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ABSTRACT 

This paper discusses the design of a polyalgorithm for the automatic 

solut ion of a nonl inear equation F(x) = 0 f
0
r one variable.  The polyalgoritnm 

is part of NAPSS .  The function F(x) is described by a computer program and 

is examined only by evaluat ion .  The three main parts of the paper are: brief 

discussion of the object ives,  descript ion of the polyalgorithm and the testing 

made of i t .  



A POLYALGORITHM FOR THE AUTOMATIC SOLUTION OF NONLINEAR EQUATIONS 

John R .  Rice* 

1.  INTRODUCTION AND THE PROBLEM .  We consider the mathemat ical problem of given 

a function F(x),  find values XROOT so that F(XROOT) = 0 .  We assume that 

F(x) is described by a computer program '  in part icular,  we cannot examine 

F(x) in any way except by evaluat ion.  F(x) is a function of one real variable.  

This paper lias three main parts: a brief discussion of the objectives 

of a polyalgorithm for the automatic solution of this problem ,  a longer 

discussion of the polyalgorithm developed and some remarks on the testing 

made of the polyalgori thm .  This polyalgorithm has been developed primarily 

for the NAPSS system .  A general description of NAPSS is given in f5],  

and various aspects of the system are described in [1],  [2] and [6].  A 

detailed phi losophy and discussion of the development of polyalgorithms 

for automatic numerical analysis is given in [3].  

2 .  POLYALGORITHM OBJECTIVES .  There are a number of possible uses of this 

polyalgori thm .  The objectives for most of these are indicated by the follow-

ing: 

A) To solve this problem wi th no additional information.  That is to say 

implement the statement 

SOLVE F(X)=0 FOR X 

B) To allow some guidance by the user via qualifying phrases.  Typical 

qualifying phrases are 

a) NUMBER 3 (of roots desired) 

b) GUESS 13.1 (for root) 

c) INTERVAL [-12 ,  104] (roots must be in here) 

d) WORK 15 SECONDS (time limit on computation) 

e) OUTPUT LEVEL 3 (specifies amount of output desired) 

*This polyalgorithm has been developed for the NAPSS system which is partial is 
supporter ty a- grant from the Nat ional Science Foundat ion

t
 GP-05850.  
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C} To provide the user wi th considerable informat ion,  if desired ,  about 

the solutions of the problem ,  and the effort made to solve the problem .  

3 .  POLYALGORITHM COMPONENTS AND STATUS .  The current version of the poly-

algorithm is a set of Fortran subrout ines.  The code is about 2500 statements.  

Three almost identical versions exist ,  one each for ordinary batch processing ,  

the NAPSS system and remote batch processing from a console.  

These components are discussed in varying detai l .  

4 .  INITIALIZATION AND USER INTERFACE .  The polyalgorithm is controlled by a 

basic subrout ine with about 20 arguments.  This subroutine initializes a 

large number of variables and sets default options as required .  There are 

about 100 variables to be ini t ial ized,  including 50 print control swi tches.  

The user interface for batch processing consists of a few small sub-

routines with 2 to 6 arguments which allow the user some flexibility in 

his use of the polyalgori thm .  These subroutines may also be used from 

consoles.  There is a Fortran preprocessor (written in SN0B(}L4) which allows 

more natural statements,  but sti l l results in batch processing .  Statements 

such as 

EQ1.3 $ C0S(X)**2 + X*ABS(X-3.1)*EXP(2.*X) = 0 

SOLVE EQ1 .3 FOR X NUMBER 1 INTERVAL -3 . ,2 .  

are translated in Fortran and then the polyalgorithm is accessed in the 

normal way .  

The NAPSS system provides a more natural and flexible interface as 

wel l as allowing interactive use.  At certain points the polyalgorithm 

may receive instructions from the user and the user may request additional 

information or effort from the polyalgori thm .  

The basic components of the polyalgori thm are: 

a) Ini t ial izat ion,  user interface e) Order of Roots 

b) Overall Search Strategy 

c) Numerical Methods for F(X) = 0 

d) Root Acceptance Tests 

f) F(X) Deflation 

g) Logical Control 

h) Historical Information 
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5 .  OVERALL SEARCH STRATECY .  There are two distinct cases.  The simplest one 

is when an interval is specified .  

Interval Search: The secant method is started at a sequence of points 

in the interval .  For the interval [0,1] these points are 1/2,  0 ,  1 ,  

1/4,  3/4 ,  1/8 ,  3/8 ,  5/8 ,  7/8 ,  1 / 1 6 1 5 / 1 6 , 1 / 3 2 , . . .  Whi le these points 

are used for secant method starts,  a check for sign changes is also made .  

If one is found ,  the half interval method is used in combination with the 

secant method .  

At appropriate times the sweeps through the intervals are hal ted 

and some auxiliary computations are made.  These are No .  2 and No .  4 

described below for the general search .  

General Search .  The main part of the search strategy is to generate 

a sequence of intervals to be searched.  One may visualize the sequence 

graphically (NOT shown to scale).  

origin 

- X 

first i 1 
second third 1

 j r > 
fourth fifth 

sixth seventh 
i 1 1 1 

eighth ninth 
I

 £

 ( i 
etc.  

Each of these intervals is searched using 3 to 5 initial points for the 

secant method (depending on the circumstances).  

There are 5 auxiliary computations and tests made during the search.  

They are: 

No .  1: Origin Shift .  The points where the secant method terminates 

are examined and some retained .  If F(X) is sufficiently small there,  the 

origin is shifted to this point .  Once the origin is not zero ,  the small 

intervals near the origin are no longer examined .  

No .  2: Root Neighborhood Check .  After a set (normally 8) of "larger" 

intervals are searched ,  the polyalgorithm stops and searches an interval 

about the roots already found .  
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No .  3: U-Shape Adjustment .  As the expansion of the search proceeds 

away from the origin ,  one can easily move completely out of the realm of 

possible zeros.  This is usually accompanied by the curve y=F(X) becoming 

U-shaped .  A set of variables is maintained to measure this ,  and from time 

to time the origin is perturbed and the general search is restarted .  

Mo .  4: Check of termination points of the secant method .  Those points 

saved in Mo .  1 might wel l not result in an origin shift .  From time to t ime,  

all points saved in this array are used as secant starting points.  If 

these points are not found often and if nothing happens,  they are then 

deleted from the array .  

No .  5: Asymptote Checks.  Asymptote limits are established and maintained 

atthree places in the polyalgori thm .  Once these are exceeded ,  the search 

in that phase is aborted .  Too many violations of these limits terminates 

the polyalgori thm .  

6 .  NUMERICAL METHODS FOR F(X)=0 .  Three basic methods are used: Secant ,  Half-

Interval ,  and Descent .  The Secant Method is fairly standard ,  the termination 

criteria used are 

a) Iterates Converge d) Asymptote to zero found 

b) F(X) becomes small e) Too many iterations 

c) Too far outside of requested interval 

The mul t ipl ici ty of a root is estimated after 10 iterations and the method 

modified to take this into account .  Provisions are made to force additional 

iterations in the presence of multiple roots.  

The Half-Interval Method operates in conjunction with the secant method; 

i .e. ,  at each new halfway point ,  the secant method is initiated for a short 

run .  If none of these secant method attempts work ,  the point of sign change 

is classified as a discont inui ty .  

The Descent Method used is a simple descent on the function ABS(F(X)).  

It is useful (even essent ial) to have such a method to "refine" the location 

of a root whenever round-off effects become not iceable.  It is used only 

after a root is "found" by the secant method .  



7 .  ROOT ACCEPTANCE TESTS .  The convergence of the secant method is not suf-

ficient evidence to accept a number as a zero of F(X).  Four other tests 

are used (XROOT = tentat ive root to be tested).  

9 .  

Test 1: Is there a sign change very close to XROOT? 

Test 2: Is F (XROOT) much smal ler than nearby values? 

Test 3: Is F(XROOT) = 0? 

Test 4: Is F(XROOT) somewhat smal ler than nearby values and also 

absolutely small? 

If a tentat ive root fails all of these acceptance tests ,  the descent method 

is used to refine the root and the new value is retested .  

F(X) DEFLATION .  Let XROOT(I),  I =  NROOT be the roots found wi th 

orders (mul t ipl ici t ies) ORD(I) and sign change indicators IND(I).  We 

operate on the funct ion 
" NROOT 

FCN(X) = F(X)*L1=1 |  X-XROOT(I ') 
ORD(I) 

NROOT 
t r 

1=1 
|X-XROOT(I) 

0 R D C I

> *(SIGN(X-XROOT(D)) 

Our experience indicates that successful deflat ion depends upon the mul t i-

pl ici t ies of the roots being computed reasonably accurately .  This is less 

cri t ical if roots are of integer mul t ipl ici ty and one may specify that all 

roots are simple if this is known a priori .  

LOGICAL CONTROL .  There is a mul t i tude of smal l ,  local logical control 

decisions.  The "overal l" control depends on the relat ionships 

(i) between elapsed t ime and progress through search 

(ii) between number of roots found and progress through search 

(iii) between various quant i t ies in the secant ,  half-interval ,  and 

descent methods and their correlat ion wi th the root acceptance 

tests and root order computat ions.  

The first two of these are used for terminat ion and the third for deciding 

what tact ic to use next .  
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10.  HISTORICAL INFORMATION.  There are a number of questions which the poly-

algorithm is to be able to answer.  

a) What roots were found? 

b) What is the nature of the roots found? 

c) How were they found and how "hard" were they to find? 

d) What did the polyalgorithm do? 

e) What is the polyalgorithm doing? 

f) Debug dump (not intelligible to the average user) 

The NAPSS system allows the user to 

g) Request more information on certain points 

h) Request addi t ional effort - perhaps wi th changed specifications 

It requires a rather large number of variables,  print controls,  informa-

tion collecting statements,  and output statements to answer these questions 

in a half reasonable way .  It is more difficult to implement this phase 

of the polyalgorithm than one would think beforehand .  

11.  TESTING THE POLYALGORITHM .  Reliability is the most critical attribute 

of a polyalgorithm for the automatic solution of a mathematical problem .  

However,  oomplete reliability is unattainable and one can construct 

problems wi thout difficulty 'which lead to erroneous resul ts.  Most such 

constructions are pathological in nature and thus irrelevant to the actual 

effectiveness of the polyalgori thm .  

Testing is made more difficul t because of the following two facts: 

a) one has a very limited number of "real life" problems to solve,  (b) the 

bulk of these problems are routine and hence provide little contribution 

to measuring rel iabi l i ty .  The resul t is that most of the functions used 

to test the polyalgori thm are art ificial .  These functions are described 

in more detai l below .  

Efficiency is the attribute with second priori ty .  In fact ,  the 

development process consisted of first finding a way to handle a dif-

ficulty correctly and then improving the efficiency of the computat ion.  

The considerations of user convenience and flexibility came after a 

reasonably reliable and efficient polyalgorithm was avai lable.  

Note that the polyalgorithm is of such a nature that it cannot really 

compete (on the basis of efficiency) wi th simple minded schemes for 
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simple problems.  This polyalgorithm requires 15 to 20 function evaluations 

to find any zero (2-4 for ini t ial izat ion ,  5 for secant method ,  4 for root 

acceptance tests ,  5 for order of the root).  

12.  THE TEST FUNCTIONS .  The set of test functions is given expl icitly in 

[4].  These functions (about 80 in al l) have one or more of the properties 

listed below .  We give a sample of each property and the number of the 

functions wi th this property .  

a) Simple (25) F(x)=cos(x) - xe
X 

b) Clustered roots (7) F(x) = (y+16)(log
l Q
(l+y

2

)) J jy-8[ where y = x-1312 

c) Multiple roots (14) F(x) = (x-17)
2

| x-17 .1 |
1

'
8

(x-20) 

d) Fractional order roots C
7

) F(x) = |  x+157 .  21
 5

 (x-361.2 |  "
 7

(x-10~
6

)/1 x-10
-11

|  
7 

e) Discontinuities (4) F(x) = (1+x )sgn(sin(x)) It 

f) Assymptot ic to zero (6) F(x) = 1/(1+[x[ ) 

g) Round off effects (5) F(x) = 81-y(108-y(54-y(12-y))) where y=x-l .11111 

h) Non-Functions (3) x = x+1 .  ,  F=0 .  (in Fortran) 

i) Pathological (11) s = {1, .  1, .01, .001, .0001, . . .} 

F(x) = distance (x,s) 

j) Badly scaled (6) ( 1+x
4

 | x | <10
3 

F(x) 

1.222*10^-1x1 IxI>10
S 

k) Real world problems (5) F(x) = 20 / y
1 5

 + 36 /y
2 5

 + 40 / y
3 5

 + 475 /y
4 0 

~1 .12(y
40

-l)/(xy
40

)-4 .5 - 6 /y
4

 - 3 /y
8

 where y = 1+x 

The polyalgorithm gives results on these functions which are satisfactory 

to the author.  Of course,  it does not find all the roots of all of these 

functions and in some cases (not in the samples above) it finds roots 

which are debatable.  

The amount of computation for some of these functions can be of the 

order of 10 or 20 seconds (IBM 7094),  tho.ugh it is less than 2 seconds for 

most of them .  The efficiency for most of the cases can be dramatically 
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increased if some a priori knowledge is avai lable.  Thus for the example 

for b) above,  the work is cut by a factor of about 100 if the poly-

algorithm is told that all three roots lie in the interval [1250,1350].  

13.  SAMPLE RESULT• Finally we give a sample of the results from the poly-

algorithm for the example of d) above.  The output level shown is 3 

(of levels 0 ,1 ,2 ,3 ,4).  The following is slight ly rearranged from the 

actual computer output due to the difference in page size.  
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WE FOUND 3 ROOTS IN 2.  SECONDS 
I ROOT I ORDER REMARKS 
1 0.10000000E-01 1.00 

THIS ROOT WAS FOUND ON PASS MO .  1 THRU THE SEARCH AFTER 22 FUNCTION EVALUATIONS 
THE SECANT METHOD WENT FROM -0 .  TO 0.1000E-01 IN 4 ITERATIONS 

AND STOPPED WITH NORJ1AL CONVERGENCE 

2 -0.15720000E 03 1.50 
THERE IS NO SIGN CHANGE AT THIS ROOT 

THIS ROOT WAS FOUND ON PASS NO.2 THRU THE SEARCH AFTER 84 FUNCTION EVALUATIONS 
THE SECANT METHOD WENT FROM -0.1572E 03 TO -0.1572E 03 IN 8 ITERATIONS 

AND STOPPED WITH NORMAL CONVERGENCE 

3 0.36120000E 03 0.70 
THERE IS NO SIGN CHANGE AT THIS ROOT 

THIS ROOT WAS FOUND ON PASS MO .  8 THRU THE SEARCH AFTER 716 FUNCTION EVALUATIONS 
THE SECANT METHOD WENT FROM 0.3612E 03 TO 0.3612E 03 IN 18 ITERATIONS 

AND STOPPED WITH NORMAL CONVERGENCE 

WE EVALUATED F(X) 716 TIMES WITH SMALLEST AND LARGEST X-VALUES OF -0.18639E 04 
0.15495E 04 

THE SECANT METHOD WAS STARTED AT 48 POINTS 

WE SEARCHED THE FOLLOWING 18 INTERVALS IN THE ORDER GIVEN 
READ LEFT TO RIGHT ,  THEN DOWN 

(-0.9876SE 00 ,  0..98765E 00) (-0.15819E 03,-0.15621E 03) 
(-0.15562E 03,--0.14S35E 03) 

(-0.29942E 03,-0.17616E 03) (-0.13f^4E 03,-0.14977E 02) 
c 0.70356E 02 ,  0.15495E 04) 

(-0.13321E 03,-0.13123E 03) (-0.14111E 03,-0.13340E 03) 
(-0.21222E 03,-0.14289E 03) 

C-0.12155E 03,-0.52219E 02)  03.-0.22822E 03) 
C-0.16034E 03,-0.15406E 03) 

(-0.16656E 03,-0.16002E 03) C 0.36842E 03 ,  0.35398E 03) 

THE NUMBER OF ORIGINS USED IN THE SEARCH IS 2 ,  IN THE ORDER GIVEN 
0 .  -0.157199E 03 

DATA IS G
T

VEN WHEN THE SEARCH WAS RESTARTED NEAR THE ORIGIN BECAUSE OF LARGE FUNCTION 
VALUES FOUND FOR LARGE X-VALUES 

EXPANSION STOPPED ON PASS 5 AVERAGE F-VALUE* 0.670E 06 ,  LEFT ,  RIGHT EXTREME 
VALUES= 0.155E 08 ,  0.100E 08 

C-0.16905E 03,-0.15878E 03) 

(-0.18639E 04,-0.38475E 03) 

(-0.13103E 03,-0.12333E 03) 

(-0-36219E 02 ,  0.5S778E 03) 

c 



10 

REFERENCES 

Symes,  L .R . ,  Evaluation of NAPSS Expressions Involving Polyalgori thms,  Functions.  

Recusion ,  and Untyped Variables,  CSD TR 33 ,  February 1969.  

Symes,  L.R.  and Roman ,  R .V . ,  Structure of a language for a numerical analysis 

problem solving system in "Interactive Systems for Experimental Applied 

Mathemat ics" ,  ed .  M .  Klerer and J .  Reinfelds,  Academic Press,  1968,  pp .  67-78 .  

Rice,  J .R . ,  On the construction of polyalgorithms for automatic numerical 

analysis,  in "Interact ive Systems for Experimental Appl ied Mathematics" 

ed .  M .  Klerer and J .  Reinfelds,  Academic Press,  1968 ,  pp .  301-313.  

Rice,  J .R . ,  A set of 80 test functions for nonl inear equation solvers,  

CSD TR 34 ,  March 1969.  

Rice,  J .R .  and Rosen ,  S . ,  NAPSS ,  Numerical Analysis and Problem Solving System ,  

Proc.  ACM 21st Nat l .  Conf. ,  Los Angeles,  1966 ,  ACM Publ .  P-66 ,  pp .  51-56 .  

Roman ,  R .  V .  and Symes,  L .R . ,  Implementation considerations in a numerical 

analysis problem solving system ,  in "Interactive Systems for Experimental 

Applied Mathematics" ed .  U .  Klerer and J .  Reinfelds,  Academic Press,  1968 ,  

pp .  400-410 .  


	A Polyalgorithm for the Automatic Solution of Nonlinear Equations
	Report Number:
	

	tmp.1307986960.pdf.QPHgj

