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PREFACE 

This is a working paper to attempt to document the progress that has 

been made over the past 30 years in computational methods for solving partial 

differential equations. Hopefully the assumptions made in this study are 

clear, but they may well be disputed. Comments or suggestions about them 

are welcome. Some computational efforts are quickly derived here, but 

others are taken from the literature without an independent check that the 

same definition of effort is used. Corrections of these estimates are 

invited. There are probably some computational methods which I have over-

looked which should be included. Please let me know of your favorite (or 

your own) method which should be included (I would appreciate exact references 

and computational effort estimates). Note that this study shows up some 

obscure methods as being very attractive, which suggests that there are other 

lesser known methods which are also attractive. 

The end purpose of this study is to present one or two simple graphs 

demonstrating the progress over the past 30 years. These graphs are to be 

included in the Numerical Computations section of the COSERS report. 
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O. BRIEF SUMMARY OF STUDY. We consider two model problems: the very 

special Poisson problem and a general, variable coefficients elliptic 

boundary value problem with curved boundaries. Both model problems 

have well-behaved solutions which are to be computed to -1% accuracy. 

We trace the various computational algorithms for these problems from 

1945 to 1975 and then make some conjectures about future progress. The 

conclusions are summarized by the following table of gains in computational 

speed due to algorithm improvement. 

Estimated 
1945-1975 

Conjectured 
1975-1985 1945-1985 

Poisson Problem 2-Dimensions 800 3 2500 
3-Dimensions 50,000 3 150,000 

General Elliptic 2-Dimensions 360,000 500 180,000,000 

Curved Boundaries 3-Dimensions 12,000,000,000 25,000 300,000,000,000, 

It is significant to note that for the general three dimensional problem and 

for both the periods 1945-75 and 1945-85 we have 

The gain in speed from algorithm improvement 

exceeds the gain in speed from hardware improvement 

(i.e. from desk calculators to typical, large 1975 or 1985 computers) 
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1. METHOD AND ASSUMPTIONS OF THE STUDY. 

We choose two model problems and trace the computational effort to 

solve them by various methods. The dates assigned are when the method 

was first published or, in some cases, when I considered the method to 

be feasible and natural to attempt. 

Model Problem 1. U + U = f(x,y) 2-Dimensions xx yy 

U + U + U = f(x,y,z) 3-Dimensions xx yy zz 

Dirichlet Boundary Conditions in the unit rectangle or cube 

Accuracy of .001 ( = .1%) required. 

Model Problem 2. Let L be a general, non-separable, elliptic operator 

with variable coefficients. Let D be a simple domain with one or more 

curved boundaries. 

Lu = f(x,y) 2-Dimensions 

Lu = f{x,y,z) 3-Dimensions 

Dirichlet Boundary Conditions on D. 

Accuracy of .001 ( = .1%) required. 

Assumptions 

(1) About the problem: 

A. The solution u is smooth (several continuous derivatives) and 

of size 1. It is "simple" in the sense that there are very 

few oscillations in any cross-section. The coefficients of L 

behave similarly. 
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(2) About the methods: 

A. The space discretization h determines the error in a 

consistant manner. Specifically, for a method of order p, 
-3 the values of h and N = 1/h required for 10 accuracy are 

p 1 2 3 4 

h/N .0125/800 .0333/30 .0833/12 .125/8 

P Note that if the error were h then the values of N would be 

1000, 32, 10, 6, respectively so this assumption implies that 
p the coefficient of h in the error increases some with p. 

B. The computational effort is proportional to the number of 

multiplications required. The rate for performing multi-

plications is 100,000 per second. This assumption envisages 

an "average" 1975 large scale computer which performs 1 million 

operations per second and for every multiplication there are 9 

other operations (adds, fetches, stores, etc.). 
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2. MODEL PROBLEM ONE - THE POISSON PROBLEM 

The methods are introduced in chronological order after the set 

of three assumed to be initial conditions for the computer era. 

2.1 1945 - Cramer's Rule, Gauss Elimination (Band), Gauss-Seidel Iteration 

The standard second order finite difference discretization is used. 

Thus N = 30 in each case, 

a. Cramer's Rule. The evaluation of determinants is done by 

expansion by minors taking into account the zero structure of the matrix. 
2 2 For 2-dimensions the matrix is block tridiagonal of size N x N . The 

N-2 expansion of the first N rows leads to 9 * 4 submatrices of order 

N(N-l) x N(N-l) which are about the same nature as the original. Thus 
2 N- 2 N N we estimate the total work to be ( 9*4 ) or, simplifying, 4 . A 

N3 
similar argument suggests that 5 is a reasonable estimate in 3-Dimensions. 

b. Gauss-Elimination. The work to solve Ax = b for a matrix of 
2 order M and band width K is UK . For the model problem we have 

2-Dimensions: M = N 2 K = N for 4 
N multiplies 
7 N multiplies 

2 for 

c. Gauss-Seidel. See [Forsythe and Wasow (I960) p. 283]. The 

multiplies per iteration is four or six times the matrix order. The 
2 initial error is assumed to be 1 and is reduced by 1-h each iteration. 

The number r of iterations required thus satisfies 
r -3 

10 

for both 2 and 3 dimensions. In terms of N this becomes 

2 2 2N log N r 3N 
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The total number of multiplies is then 

4 2-Dimensions: 12N (N=30) 
5 3-Dimensions: 1BN (N=30) 

2.2 19S4-50R See [Young (1954)] and [Forsythe and wasow (I960)]. 

The usual second order finite difference discretization is made 

which requires 5 or 7 multiplies per equation per iterations and gives 

N=30. The optimum relaxation parameter is used which reduces the error 

by l-2h each iteration. If the initial error is 1 then the number r 

of iterations satisfies 

(l-2h)r = 10"3 

or, in terms of N, 

r = 3N/2 ~ Nlog N 

The total number of multiplies is then 

2-Dimensions 7.5 N3 

4 3-Dimensions 10.5 SJ 

2.3 1955-ADl. See [Peaceman and Rachford (1955)] and [Forsythe and Wasow 

(I960)]. The usual second order finite difference approximation is 

used and gives N=30. The number of multiplications and divisions 
2 per iteration is BN (see [Lynch, Rice and Thomas (1964) p. 194]) and 

2 the number r of iterations is 2.2 log N for the two dimensional case. 
3 

For three dimensions the work per iteration is 12 N and we assume 

that the same number of iterations are required. We are unaware of an 

analysis which gives the number of iterations in three dimensions. 
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The totals are then 

2 2 2-Dimensions 18N log N 
3 2 3-Dimensions 27N log N 

2.4 1956 - SOR for the 9-Point Star See [Garabedian (1956)] and 

[Forsythe and Wasow (1960) p. 266]. This difference approximation to 

the Laplacian is sixth order but for a low accuracy like 10 3 we assume 

that it behaves as if it were fourth order and thus we take N=8. The number 

of multiplies per equation per iteration is 8 or 26. The error is reduced by 

l-2.04h per iteration which makes r satisfy 

(1-2.04h)r = 10~3 

or, in terms of N, 

r = 3N/2 ~ Nlog N 

The total number of multiplies is then 
3 2-Dimensions 12N 
4 3-Dimensions 39N 

2.5 1964 - Tensor Product See [Lynch, Rice and Thomas (1964)]. Both the 

5-point and 9-point finite difference approximations are studied. We 

first consider the 5-point star which gives N=30. The number of multiplies 

is given for 2-Dimensions and for 3-Dimensions it is found in the same way. 

The result is 

3 2-Dimensions 2N (5-point star,N=30) 
4 3-Dimensions 2N (7-point star,N=30) 
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The number of multiplies for the 9-point star is shown to be the 

same as for the 5-point star (except for lower order terms). We 

again assume N=8 as though the 9-point star were fourth order rather 

than the actual sixth order. 

3 2-Dimensions 2N (9-point star, N=8) 
4 3-Dimensions 2N (9-point star, N=8) 

2.6 1965 - API for 9-point star See [Lynch, Rice and Thomas (1965)] 

The 9-point star approximation to the two dimensional Laplacian is 

analyzed as the basis of an ADI method. Again we take N=8 for this 

approximation. The multiplications and divisions per iteration is given 
2 as 16 N and the number of iterations is 10.4 log2 N. The three dimensional 

case is not analyzed, but we assume the same number of iterations is required 
3 and the work per iteration is seen to be 24N . The results are 

2 2-Dimensions 166 N log2 N 
3 3-Dimensions 250 N loq^ N 

A second ADI scheme is also analyzed which has a convergence rate some-

what faster than the more straight forward adaption of the 9-point formula 

to an ADI method. The work per iteration is doubled, but the number of 

iterations is reduced by a factor of about 4.33 for a net decrease of 

2.16 in the multiplications. The results are 

2 2-Dimensions 77N log^N 
3 3-Dimensions 116N log N 
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2.7 1965 - FFT Direct Solution See [Hochney (1965)] and [Dorr (1970)]. 

This method is based on the observation that the solution can be 

explicitly expressed as a finite Fourier series and then the Fast 

Fourier Transform can be used to sum the series. This is for the 

5-point star so N=30 is used and the operations count is given for 

two dimensions. No count is given for three dimensions but it should 
3 

be proportional to N l°g2 N ^ ^ assume the coefficient is 7. This 

results in 
2 2-Dimensions 5N log„ N 

2 
3 3-Dimensions 7N l 0 ^ N 

Presumably these counts are valid only for N = 2 and thus 

we adjust H to be 32 for this method. 

Certain numerical instability problems for this method were not 

solved until about 1969 by Buneman, but they could be controlled for 

moderate N by using long words. See [Buzbee, Golub and Nielson (1970)]. 

2.8 1968 - API for 9-point Star with Smooth Initial Guess See [Lynch and 

Rice (1968)]. This is identical to the method of 2.6 except that the 

initial guess is chosen to make the initial error smooth and 4 corresponding 

ADI parameters are chosen so that only 3 iterations are required to 
-3 reduce the error by 10 . The resulting multiplications are 

2 2 2-Dimensions 71 N log N 
3 2 3-Dimensions 107 N log N 

for the first mentioned method of 2.6 and for the second we have 
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3-Dimensions 

2-Dimensions 2 2 33 N log N 
3 2 50 N log N 

No analysis has been done for the three dimensional case and we have 

assumed that the number of iterations is the same as in two dimensions. 

2.9 1970*1974 - Cyclic Reduction. See [Buzbee, Golub and Nielson (1970)], 

[Sweet (1974)] and [Swarztrauber (1974)]. This is a general "divide 

and conquer" method analogous to the idea behind the Fast Fourier 

Transform. It is applicable to matrices which are tensor products 

of a certain type i.e. block tridiagonal with constant matrices on the 

diagonals. The first paper used N = 2 for the reduction while the 

later ones use other prime factors (especially 3 and 5) for N in the 

manner similar to extensions of the FFT. It is applied to the 5-point 

star and the operation count in 2-Dimensions is given (without derivation) 

by [Dorr (1970)] as 

We assume the 3-Dimension count given here is the correct extension, 

no analysis has been made to justify this. We take H-32 here. 

The later extensions allow factor of 3 and 5 so that N=30 may 

be used. However, the execution time is said to increase by about 

30% which results in the following work estimates. 

3-Dimensions 

2-Dimensions 

3-Dimensions 

2-Dimensions 
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2.10 Tabulated Summary for Model Problem One. The previous sections listed 

numerous methods and they fall into three categories: (1) widely used 

and tested methods {2) methods which have been theoretically analyzed 

but not tested in practice (3) methods where we are conjecturing the 

multiplication counts required. The entries from class (2) are marked 

with one asterisk (*) and those from class (3) by two asterisks (**) 

in the table below. The entries are obtained by merely substituting 

in the appropriate values for N. 

2.11 Remarks on Future Developments. It seems plausible that the fastest 

methods shown can be put into practice in a stable and efficient manner. 

Furthermore, an examination of these techniques suggests that a factor 

of 2 or 3 can yet to be made without discovering essentially new 

methods. This implies that within 5 to 10 years one will be able to 

solve this model problem with 300-500 multiplications in 2-Dimensions 

and 2500-4000 multiplications in three dimensions. At this point one 

is probably reasonably close to the ultimate barrier implied by the 

computational complexity of this problem. Note that we are suggesting 

that this is a simpler problem than normally believed. 

Within 10 years it is likely that architectural advances will 

significantly impact this problem and result is an additional increase 

in speed of 10 or 50 for these two problems. Indeed special chips may 

well be feasible for such common problems. 

The total gain in speed from algorithm improvement from 1945 to the 

present is a factor 800 + for the two dimensional case and 53000 for the 

three dimensional case. We are projecting further gains of 6-10 and 10-15 

for algorithm improvements in the future. 



Year Method . N 

2-Dimensiong 

Multiplies Time 

3-Dimensions 

Multiplies Time Storage 

1945 Cramer's Rule 

Gauss-Seidel Iteration 

Gauss Elimination (Band) 

1954 SOR 

1955 ADI 

1956 SOR for 9-Point Star 

1964 Tensor Product, 5-Point Star 

Tensor Product, 9-Point Star 

1965 ADI for 9-Point Star, #2 

FFT Solution, 5-Point Star 

1968 ADI, 9-Point Star, Smooth start 

1970 Cyclic Reduction 

30 

30 

30 

30 

30 

8 

30 

8 

8 

32 

8 

TO 

in542 . ,530 10 * 10 years 

9,700,000 97 sec 

in18,900 lf,18,900 10 * 10 years 

810,000 

202,500 

35,000 

6144 

54,000 

1024 

4019 

15,000 

1720 

8 sec 

2 sec 

.35 sec 

* .06 sec 

.54 sec 

* .01 sec 

* .04 sec 

.15 sec 

* .017 sec 

ejg.fi 

437,000,000 1.2 hours 
+10 

2.2 2.5 days 

8,500,000 85 sec 

1,600,00 ** 16 sec 

160,000 * 1.6 sec 

1,600,000 . 16 sec 

8200 * .08 sec 
48,000 ** 

628,000 

20,600 ** 

1,150,000 ** 

.48 sec 

6 sec 

.2 sec 
11 sec 

190,000 

25,000,000 

190,000 

190,000 

15,000 

8.0 ,000 

1,500 

1 , 0 0 0 

32,000 

1,000 

27,000 

Table 1. Multiplication counts and estimated execution times 
for Model Problem 1 (the Poisson problem) and various 
computational methods. An estimate of the number 
of words of working storage is given for the 3-dimensional 
case. 
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MODEL PROBLEM TWO - GENERAL LINEAR ELLIPTIC PROBLEM 

The methods are in chronological order. Some of them are "hypothetical" 

in the following sense. It seems to me (and clearly this must be a 

subjective thing) that the state of the art was such that such computations 

could have been tried and they were probably successfully tried by someone. 

To be specific, we assume that the region is such that the band width 

is 50% larger than if the region were a rectangle and we assume that the 

same number of points is used as if it were a rectangle. 

1945 - Simple differences and Gauss Elimination. The basic method was 

to use second order differences and simply modify them near the boundary. 

The literature did contain some second order methods for Dirichlet 

boundary conditions, but we assume that it was very unlikely that they 

would have been used (indeed some of them were probably never used in 

real computations). Thus we assume that a first order method is used at 

the boundary. For low accuracy requirements this makes the entire com-

putation first order. Thus we have N=800 and the formulas for 

Gauss elimination are 

2-Dimensions N2 * (1.5N) 2 

3-Dimensions 1 2 2 N * (1.5N ) 
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3.2 1955 - Simple Differences and Iterative Methods. This is a hypothetical 

case. We still assume simple differences and first order approximations 

to the problem because of the curved boundaries. We assume that over-

relaxation is used with some effectiveness, specifically, the rate of 

convergence is as good as Gauss-Seidel for Model Problem 1. Thus we 

have N=800 still and the number of iterations is assumed to satisfy 

2 r -3 2-Dimensions (1 - h ) =10 
2 r -3 3-Dimensions (1 - 4h ) = 10 

These are solved for r in terms of W. We further assume that the 

irregular nature of the system of equations doubles the work per iteration 

compared to Model Problem 1. The net results are 

2 2 2-Dimensions ION * 3N 
3 2 3-Dimensions 14N * 12N 

3.3 I960 - Better Approximations to the Boundary Conditions. This is a 

hypothetical case. It was probably realized in two ways. First, more 

complicated finite difference expressions were used for curved boundaries 

to give an overall second order method. Second, finite element methods 

(based on piecewise linear elements) were used in structural engineering 

problems which also gave a second order method. Thus we assume that N=30 

suffices and that the resulting system of linear equations was solved 

directly by Gauss elimination. We further assume that the bandwidth is 

3N/2 and that the formation of the system of equations requires 75% of the 

total work. The results are then 

2 2 2-Dimensions 4 * N * (1.5N) 
3 2 2 3-Dimensions 4 * N * (1.5N ) 



15 

3.4 1965 - Iterative methods for general matrices. This is a hypothetical 

case. We assume that an iterative technique is used for the matrices 

generated with the 1960 method. It is assumed that the convergence 

obtained is somewhat better than Gauss-Seidel for Model Problem 1, 

that is the number r of iterations satisfies, for 2 and 3 dimensions, 

respectively 

(1 - h 7 / V = 10'3 , (1 - 4 h 7 / V = 10"3 

Thus we have N=30 and the formulas are 

2 7/4 2-Dimensions: 4 * 5N * 3N 
3 7/4 3-Dimensions: 4 * 7N * 12N 

3.5 1970 - Galerkin with Hermite cubics. This is a hypothetical case. We 

assume that the problem of curved boundaries here was solved by approximating 

them by piecewise polynomials and, further, that the inaccuracy in this 

approximation reduced this potentially fourth order method's accuracy so 

that N=12 (rather than N=8) is required. Note that this method has four 
2 3 

unknowns per element so the orders of the matrices are 16N and 64N , 

respectively. We further assume that the work to form the equations 

constitutes 90% of the total work. Gauss eliminations is used to solve 

the resulting system of linear equations and the formulas are 
2 2 2-Dimensions: 10 * 4N * (3N) 
3 2 2 3-Dimensions: 10 * 8N * (6N ) 
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3.6 1975 - Collocation with Hermite cubics. This is a hypothetical case. 

The curved boundaries are handled as in 1970, but the linear equations 

are found from the tensor product of the collocation method with Gauss 

points. See [deBoor and Swartz, 1973]. The effect of this is to 

reduce the work of forming the equations from 90% to 65% of the total. 

This changes the factor of 10 in the 1970 formulas to a 3: 

2 2 2-Dimensions: 3 * 16N * (6N) 
3 2 2 3-Dimensions: 3 * 64N * {24N ) 

3.7 1976 - The HODIE method. This is a hypothetical case. This (as yet 

experimental) method allows one to accommodate curved boundaries in a 
fourth order method with negligible added overhead. See [Lynch and 

Rice, 1976]. Thus we have H=8. For a rectangular domain the overhead 

to form the equations is 75% for N=8 and we assume an additional factor 

of two for the curved boundaries. The order of the linear system are 
2 3 

N or N , respectively, and we assume they are solved by Gauss 

elimination. The resulting formulas are 
2 2 2-Dimensions: 8 * N * (1.5N) 
3 2 2 3-Dimensions: 8 * N * (1.5N ) 

3.8 Tabulated Summary for Model Problem Two. Since this model problem actually 

refers to a broad class of problems, there is considerable difficulty in 

tracing its history. Clearly there will be examples in or nearly in this 

class which make the estimates given here grossly optimistic or pessimistic. 

We have tried to keep our attention on that very rare creature, the "typical" 

problem. The entries in Table 2 are obtained by merely substituting in the 

appropriate values of N. 



2-Dimensions 3-Dimensions 

Year Method N Multiplies Time Multiplies Time Storage 

1945 Differences and Gauss Elimination 800 9 + 1 1 80 days 5+20 2 years 8+8 , 

1955 Differences and iteration 800 1+13 3 years 5+16 15 ,£00 years 5+6 

1960 Better boundary approximations 30 7,300,000 73 sec 2 + 1 1 22 days 5+7 

1965 Iteration for 1960 method 30 20,000,000 200 sec 4+io 5 days 300,000 

1970 Galerkin with Hermite cubics 12 7,500,000 75 sec +11 11 days 170,000 

1975 Collocation with Hermite cubics 12 2,500,000 25 sec 3+10 4 days 170,000 

1976 HODIE 8 75,000 1 sec 4 + ? 6 min 75,000 

Table 2. Multiplications counts and estimated execution times for 
Model Problem 2 and various computational methods. An 
estimate of the number of words of working memory is 
given for the 3-dimensional case. 
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The gain in speed from algorithm improvement from 1945 to 1975 

is very impressive: 360,000 in two dimensions and 12 billion in three 

dimensions. Much, if not most, of this comes from using second order 

methods, with technique that were latent in 1945 but not implemented 

(even hypothetically) until 15 years later. Unfortunately, it is 

difficult to "prove" that this amount of progress has been made. 

The actual progress depends on the particular problem at hand and the 

"typical" problem envisaged in this study is rare indeed. Some recent 

discussions of the evaluation of methods appears in [Fix and Larsen, 

1971], [Birkhoff and Fix, 1974] and [Houstis, Lynch, Papatheodorou and 

Rice, 1975]. Xt should be noted that there are currently many practitioners 

who doubt the advantage of second order methods over first order methods 

for complex problems (note that our Model Problem 2 does not really 

qualify as complex). Needless to say, there are even more who are 

skeptical of the value of fourth order methods. There is a clear need 

for more concrete quantitative data on the performance of these methods. 

It is significant to note for this three dimensional model problem: 

The gain in speed from algorithm improvement 

exceeds the gain in speed from hardware advances 

(i.e. from desk calculators to a IBM 360/65) 
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3.9 Remarks on Future Developments. The new HODIE method promises factors 

of 25 and 750 in the gains for speed and it has yet to be perfected. 

Further increases by factors of 3 to 5 should be expected merely from 

perfecting such methods. Furthermore, we should expect iterative methods 

and adaptive methods to have a large eventual impact. Within 10 years 

the multiply counts may well be down to 5,000 for two dimensional 

problems and 1,500,000 for three dimensional problems. This represents 

total projected gains of 500 and 20,000 for algorithm improvements in 

the future. Furthermore, these gains in speed will be accompanied by 

even more significant improvements in reliability. 
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