View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1969

A Polyalgorithm for the Automatic Solution of Nonlinear
Equations

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
69-032

Rice, John R., "A Polyalgorithm for the Automatic Solution of Nonlinear Equations" (1969). Department of
Computer Science Technical Reports. Paper 248.
https://docs.lib.purdue.edu/cstech/248

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972156?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A POLYALGORITHM FOR THE AUTOMATIC
SOLUTION OF NONLINEAR EQUATIONS

John R. Rice

February 196%
CSD TR 32

ABSTRACT

This paper discusses the design of a polyalgorithm for the automatic
solution of a nonlinear equation F(x) = 0 for one variable. The polyalgoritnm
is part of WAPSS. The function F(x) is described by a computer program and
is examined only by evaluation. The three main parts of the paper are: brief

discussion of the objectives, description of the polyalgorithm and the testing

made of it.

A POLYALGORITHM FOR TIIE AUTOMHATIC SOLUTION OF NONLINEAR EQUATIONS

John R. Rice*

INTRODUCTION AND THE PROBLEM, We consider the mathematical problem of given
a function F(x), find values XROOT so that F{XROOT) = 0. We assume that

F(x) is described by a computer program; in particular, we cannot examine

F(x) in any way except by evaluation. F(x) is a function of one real variable.
This paper has three main parts: a brief discussion of the objectives

of a polyalgorithm for the automatic solution of this problem, a longer

discussion of the polyalgorithm developed and some remarks on the ‘testing

made of the polyalgorithm, This poelyalgorithm has been developed primarily

for the NAPSS system. A general description of NAPSS is given in {5],

and various aspects of the system are described in [1], [2] and [6]. A

detailed philoscophy and discussion of the development of polyalgorithms

for automatic numerical analysis is given in [3].

POLYALGORITHM OBJECTIVES. There are a number of possible uses of this

polyalgorithm. The objectives for most of these are indicated by the follow-
ing:
A} To solve this problem with no additional information. That is to say

implement the statement
SOLVE F(X)=0 FOR X

By To allow some guidance by the user via qualifying phrases. Typical
qualifying phrases are
a) NUMBER 3 (of roots desired)
b) GUESS 13.1 (for root)
¢) INTERVAL [-12, 104] (roots must be in here)
d) WORK 15 SECONDS (time limit on computation)
e) OUTPUT LEVEL 3 (specifies amount of output desired)

*This polyalgorithm has been developed for the NAPSS system which is partialij
supported by a grant from the National Science Foundation, GP-05850,

A

C) To provide the user with considerable information, if desired, about
the solutions of the ‘problem, and the effort made to solve the problem.
POLYALGORITHM COMPONENTS AND STATUS, The current version of the poly-

algorithm is a set of Fortran subroutines. The code is about 2500 statements.
Three almost identical versions exist, one each for ordinary batch processing,
the NAPSS system and remote batch processing from a console.

The basic components of the polyalgorithm are:

a) Initialization, user interface e) Order of Roots
b) Overail Search Strategy f) F(X) Deflation
c) Numerical 'lethods for F(X) = 0 g) Logical Control
d} Root Acceptance Tests h)} Historical Information

These components are discussed in varying detail.

INITIALIZATION AND USER INTERFACE., The polyalgorithm is controlled by a

basic subroutine with about 20 arguments. This subroutine initializes a
large number of variables and sets default options as required. There are
about 100 variables to be initialized, including 50 print control switches.
The user interface for batch processing consists of a few small sub-
Toutines with 2 to 6 axguments which allow the user some flexibility in
his use of the polyalgorithm. These subroutines may also be used from
consoles. There is a Fortran preprocessor (writtem in SNOB@L4) which allows
more natural statements, but still results in batch processing. Statements

such as

EQ1.3 $ COS(X)**2 + X*ABS(X-3.1)*EXP(2.*X) = 0
SOLVE EQl.3 FOR X NUMBER 1 INTERVAL -3.,2.

are translated in Fortran and then the pelyalgorithm is accessed in the
normal way.

The NAPSS system provides a more natural and flexible interface as
well as allowing interactive use. At certain points the polyalgorithm ;
may receive instructions from the user and the user may request additional

information or effort from the polyalgorithm.

3
OVERALL SEARCH STRATECY. There are two distinct cases. The simplest one

is when an interval is specified.

Interval Search: The secant method is started at a sequence of points

in the interval. For the interval [0,1] these points are 1/2, 0, 1,
1/4, 3/4, 1/8, 3/8, 5/8, 7/8, 1/16...,15/16,1/32,... While these points
are used for secant method starts, a check for sign chanpges is also made.
If one is found, the half interval method is used in combination with the
secant method.

At appropriate times the sweeps through the intervals are halted
and some auxiliary computations are made. These are No. 2 and No. 4
described below for the gemeral search.

General Search, The main part of the search strategy is to generate

a sequence of intervals to be searched. One may visualize the sequence

graphically (NOT shown to scale).

origin
X
first
—_=2t
second third
- ——
fourth -tEL 7 fifth
sixth seventh
—— A
eighth ninth
l-'-g_'__—-l‘ [|
etc.

Each of these intervals is searched using 3 to 5 initial points for the

secant method (depending on the circumstances).

There are 5 auxiliary computations and tests made during the search.

They are:

No. 1: Origin Shift. The points where the secant method terminates

are examined and some retained. If F(X) is sufficiently small there, the
origin is shifted to this point. Once the origin is not zero, the small
intervals near the origin are no longer examined.

No. 2: Root Neighborhood Check. After a set (normally 8) of '"larger"

intervals are searched, the polyalgorithm stops and searches an interval

about the roots already found.

4

No. 3: U-Shape Adjustment. As the expansion of the search proceeds

awvay from the origin, one can easily move completely out of the realm of
possible zeros. This is usually accompanied by the curve y=F(X) becoming
U-shaped., A set of variables is maintained to measure this, and from time
to time the origin is perturbed and the general search is restarted.

No. 4: Check of termination points of the secant method. Those points

saved in Mo. 1 might well not result in an origin shift. From time to time,
all points saved in this array are used as secant starting points. If
these points are not found often and if nothing happens, they are then
deleted from the array.

Mo, 5: Asymptote Checks. Asymptote limits are established and maintained

atthree places in the polyalgorithm. Once these are exceeded, the search
in that phase is aborted. Too many violations of these limits terminates

the polyalgorithm.

NUMERICAL METHODS FOR F(X)=0. Three hasic methods are used: Secant, lalf-

Interval, and Descent. The Secant Method is fairly standard, the termination

criteria used are

a) Iterates Converge d) Asymptote to zero found

b) F(X} becomes small ¢) Too many iterations

c¢) Too far outside of requested interval
The multiplicity of a root is estimated after 10 iterations and the method
modified to take this into account. Provisions are made to force additional
iterations in the presence of multiple roots.

The Half-Interval !lethod operates in conjunction with the secant methad;

i.e., at each new halfway point, the secant method is initiated for a short
run, If none of these secant method attempts work, the point of sign change
15 classified as a discontinuity.

The Descent Method used is a simple descent on the function ABS(F(X)}).

It is useful (even essential) to lhave such a wmethod to "refine'' the location
of a root whenever round-off effects become noticeable, It is used only

after a root is '"found" by the secant methad.

S

ROOT ACCEPTANCE TESTS. The convergence of the secant method is not suf-

ficient evidence to accept a number as a zero of F(X). Four other tests
are used (XROOT = tentative root to be tested).
Test 1: Is there a sign change very close to XROOT?

Test 2: Is F(XROOT) much smaller than nearby values?
Test 3: Is F(XROOT) = 07
Test 4: 1Is F(XROOT) somewhat smaller than nearby values and also

absolutely small?
If a tentative root fails all of these acceptance tests, the descent method
is used to refine the root and the new value is retested.
F(X) DEFLATION, Let XROOT(I), I = 1,2,..., NROOT be the roots found with

orders (multiplicities) ORD(I} and sign change indicators IND(I)}. e

operate on the function

" NROOT ()J
It _ ~| ORD(T
FCH(X) = F(x)# 101 |¥-XROOT(F)
NROOT)]
i [Ix-xnoor(l)] ORD(T) *(SIGN(X-XROOT(I))) IND(I)
I=1 1 \)

Our experience indicates that successful deflation depends upon the multi-
plicities of the roots being computed reasonably accurately. This is less
critical if roots are of integer multiplicity and one may specify that all

roots are simple if this is known a priori.

LOGICAL CONTROL. There is a multitude of small, local logical control

decisions. The "overall" control depends on the relationships
{i) between clapsed time and progress through search
(1i) between number of roots found and progress through search
(i1i} Dbetween various quantities in the secaﬁt, half-interval, and

descent methods and their correlation with the root acceptance

tests and root order computations.

The first two of these are used for termination and the third for deciding

what tactic to use next.

10.

I1.

6

HISTORICAL INFORMATION. There are a number of questions which the poly-

algorithm is to be able to answer.

a) What roots were found?

b} What is the nature of the roots found?

¢} How were they found and how "“hard' were they to find?

d) What did the polyalgorithm do?

e) What is the polyalgorithm doing?

f) Debug dump (not intelligible to the average user)
The NAPSS system allows the user to

g) Request more information on certain points

h) Request additional effort - perhaps with changed specifications
It requires a rather large number of variabiles, print controls, informa-
tion collecting statements, and output statements to answer these questions
in a half reasonable way. It is more difficult to implement this phase
of the polyalgorithm than one would think beforehand.
TESTING THE POLYALGORITHM, Reliability is the most critical attribute

of a polyalgorithm for the automatic solution of a mathematical problem.
However, oomplete reliability is unattainable and one can construct
problems without difficultywhich lead to erroneous results. i{lost such
constructions are pathological in nature and thus irrelevant to the actual
effectiveness of the polyalgorithm.

Testing is made more difficult because of the following two facts:

a) one has 2 very limited number of ''real life' problems to solve, (b} the
bulk of these problems are routine and hence provide little contribution
to measuring reliability. The resuit is that most of the functions used
to test the polyalgorithm are artificial. These functions are described
in more detail below.

Efficiency is the attribute with second priority. In fact, the
development process consisted of first finding a way to handle a dif-
ficulty correctly and then improving the efficiency of the computation.
The considerations of user convenience and flexibility came after a
reasonably reliable and efficient polyalgorithm was available.

Note that the polyalgorithm is of such a nature that it cannot really

compete (on the basis of efficiency) with simple minded schemes for

12'

simple problems. This polyalgorithm requires 15 to 20 function evaluations
to find any zero (2-4 for initialization, 5 for secant method, 4 for root
acceptance tests, S for order of the root).

TIIE TEST FUNCTIONS., The set of test functions is given explicitly in

f4]. These functions (about 80 in all) have one or more of the properties
listed below. We give 2 sample of each property and the number of the
functions with this property.

a) Simple (25) F(x)=cos(x) - xe™

(y+16)(10g10(1+y2)) le-si where y = x-1312
|108

b) Clustered roots (7) F(x)

(x-17}%}x-17.1

c) iultiple roots (14) F(x) (x-20)

d) Fractional order roots(”) F(x) = |x+157.2|1'5|x-361.2|'7(x-10-6)/|x-10'1H
e) Discontinuities (4) F(x) = (1+x°)sgn(sin(x)) x| <3 /T

£) Assymptotic to zero (6) F(x) = 1/(1+[x[3)

g) Round off effects (5) F(x) = 81-y(1l08-y(54-y(12-y)}) where y=x-1.11111

h) WNon-Functions (3) x = x+1, , F=0. (in Fortran)

{1,.1,.01,.001,.0001,...}

i) Pathological (11} s
F(x) = distance (X,s)

i) Badly scaled (6) in*x4 x| <108
F(x) =

1.222%109-|x| [x|5108
k) Real world problems (5) F(x) = 20/y15 * 36/y25 + 40/y35 + 475/y40
“1-12(Y40'1)/(XY40)-4.5 - 6/)’4 - 3/y8 where y = 1+x

The polyalgorithm gives results on these functions which are satisfactory
to the author. Of course, it does not find all the roots of all of these
functions and in some cases (not in the samples above) it finds roots
which are debatable,

The amount of computation for some of these functions can be of the
order of 10 or 20 seconds (IB'! 7094), though it is less than 2 seconds for
most of them, The efficiency for most of the cases can be dramatically

13.

8

increased if some a priori knowledge is available. Thus for the example
for b) above, the work is cut by a factor of about 100 if the poly-
algorithm is told that all three roots lie in the interyal {1250,1350].
SAMPLE RESULT. Finally we give a sample of the results from the poly-

algorithm for the example of d) above. The output level shown is 3
(of levels 0,1,2,3,4). The following is slightly rearranged from the

actual computer output due to the difference in page size.

WE FOUND 3 ROOTS IN
ROOT I ORDER

0.10000000E-01 1.00

2. SECONDS
REMARKS

THIS ROOT WAS FOUND ON PASS NO. 1 THRU THE SEARCH AFTER 22 FUNCTION EVALUATIONS
THE SECANT METHOD WENT FROM -0. TO 0.1000E-01 IN 4 ITERATIONS
AND STOPPED WITH NORMAL CONVERGENCE

-0.15720000E 03 1.50

THERE IS NO SIGN CHANGE AT THIS ROOT
THIS ROOT WAS FCUND ON PASS NO.2 THRU THE SEARCH AFTER 84 FUNCTION EVALUATIONS
THE SECANT METHOD WENT FROM -0.1572E 03 TO -0.1572E 03 IN 8 ITERATIONS

AND STOPPED WITH NORMAL CONVERGENCE

0.36120000E 03 0.70

THERE IS NO SIGN CHANGE AT THIS ROOT

THIS ROOT VAS FOUND

ON PASS MO. 8 THRU THE SEARCI! AFTER 716 FUNCTION EVALUATIONS

THE SECANT METIIOD WENT FROM 0.3612E 03 TO Q.3612E 03 IN 18 ITCRATIONS
AND STOPPED MITH NORMAL COMVERGENCE

WE EVALUATED F(X) 716 TIMES WITH SiALLEST AND LARGEST X-VALUES OF -0.18639E 04

0.15495E 04

THE SECANT METHOD WAS STARTED AT 48 POINTS
WE SEARCHED THE FOLLOWING 18 INTERVALS IN THE ORDER GIVEN

READ LEFT TO

(-0.9876SE 00, 0.98765E
{(-0.15562E

(-0.29942E 03,-0.17616E
(0.70356E

(-0.13321E 03,-0.13123E
(-0.21222E

(-0.12155E 03,-0.52219E
(-0.16034E

(-0.16656E 03,-0.16002E

RIGHT, THEN DOWNM

00) (-0.15819E 03,-0.15621E 03) (-0.1690SE 03,-0.15878E 03)
03,--0.14535E 03)

03) (~0.13824E 03,-0.14977E 02) (-0.18G39E 04,-0.38475E 03)
02, 0.15495E 04)

03) (~0.14111E 03,-0.13340E 03) (-0.13103E 03,-0.12333E 03)
03,-0,14289E 03)

02) (-0.85222E 03,-0.22822E 03) (-0.36219E 02, 0.58778E 03)
03,-0.15406E 03)

03) (0.36842E 03, 0.35398E 03) (

THE NUMBER OF ORIGINS USED IN THE SEARCH IS 2, IN THE ORDER GIVEN

0.

-0.157199E 03

DATA IS GTVEN WHEN THE SEARCH WAS RESTARTEDR NEAR THE ORIGIN BECAUSE OF LARGE FUNCTION
VALUES FOUND FOR LARGE X-VALUES
EXPANSION STOPPED ON PASS S5 AVERAGE F-VALUE= 0.670E 06, LEFT, RIGHT EXTREME
VALUES= 0.155E 08, 0.100E 08

10
REFERECES

Symes, L.R., Evaluation of NAPSS Expressions Involving Polyalgorithms, Functions,
Recusion, and Untyped Variables, CSD TR 33, February 1969.

Symes, L.R. and Roman, R.V., Structure of a language for a numerical analysis

problem solving system in "Interactive Systems for Cxperimental Applied

ilathematics", ed. . Klerer and J. Reinfelds, Academic Press, 1968, pp. 67-78.

Rice, J.R., On the construction of polyalporithms for automatic numerical

analysis, in "Interactive Systems for Experimental Applied Mathematics"

ed. il. Klerer and J. Reinfelds, Academic Press, 1968, pp. 301-313.

Rice, J.R., A set of 80 test functions for nonlinear equation solvers,

CSD TR 34, ilarch 1969.

Rice, J.R. and Rosen, S., NAPSS, Numerical Analysis and Problem Solving System,
Proc. ACH 21st Natl., Conf., Los Angeles, 1966, ACM Publ. P-66, pp. 51-56.

Roman, R. V. and Symes, L.R., Implementation considerations in a numerical

analysis problem solving system, in "Interactive Systems for Experimental

Applied Mathematics' ed. il, Klerer and J. Reinfelds, Academic Press, 1968,
pp. 400-410.

	A Polyalgorithm for the Automatic Solution of Nonlinear Equations
	Report Number:
	

	tmp.1307986960.pdf.QPHgj

