --._- ------- -- ----- ----- -------_. -------,, ,
'-- ------ ---------- -----------_. ----- _.

Ihis ohjecl from its currelll location and then re-inscning it
in the new location. However. if the new Jocalion is in thc
same /'o.'!BR. [he change [oleralll properly of the R-Iree can
be exploited. Additionally. the secondary index on id call
be useu to reduce the search cost associated with deletioll
am! imerlion.

I-Ienee. in eonjunetiun wilh Ihe R-Iree. we maintain a sec
ondary hash index on id for hamJling updates. This is the
basic idea applied in the l<lzy-upd,}le H.-lrees [10]. Figure I
shows an example of this secondary index slruclure. The
secondary index (on lhe right) is simply an array of poinlers
10 leaf pages of lhe R-lree wilh one emry for each objeci
ordered by ;d. Thus. all the updates where the new location
is inlhe same NlDR as the oklloealion can be accomplished
wilh a constant number of UOs. Note that the R-tree strue
lure does Ilot change due to such updmcs (only the location
of the updaled object is changed in the corresponding leaf
node). ·1l1is kind of secondary stfUcmre is esselllial when
updates arc frequenl. If most ubjects remain within Iheir
MERs. moSl updates c,m be handled through the secondary
hash inde.~ while lhe R-lree index is used to process spatial
queries.

In lhe previous subsection. we saw lhallhe a\'ail,lble 101
erancc of an index to dam change can be used 10 improve
update pcrformance with no impact on search performance.
In lhis scctiun we explore the possibility of altering the de
sign of the index Slmclure to increase the available lnlerance
of an index while balancing the potcntial increase in the cost
for querying. Again. we fOCllS on R-lrees as lhe nmning ex
ample.

Givcn a set of data. the stfllcmre of an R-tree inde.~ for
this dina is determined hy two critical paramelers: the node
~ize. and lhc ordcr of inserts and deletes. The node size is

The intuitiun behind these indexes is as follows: The
design of lhe MilRs of the index should not be governed
solely by the currenl values of lhe data being indexed. In
stead, lhe MBRs should be designed hased uflOn the nature
of changes to dala values. For e.'(ample. if changcs from
one particular value to another arc very commun, the in
dex slruelure should tolerate lhis challge with minimal cosl.
Nalurally, this may lead 10 increased query COSl. TherefofC.
the cost savings for updates should be balanced against COSI
increases For queries. Vole will discuss how Ihis can be done
in dctnils in lhe next section.

3

3 CT-R-tree-thc change tolcranl index

The CT-R-tree we develop is an eXlension of the R-lree
th,lt is loleranl to frequem data changes. The slrUClllre of
this index is based on R-tree. where the dala is hierarch i
c,llJy ,Irranged in bounding rectangle.~ (MBRs). The key
idea is to dcsign the MBRs such that updates that cross
MBR boundaries are not common. While the future updates
(or queries) cannot be predicted. we <Issume thatlhe pasl he
havior is a good indicator of events in the future. I Wilh this
in mind, our algorithm utilizes Ihe history of updates to cre
ate a CT-R-tree, in order 10 facilitate future updates. In this
section, we tirsl describe how the index is crealed. followed
hy a discussion of index Illailllenallce operalions.

3.1 Crcaling a Cr-R-Trcc

The creation procedure of CT-R-tree can he summarized
by four steps:

I. Identification of MBRs (called qUl/Si-.I'Il/lic rc/:iOJlS

(qs-reg;olls) that maximize the "tolerance" of the in
dex to upU<lle. A qs-region is simply a range of the
domain which encloses numerous updates. Updates
Ihat change lhe value from one qs-region to another
should he relatively infrequelll (since these are expen
sive urdate.~). For the case of moving objects, litese
arc regions of space in which ohjecls tend to remain
for a long period of time. qs-regions are generated by
consulting the history of updates received from each
object (Section 3.1.1).

2. Using qs-regions found in step l. constmel a SlrUelUre
called the updme graph, which depicts traffic among
qs-regions (Section3.1.2).

3. The lIpd,lte gr,lph is used to merge the qs-regions (Sec
tion 3.1.3).

4. Creation of ao "empty" R-tree structure using lhe iden
lified 'Is-regions as MERs al the leaf level, and inser
tions of eurrenl dat,1 values to generate the CT-R-tree
(Seclion 3.1.4).

LCI us now investigate these steps in further delails.

3.1.1 Phllse 1: Idenliryin~ nbjeet qs-rc~iolls

This phase resulls in the identificalion of reelangular re
gions of (he domain thal are small and enclose several lIP
d,lles of an objecT. These reclangles are essentially qs

regiolls. sincc they represcnt ranges of values where Ihe dala
changes conslantly in a confined space. We begin by di
viding lhe update Imil of each objcct into pieces Ihat do

INUI~ lhal Ih~ 'ksign of e~isling indn S!n.rclures is based Upoll J pr~·

dinioll of fulure queri"~ limier lh~ a$Slllnplion Ihal ql\eri~s are uniformly
dimibulet!(i.c. Ihc arca ufa IItBR h a rough inrliC~lOr of how oflen il will
be' arc,'ss,'d by queries).

4

not hnve very I<lrge changes over a short period of lime.
As an example. consider Figure 2(a). where some individ·
ual objecl trails arc segmented into qs-regions. The con
necled bold lines show the update (rails of ohjecls, The
dashed boxes represenl the bounding rcctangles for inilial
qs-regions. For ease of exposition. we usc an example of
mobile objects in two-dimensional sp,Ke to descrihe the
sceo'lrio. Howcver_ lhe algorithms presel1\ed here ,Ire ap
plicable to the general case at' allY mlillidimensiun,11 data
where the muvement of an ohjecl represents the change in
d<lla valuc.

FonmtJly. let 0 1. O2•••.• 0,, be II moving objecls.
Let Hi denole the trail hislOry of ohject 0;. Then
H; is a sel of poinls {(Xi.!.Yi.l.li.l) _(x;J-.Yi.J".li.d

(Xi.!II;I'Yi.!/1;I.li.III,I))' where Ii./, is Ihe time when the kth 10
calion update (x',k,Y;.d occurs, and IlId is the (hc IOtal nUlll
her of samples ill H,-. Lei R;(j.k) be lhe bounding reclilngle
(MBR) for Oi which encloses 1(Xi.j.Y;.j) (Xi..{.Yd)) in
II;. Let AjU k) be the area of R;(j.k). Furlher. Jet diU k) be
(hc diameter (i.e. diagonal) of R;(j.k). We assume thallI;
is ordcred by im:rcasing values of ti.k '.~. Figure 3 describes
the <Ilgorithm for this phase.

Input: Ifi

Output: flu. Ii.[
I.j-I./.-J
2. Bi .j (J. J) - (xi.I.Yi.d
J. for k = 2lu IHil du

A. 1-<:1 BiU.k) be the MER after expanding
Bi{j.k - I) 10 indude (-(i.,- ..'"i..)

fl. if di(j .k) > Ttl;" and
d,(j.() ,I,I},' I) > 1', then

I, I, l role

a. if 1).. -1 -Ij > T,;me and A;U.k) < 'f;,,,,,, lhen
i. Bu-BiU.k-i)
iLT;.I-lk_I-lj

iiU<-I'I-1
b. else DiseanJ 1J;(j, k - I)
c.j_k

d. BiU·j) ,- (xu,:.I'i.d

Figure 3. Idenlifying qs-regions for object 0;
(Phase 1).

The algorilhm "grow"s MBRs to enclose the s<lmples
while tracing the history records, and if an MBR s<llisfies
certain criteria. it is "frozen'· and qualified as a qs-region
for 0;. We maintain a list of qualified MBRs for each ob
ject ai, where we denote lhe ItII MBR of this lisl by Ru .
LeI Au be the area of Bu. and tu the lime objeci 0; spent
inRi.!.

Step I introduces (hc variable j. which indicates Ihe time
Ij al which the oldest sample is included in Ihe /th MAR

~-----.
"-~-:-:::--'

-- ,,
____ 1_'
, ,

~
-'-'-' --:

,--'--- "-a:' , --.
. - :'
. '.

"
(a)

~ ---,,
'- - -" ----,

'- ---'

-,"_-.!:I" L_'

'- ---'
~ - -,, ,

----,
'- ---'

c:~",·:C':
, --,, , ' ..-- ., ,

: -.:

(b)

Figure 2, (a) Initial qs-regions from object trails_ (b) Object update graph.

(Bd), Both j and f arc ~el to I. amI the first MBR. Bi . l .

contains only the first sample. (Xi.] ,Yi.t) (Step 2).
Step 3 scans lhe lrail of the object in increa~ing order

of time, identifying qs-regions on the way. In Step 3(A).

Bi.[i~ expanded to include Ihe klh smnple of Hi. Step 3(13)

decides if flu ~holiid beJrozell as a qs-region, based on Ihe
following eonditiun~:

Steps (c) and (d) create ,I new MBR(B; 1.,.1). which only con
tains the kth sample. The whulc prm:ess is rereated again
until all the samples in Hi OIrc exhausted. at which timc we
obtain a sequence of £Is-regions for Oi. rur Ihe sake of con
venience. lei Ci denote the number of qs-rcgions generated
from 11i.

diUk) > 7,';,11 (I)
3,1.2 Phnse 2: Creliling lin update graph

..d""!},,,',':o.)_-"d,,,IJ,,',,::..,---,-"')- > Tral " (2)
Ik -lk_1

That is to say, after expanding DiU.k) to some particular
threshold diameter 1;/iJ" if BiU.k) grows at t]le rate faster
than Trol ", we stop it from growing fUrlher. Thi~ rcJie~ un the
fact that aher lhe initial growth of the rectangle, if there is a
sudden increase in growth rale of lhe region, the object ha~
starled moving fasler and thus should not be considered a~

lying in a l]~-rcgiun. A~ long as lhese two conditions are not
violaled. Bi./ conlinues to grow tu enclose more samples,

Sleps (a) 10 (d) in 3(B) take care of Ihe situalion when
Bu ceases to grow, Firsl, wc dceide whelher BjJ should he
considered as a q~·-region (steps (a) and (b». Hi.! is only
(Ilialified as a qs-region when

I. Ik_t - Ij is larger than T,i",,', This verifies Oi has ~tayed

long cnough in Bi.!. Singleton rectanglcs, such as lhose
labeled 'a', 'b', 'c·, and 'd', in Figure 2(a), arc also
eliminoued.

2, Thc are:! of Bu, i.e., Au, i~ smaller than Tr,m,' This re
moves rectangles that are too lilrge, who~e dead space
may lead 10 poor qucry per[omlance.

in which case we "freeze" flu (step (a)(i» ,md calculale 'C; I.
which i~ the time spent hy the object in IIi.! (stcp (b)(ii».

5

l.fori,----llondo
A. while 3j.k c:: [I.e;] such Ihal

T.j.j/Ai.j < (T.i.j+T.i.d/(JI;,j,d and
T.i.k/Ai.k < (T.i.j + t;.d/(A;.].d andA;.]..(< T,,,~,, do

~. E.\pand 8j.j to inclulle Hi.(

b. Replace common links of B;,j and Ihi
by a sil1glc link, anll up1l3tc the weight or the link

c, t;,j ,- t;_j +ta

Figure 4. Merging qs-regions (Phase 2),

We can represent the ~cqucnce of rectangular qs-regions
jusl generaled as a chain graph with the set of MBRs Bi.!
as vertices and link between each consecmive rectangles
in thi~ sequence (initially each edgc is i1~~umed to have a
weight I). Figure 2(b) shows this chain gfilph for the exam
ple histories ~hown in Figure 2(a) (nOle lliat not all nulle.'>
,md edge~ of thi~ graph are shown I'or Ihe purpo~e of c1ar~

ity),

We 1I0W discuss how to duster the chain graph of each
object to obtain the object IIpdme graph, where the ChlS

tcring is based all grouping sllb~ct~ of vertices (i,e" rect-

angulnr qs-rcgions). Figurc 4 illustrates the details of how
the graph is fomlcd for cach oojecl. Define the term "resi
denl (tensity", which is lhc lotal amount of lime that ohjecl.~

spends inside Ule qs-rcgiun (cu). dividcd by !he arca of the
qs-region. We see Ihat Slep I(A) chooses ilny j and k in
[I.e;] such lhat the following condilions hold:

"{i.]/A i.] < (Ti.j+Ti.d/(Ai.].d

ca/Au < (Ci,j+cd)/(Ai.].d

Ai . j .k < 'I;''''{I

(3)

(4)

(5)

where Ai.].k denote lhe area of Ihe new reclilnglc (hat
tightly encloses Ri.] and fl i .k. These Ihree conditions cnforce
the mle ll11)(lhe pair of rectangles ,Ire merged only when
lhc resulling "resident densily" of lhe resulting reclangle is
grcater than each ot' the "resident densilies" of lhe imlivid
uill rcctangles. Moreover, reclangles are only merged when
lherc is sufficiem overlap.

Whcn allihese conditions are satisfied. l1 i. j is expanded
lo include Ru (Step (a». Funher. the links lhat nrc destincd
lo the Silmc 'Is-region from Hi_] and H i .k are replaced by a
single link (Slep (b)). wilh the weight of the new link up
daled as the slim of the weights of the lioks being replaced.
The time value ci.] is Ihen "ssigned to be the sum of allihe
individual lime values of the merging reclangles (Step (c)).
Notice thallhe algorilhm merges the rect,mglcs in arbitrary
ordcr. until none of tllem satisfies the above criteri,], This
process is repealed for every object (Slep 1).

Once llle update graphs I'or all objects are generated, we
take Ihe lInion of all these graphs. A merging procedure
simil"r to Step I(A) in Figure 4 is applied to (his unified
graph. This merging gives a us a sel of 'Is-regions as recl
angles and a graph on il e"lIed the Ifpdore graph. The time
value of each rectangle gives Ihe lotal amount of lime that
objects spen(inlhal rectangle, and the weighl of link (i.j)
belween Iwo rectangles i and j in the updale graph gives
lhe total number of updates hetween Ri and 8]. Finally, we
scale down all Ihe edge weights hy the faelOr of In", where
ITnt = max(li.IHil (i.e., the longest duration of the trail hislO
ries). Each edge weighl now reflecls the number of updales
between two qs-regions per unit lime.

3.1.3 Phase 3: I\-'Ie.ging qs.n~gi(Jns yia updutc graph

In Ihe previous phase. mcrging occurs only when qs-regions
have reasonable amount of ovcrlap. In other words, two
rectangles lhal do nOI overlap will not be mcrged by the
above phase. However, there could be two unmerged rcet
angles belween which a large number of objects move. ln
such a situation, it is reasonable 10 merge lhese reclal1g1e 10
form a single MBR and save updale cost. In this stage, we
use the upliale graph 10 detect such occurrellce.~. and merg
ing qs-regiuns if necessary.

6

Figure 5. Merged qs-regions.

The high volume of trilffic belween qs-regiolls by itself
cannot guarantee a good merge. This is because Ihese rect
angle can he far apart. in which Cilse Ihc merging of these
'Is-regions into a single MBR will result in a very large
MBR. with lms of dead space. If this happens, many queries
will hil this MBR unnecessarily. resnlling in higher query
cost. Thus there is a trade-off belween merging qs-regions
and query cos!.

\Ve capture the effect of !he various faetnrs that COrl

Iribulc to this lrade-off. Let M be the increilse in area due
10 Ihe merging operation. A be the lot'll nrea spanncd by Ihe
structure, ilnd r" bc the query arrival rate. Then, we expecl
Ihal r"M/A queries per lInil limc will hit tlle dead space.
This represents the loss due to this merge. On the other
hand. iflhe weighl of the edge between Ihese Iwo 'Is-regions
in the update graph is w. then 1\' is Ihe rale of updates caused
by nul mcrging thcse rectangles. LeI C" and C" be the scal
ing faclors for queries and updates respeclively. Thcn we
merge two qs-regions if Ihe following criterion holds:

(6)

Figure 5 shows Ihc qs-regiolls as a resull of these merging
sleps for thc cxample hislOry.

3.1.4 Phase 4: Creuling a structu.al R-lree

Given lhe set of 'Is-regions identified in lhe earlier phases,
we firsl create an R-tree indcx on these qs-regions. This is
achieved by inserling the 'Is-regions into an emply R-Iree.
This forms a SrmclIIm! }(-/ree, where the leaf level of lhis
R-lree comains the qs-regions. Note thaI bulk loading lech
niqucs [3J for R-lree can be applied here with appropriate
mudifications. bUl since this is not the focus of lhis paper,
we choose rcpe<lted insenions. a simpler method. We arc
not concemed here with the cost of constructing Ihe index.

'.f

,1:1
:R3 ~

- - - - - ~------------------ - - -- ---_.'

$2 -dL¢::1J---------
.,,

~ ~

, \
I •••

IFigure 6. Structural R-tree over qs-regions

ll"~.,

Nod."

sint:c index construction is seen as an ormne process. We
,Ife more interesled in the online query and update perfor
mance of Illc index. Figure 6 shows the slmclural R-lree
thai results for our running example.

Using the Slructural R-lree. we creale lhe change lolcr.mt
R-Ircc (CT-R-Tree) over current data. The slruclUral R-lree
ducs not index data - iI indexes qs-regiolls. We begin by
inscning lhe current Jilin valucs inLo the structural R-lree.
Ireating the leaf level nudes of this index as one level above
the leaf for the CT-R-Tree. The lls-rcgions in the lcaves
of the strucmml R-Iree serve as the parent MBRs for the
data being insened. Although these MBRs serve a similar
purpose as MBRs in a regul,lr R-tree. they are treated spe
cially in two respects: (i) they arc never removed from the
index (i.e. they are allOl...ed 10 be underfull - in fact they
are all empty at the beginning of the CT-R-Tree eonstrue
tionp and (ii) they are not split when overfull-this avoids
the high cost for updates. Thus there is a possibly unlimited
overflow huffer (whidl can span multiple pages) attached to
these MBRs, as in the X-Iree [61,

We also attach a linked list of overflow huffers to each in
ternal (non-leal) MBR. When an object's new position docs
nOI fall in allY of the qs-region MBRs (M13Rs ,It leaf level).
it is stored in the lowest inlernaillode whose MBR contains
the new location. The objects which are stored in the in
tern,11 node buffers are likely to he those whose values <lrc

~For no\\' \\'~ <LISurn~ Ih~ rn""~",~nl l'all~m, of obj~cls is n~\"~r !In·
ch~n£~d. If a qs·rcgjoll b~coll1es useless due 10 ml>WllIenl I'altern changes.
it is JXlosible 10 remove the qs·regiou rrom Ihe C/~R-lrw_ We will discuss
lhi, in AI'""ndi~ A.

7

Figure 7. The Change Tolerant R-tree

changing rapidly. USll<llly, Ibere are relatively fewer objects
of lhis kind unless Ihe movement patterns of ohjects change
significantly. In case any linked list overflow buffers he
comes 100 large. it is converted to an a-R-tree. This issue
will be addressed again in Appendix A.

To conclude, objects can be stored in the internal nodes.
and each MBR (leaf or internal) has il special poinler 10 its
set of buffer pages. Figure 7 shows the structure of CT-R
tree for our example. 111is index has four levels as opposed
to the three levels of tlle structural R-tree of Figure 6. Ex
amples of dntil points arc shown in the top fignre of the do
main. The nodes shown in dashed lines are either linked
lists of overnow buffers or a-R-trees for the internal nodes.
The data ohjects are inserted at the new leaf level of this
tree.

Along with this stmcture we also maintain a secondary
hash-index. Each entry in this hash-index consists uf lWo
fields: (1) object id and (2) a pointer to the page in R-tree
which contains its localion. This structure is the same as the
secondary index described in Section 2.1. Figure 1 shows
the struelure. When we insert an object into the CT-R-Tree,
it is also simullaneollsly inserted into the hash-index and the
pointer in its corresponding entry in the hash index is set 10
lhe page in the CT-R-tree where it is stored. More details
on insertions and olher dynamic operations ,1fe presented in
Ihe ne.\t subscction.

3.2 Dynamic operalions

Oncc Lhc index struclUre is created for rectangular qs
rcgions. they arc usually noL deleted, even if they are empty.
Thus Ihe stmcture of the index is basically imacL even when
objects arc inscrtcd or deleted. QueI)' processing is similar
to that of the R-tree while updates. insertions and deletions
are handled differently. We now describe how these oper
ations are supported. Although ,ill these opefil!ions are de
scribed in terms of <I two-dimensional space strucLure. they
can be exLended to JIllllliple dimensions.
Inscrl(o). Insert object 0 with location (o.x.o.y) intn the
index. Determine all the leaf level MBRs (qs-regions) lhat
contain this point. If multiple MBRs contain the poim. we
choose the one with minimum area (to optimize query per
formance). The object is inserted into the firsL non-full page
of this MBR. If <Ill pages arc full. a new pagc is allocated
and the ohject is inserted into il. If none of the leaf-level
MBRs COlllain the poin!. a lowest level MBR th,IL eOlllains
Ihis point is chosen. If more than one sUl:h MBRs cxist. the
one with minimum area is chosen. Note IhM the overnow
boffer associated with :\11 inlemal node can be ill the form
of cithcr a linked list or an a-R-tree. If the number of pages
of the linked lisl is less than h'l after insertion, the poinL is
inserted 10 the linked list. Otherwisc, ,Ill a-R-tree is created.
10 which "II dala in the linked list ,lrc movcd. The a-R-lree
is lhen auached to the imemal node. Subsequcnt insertions
to lhe internal node will he directed to Lhe noR-tree. Finally.
lhe entry for 0 in the hash-index is updated to poinL La the
page_which conlilins o.
Delete(o). Search the hash-index for fl. Delele 0 from the
p<l£e ,md ueillloc,ltc the page if it is empty. Set Ihe hash
index emry for 0 LO nil II.
UpdateLoc(o. (Xt .Yt), (_t1,Y1). COllsllltthe hash index for
o. Set O.X = X1.0.y =-)'1. If (X1.)'1) does nol belong to lhe
same MBR. perfonn De/cuo(o) and /nsen(o).

Senrch(.t.y). Searching for point (x.y) follows lhe search
pallem of R-tree. Since objccts can also be stored ill lhe
imemal nodes, the search visilS the sct of buffer pages at

each intemal node. If Lhe overflow buffcr is a linked list. the
search checks all the pages since the data in the linkcd IisL
is unordered. If il is an noR-tree, an R-tree range search is
perfornled.
RangcScarch((XI .-"1). (X2.)'2»' This is similar 10 Search.
Each MBR which interseels wilh Lhe rectangle (lower left
(XI.YI) and upper right (X2.)'2» qualifies.

As long as Lraffic pauems do not change, Lhe qs-regions
discovered by our algorithms remain valid, and our index
behaves well. However. when lhe pallem of movement
changes. previously undiscovered qs-regions may appear.
Many objecLs may not faJl illlo a qs-region, and they are
accumulatcd in lhe a-R-trces of imernalnodes. We can de
Lect which MBRs of these a-H.-lrees which show stabiliLy,

change them into qs-rcgions. and insert them La the main
structure of the C7:R-trce. Delails can be fonnd in Ap
pendix A.

4 Experimenh:tl Results

We performed an eXlensive simolalion study on the per
l'onnance of change-tolerant indexing. We implemenled Lhe
CT-R-tree, and compared its performance with three "ari
ams ot'R-lrees. A sLudy of the scnsitivity of the CT-R-tree to

various parameters was also condllt:tcd. Below we discuss
[he simulation model, followed by lhe experimental results.
The experiment results for changing lraffic paUerns can be
found in Appendix A.

4.1 Simulation Model

Ollr experiments arc based upon daLa generaled by lhe
City Simulator 2.0 [8] developed indcpcndently aL IBM.
The City Simulalor simulates the realistic motion of up to I
million people (N"lJj) people moving in ,I city. The inpuL 10

lhe simulalor is a map of a ci!)'. We IIsed the sample m,lp
provided with the simulator that models a city containing
71 buildings, 48 TOads. six road imersec[ions and one park.
Each building is lhree-dimcnsional and comains a number
of floors. The simulator models thc movement of ohjecL~

within the building and on the roads and park. To generale
reasonable movement and occupation of buildings, lhe sim
ulator keeps track of two conditions based on parameters
lim and I;'ilrPIY: The simulator ensures IhaL the fraction of
people at the ground level lies between Tlill and T,'/OIPI.'-'

Each object repons ilS location to lhe server at an average
ratc of Au. Before recording the simulation results, the sim
ulaLorenlcrs a warm-up phase, where at most Nrdal samples
for each object ,lrc generaled. or aL least T,./lm of the popu
lation are in the ground level ofhuildings. Next, the simu
lator records the location urd,ltes of each ohjeet in a trace
file, which contains the limestamp of the update and the
spatial coordinates of the object ,It that lime. The Lrace file
serves as the data source for our experimenL~. It caplures,
for each ohjeet, a tolal of N/l;"1 +N"lklm,' location updates.
We use the first Nhi," updates as the histol)' profile. The firsl
N'I;,'I - I records are used 10 generate an R-tree composed of
qs-regions. The Nhi.,,-th sample is then inserted to thc R-tree
to produce the CT-R-tree. Once the CT-R-tree is built, the
remaining NlIpUfll,' samples are modeled as dynamic updates
Lo Lhe (T-R-tree. as well as other R-tree varianL~. AL the
same time, range queries are generated aL an average rate of
}''/' Each range query has the shape of ,I s{llIare. with cenlral
point chosen randomly within the cily area and size e{llIal to
a fraction [,/ of the city area. It should be noted that the city
map is used only by the CiLy Simulalor 10 generate realistic

movemenl of objecls .- il is nol used for the generation of
Ihe CT-R-tree inde:-; slruclllre.

Since lhese are disk-based index struclures, the number
of page liDs is the namral melric for measuring lhe perfor
mance of the indexes. \Ve measure Ihe nnmber of page flOs
for reads and writes of hOlh dynamic updates and 'lueries
dllring the simulation. We do nm distinguish between se
qllenti,11 page VOs and random page I/Os - each page is
lreilled equally. This is likely to be a disadvantage for the
C/~R-Iree since its nude huffer pages may often he mulli
pie pages long. unlike the other trces for which the nodes
are always the S,lme size. each page has a size of 5"".~,.,

with a fan-alit of N"lIIry:. The seeomlary index of the CT-R
lree (i.e .. the hash wble) with size 5",,-,lr' We assume ilHtree
stmctures ancllhe hash lable arc stored on disk.

The City SiTllulmor is implemented in Jilva ,md mn under
Windows XP, The programs for gener<lting lhe CT-R-lree
are wrillen in C++ and Java. and the lestbed is run on a
UNIX server. Although we focus on lhe perfonmmee of
dynamic updales and queries. it is wo[(h ootice thatlhe lime
re{luircd ((J geoerate Ihe LI-R-tree using the hislOry profiles
is uSllnlly less than len minutes. Also. since this process
call be done in an ofnine fashion. it dues oot intermpl lhe
processing of online updates. Table I shows the parameters
01' the simulalion model. the p,lrameters of the CT-R-tree.
as well as their corresponding values.

4.2 Results

Ilere we present Ihe simulation results of the CT-R-Iree.
FOllr index structures arc evaluated in our experiments: (i)
lhe lra<lilional R-tree [15]; (ii) the traditiooal R-tree aug
mellled with lazy updating Ilsing lhe second,lry index struc
ture shown ill Figure I. We call lhis fazy-R-trce: (iii) !he
a-Irce which is essentially an R-tree wilh lazy updating
and expanded MBRs (i.e. tlle MBRs are not minim"l, but
widened,by a factor of a (we used a ~ 0.1 in our experi
ments); and (iv) lhe CT-R-Iree.

4.2.1 EITeet or Update/Query Ralio

We begin by studying the relative performance of the vari
ous index slructures as the number of queries and updates
is varied. Figure 8 shows lhe lotal number of page 1/0s per
formed for query and update for the R-tree. lhe /azy-R-tree,
the a-tree and the CT-R-tree. The perfomlance is measured
lInder the same query generation rate bUl differenl update
amval rates. 'Ib generate a slower update rale, some roca
lion samples are skipped. 11 should be nOled that this graph
uses 01 Log-sc,lle on bolh axes. As the ratio of updOlle rale
over the query rate (abbreviated as IIpd,lte/query ratio) is in
creased from 10- 2 10 103, nil four indexes show an increase
in the number of liDs. This is because increasing the updale

9

rate implies more demands on the index, and consequenlly
more II0s arc needed.

Wheillhe update/query ratio is low. the CT-R-tree lakes
abolll2 limes as many as 1/0s than the OIherR-lree vari:lIlts.
Recaillhatlhe R-lree ilmlthe fazy-R-lree uses MI3Rs. which
are lighl hounds over the enclosed objects' values. On the
other han,!. lhe CT-R-tree employs {IS-regions that do not
necessarily enclose as tightly as MBRs. When n query is ex
eculed, its query region potentially has less overhlp with lhe
R-tree's MI3Rs than with qs-regions. This results in fewer
searehe.~ and heuer rerformance. Wilh an a of 0.1. the ex
panded MBR of the a-tree is slighlly IOlrger lhan lhe olher
R-trees. Thus it also suffers the same problem ns the CJ:
H.-lrce and its performance is worse than lhe R-lrees. The
advanlage of using the secondary SlmelUre ill the lazy-R
lree gives it ,I minur edge over the traditional R-tree since
it saves lhe cost of accessing !he R-tree when an updated
objecl remains inside lhe same leaf node.

Towards lhe right end of lhe graph, whcn the update
workload dominales lhe query workload. the CT-R-tree
registers a significanl improvemem over other H.-lree vari
ams. In fact, once the update/query fil!io crosses over 5.6.
thc number of 1/0s needed by all three R-lrees incre,lses
sharply, whereas the CT-R-tree gracefully handles the high
updnle burden. Wheo updates are much more frequenlthan
queries, which is a typical scenario io sensor amI moving
objeel databases, the R-lree suffers from expensive updates.
The distinclion belween lhe R-lree and the /azy-R-tree be
gins m show in this high updale selling ,lS the secundary
indcx yields significant gains from cheaper updales. The a
tree improves further over the lazy-R-tree since it can han
dle more updates through the secondary index on aecounl
of il~ more lax MBR. The CJ:R-tree dearly outperforms
the other indexes in lhis high updale environment since its
slrueture is inherently designed to maximize tolerance to
changes in object values. The advantOlge of beller update
performance more than cOlllpensates for the slightly poorer
query perfornlance.

The Cr-R-tree works the best under high update rates
because it is aware of the presence of {IS-regions. and uses
them m cluster the search space. FUrlher, lhese {IS-regions
are nUl split further ililO smaller units. Therefore, when an
objec! moves inside the qs-region, no malleI' how frcqueT1l1y
il repoils ils value. only the secondary index is consulted
and the CUITent v,llue is directly updated in the leafnooe. As
lhe update/query r<ltio increases, the improvemem over R
lrees is more obvious. In particular, when the updale/query
ratio is 1000. lhe number ofI/Os required by the CT-R-tree
is only 1/41h lhal oflhe a-tree. lnth lhal of tile la:y-H.-trec.
and I127th that of lhe R-lree.

~,,----Co;----",---
,,,,I~_'<.'~..,,,,,,,,,,

Figure S_ Total I/O vs. Update/Query Ratio

,"

______D_

" --'--'--0

"

"

" ""...
~"""'-l.>,.,.01,.". , _

~""",... 0_·

ure 10 th,lt iL is the clear winner in temts of overall perfor
JIIilnCe (lot<11 number of liDs), The CT-R-lree is designed
for dalabilses wilh more updmcs than queries. Its loss in
query perfonnance is compensaled with a significanl gain
in update performance, resulting in lhree-fold improvemelll
ovcr the a-tree, and four- fold improvemelll over the lazy-R
tree, conslslenl1y over all query sizes considered.

"

"

JI

Table 1. Parameters and baseline values.

~ l'amrn I Default I i\le:lning

Simulalion paramelers

h" 5.(XIO Location updale mtc (see-')

T,I"'I 0.15 Stan threshold

Tfil/ U.09 Filllhreshoid
T,mpry 0.5 Empty Ihreshold

N"bj 10' ~ of rmwing objects

N",,,, 2000 Ma:o; s.rmples skipped hcfme recording

N/jj" 11O /I or historic samples (per ohjecl)

N" ,IIr/, 20 /I or online opdates (per ohjecl)

h" 50 Query arrival rale (sec-)

J, 0.1 Query size (~'c, of lhe cit), area)

CT-R·lree II:lrnmelers
Tdil1 " Distance Ihreshold ill E<JII 1 (m)

T",,,. I Max growlh rnle or 'Is-region (m!J'ec)

7;i",,· 300 Min time ohjeets in 'Is-region (sec)
T,,,~,, 22500 M:I.\ area of lis-region (11I 2)

C" I Query scaling ractor (Eqn 6)

C" I Updme Scaling factor (Eqn 6)

Spllsr -10WI Size or a page (bytes)
Nrmry 20 /I or emries (per page)

Shmlr 8 Size or secondary index (Mbyles)

4.2.2 Effect of Quer}' Size

Since lhe hlzr-R-lrce m,linl"ins lighler hounding reclangles
than the a-Iree and lhe Cl~R-lree, il is expecled to outper
form them for querying. In Ihis e.\perimem, we examine
more precisely how well the lm:y-R-lree olllperforms the
tlVO imJc.\cs by measuring the r,lIio of the query liDs of Iwo
trees over lhe query liDs for the faZ)'-R-lree. Note Ihal lhe
llJ<:y-R-tree and the tr..dltional R-tree have identiCal query
performance. Figure 9 shows lhe ralios over different query
size.~. The query size is varied from 0, I % 10 2% of the do
m'lin. We observe thaI bolh lhe a-tree and the CT-R-tree
require more query liDs than the R-tree. Also, lhe CT-R
lree needs more query 1I0s Ihan the Cl-lree. As Ihe query
size increases, their perfomlance slarts (Q converge 10 Ihm
of the R-lree, The reason is that wilh a large query area, the
prohahililY that a given region will be eovcred by a query in
creases. 11l11s the advantage of h..ving a smaller area MBR
reduces. To sce this, consider a vel)' large {I"ery tbat covcrs
95% of the space - it is highly likely thai mosL MBRs will
overlap wilh Ihis query and therefore need 10 be searched.
In that case, searching a qs-region in lhe C1~R-tree is even
more elTeclive Ihan searching in the R-lree, because a qs
region does nol limil how many objecL~ are stored inside.
On the olher hand, MBRs need to he split when Ihey are
over-full. so thal more aCcess paths ..re necessary. Thus the
performance of CT-R-lree improves over large query size,

Although the CT-R-Iree does not perform ..s well for
queries as the olher lwo indexes, we can see from Fig-

,.~.---"
-""''''~.

Figure 9. Query liD ratio vs. Query Size

4.2.3 Sealability of CT·R·trcc

III Ihis experiment. we sludy the scalability or Ihe Cl:R
Iree, The number of liDs for the lllzy-R-tree and Ihe C1:
R-Iree are reported for lip 10 500K objects (Figurc II), We
observe lhallhe CT-R-tree pcrfonns bener Ihan the faZ)'-R

tree as Ihe numher of ohjects is increased from the baseline
value (lOOK), 11lis shows Ihal the C7~R-tree sr:a1cs with
the number of objecls, A closer look :1[Ihe gmph reveals
th<11 lhe performance gap heLween lhe 1\\'0 indexes widens
with increasing number of objecls, TIle rationale is two
fold: First, when more objects arc maimailled in lhe syslem.
more updale requesls are gener:lteu, As discllssed in 4.2.1.
the performance of the R-tree degrades more Ihan that of the

10

,,,- ._.
"~~,, .-

,,

Figure 10. Total 110 vs. Query Size

CT-R-tree. Second. the cily plan is fixcd. Injccting more oh
jects to the city Implies a higher population dcnsity. Many
ubjccts arc close to each other. so thm thcy h,lve a highcr
chance of being elustered to the same MBR. As <I resull, ,m
MBR gcts full easily. amI more splits are neccss<lry to m,lin
lain lhe R-tree. 1\ CT-R-tree does not have to perfonn <lny
splil operations, cvcn when the density of objects is high. It
therefore requires fewer liDs.

. ~.::/--~,

//

,
",

Figure 11. Total VO vs. Number of objects

4.2.4 Sensili\'ily to P.ar.amctcr Values

This sel of experimcnls studies the sensitivity of the C1~R

tree to its parameter valucs. namely 7;H>J' Trt/I<" T"".", and
T,im~. These paramelers arc used in the first step of identi
fying qs-regions, so lhcir v,llues can be critical to the per
formance resuIL~. We examine thc 110 performance of the
C1~R-lrce over a wide range of values for these parameters.
The resulls for TrU1~ and 7;,,,,,, are shown in Figures 12(a)
and (b) respectively. The results for 7;/'-JI and T,im" showed
trends very similar 10 those for T"Il1~ and the graphs are om
milled due to space constrilints. Each graph plms the nUllI
her of page JlOs for query ilmlupdale for the CT-R-tree as
a function of the respective parameter.

In genefid. lhese graphs illustrate nal curves for update.
query and overilll 110 performance. over a wide range of

II

villues. This imJicates that the CT-H.-tree is not sensitive 10

these parameters and lherefore il is not crilical 10 choose
precisc par"metcr values for the Cr-R-Tree 10 work effi
cienlly. As long ,IS the parameter values arc "reasonable",
lhe C/~R-tree behilvcs well. Special care needs 10 be taken
in choosing a value for 7;",.", lhough. In particular. one
needs 10 avoid choosing" value that is too small, olhcrwise
the number of qs-rcgions may he too small, or 'Is-regions
may tend to be smaller thiln they should he. Many objects
that should be in a 'Is-region may theo not IJe able to hil
one of these small 'Is-regions. They are forced 10 be placed
in Ihe overflow pages of the internal nudes. leadiog 10 poor
performance.

We also studicd the effccl of changing tmffic pallerns
011 a-R-lree experimentally. Their results are sholl'n in Ap
pendix A

5 Rclalcd Work

Developing an efficient index structure for cOlistalilly
evolving data is an importanl reseilr<:h issue for databases.
MosllI'orks in this area so far focus on moving ubjeet envi
ronmcnts, II'here the positions of objecls keep ch,mging. As
11 simple approach, multi-dimensiooal spalial index struc
tures can be useo for indcxing tlle po.~itio[\s of moving ob
jecL~. However, lhey arc nol efficienl hecause of frequenl
and numerous update oper,niuns.

To reduce the number of updates, many approaches de
scrihe a moving object·s location by a linear function, and
the index is updmed only whcn the parameters of the func
liun l:hangc. for example. when the moving object changes
its speed or direction. Saltenis et al. [12] proposed the time
paramelerized H.-lrec (TPR-tree). III this schemc, thc posi
lion of a moving point is represented by a reference posilion
and a corresponding veloeily vector. The MBRs of the tree
vary with lime as a funclion of the enclosed objecls. When
splilling oodes. the TI'Rtree considers both the positions of
lhe moving points and their velocities. Later, Tao et al [13]
presellted TPR'-tree, which eXlends the idea ofTPR-trees
by employing <l difTcrem sel of insertion and dcletion algo
rithms in order to minimize the query cos\. Kollios ct al. (91
proposed an efficient indexing scheme usiog partition trees.
Tayeb et al. [14] introduced the issue of indexing moving
objects to query lhe presenl and fulure positions and pro
posed PMR-Quadtree for indexing moving ohjeets. Agar
wal el al.I II proposed various schemes b<lsed on the dual
ity ,md developed an efficiem indexing scheme 10 answer
approximate nearest-neighbor queries. Thc problem of all
these techniques is th<lt therc hardly exists a good funelion
for describing thc objccts' movements ill reality. In many
applicatioos. the movement of objects is complicated and
oon-linear. In such sillialions, the approaches based 011 <I lin
ear function eanool work efliciently- lhe fuoclion changes-

:~)".,\(OJ

...... ,;;)

.")).OJ

m"" ~,
"'........,
,m-••,

Ii... "

"'"

,,--- '---~---"--eCC-
~o .
r..~ •

"......,

-=
,nn, .-...--

~
,=
"......"
,.....-.-"

(a) (h)

Figure 12. Performance for (a) Tr"'~1 and (b) Tllm,

100 oftell. Approximation technique using threshold such as
maximal velocit)' JlOIS been proposed 10 reduce thc update
cosl. However, this approxim,lIion technique ciln decrease
the efficiency of lhe iode:\.

In lhe computational geometry community. kinetic ual<l

struclures [51 were introduced for mobile d;lla. These arc
main memory slructures thai assume lhal the objects move
in a rectilinear motion wilh certain velocities. The updates
arc in the form of change in velocity or direction of an ob
ject. A kinetic event occurs when ohjects change their ve
locities or directions or when Ihc comhinamrial structure
changes c.g. whcn two points cross cach other. The idea
is that lhe stmCllLre only needs to bc upd<ltcd whcn slIch
a kinetic event occurs, These data stmclUres were applied
to solve geometry prohlems like closest pair. convex hull
and vorunoi diagram problems efficiemly while ohjects are
moving continuously. Kinetic space panitioning tree (or
cell-trees) were introduced by [2]. Based on this notion
of kinetic data structures, i\garw<l[et al. [I] proposed
kinetic version of kd-tree, where the medians are dynam
ically maintained, However, most works have been in the
main memory data stfUelllres. For external memory, Agar
wal ct al. [I] applicd this idelltoextema] range trees [41 and

bounds on query pcrfomlance are proved.

6 Conclusion and Future Work

Traditionally, index structures arc optimized for im
proved query pcrfonnance in the presence of less frequent
updates, For environments such as sensor ,lmJ moving ob
ject databases where data is constantly evolving tr,ldition<11
index structures give poor performance, We introduced the
notion of Change To/erall/ indexing for these high update
environments. Change tolerant indexes optimize for bOlh
query and upd'lte performaocc. We developed the algo
rithms for creation and lise of a ch,mge IOler,mt R-tree in
dex. Experimental results showed lhe supcrior performance

of tbe proposed index structure, The proposed CT-R-Irl~e

trildcs slightly poorer query performance for much superior
updatc perfonnance resulting in betler overall pcrfonnam:e.
The pcrformance was also found to be robust with regards
to numbcr of objects aod queries, and query sizes. We ob
scrvc that thc gencric idea of change toleranl indexing can
be applied to othcr indcx structures. Preliminary ideas for
extensions to other stmctures were outlined, In fulure work,
we will slUdy change tolerant versions of these other index
structures in more detail.

References

[tl P. K.l\gm"'\':l1. L. AJ!:e.•mll J. Erickson. Inde:..ing moving
poinls. In Srlll. 011 Principles oJ Dalobo.re Syslems, pages
t75-IR6,2000,

[2] P. M. Agarwal. J. Erickson, :lnll L. J. Guibas. Kinelie binary
space panitiolls for inlerseeling segments anllllisjoim trian
gles. In SymposiulIJ Oil Discrele Mgorilhms. pages 107-t16,
19lJl!.

[3] L. Arge, K. H.lJinrichs, J. Vahrenhold, and J. S. Vilter. Ef
ficient bulk operJlions on dynamic r-Irees, /l./gorithmica,
33(1): 10.:1-128. /I'1<1Y 2002.

[4] 1.. Arge. V. Samoladas, :lnd J. S. Viller. On two-dimensional
indell;abilil)' ami oplimal r.mge se<lrch indell;ing, 1n Pro!:. of
Ilw ACM S,l'm. Principles of Database Syslems., pages 346
357,1999,

[5] J, na~cb, L Guibas. and J. Hershberger. Data struclures for
mubile dala. Sympnsillllt 011 IJiscrele Algorithms. 1997.

[6] S. Berchlolll, D. A, Kcim. and H. P. Kreigel. The X-tree: An
imlcll; struclure for high-dimensional dma. 1n 22nd. COIifl!r
enee 011 \;ay wrge Datahases, pages 28-39, Bombay.lnllia.
1996.

[7J A. GUllman. R-lTees: A dynamic index Slnlelllrc for spatial
scarching. Prot". of/Ill! ACM SIGMOD lm'l, CO/if., 1984.

IS) J. Kaurman. J. l\'1yllymaki. anll J. Jackson, IBM Cily Simula
lOr 2.0, hnp:ffwww.alphaworks.ibm.comllcchleitysililulator.

[9] G. Kollios. 0, Gnnopulos. ami V. J. Tsolr.:Js. On indell;ing
mohile objecls. In Sym. 011 Principles of Database Syslellts.
pagcs 261-272,1999,

12

[101 D, KWOil. s. J. Lee. nnd S. Lee. lm.lc.ling lhe eurrenl pu
silions of muving ohjeelS using lh~ lnzy updnle R-trcc. Jrd
/lI/t'TllmiOIlIlI Conference rll/ Mobil/' Dalll Mallogel/WIII. hn
2002.

[IIJ R. Rnlllnkrishnan and J. Gehrkc. IJ,,/awlx,se lIJcmogel/wl/I
Sy.rremJ, McGrnw-HilJ. 2000,

[12J S·. Sahenis. C. Jcnsen. S. LeUlencgger. and M. Lupez. In·
dexing me posilion of conlinuuusly moving objecls. Prof:. of
tiCM SIGMOD. 2000.

[1]1 Y. '1~10. D. Pnpadias. nl1d J. Sun. The TPR~-lrce: An upli
mi7crl Splliio-h:mpurnl nccess melhod for prcdiClive qlleri~s.

Procn'dillgs of rile 29/11 ',rlt'Tllmiollnl Conferel/Ct' 01/ Iby
l.,(/rge Dtl/lIbases(VLDll). pages 790-802. 200].

[t4] J. Tayeb, O. Ulusuy. nnd O. Wolfson. A qundlrcc-based dy
namic 3uriblile inde.ling mClhod. The Computer JouTllal.
pagcs IS5-200. 1991L

(l5J Univcrsily of Califumia. Rivcrside. Spatial index li-
br.ny version 0.44.1b (j<l\'<I). hU['I:llwww.cs.un.edui lllnr
iuhlspnlinl inde.l/.

IJ

Appendix A: Adaptation to Changing PllUerns

Recall that we huild the CT-R-Iree by consulling history
recnrds of the uhjecls. The structure of Lhe CT-R-tree. once
huilL is basically unchanged. In essence, we ,Issume futllre
changes of daL,1 follow the discovered pmtems (In Ihe fonn
of (IS-regions). This assumption may nnt hold. however, if
the panems dQ change. Fnr example, a party of pcnple may
g<lthcr around for a few hnurs and dismiss afterwards. The
qs-rcgions discovered is then be no lnnger IIseful. Simi
larly. ncw 'Is-regions can he created after the CT-R-tree is
consLructed. To handlc lhese problems. we may rcbuild the
CFR·trec periodically. running as a hllckground process,
and then switch to the new Lree once it is huill. Bllt since
Lhe cosL of cnnslruclion is high, we cannUl afford to rebuild
it very oflen. in lilis section, we discuss how 1Jl change Lhc
CT-R-trce tcmporarily to handle unexpcctcd traffic p,lUcm
changes.

We describcd in Section 3.2 thaI Lhe o\'erflnw buffer is
switched from the linked list 10 thc a-R-tree when Ihe linked
list is longer than 'Ii'.\1' This is thc first mcasurc to handle
muvcmenl pallem changes. Usually the portion of hems
Lhat need to be placcd in the overflow huffer is lilLle (as ver
ified by our experiments). and thus ,I linked Jist suffices.
Howcvcr. iflraffic pallem changes, the linked list may grow
indefiniLely and degrade indcx perfonll<lIlce. This is why an
upper bound 'Iii" is placed on the length of the linked lis\.
and an a-R-lree, an adaptive structure. is IIsed Lo replace the
linked list when it is excessively long.

A.I Discovering new lis-regions online

Another purpose of using Lhe a-R-tree as the overfiow
buffer is that it facilitlltes discovery of new, "lheit approx
imate, 'Is-regions. The:MBR of the a-R-tree is actually
(I+a) larger Lh'lIl its actual size, and is Ihus more toleram
than the l'YfBR of the R-tree. We may Ihus lre,l! the MBR
of the a-R-Iree's leaf node as an approximate qs-rcgion if
the objects localed there illustrate some properties of a qs
region. The identified MBR can then hc migrmed to the
CT-R-tree as iLs new leaf node.

In order to detecl if a 1C<lf-node MBR Xi of Ihe overfiow
noR-tree beh,lVcs like a 'Is-region. we store thc fnllowing
information in the node:

• The time 'Is-region hehavior is ohserved, Ij. Initially, Ii

IS 00•

• The number of objecls in the leaf node, IIi. with an
inilial value ofO.

Whcn an insertion to Xj is made ,It time I, IIi is incre
mented. Then we perform additional checks on the follnw
ing conditioos:

---- ------ ------.--, ,,---,,--,---,,-. "
"""~,".,~." ..,

A.4 Experimenlai Resulls

- -------

mudl che<lpcr than lhe cost ot' consLrucLing lhe whule CT
R-Lrcc. We still nced to rebuild the C7~R-tree ifiLs structurc
changes 100 much. For example. we llIay start the rebuild
ing process if the number of qs-regions being deleted or in
serted is too high. New history records thal are notllsed for
constructing the Lree can be used. The rebuilding process
should be mn in background. with no inlerference to lhe
current index. Once the rebuilding is completed, the new
index is used immediately.

where 7i",,! ""'" is the minimum number of objects in
Xj, and 1;,,,,,. is the area consLraint dcfined before in Sec
tion 3.1 .1. Jr these conditions are satisfied, fi is sel 10 r, ,md
insertion is completed.

On subsequenL inseniolls, conditions (I) and (2) are
checked again, II' any of them are noL satisfied, then fi is
reset 10 00, indicating that the node does not behave like a
qs-reginn. Otherwise. the following additional condition is
checked:

3. I - Ii > 'FJ,'4-'i"'~

Here Tt''II!-li'''~ denote.~ the minimum amnuOl nf time
that (I) and (2) are satisfied. 111at is_ we require (I) and
(2) Lll hold over a period Ttm!lim~'

If eundiLion (3) is saLisfied. Xj (and ils associated objects)
is removed from the a-R-tree and re-inserted to the stnle
IUra I R-Irce ,IS a new tis-region. No change Lo the hash Lable
is necessilI)'. We rcm<lrk that Ihe tis-regions so discovered
may only appro:ooim<lte the Lrue qs-regions. They arc only
Ilsed as temporary measures when <l complete analysis of
qs-reginns is not feasible.

I. 11; > 'fi",,! ""'"

2. Area of the MBR of the leaf node < T,,,,.,,

1\.2 Deleling fI qs-region
Figure 13. Tolall/O vs. Update/Query Ratio

When a qs-region is no longer useful due to a changc
in traffic pattern. Hmay be removed to improve query per
fnrmance. Let the upper bound of the lIumber of times an
object is rcmoved from each tls-reginn he T"'mm'c per unit
time. We observc that every lime an nbjeeL is removed from
a fJs-region, Lhe object h<ls viohlled lhe supposcd stability of
the qs-region. Whellthe removal rate is grealer Lhanl~<'IIrm""

it indicates thaiLhe qs-region is nOl qualified for holding ob
jects. and it eannoL sa\'e updates. Thus. we can check the re
moval rale of a qs-region every Lime an ohject gets deleted,
ill1d remove the tis-region if necessary. All iLems in the qs
rcgion an: re-inserled Lo the CT-R-tree.

NOLice Lhat even if a qs-region is not used now. it docs
noL necessmily mean Lhat lhe tis-region is not used again.
In particular. if there is a periodic pallem, e.g., the office
is occupied between 9-5 every day, we may retain the qs
region representing the office space in the tree for fUlIIre
usc. WheLher deleting a qs-region is heneficial depends on
Lhe rC{luirements.

A.3 Rebuilding II C1~R·tree

We experill1enlally sLudy Lhe effect of changing traffic
patterns on Lhe performance of the C/~R-tree. using the ba
sic settings mentioned in Section 4.J. A CT-R-lrce is first
built bascd on their movement records in the cily plan. Then
we generate a set of movemelll records based on a new cily
plan, with five buildings removcd and five huildings cre
ated. Since an objecL nuw cannot eoter the regions where
buildings are deslroyed, bUl they <;an enter buildings which
originally do not exist, some qs-regions are no longer valid,
while new qs-regions are created.

The index created b,lsed on the firsL seL of records is used
to test its efficicncy in sLoring the 10caLions of objeels which
move around in the second <;ity. lis performance in shown
in the curve "Changed BehaviorfUnchanged qs-regions" in
Figure 13. The second curve "Changed Behavior/New qs
regions" ilhlslrmes lhe perfonn,mce of the index when we
apply the approximate qs-region deLection algorithm men
tioned in this section. As we can sec, over <1 large range
of update/query ralios, the CT-R-tree perfonns consislently
bcUer after the qs-region detection algorithm is applied. We
lhus show experimentally thal the CT-R-tree CilJl adapl to
changing traffic paHems.

Since the MBRs ill the a-R-tree are nottme qs-regions,
and sume qs-regions may not even he discovered. the
scheme we JUSl proposed c,m only approximate the perfor
mance of <Ill acLml CT-R-trcc. Howcver. it can be Llsed as
a temporary measure 10 adapL LO changing p,lIlcms, and is

J4

	Change Tolerant Indexing for Constantly Evolving Data
	Report Number:
	

	tmp.1307986960.pdf.ltWu3

