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Abstract

Sampling is a very important and low-cost approach to uncertain
data processing, in which output variations caused by input errors
are sampled. Traditional methods tend to treat a program as a
blackbox. In this paper, we show that through program analysis,
we can expose the internals of sample executions so that the process
can become more selective and focused. In particular, we develop a
sampling runtime that can selectively sample in input error bounds
to expose discontinuity in output functions. It identifies all the
factors that can potentially lead to the discontinuity and hash the
values of such factors in a cost-effective way. The hash values are
used to guide the sampling process. We overcome a list of practical
challenges, and develop techniques to mitigate the safety issue.
Our results show that the technique is very effective for real-world
programs.

1. Introduction

Uncertain data processing is becoming more and more important.
In scientific computation, data are collected through instruments
or sensors that may be exposed to rough environmental condi-
tions, leading to errors. Computational processing of these data
may hence draw faulty conclusions. For example, it was shown
in [18] that a protein was mistakenly classified as a cancer indica-
tor by slightly altering a parameter of the program used to process
experimental data. Such parameters are uncertain because they are
provided by biologists based on their experience. Such mistakes
could be highly costly because expensive follow-up wet-bench ex-
periments could be further conducted based on the faulty protein.
Long term rainfall prediction is often realized by the software op-
erating on Sea Surface Temperature (SST) data [16]. Due to the
difficulty and the cost of deploying sensors, SST contains a lot of
interpolated data, which are uncertain. In bioinformatics, one of the
most widely used sources for protein data is Uniprot [8], in which
proteins are annotated with functions. The annotations may come
from real experiments (accurate) or computation based on protein
similarity (uncertain). Software operating on these data has to be
aware of the uncertainty issue [11]. Software facilitating financial
decision making is often required to model the uncertainty [12].

Traditionally, uncertainty analysis is conducted on the under-
lying mathematical models [17]. However, modern data process-
ing uses more complex models and relies on computers and pro-
grams, rendering mathematical analysis difficult. Realizing the im-
portance of uncertain data processing, recently, researchers have
proposed database techniques to store, maintain and query uncer-
tain data [10, 13]. However, more sophisticated data processing is
often performed outside a database by programs written in high
level languages. Addressing uncertainty from the program analy-
sis perspective becomes natural. Continuity analysis [6] is a static
analysis that proves a program always produces continuous output

given a set of uncertain inputs. However, the most common case in
uncertain data analysis is that given a set of concrete inputs, with
some uncertain, scientists want to reason about output variations.
It demands analyzing program execution instead of the program it-
self. More importantly, while the analysis has been shown to be
effective on simple programs such as sorting algorithms, real world
programs are a lot more complex, involving complex control flows,
high order functions, array and pointer manipulations. Automatic
derivative computation [3] uses compilers to instrument a program
so that the output derivative can be automatically computed. How-
ever, these techniques cannot directly reason about changes within
an input error bound; they also have difficulties in handling certain
language features, such as the control flow.

Monte Carlo (MC) methods provide a simple and effective
means of studying the uncertainty [5, 10, 15]. They randomly select
input values from predefined distributions and aggregate the com-
puted outputs to yield statistical insights in the output space. While
continuous functions are relatively easier to be approximated by
MC methods, as data processing is realized by complex programs,
outputs are no longer continuous functions of the uncertain inputs.
Discontinuity poses significant challenges. Some of the problems
are illustrated in Fig 1. These figures show how the output changes
according to the variation of the uncertain input. Points represent
samples. The first problem in (a) is that from the samples, it is hard
to determine if the output is continuous (curve A) or discontinuous
(B). The second problem in (b) is that even though we know that the
curve is discontinuous, it is yet difficult to determine where the dis-
continuity occurs. In this case, it could occur at any locations such
as the three shown in the figure, resulting in curves aαb, aβb, and
aγb, respectively. The third problem in (c) is more problematic as
the four samples appear to follow a simple mathematical function
(a straight line through a and b) but indeed there is a discontinuous
segment in between a and b. In many cases, these segments are so
small that they are prone to be omitted by random sampling. In fact,
we observe that a tiny discontinuous segment along a simple linear
function was the root cause for misclassifying an irrelevant protein
as the cancer biomarker in our experiment.

In this paper, we develop a white-box MC method, powered
by program analysis. The technique aims to guide the sampling
process through a lightweight dynamic analysis so that output dis-
continuity for a given input error bound can be disclosed with a
small number of samples. The discontinuous points break the out-
put curve into a set of continuous segments, which can be easily ap-
proximated with a traditional MC process. Our observation is that
for many data processing tasks implemented by programs, discon-
tinuity is mainly caused by language artifacts such as conditional
statements and type casting, instead of the intrinsic mathematical
function. Hence, the idea is to monitor MC sample execution to de-
tect such possible artifacts and direct the MC process to selectively
collect more samples to precisely identify the discontinuous points.
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Figure 1. Three sample problems caused by discontinuity.

The basic idea is the following. During a sample execution, the
technique generates a hash value that aggregates the execution of
the language artifacts that could potentially lead to discontinuity. If
two sample runs have the same hash value, implying the same con-
trol flow and identical discrete coefficients, the output functions in
the two runs have the same mathematical form, suggesting con-
tinuity in the range delimited by the two samples. The technique
hence avoids collecting more samples in between the two samples.
If the hash values differ, an additional sample is taken in between
the two original samples. The process continues to inspect the two
sub-ranges divided by the new sample, until all sub-ranges become
continuous or the discontinuous points are sufficiently narrowed
down. In order to make the idea work in practice, we address a list
of practical challenges in this paper. Our contributions are high-
lighted as follows.

• We formally define the problem and identify the possible
sources for discontinuity in a program.

• We propose a novel dynamic program analysis driven MC al-
gorithm that preforms selective sampling to expose the discon-
tinuity in the output function.

• We study the safety issue of the algorithm, which is to deter-
mine if it is safe to stop further sampling when two sample runs
produce the same hash value. We reduce the problem to check-
ing the monotonicity of the internal states of the sample runs.
We also propose a vector-based runtime that allows us to effi-
ciently determine the monotonicity.

• We observe that in real world programs, execution differences
between sample runs may be irrelevant to the output. We pro-
pose a slice-based hashing algorithm that considers only the rel-
evant part of an execution.

• We also observe that in real world programs, there are small
code regions in which control flow differences do not cause
discontinuity. Such differences are mostly intensional for pur-
poses such as optimization. We develop a profiler to identify
such code regions and prove their continuities. The hashing al-
gorithms can thus avoid hashing these regions.

• We evaluate our technique. The results show that the proposed
white-box sampling technique can identify the discontinuity
effectively and efficiently, and with high confidence.

2. Problem Statement

Given an execution that is derived from a concrete input, we assume
part of the input is uncertain. Our ultimate goal is to understand
how the program output changes within the input error bound.

We use x1, x2, ... to denote multiple uncertain inputs. An ex-
ample for such uncertain input is a real number in the input array
received from a sensor. We only consider real number inputs unless
stated otherwise. The program execution is hence abstracted as a
function over the uncertain input, denoted as P(x1, ...xn).

In this paper, we aim to develop a white-box MC method that
can quickly and effectively determines the shape of the function,
especially the discontinuity of the function, as continuous portions
can be easily approximated by a regular MC process.

We first precisely define the term continuity. To simplify the
discussion, we assume one uncertain input in the definition, even
though our technique supports multiple uncertain inputs.

Definition 1. (Continuity) P(x) is said to be continuous at the point
x = c if the following holds: For a value ε > 0, however small,
there exists some value δ > 0 such that for any x within the error
bound and satisfying c−δ < x < c+δ, we have P(c)− ε < P(x)<
P(c)+ ε.

P(x) is discontinuous at x = c if the above condition is not sat-
isfied. P(x) is said to be continuous if it is continuous throughout
the error bound of x.

Intuitively, if P is continuous regarding the uncertain input x,
then any small change to the value of x can only cause a small
change to the output value P(x).

Discrete Factors. Our goal is to identify the discontinuity, which
cannot be easily exposed by sampling the output. Some of the
problems are illustrated by Fig. 1 and discussed in Section 1. Our
observation is that the internals of a sample execution provide a lot
of hints to the discontinuity of the output function. We define the
term discrete factor to represent such program artifacts.

Definition 2. A discrete factor is an operation that has real values
as operands and produces a discrete value as result.

In most cases, discrete factors are the root cause for the output
discontinuity. Because for uncertain inputs (real numbers) to induce
discontinuity, they have to go through some discrete factors. The
basic idea of our technique is to monitor the execution of these
discrete factors to detect the discontinuity and guide the sampling
process. Next, we discuss the most common discrete factors that
we have observed over a set of real world programs.

Type cast. A continuous floating point value can be casted to
a discrete type, such as the integer, leading to discontinuity in the
final output. Besides explicit casting, implicit casting may also be
automatically performed by a compiler when necessary, such as
when discrete operations (e.g. mod) are applied to floating point
values.

Discrete mathematical library functions. Data processing pro-
grams usually make heavy use of third-party mathematical library
functions. Some of these functions are discrete, such as SIGN(v),
which returns 1 if v is positive, -1 if negative, and 0 otherwise. They
may eventually lead to disruptions along the output curve.

Control flow. Modern programming languages allow devel-
opers to manipulate the control flow through constructs such as
if-then-else statements and loops. These constructs are the
key elements that allow data processing to go beyond the traditional
pure mathematical modeling. However, they substantially increase
the difficulty of uncertainty analysis by introducing discontinuity.
In particular, if a value computed from uncertain inputs is used
in a predicate and the predicate guards the following computation
leading to the output, there is a good chance discontinuity is intro-
duced. The reason is that the branch outcome may vary depending
on the uncertain values, leading to different mathematical forms
of the output. An example will be presented in Section 3. In our
experience, control flow is the dominant discrete factor.



Besides discrete factors, discontinuity may also arise from the

intrinsic mathematical model. For example, f = 1
x+1.0 is discontin-

uous at x =−1.0; f = tan(x) is discontinuous at x =− π
2 ,

π
2 , ....

We observe that in real world programs, such operations are
often guarded by predicates or the input domains are specified in
such a way that the discontinuous points are excluded. For the

above f = 1
x+1.0 example, a predicate is often used to guard against

x=−1.0 to avoid runtime exceptions. As a result, the mathematical
discontinuity also manifests itself as a control flow discontinuity.

Note that one might formulate the challenge as a dynamic test
generation problem that generates uncertain input values exploring
the different values of discrete factors. For example, exploring all
the possible program paths within the input error bound may be
able to expose discontinuity caused by control flow. However, we
found that this is impractical for real world scientific programs
for the following two reasons. (1) Path condition functions are
often of high order. We find that 7 out of 11 SPEC CFP 2000
programs we have studied have high order (≥ 2) path conditions.
Some of them have the order as high as a few thousands due to

the iterative nature of the computation 1. More importantly, they
are mostly in a complex form, involving functions such as square
root, sin/cos, and fraction. These path conditions go beyond the
capability of existing solvers. (2) The entailed symbolic execution
is too expensive for our target scenario. The reasoning is as follows:
if a technique causes X times slow down, one may just collect X
MC samples instead of using the technique.

3. An Illustrative Example

We use an example to illustrate the technique. Fig. 2 (a) shows the
program. Variable x is uncertain; its value is within an error bound
around the original value 1.5. The output function o(x) may take
different forms, depending on the value of x. If x < 1.0 (line 3),
o(x) = 1 (line 4). If x ≥ 1.0, depending on the comparison h(x) >
0.3 (line 6), it may take the form o(x) = 0.3 (line 7) or o(x) = 0.75
(line 9). Function h(x) is high order, rendering techniques relying
on constraint solving in-applicable. The curves for h(x) and o(x)
are depicted in Fig. 2 (d). Our technique aims to leverage program
analysis to guide collecting a small set of samples that disclose the
shape of the output function, particularly the discontinuity.

Phase-1: Basic Sampling. In phase one, our technique first identi-
fies all discrete factors in the program. They are places that operate
on real values and produce discrete values, and thus are the root
causes of the discontinuity. In this program, lines 3 and 6 are dis-
crete factors as they operate on real values and produce boolean
outputs, and the type cast at line 2 is also a discrete factor.

During a sample execution, we generate a hash value that is the
aggregation of the values of all discrete factors encountered. If two
sample runs have the same hash value, the discrete factors have the
same values (assuming a perfect hashing scheme). It indicates that
the mathematical formula of the output variable is identical, sug-
gesting continuity in between. If they differ, an additional sample
is taken in between the two original samples. The process contin-
ues to inspect the two sub-ranges divided by the new sample, until
a threshold is reached.

In our example, assume the technique starts with two samples
a and b (step (1) in Fig. 2 (c)). Readers can refer to Fig. 2 (d) for
the samples and their corresponding outputs. Line 3 has different
branch outcomes in the two sample runs, resulting in different
hashes. An additional sample c is taken at the mid-value of a
and b. Samples c and b lead to the identical hash, the technique
stops collecting more samples in between. In contrast, it further

1 We acquire such numbers through profiling, without conducting any math-
ematical reduction.

divides the sub-region [a, c] (steps (2)-(5)). The process terminates
at subregion [e, f ] where a threshold is reached. It discloses the
discontinuous point at x = 1.0. The large intervals without any
samples in between, such as that in between c and b, indicate the
savings brought by our technique. Observe that a uniform sampling
scheme with the threshold as small as the interval of [e, f ] requires
a lot more samples.

Phase-2: Validation. It may not be safe to skip sampling when
two hashes are identical. In Phase-1, although we disclose the
discontinuity at x = 1.0. We miss the discontinuity in between
samples d and c. Therefore, in phase-2, we validate the correctness
of our results by checking monotonicity at discrete factors. The
intuition is that if the function at a discrete factor, denoted as
f (x), is monotonic, as we already know f (x) leads to the the same
discrete value in the two sample runs, f (x) must lead to the same
discrete value for any samples in between.

To check monotonicity, we divide the sequence of samples into
segments such that all samples in a segment have the same hash
value. Then we validate that for all samples in a segment, the value
at a discrete factor must change monotonically. For example in
Fig. 2 (d), samples ( f ,d,c,b) is a segment, we want to ensure that
the three discrete factors in the program have their values change
monotonically for these samples.

Observe that checking monotonicity requires comparing values
across runs at each dynamic instance of a discrete factor. We cannot
afford collecting and comparing traces because with the cost of
tracing, one can easily collect many samples. Hence, we develop
a vector-based runtime that executes multiple samples at a time.
In the vector semantics, a variable related to the uncertain input
has a vector of values, each representing the variable value in the
corresponding original sample run. An operation on the variable is
applied to all values in its vector. Monotonicity check is conducted
by comparing values in vectors. Fig 2(c) shows how monotonicity
is validated for the sequence ( f , d, c, b). It shows the variable values
for each executed statement. Initially, at line 1, it loads the three
samples to the vector of x. At line 2, the cast operation is applied to
the vector. Observe at line 6, the vector does not have monotonicity.

An additional sample g is then collected in the non-monotonic
region [d,c] (step (7) in Fig. 2 (c)). The algorithm now is able to
detect that the two subregions contain more discontinuous points.
The sampling process thus goes on.

Practical Challenges. In order to make the technique work for
real world programs, we need to further overcome the following
challenges.

• Discrete factors in two sample runs may behave differently.
However, such differences may not be relevant to the output
variable, and hence they should not cause additional samples.
In Fig. 2 (a), if z is the output variable instead of o, the control
flow differences in lines 3-9 should be excluded. We develop
an online slice-based hashing algorithm that hashes only the
discrete factors in the dynamic slice of the output variable.

• In reality, developers may write programs in such a way that
control flow variations do not lead to discontinuity. It would
lead to redundant samples. We observe such effects are usually
present in small code regions. We develop a profiler to identify
such code regions and prove that they must be continuous.
Thus, we can avoid hashing the control flows in these regions.

The following sections discuss the individual components.

4. Basic Algorithm

Given the error bound of an uncertain input, the basic algorithm
executes the program on two initial samples, usually the lower
and upper bound values. During execution, it hashes the values
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Figure 2. An illustrative example. The dots in (d) represent the samples. The highlighted statements in (a) represent discrete factors.

of all discrete factors. If the hashes of the two sample runs are
identical, the algorithm stops taking more samples in the range;
otherwise, it takes another sample in the middle of the two original
samples and recursively considers the two new sub-ranges, until
the discontinuous points are sufficiently located. Our discussion is
limited to one uncertain input for simplicity, whereas our technique
supports multiple uncertain inputs.

Program P ::= s

Stmt s ::= s1; s2 | skip | xℓ := e | while x ✶ℓ 0 do s |
if x ✶ℓ 0 then s1 else s2 | exit

Expr e ::= x | v | sample(r)ℓ | e1 binopℓ e2 | discrete( f ,e) |
x ✶ℓ 0

Value v ::= n | r | b

Var x, Function f ∈ Identi f ier n ∈ Z r ∈ Real

ℓ ∈ Label b ∈ Boolean

Figure 3. Language

Language. To facilitate formal discussion, we introduce a simple
language. The syntax is presented in Fig. 3. Note that relational
operations are normalized to x ✶ 0, with ✶ denoting a relational
operator. The reason is that we need to study the real values (not
the boolean values) of relational expressions. Such values are ex-
plicitly denoted by x after normalization. For instance, a conditional
statement “if y < 1.0 ...” is normalized to “x := y−1.0; if x > 0”.
It allows us to reason about the value of y.

We support three kinds of values: integers, real values, and
boolean values. Real values could be uncertain. A sample(r) ex-
pression represents a sample within the error bound of r. We ex-
plicitly model discrete functions as discrete( f ,e). The expression
denotes the discrete value generated by applying function f to a
real value e. Type casts and the sign(x) method are examples of
such discrete functions.

Operational Semantics. The semantics is presented in Fig. 4. The

expression rules have the form of σ : e
e
−→ θ,e′ . Given the store

σ, an expression e evaluates to a hash value θ and a new expression
e′. The variable expression x, sample expression sample(r), and
the binary operation v1 binop v2 are not discrete factors so that
their evaluation generates a void hash value, denoted as ⊥. In

contrast, the hash for a relation expression v✶ℓ 0 is a unique integer
representing the label of the expression ℓ and the branch outcome.
Intuitively, if these relational operations are used in conditional
statements or loops, the hash values capture the execution control
flow. The hash for a discrete function is the generated discrete
value.

Statement rules are standard. The global rules are of the form

σ,θ, s → σ′,θ′,s′ , in which σ is the store and θ the global hash.

Rule [H-EXPR] specifies an evaluation step regarding expression
e. It aggregates the hash value θe generated by the expression eval-
uation to the global hash θ. Operator ⊳ denotes the hash operation.

E ::= E;s | [·]s | x := [·]e | if [·]e then s1 else s2 | [·]e binop e |
vbinop [·]e | discrete( f , [·]e) | [·]e ⊲⊳ 0

DEFINITION:
Store σ : Var →Value Hash θ ∈ Z

getSample(ℓ,r) : samples a value at ℓ that is within the error bound of r

EXPRESSION RULES σ : e
e
−→ θ,e′

σ : x
e
−→ ⊥,σ(x) σ : sample(r)ℓ

e
−→ ⊥, getSample(ℓ,r)

σ : v ✶ℓ 0
e
−→ ℓT , T if v ✶ 0 σ : v ✶ℓ 0

e
−→ ℓF , F if ¬(v ✶ 0)

σ : v1 binop v2
e
−→ ⊥,v3 where v3 = v1 binop v2

σ : discrete( f ,r)
e
−→ n, n where n = f (r)

STATEMENT RULES σ : s
s
−→ σ′,s′

σ : x :=ℓ v
s
−→ σ[x 7→ v], skip σ : skip;s

s
−→ σ, s

σ : if T then s1 else s2
s
−→ σ, s1 σ : if F then s1 else s2

s
−→ σ, s2

σ : while e do s
s
−→ σ, if e then s;while e do s else skip

GLOBAL RULES σ,θ, s → σ′,θ′,s′

σ : e
e
−→ θe,e

′

σ,θ, E[e]e → σ,θ⊳θe,E[e′]e

σ : s
s
−→ σ′,s′

σ,θ, E[s]s → σ′,θ,E[s′]s
[H-EXPR] [H-STMT]

Figure 4. Hashing Semantics

In our implementation, we use addition as the hash operation. For
the void hash ⊥, we have θ⊳⊥ = θ.

Rule [H-STMT] specifies one step in evaluating a statement.
Sampling Algorithm. The overall process requires multiple sam-
ple executions. It is described in Algorithm 1. It takes two samples
as input and generates a sequence of samples, including the two
inputs. Ideally, the samples sufficiently exposes discontinuity.

Function sampleDriver(χ1 , χ2 ) presents the overall process. It
first executes the two input samples to produce two hash values. It
then calls function sampleInside(). The function returns the needed
samples inside the range (χ1,χ2), excluding the two samples them-
selves. The final output is the resulting sequence from sampleIn-
side() prepended with χ1 and appended with χ2.

In function sampleInside(), the algorithm tests if the two pro-
vided hashes are the same, or even they are different, if the distance
of the two provided samples is less than a pre-defined threshold ε
(line 4). If so, no more samples are needed. Otherwise, it computes
another sample representing the mid value of the range (line 7),
and then recursively calls sampleInside() for the two subregions.
The resulting subsequences are concatenated with the mid-sample
(lines 9 and 10).

An example can be found in Fig. 2 (c). Given the initial samples
a and b. It produces the sequence a · e · f ·d · c ·b.

Safety. Observe in Algorithm 1, no more samples are taken within
a range (χ1, χ2) if these two samples produce the same hash value.
It may not be always safe to do so, meaning there may still be



Algorithm 1 Sampling Driver.

Input: a pair of sample points χ1 and χ2.
Output: a sequence of sample points in [χ1, χ2]

sampleDriver (χ1,χ2)

1: θ1 := P(χ1)
2: θ2 := P(χ2)
3: return χ1 · sampleInside(χ1,θ1,χ2,θ2) ·χ2

Input: the two samples and their hashes;
Output: a sequence of samples points in (χ1, χ2);
Definition: ε denotes the termination threshold;

sampleInside (χ1, θ1, χ2, θ2)

4: if θ1 = θ2 ∨ |χ1 −χ2|< ε
5: return nil
6: else {
7: χm := (χ1 +χ2)/2
8: θm := P(χm)
9: return sampleInside(χ1,θ1,χm,θm) ·χm·

10: sampleInside(χm,θm,χ2,θ2)
11: }

discontinuity within the range. Also, depending on the design of the
hash operation, two different sample executions may coincidently
have the same hash value. As the number of control flow paths
is infinite in theory, a perfect hashing scheme is impossible in
general. However, since the algorithm each time inspects only a
pair of samples in the whole error bound of the uncertain input, it is
highly unlikely that a hash conflict happens right at the pair. In our
experience, the simple hashing scheme did not cause any conflicts.
Hence, hash safety is not our focus.

Our safety claim is defined as follows.

Theorem 1 (Safety). Given two input samples χ1 and χ2, assume
they lead to the same hash value. For a discrete factor that gener-
ates a discrete value from a real value, let the real value be denoted
as a function f (x) over the uncertain input x, called the discrete
factor function. If for each discrete factor during the execution,
its function f (x) is monotonic within the range [χ1,χ2], the out-
put function must be continuous in [χ1, χ2] and it is safe to skip
sampling in between.

Intuitively, if a discrete factor function is monotonic, and the
same discrete value is generated in the two sample runs (i.e. the
lower and upper bounds), the same discrete value must be gener-

ated for any other samples in between 2. For example, if the value
of x in the predicate of a conditional statement “if x✶ 0...” is mono-
tonic in the range [χ1, χ2] and it produces the true value in both
sample runs, it must consistently produce the same true value for
any samples in between. The aggregated effect of all such mono-
tonic predicates is that the same control flow must be taken for all
samples inside the range; similarly, all the discrete co-efficients in
the output function must also have the same value, ensuring the
same mathematical form of the output function and thus continuity
within the range. Here, we do not consider mathematical discon-
tinuity, because as mentioned earlier, such discontinuity needs to
be explicitly captured by control flow discontinuity otherwise the
program is buggy.

Note that we require monotonicity for functions at internal dis-
crete factors during an execution, not the output function. The in-
ternal functions are much more regular than the output function

2 We assume the discrete operations themselves are always monotonic,
which is true in practice.

DEFINITION:
VecStore V : Var → Value1 × ...×Valuec

Expr e ::= ... | v[1,c] | err

v[1,c] denoting a vector (v1, ...,vc ); c a constant; v[i] the ith value in
the vector; err represents a validation error.

monoChk(v[1,c]) = ∀1 ≤ i < c v[i]− v[i+1] ≥ 0 ∨
∀1 ≤ i < c v[i]− v[i+1] ≤ 0

getVector(ℓ,r) = (r1, ...,rc)
r1, ..., rc represent the c samples at ℓ to replace r; these samples are
within the error bound of r and produce the same hash.

EXPRESSION RULES σ,V : e
e
−→ e′

σ,V : x
e
−→ σ(x) if V (x) =⊥ σ,V : x

e
−→ V (x) if V (x) 6=⊥

σ,V : v[1,c] ✶ 0
e
−→ T if monoChk(v[1,c])∧∀1 ≤ i ≤ c v[i] ✶ 0

σ,V : v[1,c] ✶ 0
e
−→ F if monoChk(v[1,c])∧∀1 ≤ i ≤ c ¬v[i] ✶ 0

σ,V : v[1,c] ✶ 0
e
−→ err if ¬monoChk(v[1,c])∨∃1 ≤ i, j ≤ c

v[i] ✶ 0∧¬v[ j] ✶ 0

σ,V : v ✶ 0
e
−→ T if v ✶ 0 σ,V : v ✶ 0

e
−→ F if ¬v ✶ 0

σ,V : sample(r)ℓ
e
−→ r[1,c] where r[1,c] = getVector(ℓ,r)

σ,V : v1[1,c] binop v2[1,c]
e
−→ v3[1,c] where ∀1 ≤ i ≤ c

v3[i] = v1[i] binop v2[i]

σ,V : v1[1,c] binop v2
e
−→ v3[1,c] where ∀1 ≤ i ≤ c

v3[i] = v1[i] binop v2

σ,V : v1 binop v2
e
−→ v3 where v3 = v1 binop v2

σ,V : discrete( f ,r[1,c])
e
−→ f (r[1]) if monoChk(r[1,c]) ∧

f (r[1]) = ... = f (r[ j])

σ,V : discrete( f ,r[1,c])
e
−→ err if ¬monoChk(r[1,c]) ∨

∃1 ≤ i, j ≤ c f (r[i]) 6= f (r[ j])

σ,V : discrete( f ,r)
e
−→ f (r)

STATEMENT RULES σ,V : s
s
−→ σ′,V ′,s′

σ,V : x :=ℓ v
s
−→ σ[x 7→ v],V , skip

σ,V : x :=ℓ v[1,c]
s
−→ σ,V [x 7→ v[1,c]], skip

σ,V : if T then s1 else s2
s
−→ σ, V , s1

GLOBAL RULES σ,V ,s → σ′,V ′,s′

σ,V : e
e
−→ e′ e′ 6= err

σ,V ,E[e]e → σ,V ,E[e′]e

σ,V : e
e
−→ err

σ,V ,E[e]e → σ,V ,exit

σ,V : s
s
−→ σ′,V ′,s′

σ,V ,E[s]s → σ′,V ′,E[s′]s

Figure 5. Validation Semantics

because they reflect the programmer’s intension to control the pro-
gram execution and such control usually occurs at a coarse level
due to the limited reasoning capability of human developers.

5. Validation

The safety theorem 1 states that as long as all discrete factor func-
tions change monotonically in the range delimited by two samples,
and the hash values are identical, it is safe to avoid further sam-
pling in between. Directly determining monotonicity of discrete
factor functions based on their mathematical form is infeasible in
general, due to the complexity of these functions. Our experience
with SPEC CFP 2000 programs is that most of them have high-
order functions, involving complex operations such as the square
root and sin/cos.

We develop a sample-based validation approach. The idea is to
monitor the values of discrete factors for a number of sample runs,
validating that the values change in a monotonic way. In order to
minimize the number of samples needed, we leverage the samples
derived by Algorithm 1. In particular, from the sample sequence
generated by the algorithm, we identify all the consecutive subse-



quences that have the same hash value and validate monotonicity
of the discrete factor functions for all the samples in each sub-
sequence. Observe that the intervals between samples in a subse-
quence are irregular according to the algorithm, allowing us better
observe the monotonicity property.

For the example in Fig. 2, after the basic sampling phase, the
generated sample sequence is a ·e · f ·d ·c ·b. The subsequences are
hence a · e and f · d · c · b. Observe that the samples in the second
subsequence have irregular intervals.

Monotonicity across runs is different from monotonicity inside
a single run. It requires comparing values in different executions,
which is in general challenging because two runs may take differ-
ent control flow paths, leading to different numbers of occurrences
of a variable. It is difficult to determine the alignment of these oc-
currences across runs. Fortunately, we only need to handle sample
runs that have the same hash and thus very likely the same execu-
tion path.

We develop a vector semantics to validate monotonicity. Partic-
ularly, a value that is related to the sample input is expanded to a
vector of values. The size of the vector is exactly the size of the
sequence on which we want to validate monotonicity, denoted as
c. The ith element of the vector corresponds to the value in the ith
sample run. Upon an operation on a variable with a vector value, the
operation is performed on each element in the vector. With vectors,
it becomes convenient to validate monotonicity for a discrete fac-
tor. We only need to ensure the values in its vector are monotonic.
For values that are not relevant to the sample value, such as loop in-
dices, we use a single value instead of a vector to avoid redundant
operations.

Validation Semantics. The semantics is presented in Fig. 5. We
define a vector store V that maps a variable to a vector with
size c. Constant c denotes the number of samples on which we
want to validate monotonicity. Besides the original definitions, an
expression is extended to include a value vector (of size c) and a
special value err representing validation failure.

Expression rules are of the form σ,V : e
e
−→ e′ . Given the reg-

ular store and the vector store V , an expression evaluates to a new
expression. A variable expression x evaluates to a vector value if it
is associated with a vector, meaning its value is directly/indirectly
computed from the sample input. Otherwise, it evaluates to a sin-
gleton value. For a relational operation on a vector value, a dynamic
check is performed to ensure monotonicity of the values. It also en-
sures that all vector values lead to the same boolean outcome. This
is to validate that the control flow does not change for all sample
runs under the validation. Recall that although we assume the per-
fect hashing in our safety discussion, hash conflicts may occur in
practice due to the infinite number of possible control flow paths.
The validation allows us to detect any possible hash conflicts (i.e.
sample runs have the same hash value but different control flow
paths). For sample expression sample(r), a vector of input samples
is acquired from the driver.

For binary operations, if at least one of the operands is a vector,
the result is a vector, otherwise a singleton value indicating that it
is irrelevant to the sample input.

For a discrete function application on a vector value, we validate
the monotonicity of the vector and the equality of all the resulting
discrete values.

Statement rules are in the form of σ,V : s
s
−→ σ′,V ′,s′ . For

an assignment statement, if the rhs expression is a vector, it is stored
to the vector store, otherwise the regular store. For conditional
statements, we do not have rules that handle vectorized predicate
outcomes as the dynamic check for a relational expression ensures
the same predicate output for all sample runs.

DEFINITION:
HashStore Γ : Var → Hash CDStack S ::= θ
Expr e ::= ... | 〈v,θ〉

EXPRESSION RULES σ,Γ : e
e
−→ e′

σ,Γ : x
e
−→ σ(x) if Γ(x) =⊥ σ,Γ : x

e
−→ 〈σ(x),Γ(x)〉 if Γ(x) 6=⊥

σ,Γ : sample(r)ℓ
e
−→ 〈getSample(ℓ,r),ℓ〉

σ,Γ : 〈v,θ〉✶ℓ 0
e
−→ 〈T,θ⊳ℓT 〉 if v ✶ 0

σ,Γ : v ✶ℓ 0
e
−→ T if v ✶ 0

σ,Γ : 〈v1,θ1〉 binop 〈v2,θ2〉
e
−→ 〈v3,θ1 ⊳θ2〉 where v3 = v1 binop v2

σ,Γ : 〈v1,θ1〉 binop v2
e
−→ 〈v3,θ1〉 where v3 = v1 binop v2

σ,Γ : v1 binop v2
e
−→ v3 where v3 = v1 binop v2

σ,Γ : discrete( f ,〈r,θ〉)
e
−→ 〈 f (r), θ⊳ f (r)〉

σ,Γ : discrete( f ,r)
e
−→ f (r), ⊥

STATEMENT RULES σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′

σ,Γ,S : x :=ℓ 〈v,θ〉
s
−→ σ[x 7→ v], Γ[x 7→ θ⊳ last(S)],S , skip

σ,Γ,S : x :=ℓ v
s
−→ σ[x 7→ v], Γ[x 7→ last(S)],S , skip if last(S) 6=⊥

σ,Γ,S : x :=ℓ v
s
−→ σ[x 7→ v], Γ,S , skip if last(S) =⊥

σ,Γ,S : if 〈T,θ〉 then s1 else s2
s
−→ σ, Γ,S · (last(S)⊳θ), s1;endif

σ,Γ,S : if T then s1 else s2
s
−→ σ, Γ,S , s1

σ,Γ,S ·θt : endif
s
−→ σ, Γ,S , skip

GLOBAL RULES σ,Γ,S ,s
s
−→ σ′,Γ′,S ′,s′

σ,Γ : e
e
−→ e′

σ,Γ,S ,E[e]e → σ,Γ,S ,E[e′ ]e

σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′

σ,Γ,S ,E[s]s → σ′,Γ′,S ′ ,E[s′]s
[S-EXPR] [S-STMT]

Figure 6. Slice Hashing Semantics

In the global rules, if an expression evaluates to err, the evalua-
tion terminates. The non-monotonic ranges are further divided.

Fig. 2 (b) presents an example for the vector semantics.
Our implementation supports vectorization of most language

features in C and Fortran, including arrays, pointers, and library
calls. Maintaining singleton values for variables that are not rele-
vant to the uncertain input is key to efficiency.

Observe that the monotonicity check is sample-based, which
may not be precise enough. It is unfortunately impractical to ana-
lyze the mathematical functions to precisely determine monotonic-
ity. For better precision, one can choose to validate monotonicity on
more samples as the vector semantics and the implementation are
general. Our experience shows that our current strategy of using
samples generated in the basic hashing phase is sufficient.

6. Hashing Slices

In the basic Algorithm 1, a global hash value is computed for an
execution. However, this is often too restrict in practice. In many
cases, even though two executions have different hash values, e.g.
they follow different execution paths, the difference may not be
relevant to the output.

In this section, we discuss a more sophisticated hashing algo-
rithm that hashes only the discrete factors relevant to the output.
It maintains a hash value for each variable on the fly, denoting
the set of discrete factors that have been directly/indirectly used
to compute the current value of the variable (i.e. discrete factors in
its dynamic slice [1]). When we determine whether a mid-sample
is needed, we compare the hash values associated with the corre-
sponding output variables.

The semantic rules are presented in Fig. 6. We introduce a hash
store Γ that maps a variable to its hash value. A stack S is used
to propagate hash values through control dependences. Each stack



trace val hash S

1. x=sample(1.5) 2.2 1 ⊥
2. y=(int) x 2 1⊳2 ⊥
3. if x-1.0<0 F 3F ⊳1 ⊥· (3F ⊳1)
6. if h(x)-0.3>0 T 6T ⊳1⊳ (3F ⊳1) ⊥· (3F ⊳1) · (6T ⊳1⊳3F ⊳1)
7. o=0.3 0.3 6T ⊳1⊳3F ⊳1 ⊥· (3F ⊳1) · (6T ⊳1⊳3F ⊳1)

endif ⊥· (3F ⊳1)
endif ⊥

10. z=1+y 3 1⊳2 ⊥

Table 1. Evaluation of the program in Fig. 2(a) with sample 2.20

entry is the hash value of a predicate. We extend the syntax of
expression in Fig. 3 to include a pair consisting of a value and its
hash, which is the hash aggregation of all discrete factor values in
the slice of the value. This special type of expressions is not part of
the source code. They only occur during evaluation.

The expression rules have the form of σ,Γ : e
e
−→ e′ . in which

Γ is the hash store. For a variable expression x, if its hash value is
void, it evaluates to a regular value; if not, it evaluates to its value
and the corresponding hash.

A sampling expression evaluates to a sample value acquired
from outside and its label ℓ as the hash. Note that it is the only place
that initiates a non-void hash. It is analogous to the introduction of
a taint in the taint analysis.

For a relational operation, if the lhs value is a pair, meaning
that it is relevant to the sample input, the evaluation result is a pair
consisting of the comparison outcome and the aggregation of the
lhs hash and the operation’s hash. If the lhs value is a singleton, the
evaluation produces the singleton comparison outcome. Note that
we omit the rules for the false cases for brevity.

For a binary operation, if either value is a pair, the resulting
value is also a pair, including the aggregated hash value.

For a discrete function application, if the parameter is a pair, the
generated discrete value is aggregated to the hash.

The statement rules have the form of σ,Γ,S : s
s
−→ σ′,Γ′,S ′,s′ ,

in which S is the stack to allow hash computation through control
dependence. For an assignment statement, if the rhs value is a pair,
the evaluation updates both the store and the hash store. The hash
of the lhs variable is the aggregation of the rhs expression hash θ
and the hash of its control dependence, which is the last entry in
S . If the rhs value is a singleton and its control dependence hash
is not void, the hash stored is updated with the control dependence
hash. It means that although the assigned value is not computed
from the sample input, the execution of the assignment is guarded
by a predicate relevant to the sample input.

For a conditional statement, if the evaluation of the relational
operation yields a pair, the stack is appended with the aggregation
of the predicate’s control dependence hash, i.e. the last entry of S ,
and the relational expression hash θ. Since the aggregated hash be-
comes the new last entry in S , future evaluations occur inside the
branch will use it as their control dependence hash. The evaluation
also appends a special statement endif to the end of the branch.
Evaluation of an endif statement leads to the removal of the last
entry in S , meaning evaluations beyond the end of a branch are
no longer control dependent on the predicate.Note that the LIFO
nature of the stack captures the nesting effect of the control depen-
dence.

If the evaluation of the relational operation yields a singleton,
there is no need to append an new entry to the stack or the endif
statement to the end of the branch, denoting the irrelevance of the
predicate. Note that any statements evaluated inside the branch
nonetheless have their control dependence hashes inherited from
the current last entry of S .

1 x := sample(3.0);
2 y := 0.0;

/* f (2) = f (4) = 1, f (3) =−1*/
3 if f (x) < 0
4 y:=y+1.0;
5 o:=x− y;

1 x := sample(0.5);
2 A[5] := ...;
3 if x >= 0.5
4 i:=(int) x×10;
5 A[i] :=...;
6 o:=A[5];

(I) (II)

Figure 7. Examples for safety issues.

Example. Table 1 presents an example evaluation of the program
in Fig. 2(a) with the sample 2.20. Observe that at line 1, the hash is
1, the label of the statement. At line 2, the hash is the aggregation
of x’s hash and the generated discrete value 2. At line 3, the hash
is the aggregation of x’s hash and the branch outcome 3F ; it is also
appended to S . The entry is removed from S at the second endif. At
line 6, the hash is the aggregation of x’s hash, the branch outcome
6T , and the control dependence hash. The others are similarly
computed.

Safety. We have the following safety claim.
Theorem 2 (Safety-Slice). Given two input samples χ1 and χ2,
assume the slice hashes of the corresponding output variables are
identical in the two runs. For a discrete factor that generates a
discrete value from a real value, let the real value be denoted as a
function f (x) over the uncertain input x. If
(1) each f (x) is monotonic within the range [χ1,χ2];
(2) all memory addresses remain unchanged within the range,

then the output function must be continuous in [χ1, χ2].

Condition (1) requires all discrete factors in the execution, not
only the slice, to be monotonic. This is to tolerate implicit depen-
dences [20]. Statements that are related to the output through im-
plicit dependences cannot be captured by the regular data flow and
control flow tracking as specified in Fig. 6. The reason is that such
dependence is caused by that a statement is not executed (and thus
no way to track). Consider the example in Fig. 7 (I), function f
is non-monotonic. In the two initial sample runs with x = 2.0 and
x = 4.0, the false branch of line 3 is taken. As a result, statement
4 is not executed. The dynamic slice of o at 5 contains lines 1 and
2 in both runs. However, there is an implicit dependence between
line 5 and line 3 because the branch outcome of 3 affects the value
of o when x = 3.0, causing discontinuity. Condition (1) excludes
such cases by requiring f (x) to be monotonic, even though it is not
in the slice. Note that condition (1) allows discrete factors to have
different values as long as they are monotonic.

Condition (2) is to preclude array indices or pointers differences
(note that our discussion here goes beyond the language in Fig. 3).
They could cause output discontinuity. Consider the example in
Fig. 7 (II). Assume the two initial samples to be x= 0.4 and x= 0.6.
The slice of o at 6 contains only line 2 in both runs. The two
discrete factors: the predicate at line 3 and the cast at line 4 are
both monotonic. However, the output function is not continuous. As
its value is defined at line 5 when x = 0.5. Condition (2) excludes
such cases by ensuring that memory addresses do not change with
different samples.

The proof is omitted. Intuitively, since all predicates are mono-
tonic and all memory addresses do not change, there cannot be any
new dependences in the output slice for any sample in between.

The validation process presented in Section 5 is extended to
validate not only monotonicity, but also that all values in the vector
of an address variable to be the same.

7. Identifying Continuous Cores

A basic assumption of our technique is that if two sample runs pro-
duce different hash values, there must be discontinuity between the
two samples. However, it may not be the case in practice. Devel-
opers can write programs in such a way that the output function is



{y= f (c)}
1 for...
2 if x < c
3 o:= f (x);
4 else

5 o:=y;

1 o = A[0]
2 for i := 1 to c
3 if o < A[i]
4 o:=A[i];

(I) (II)

Figure 8. Real continuous core examples from 178.galgel.
Variable o denotes the output; c denotes a compiler time constant;
f (x) is a continuous function. The first line in (I) represents the
precondition.

continuous even though the control flow varies. In this section, we
discuss how to detect program regions that have such characteris-
tics and prove that they are continuous despite control flow differ-
ences. Then the hashing algorithms can avoid collecting predicate
hashes inside these regions.

Consider the example in Fig. 8 (I). It is a coding pattern used
a few times in 178.galgel. The output function is f (x) when
x < c. It becomes f (c) when x = c and remains that value for x > c.
The developer hoists the computation of f (c) from the else branch
to outside of the loop for better performance. Observe the output
function is continuous. However, if the initial two sample runs are
for x = c−1 and x = c+1, they have different control flow.

We call such code regions continuous cores, which are formally
defined as follows.

Definition 3. A continuous core is a conditional statement s (in-
cluding its branches) that is modeled as o = s(I) with input I the
set of variables used in s and defined outside, and output o the vari-
able computed by s and used later by other statements, and s(I) is
a continuous function in the domain of I, despite control flow vari-
ations.

The definition also covers loop statements, which are a special
case of conditional statement.

We develop a profiling technique to detect candidates of contin-
uous cores. The profiling semantics is an extension of the validation
semantics in Fig. 5. Details are omitted due to the space limitation.

Given a continuous core candidate, we try to prove the continu-
ity in the presence of control flow variation. The technique in [6]
tries to prove statically that a program is continuous regarding a
given set of variables. We adapt the technique to handle the condi-
tional statements identified by our profiler. The key idea is to first
prove the two branches of the conditional statement to be continu-
ous, and then ensure that the two continuous functions have identi-
cal output value at the boundary input value at which the branch
outcome changes from true to false or vice versa. Intuitively, it
means that the two branch functions yield outputs infinitely close
to the same value as the input gets infinitely close to the boundary
value.

Consider the example in Fig. 8 (I). The statements in the true
and false branches are both continuous on their own. And observe
that at the bounary point x = c, both branches yield the same output
value, ensuring continuity.

Other Patterns. There are a few other coding patterns that give
rise to continuous cores. Fig. 8 (II) shows another very common
core in 178.galgel. It returns the maximum value of an array.
Observe that the program is continuous, i.e. the output changes
continuously with the uncertain input. For example, assume an
array A[0− 2] = {1.0,2.0,3.0}, and A[1] is uncertain and it varies
within range [2.0,4.0]. When A[1] changes from 2.0 to 4.0. The
output has o1(A[1]) = 3.0 when A[1] changes from 2.0 to 3.0 and
then o2(A[1]) = A[1] when A[1] changes from 3.0 to 4.0. Observe
that o1 and o2 have the same value at the boundary A[1] = 3.0,
hence they together denote a continous function.

program # of pred. non-poly # of
pred. order funcs in pred. segments

168.wupwise 8E+8 -2 ∼ 2 cos, log, sqrt 1
171.swim 8E+6 1334 1
172.mgrid 4E+8 -1 ∼ 2 abs, sqrt 1
173.applu 2E+7 -1 ∼ 17 abs, sqrt 1
178.galgel 2E+8 2 abs, sqrt 100+
183.equake 5E+7 -1 ∼ 3 sin, cos, sqrt 6
187.facerec 1E+8 2 abs, sin, sqrt 5
188.ammp 7E+8 2 sin, cos, sqrt 1
191.fma3d 3E+4 -3 ∼ 6 sin, abs, sqrt 1
200.sixtrack 6E+8 -1 ∼ 2 sin, abs, sqrt 1
301.apsi 3E+8 -1 ∼ 14 sin, abs, sqrt 2
deisotope 6E+4 2 4

Table 2. Program characteristics.

To prove the pattern is continuous. We completely unroll the
loop. Each unrolled iteration has the following form, with oi the
output defined at the ith iteration.

3 if oi−1 < A[i]
4 oi:=A[i];

else
oi:=oi−1;

Observe that the functions from both branches are continuous
by themselves, and they have the same value oi = A[i] at the bound-
ary oi−1 = A[i]. We have encountered a few more core patterns.
They can be proved similarly.

8. Empirical Evaluation

Our system consists of several components. A modified compiler,
to instrument programs to compute the hash values, is built on top
of gcc. The sampling driver is written in Python. The validation
algorithm is also implemented through gcc. Our system supports
both C/C++ and Fortran.

Our experiments are performed on an Intel i7 2.70GHz machine
with 4GB RAM installed. We use SPEC CFP 2000 and one bio-
chemical data processing program (deisotope) as the bench-
mark set. Three programs from SPEC CFP 2000 are excluded.
189.lucas is a program that identifies prime numbers and hence
uncertainty analysis is not applicable. 177.mesa and 179.art

are excluded as they take discrete inputs. We have totally 12 pro-
grams (3 C and 9 Fortran). We randomly select the uncertain inputs.
For each uncertain input, we assume its error bound to be [0.5, 1.5].
The termination threshold (for the driver) is 0.001.

Table. 2 shows the basic characteristics of the programs. It in-
cludes the number of dynamic predicates, the order of the predi-
cates, the non-polynomial functions involved in the predicate func-
tions and the number of (continuous) segments in the output curve.
We acquire the first three pieces of information through profiling.
The number of continuous segments is acquired by taking samples
at the interval of [0.5, 1.5].

As we can see from the table, a number of programs have high
order predicates. Program 171.swim has an order of over one
thousand, due to its iterative computation process. Note that, our
profiler works by computing the order of the lhs value from the
orders of the rhs values. Hence, it has to approximate in some
situations. Given h(x) = (1/ f (x))(g(x)) in which f (x) is a func-
tion of order 1 and g(x) of order 2, we conservatively assume the
result h(x) will have the order of 1. Moreover, most of the pro-
grams have non-polynomial functions involved, such as trigono-
metric functions or square root. This supports our early discussion
about the difficulty of any symbolic techniques to analyze the path
conditions.

Also observe that 7 out of the 12 benchmarks are completely
continuous. However, it does not mean our technique is not useful
for them. With black-box MC, no matter how many output samples



program native
basic algorithm slice-based algorithm validation

time overhead # of samples time overhead # of samples 4-sample per sample 10-sample per sample

168.wupwise 2.05 2.14 4% 2 6.56 220% 2 18.81 4.70 30.79 3.08
171.swim 0.15 0.15 1% 2 0.36 142% 2 1.03 0.26 1.07 0.11
172.mgrid 3.31 3.32 0% 2 11.13 236% 2 20.2 5.05 49.5 4.95
173.applu 0.06 0.07 6% 2 0.23 271% 2 0.30 0.08 0.74 0.07
178.galgel 0.69 0.70 10% 416 3.34 384% 416 1304.0 1.63 1353.0 0.68
183.equake 0.20 0.21 6% 48 0.36 81% 48 14.28 0.30 14.28 0.12
187.facerec 1.23 1.25 2% 61 4.12 235% 40 233.4 3.89 270.0 1.80
188.ammp 2.72 2.73 0% 2 3.51 29% 2 15.30 3.83 15.86 1.59
191.fma3d 0.02 0.02 0% 2 0.06 200% 2 0.02 0.01 0.03 0.01
200.sixtrack 2.22 2.27 2% 2 12.60 468% 2 29.15 7.29 29.68 2.97
301.apsi 1.75 1.77 1% 133 9.02 415% 12 22.08 0.92 30.80 0.39
deisotope 0.02 0.02 0% 10 0.04 90% 10 0.32 0.01 0.42 0.01
AVERAGE 2.67% 231%

Table 3. Results of different algorithms.

are collected, one cannot be confident about the absence of discon-
tinuity.

Table 3 shows the results of the two hashing algorithms and the
validation algorithm.

Columns 3-5 present the results for the basic algorithm. Observe
that it is highly efficient (an average of 2.67% overhead for each
sample run). It is also very effective for most programs. For those
that are continuous in the entire input error bound, the algorithm
was able to identify that the hashes of the initial two sample runs
are identical, it then stops collecting more samples right away.

Columns 6-8 present the results for the slice-based algorithm.
Observe that it is more expensive, with an average overhead of
231%. This is due to its much more heavy-weight instrumentation.
Another reason is that we haven’t tried hard to optimize our imple-
mentation yet. Observe that it makes differences on two programs:
187.facerec and 301.apsi. For 187.facerec, it reduces
the number of samples from 61 to 40, while still precisely exposes
all the discontinuous points. However, the saving does not pay off
the extra overhead. In contrast, for 301.apsi, the reduction is so
large that the slice approach is clearly much better.

The reason for not observing more beneficial cases for the
slice-based approach is that most of the benchmarks have very
cohesive coding structure. They tend to have a very small number
of outputs, and most intermediate computation directly/indirectly
contributes to these outputs. We speculate for larger scale scientific
programs, when more functionalities are integrated into a program,
we will have a better chance to observe the benefit. We expect
the user of our technique can choose from the two algorithms
based on their insights of the programs. In our future work, we
will further integrate these two so that when the basic algorithm
collects unnecessary samples, we can automatically switch to the
other approach.

The last 4 columns show the cost for validation. For many
programs, our algorithm stops with two samples. Monotonicity
cannot be determined by 2 samples. So we set the minimal samples
for each validation run to 4 and 10, respectively. The presented data
is the total time of those runs and the time equivalent for a sample
execution, i.e. (total time / vector runs × samples per vector).
Most validation runs pass without any violations, indicating those
discrete factor functions are very likely monotonic, and thus high
confidence of our sampling results. Only 178.galgel has a few
violations. The two configurations do not lead to differences in the
validation results.

Although the total time in validation is substantial, the per-
sample cost is quite low. For many cases, especially those with
the 10-sample configuration, the cost is even lower than the native
run. The reason is that we use singletons to denote values irrelevant
to the uncertain input, avoiding operations on such values being
iterated, causing a kind of saving over a simple aggregation of
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Figure 9. Curves plotted from the samples identified by different
methods for program 178.galgel.

multiple sample runs. Also observe, the per-sample cost decreases
as the number of samples per-vector increases. That is because the
dominant fixed cost of vector manipulation gets amortized.

Case Studies. Program 178.galgel is an interesting case, our
algorithms generate over 400 samples. Fig 9 shows the output
functions computed by different approaches. Lets first focus on the
actual curve that is supposed to be the oracle. The curve has many
small missing segments, otherwise appears continuous. Observe
in the zoom-in view, at around 120%, those overlapping dots are
essentially a sequence of tiny continuous segments separated by
missing segments. By inspecting the code, we observe that the
program is not stable for the inputs falling in missing segments.
It fails to converge and produces empty result. Our algorithms are
able to closely approximate the real curve. We also collect 500
and 1000 random samples in uniform distribution for comparison.
From the zoom-in view, one can observe that a number of points
are missing from the lower two curves. However, this is not the
worst scenario, when using the traditional MC, people may tend
to begin with a small number of samples. Due to the fact that the
curve has very large continuous segments and the missing segments
are often much smaller. It is very likely that the missing segments
are completely missed, leading to the wrong conclusion. These
results clearly show the benefit of white-box sampling. Observe
from Table 3 that it only requires 416 samples and has only 10%
overhead (basic).

Another example comes from LC-MS (Liquid Chromatography
Mass Spectrometry) process [19], which is an effective technique
used in cancer biomarker discovery. A biomarker is a protein which
undergoes changes in concentration in diseased samples. To detect
biomarkers, proteins from cancer patients and normal people are
labeled differently and digested into smaller pieces called peptides.
After the LC-MS process, each peptide would ideally lead to two



peaks, or a doublet. One of them corresponds to the normal peptide
marked with a light label and the other corresponds to the cancer
sample marked with a heavy label. The intensity ratio of the doublet
indicates the relative concentration of proteins from which the
peptides were generated.

deisotope is a program carries out the data processing in
LC-MS process. It takes raw data from serum then produces the
matching doublets with their intensities.

However, this program is highly sensitive to data uncertainty.
A tiny variation in the input may lead to different doublets being
generated. Sample outputs are shown in Fig. 10(a). The x-axis rep-
resents the variation of an input provided by the scientist according
to their experience in the area (and thus uncertain) from 50% to
150% of its original value, and the y-axis shows the computed in-
tensity of outputted peaks. We can observe that the intensity of the
peaks changes substantially, leading to the potential change of the
biomarker. Or it may even disappear, meaning a different set of
doublets is generated.
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Figure 10. Case study of deisotope.

Removing false positives caused by uncertainty is very critical
since the results determine the subsequent research – typically
involving significant effort and expense in wet-bench experiments.
Sampling provides a reasonably low-cost method to inspect the
effect of uncertainty.

Without loss of generality, we select one of the peaks in the
outputted doublets for a close study. Fig. 10(b) shows the change
of its intensity, by varying the uncertain input from 100% to 150%
of its original value. Observe with 20 samples, our technique is
able to precisely model the curve while a traditional MC with 30
samples cannot.

9. Related Work

Uncertainty analysis and MC method. Sampling-based, or Monte
Carlo approaches to uncertainty and sensitivity analysis are widely

used [9]. Several techniques are proposed to improve the efficiency
of the MC method by parallelizing MC trials [2, 4]. In [14], an
execution coalescing technique was proposed to pack multiple MC
trials in a single run, using vectors. These techniques do not aim at
guiding the sampling process to expose critical points using a small
number of samples. Our vector semantics is also more simplistic,
performing only the single task of validation, which makes it more
robust.
Static analysis for program continuity and robustness. [6]
shares a similar scenario of analyzing continuity for programs. It
uses static analysis to soundly reason about continuity, by proving
whether a given program encodes a continuous function. On top of
[6], [7] further analyzes and quantifies the robustness of a program
to input uncertainty. These techniques are static. In contrast, our
work is dynamic. These two are synergetic. In fact, we adapt their
technique to prove continuity of continuous cores identified by our
dynamic analysis.

10. Conclusion

We develop a white box sampling technique that allows scientists
to selectively and efficiently sample discontinuous points in out-
put functions, given input error bounds. It works by hashing the
values of discrete factors in sample executions and then compares
the hashes of multiple runs to determine if additional samples are
needed. Besides the basic algorithm, we develop a validation run-
time to improve confidence of our sampling results. We also de-
velop a slice-based hashing scheme to avoid hashing irrelevant
discrete factors. For programs in which control flow differences
(across multiple sample runs) are intensional and hence do not af-
fect continuity, we develop a profiler to identify such code regions
and statically prove that they are continuous. Our results show that
the technique is highly effective for the real-world programs.
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