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ABSTRACT

This report describes how to use the ELLPACK system and lenguage for solv-
ing elliptic problems. ELLPACK provides many facilities for solving two dimen-
sional, linear elliptic partial differential equations on rectangular domains,
several facllities for non-rectangular doﬁlains anci f;)r three dimensional rec-
tangular domains, The systém a116w5 a user to attack non-linear problems by
constructing various iterations of linear methods.

The current revisicn is a draft for part of the final doctmentation of tﬁe

ELLPACK system. Corrections and suggestions for improvements are welcomed.
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PREFACE

The ELLPACK system is the outgrowth of a cooperative project to study
methods and software for elliptic problems. This project was coordinated by
John R. Rice of Purdue University; the principal members of the project were

Randy Bank University of Texas

Garrett Birkhoff Harvard University

Ronald Boisvert National Bureau of Standards
Stanley Lisenstat Yale University

William Gordon Drexel University

Elias Houslis University of SBouth Carolina
David Kincaid University of Texas

Robert Lynch Purdue University

Donald Rose Beli Telephone Laboratories
Martin Schultz Yale University

Andrew Sherman  Exxon Research

David Young University of Texas

Substantial contributions of software were made by many others: Carl de Boor,
John Brophy, Wayne Dyksen, Roger Grimes, Hartmut Foerster, LINPACK, William
Mitchell, W. Proskurowski, John Respess Granville Sewell, Yan Snyder, Paul
Swarztrauber, Roland Sweet, Linda Thiel, William Ward and Alan Weiser, This pro-
ject has received support from the National Science Foundation, the Department
of Energy and the Office of Naval Research as well as from the participants’ insti-

tutions.

ELLPACK was originally developed as a research tool to evaluate and com-
pare mathematical software for solving elliptic problems. The idea was Lo create
a system where individuals can contribute seoftware modules which either com-
pletely or partially sclve an elliptic problem. Those modules that partially solve
the probiems (e.g. discretize it} are combined with other medules to complete
the solution. With all the software operating in the same environment one can
make a performance evaluation of the modules. Several studies of this type
have been made and Part 3 of this book presents simple examples of perfor-

" mance evaluation.

Considerable effort was put into making ELLPACK easy to use and to aug-

ment. The ELLPACK system presented in this book is useful not only for

“1
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iv
research into the performance of numerical metheds and software, but also for
education and actual problem solving. Standard elliptic problems of mederate
difficulty can be stated and solved in a direct, sim;;le manner. Many more com-
plex problems, including nonlinear, time dependent and simultanecus equations,

can be solved using more advanced ELLPACK factlities.
A, The ELLPACK Project
B. Mathematical Preliminaries (not included)

C. Numerical Methods Preliminaries (not included)
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CHAPTER ONE: GENERAL DESCRIPTION AND A SIMPLE. PROGRAM

1.A GENERAL DESCRIPTION
ELLPACK is a computer programming system for elliptic boundary value
problems, The problems addressed include linear variable-coefficient elliptic

‘ equations of the form

Qlizy + ClUy,, + duy +eu, + fu=g
or, in self-adjoint form,

(Pr)e + (qgdy +Ffu =g
defined on general two-dimensional domains, and their three-dimensional coun-
terparts defined on rectangular boxes. For two-dimensional problems, boundary

conditions may take the form

oz + fuy +bu =9,
where «, 8, 6 and ¢ are functions of £ and . The three-dimensional case is sirni-
lar. Periedic boundary conditions are also adnﬁtted when the domains are rec-
1:.angu1a.r. In addition, ELLPACK is organized so that it is possible to set up itera-
tiens to solve nonlinear problems (i.e.a,c,d, e, f, ¢g.p, 9, a, 8. 6, ¢ are also
functions of u, 1, etc.).

ELLPACK users specify the problem they wish to solve in an ELLPACK pro-
gram written in a simple user-oriented ELLPACK language. The ELLPACK system
processes this program by first transla-ting it to a FORTRAN source program
called the ELLPACK control program; this program is then compiled and linked
to a precompiled ELLPACK module library. Finally, the program is executed,

producing a solution to the problem. The process is illustrated in Figure 1.1,

The ELLPACK language is an extension of Fortran, and ordinary Fortran

code can be mixed with ELLPACK statermnents. Elliptic equations, demains, and
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USER'S ELLPACK ELLPACK PREPROCESSCR PRINTED VERSION

INFUT .| = A FORTRAN PROGRAM QF USER'S INPUT

y

SOURCE FORTRAN FOR

ELLPACK CONTROL PROGRAM

FORTRAN

COMPILER

!

ELLPACK CONTROL RESULTS

PROGRAM SAVED

!

ELLPACK LIBRARY OF EXECUTION OF

COMPILED MODULES ELLPACK RUN \ ELLPACK

QUTPUT

Figure 1.1. Schematic diagram of the processing of an ELLPACK run.
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boundary conditions can be declared in this language, and powerful statements
are avallable to help users get from the specified problem to useable output.
These ytatements invoke modules in the ELLPACK module library. There are five

basic types of modules:

Discretization. Replace the partial differential equation and boundary con-

ditions by an approximate, finite system of linear algebraic equations.

Indexing. The equations and unknowns of the diserete system are reor-

dered to facilitate solving the system.
Solution. The system of equations is solved.
Triple, Discretization and solution are performed as a single step.

Output. The approximate solution is tabulated or plotted.

One specifies the numerical method to be used by invoking, in turn, a discretiza-
tion module, an indexing meodule, and a sclution module {or a single triple

module), In the ELLPACK language this is done by simply giving their names,

A large number of modules are available in ELLPACK for each stage of thé
compulalion. Fer example, discretization by various types of finite difference
and finite element methods are possible, as well as solution of algebraic equa-
tions by both iterative and direct methods. Detailed descriptions of the avail-
able modules are given in Part 2. This easy access to a large repertoire of
numerical metheds makes ELLPACK useful in comparing solutions obtained by
vastly different methods, as well as a “pilot plant” for large scale application
problems.

During execution, ELLPACK modules communicate through fixed pre-
defined collections of variables called interfaces. This process is illustrated in

Figure 1.2 and described in detail in Part 4, where a complete specification of

wi
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ELLPACK CONTROL
PROGRAM

7

p— o —

I
| : ;
] Equation Equation Equation I |output
ggg?&ﬁm“—L-,.Discretization T Indexing |—4 Solution | Modﬁlile
: } Module I Module j | Module
i
t 1 1 ]
Interface Interface Interface Interface
1 2 3 4

Figure 1.2. Basic organization of an FLLPACK computation. The user
specifies the modules to be used and more than one combination may
.be used on a single ELLPACK run.

950
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how to add new modules to the ELLPACK system is given.

The final essential ingredient in the solution of an elliptic problem with
ELLPACK is the speclfication of a rectangular grid to cover the domain. When
this grid is made finer the approximations used by discretization modules are
moere accurate (within the constraints of machine arithmetic), but computer
time and memory requirements also increase (i.e. there are more algebraic
equations generated). When a non rectangular domain is specified in ELLPACK,
the domain processor is invoked. It sets up tables which relate the rectangular

grid to the domain in a way useful to discretization and triple modules.

1.B A SIMPLE ELLPACK PROGRAM

We show a very simple elliptic problem and an ELLPACK prograrm which gen-
erates an approximate solution. A table of this solution is printed and a contour

plot is preduced;

Elliptic Problem

The partial differential equation e =f is

Ugz + Uy + B, — 4u = exp(z+y)sin(nz),

the domain R is the rectangle 0<z <1, —1<y <2 and the boundary conditions

Mu=g are
u =0, =0, —l<y<R
© =z, O<e <1, y=2
u = g— z=1, —1<y<2
© = sin{mz) ~ ';— 0<z <1, y=-1

The ordinary finite difference approximation (5-POINT STAR) is used to discre-
tize the problem at points of a square grid with spacing 1/5. The resulting linear

system is solved with ordinary Gauss elimination for band matrices.
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L L]
. * EXAMPLE ELLPACK PROGRAM 1.B1
L] *
L] (AR AR R AL ARl R R R R NI R R R N E N R RN Y )
L]
OPTIONS TIME $ MEMORY
L]
EQUATION.
UK~ + UYY + 3.0°UX - 4.0
[ ]
BOUNDARY . U=0.0 ON X =
U = SIN(PI*X) - X/2.0 ON Y =
U =Ys2.0 ON X =
U=X N Y =
L ]
GRID. 8 X POINTS $ 6 Y POINTS
[ ]
DISCRETIZATION. 5 POINT STAR
INDEXING. NATURAL
SOLUTION. LINPACK BAND
L]
OUTPUT. TABLE (U) € PLOT (U)
L]
END.
APPROXIMATE MEMORY REQUIREMENTS
WORKSPACE 1875 GRID LINES
LINEAR EQNS 576 UNKNOWNS
INTERPOLATION 141 DOMAIN INFO
AMATRX, BVECTR 504 TOTAL MEMORY

SYMBOL TABLE INPUT TIME 2.52 SECONDS
PROGRAM PROCESSING TIME  .@0 SECONDS
TEMPLATE OUTPUT TIME 1.60 SECONDS
TOTAL TIME 5.32 SECONDS

Output of ELLPACK run:

5-POINT - 8

DOMAIN

X INTERVAL

Y INTERVAL
DISCRET[ZATION

GRID

HX

HY

B.C.5 ON PIECES 1,2,
OUTPUT LEVEL

NUMBER OF EQUATIONS
MAX NO, OF UNKNOWNS
EXECUT[ON SUCCESSFUL

RECTANGLE

-Q00E+00, .100E+01
-.100E+01, .200E+01
UNIFORM

68X 6

. 200E+00

. 800E+Q0

3.4 1,1,1,1
1

18

PER EQ. 5

¢]
3145
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"NATURAL
NUMBER OF EQUATIONS 18
EQUAT IONS /UNKNOWNS NUMBERED

[N ORDER GENERATED
EXECUTION SUCCESSFUL

LINPACK BAND

NUMBER COF ROWS 13
NUMBER OF COLUMNS 18
NUMBER OF LOWER CO-DIAGONALS 4
NUMBER OF UPPER CO-DIAGONALS 4

LINPACK BAND GIVES 2 TIMINGS
*  SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

+ TABLE OF U ON 8 X 8 GRID +
+ +

e

X-ABSCISSAE ARE

. GC000CE+GO .200000E4+00 . 400000E+00 . B00000E+D0
.B00COOE+00 . 100000E+01 ,

Y = .200000E+01
. 0000COE+00 .200000E+00 . 400000E+-00 . 800000E+00
-B000O0OE+00 -100000E+01

Y = .140000E+01
.000G00R+00 - .6BB0AOE-01 -.478780E-01 .878828E-01
. 368050E+00 . 7T00000E+HO0

Y = .B0OOOOOE+Q0
-000C00E+00 -.681488E-01 -.8683472E-01 .238188E-01
-194251E+00 .400000E+00

Y = .200000E+00
.000000E+00 -.821810E-01 -.8086831E-01 -.5356813E-01
. 147178E-01 . 100000E+00

Y = -.400000E+00
-000000E+00 - . 202565E-02 -.252810-01 -.732527E-01

-.135P45E+00 -.200000E+D0

Y = -.100000E+01
. 000000E+00 .1B77Y85E+00 . 751057E+00 .851058E+00
. 187785E+00 - . 200000E+00

~y
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MODULE NAME SECONDS
5-POINT STAR .2
NATURAL .02
LINPACK BAND SETUP .03
LINPACK BAND .03
TABLE .38
PLOT 6.37
TOTAL TIME 7.08

This program consists of several segments whoge names (EQUATION, BOUN-
DARY, and so on) begin in column 1 of a line, the rest is written in free format
(excluding column 1). The dollar sign is a geparator to allow more than one item
on one line in a segment, Parts of the program include Fortran expressions
(+3., EXP(X+Y)*SIN(P1*X), etc.) which must follow the rules of Fortran. Lines

beginning with * are comments.

This example is the simplest case of an ELLPACK program: one defines the
elliptic problem in the EQUATION and BOUNDARY segments, OPTIONS are chosen,
a rectangular grid is defined in the GRID segment, the solution method is speci-
fied in the DISCRETIZATION, INDEXING and SOLUTION segments and the desired
output is specified in the OUTPUT segment, Every ELLPACK program ends with
END.

The ELLPACK preprocesser lists the program with an identifying heading. It
also prints the memory estimates as requested in the OPTIONS segment along
with its execution time. ‘Each ELLPACK module prints a simple summary mes-
sage. _'I‘he output segment contains two requests, one is a table of the solution

on the grid and the other is a contour plot produced by some graphics device.
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§, .6 8 10
o
[ =]
| \\
[ o]
(=]
o
- L
_ cohtours
contour valus
o 1 ~.508400
a 2 -.33=+00
x 3 -. 17e+00
4 . 00e+00
5 . 1 7e400
8 . 33400
7 .50e+00
g 8 .67e+00
< @ .83e4+00
10 . 108401
3
Lo ]
3
2L
o /\
(=]
S PO\
—~ 1000 | 500 1£000

Figure 1.3. The contour plot produced by PLOT(U) in the example

ELLPACK 1B1 program. This plot is made with an electrostatic printer.
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The graphics connected to ELLPACK will vary from installation to installation.

1.C ORGANIZATION OF THE BOOK

The basie features of the ELLPACK language a.lre presented in the next
chapter, then three more examples are presented in detail in Chapter 3 (one
solves the same problem with two different choices of methods, another illus-
trates non-rectangular geometry and the third shows how Fortran can be inter-
spersed with ELLPACK statements.) Chapters 4 and 5 describe and illustrate
more advanced features of ELLPACK. There are a number of examples of
advanced applications in these two chapters. Part 2 (Chapters 6 through 9} con-
tains summary descriptions of the over 40 modules available and an overview of
the ITPACK and YALEPACK software included in ELLPACK. Part 3 (Chapters 10-
12) presents a basic performance evaluation of many of the ELLPACK modules.
The objective is to give the reader some feel for the properties of various

methods (software modules) and not to present a complete scientific evaluation.

Part 4 (Chapters 13-18} is a Contributor's Guide; it provides the infermation
to prepare a new module for the ELLPACK system. The ELLPACK system is
designed so that new modules can be easily added (and corresponding additions
made to the language). There is useful information for those who wish to
attempt advanced ELLPACK applications, otherwise this and the following Part 5
are not relevant to the use of ELLPACK. Part 5 (Chapters 19 and 20) is an Instal-
lation Guide; it provides detailed information on how to install ELLPACK and to
make modifications to it. The basic ELLPACK system can be installed without
much difficulty; one needs to know how to manipulate files and to create a
library from a set of Fortran programs. Tailering the ELLPACK system is more
complicated and while it does not require specific expertise of a system pro-

grammer, one is more likely to have seen the kinds of things that have to be

Fa

~

.

6




SECTION 1.C =11 -

done,

The Appendices contain reference material, there are brief summaries of
the PG system r:;.nd the TOOLPACK template processor which are used to create
the ELLPACK system. There is the PDE population a set of over 80 linear elliptic
partial differential equations on two dimensional rectangular domains. These

can be used as a problem population for a systematic performance evaluation.
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CHAPTER 2. THE ELLPACK LANGUAGE

2.A GENERAL ORGANIZATION OF AN ELLPACK PROGRAM.

The ELLPACK program should be interpreted as the main program of a Fortran
job. The basic blocks of statements in an ELLPACK program are segments. The
segments that define the élliptic problem and options are like declarations: they
rmust come first and they are not executed, The other segments (except END)
are execuled and the flow of the computation is controlled by placing them in
the proper sequence. Ordinary Fortran statements may be interspersed among

the executable segments, and there is alse a facility to specify Fortran subpro-

grarns (but not ELLPACK subprograms).

A brief summary of the segments ig given in groups.

Group 1 Segments define the elliptic problem., They must appear before any

from Group 2 and. except for GRID, appear exactly once,

EQUATION.
BOUNDARY.
GRID.

HOLE.

ARC.

Blanks are not allowed in these or any other segment names. Segment names

Specifies the partial differential equation.
Specifies the domain and boundary conditions,

Specifies a set of vertical and horizontal grid lines.
GRID can appear more than once to change the grid
size provided that MAXGRID is set in an OPTION seg-
ment before the first GRID segment.

Defines a hole in the domain and associated boundary
conditions. This segment can appear more than once
if several holes are present, It must follow the BOUN-

- DARY segment.

Defines an interface or slit in the domain on which
additicnal conditions are prescribed. Its use is
governed by the same rules as the HOLE segment.

may be abbreviated by Lwo or more of Lheir leading characters.

Y
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Group 2 Segments specify the executable ELLPACK modules and may appear
more than once. A specific ordering is usually required; e.g., DISCRETIZATION,

INDEXING, SOLUTION, OUTFUT or TRIPLE, OUTFUT.

DISCRETIZATION. Specifies a module to define a diserete approximation
to the elliptic problem; this generates a system of
linear algebraic equations. (This is the first phase of
an ELLPACK solution algorithm.)

INDEXING. Specifies a module to reorder the linear equations
and the unknowns. (This is the second phase of an
ELLPACK solution algorithm.)

SOLUTION. Specifies a module which solves the linear equations.
' (This is the final phase of an ELLPACK solution algo-

rithm.)

TRIPLE. . Specilies a combination method which includes
discretization, indexing and solutions all in one
module.

PROCEDURE. - Specifies various other optional actions in seolving or
analyzing the problem. -

QUTPUT. - Selects desired ELLPACK-generated output (printed
and graphical).

Group 3 Segments may appear anywhere in the program and as many times as

desired.
* Specifies a comment.
OPTIONS. Specifies which of various options are desired.

FORTRAN. Specifies that the statements which follow are user
' supplied executable Fortran statements.

(blank line) Allowed at any point

Group 4 Scgments specify various information and can appear at most once.

DECLARATIONS. Provides Fortran declarations for the user provided
executable Fortran statements. Must appear at the
beginning of the program.
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SUBPROGRAMS. Specifies that a set of Fortran subprograms (FUNC-
TION or SUBROUTINE) follows. This segment must go
just before the END segment.

GLOBAL. Gives declarations (primarily COMMON blocks) that
are placed within Fortren programs generated by
ELLPACK to define the elliptic preblem. Must appear
at the beginning of the program.

END. Speciflies the end of the ELLPACK program.

Two or more letters of the beginning of a segment pare form an acceptable
abbreviation. All segment names and their abbreviations must end with a
period. Each DISCRETIZATION, INDEXING, SOLUTION, EQUATION, TRIPLE and PRO-
CEDURE segment must be on a single line. The line may, however, be continued
by putting a period in column 1. No segrment can be longer than 1000 charac-
ters. The OPTIONS, OUTPUT, BOUNDARY, GRID, HOLE and ARC segments may use
several lines and the separator § may be used to place several parts of these
.gegments on one line. If these segments are broken in the middle of a word or
expression, then the continuation convention (period in column 1) must be used.
The segments FORTRAN, SUBPROGRAMS, DECLARATIONS and GLOBAL start with

the segment name on a separate line followed by llnes of Fortran code.

The independent variables are denoted by X, Y, and Z (X and Y for two-
dimensional problems). The dependent variable is dencted by U, its first deriva-
tives u;, vy and », by UX, UY, and UZ, and the second derivatives UXX, UYY,
UXY, and sco on. These names are reserved in ELLPACK and Fortran variables
with these names cannot be used salely. Once the PDE is solved the functions
UX,Y), UXOLY), ete. (U(XY.Z), UX(X,Y.Z), ete. in three dimensions) become
defined and may be used as ordinary Fortran functions. The complete set of

reserved names in ELEPACK is:

X, Y, Z U, UX, UXX, UY, UYY, UYX, UXY, UZ. UZZ, UZX, UXZ UZY, UYZ, TRUE,

ERROR, RESIDU, ON, FOR, TO, LINE, Pl
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plus any 8 character name starting with C, I, L. @ or R followed by a digit. The
wo-rds ON, FOR, TO and LINE must actueally only be aveided in Fortran functions
of the BOUNDARY segment. The varlable PI Is set to the mathematical constant
i and can be used anywhere in the ELLPACK program. The six character names
are internal Fortran variables for ELLPACK; their use would create a name con-

flict. The meanings of the i_nitial characters are
C Common blocks
1 Integers
I. Logical
Q@ Bubprograms

R Real (or double precision)

2.B SEGMENTS WHICH DEFINE THE PROBLEM AND GRID (GROUP 1)

We describe the rules {syntax) for defining the PDE problem and associated rec-
tangular grid. The notation <word> is used to specify an item that is to be pro-
vided or defined later. Thus

<coef> u = <right side>

can represent (z% +1) w = z cos(z) with coef =z® +1 and right side = z cos(z).

EQUATION. segment

The EQUATION segment specifies the partial differential equation to be
solved. In the definition of the equatlon, the dependent variable and its deriva-
tives are denoted by U, UX, UXX, etc. The equation is specified in the form
<operator> = <right side>
where <operator> is a list of terms of the form i

<coefficient> * <derivative>
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The terms <coefficient> and <right side> denote any valid Fortran real arith-
metic expressions as well as the separators + or -, and <derivative> denotes one
of U, UX, UY, UZ, and so on. If the coefficient of a derivative is zero, then the

associated term need not appear.

Some examples of the EQUATION segment are given below.

* LAPLACE'S EQUATION

EQUATION. UXX + UYY = 0.

. AN EQUATION WITH CONSTANT COEFFICIENTS

L]

EQUATION. -4.*UXX + .377°UXX - 3.*PI°UYY + 3.E+4%UX = SIN(X+COS(X*Y))
* THE COEFFICIENTS QF UYY AND U ARE GIVEN AS FORTRAN FUNCTIONS.

* THESE ARE SUPPLIED BY THE USER IN THE SUBPROGRAMS SEGUENT.

EQUATION. (X**2 + Y**2 + 18.)*UXX + VALUYY(X,Y) *UYY
. -2.234E- 3*ATANZ(Y.X) UX + 1.4°UY - VALU(X.Y)*U = 0.

There is a special ELLPACK form for self-adjoint equations which are writ-
ten in the form
(plzy)uz): + (qzy)uyly + (zy)u = F{z.y)
Itis-
FQ. (P(X,Y) U)X + (Q(X,Y)'UY)Y + R(X,Y)*U = G(X.Y)

" The functions P, g, B and & may be replaced by any Foriran expressions,

There is an alternate way to indicate a self-adjoint equation by using the

OPTIONS segment as follows:

* SELF-ADJOINT, ALTERNATE FORM
OPTION. SELF-ADIOINT = ,TRUE,

EQUA. P(X.Y)*UXX + Q(X,Y)*UYY + R(X.Y)*U = G(X.Y)
o

£y
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Note that several modules apply only to PDEs written in self-adjoint form.

BOUNDARY. segment

The BOUNDARY segrent specifies the boundary of the domain £ and the
boundary conditions on them. We first describe general two-dimensicnal
domains in ELLPACK; the special facilities for the simpler cases of rectangular
two- and three-dimen_sional demains are described after that. The boundary is
broken up into a series of pieces which must join together in sequence. A piece
and conditien are specified by

<condition> ON <piece>

where <conditioﬁ> is one of the following:

FPERIODIC or

<expression>*UX + <expression>*UY + <expression>*U = <expression>
where <expression> is a legal Fortran expression. The three terms on the left
can be in any order, and any term may be omitted if its ecefficlent expression is
zero. 1f the <condition> preceeding ON is omitted, then the preceeding <condi-

tion> is used as the default condition.

Periodic boundary conditions may only be applied in the case of rectangu- .

lar domains. If PERIODIC is specified on one side, then it must also be specified
on the opposit‘e side. Any of the other usual types of boundary conditions can be
specified using the secend form. For Instance, a Dirichlet condition is specified
as
U = F(X,Y)
and a Neumann condition as
AXY)*UX + B(X.Y)*UY = F(X.Y)

where (XY) is a point on the boundary and (A(X)Y), B(X,Y)) is the unit vector

normal to the boundary (pointing outward). The latter reduces to + UX=F(Y) or

0: 4
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x UY=F(X) for rectangular domains.

A non-rectangular two dimensional domain is specified as a sequence of
parameterized sides. The general form of <piece> is

X= <expresslion>. Y = <expression> FOR (param'eter;‘- = <a> TO <b>
where

<parameter> is a real Fortran variable that parameterizes the side

<expression> is a Fortran expression in the parameter

<a>. <b> are Fortran expressions that evaluate to constants which deter-

mine the initial and final value of the parameter, )
The pieces are assumed to be given in counter-clockwise order, (this may be
overridden by putting CLOCKWISE = .TRUE. in an OPTION segment). Each piece
starts on a new line unless the % separator is used. The parameter must
increase from <a> to <b>. It is essential that the parametlerization be of ordi-
nary size and not vary erratically along the boundary. The continuity of joining
the pieces is checked and the joining must be done accurately. Two simple

examples of non-rectangular boundary and boundary condition specification fol-

low:

* CIRCULAR DISK WITH CENTER 1,1

BOUND. U = 0.0 ON X = 1.-COS(PI*THETA), Y = 1.-SIN(PI*THETA)
: FOR THETA = 0. TO 2.

’ QUARTER ANNULUS
BOUNDARY .

U=100. ON X=SIN(PI*T), Y=COS(PI*T) FOR T=0. TO 0.5
U=200. *(2.-X) ON X=R, Y=0. FOR R=1. TO 2.0
U=0.0 ON X=2. vcosu?[v'r) Y=2. *SIN(PI*T) FOR T=0. TO 0.6
U=100. *(2.-Y) ON X=0.0, Y=2.-R FOR R=0. TO 1.0

The reserved words ON, FOR, LINE and TO cannot have blanks in them and must

have blanks on both sides of them.

There is a special simple form for straight line pieces of the boundary. In

this case <piece> appears as:
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LINE <x-constent>, <y-constant> TO <x-constant>, <y-constani>
where <x-constant>, <y-constant) are the coordinates of the end point of the
piece; they may be any Fortran expression that evaluates to a constant.
Straight line sides may be connected by the following multiple side form.:

<condition> ON LINE <z>», <y> TO <x>, <y>
<condition> TO <z>, <y>

<-coru;l::11-.ion> TO <x>. <y
The boundary condition <condition> may be omitted if it is the same as for the
 preceeding pieces (for both straight line pieces or parameterized pieces).
Several groups of TO <x>, <y> can be placed on one line as leng as the same
boundary condition holds, as for example
U=1.0 LINE <x1>.<yl> TO <x2>.<y2> TO <x3>,<y3> TO - TO <xK>,<yK>
The complex example in Figure 2.1 of a non-rectangular domain speeifica-

tion follows:

’ FOUR SIDED, NON-RECTANGULAR DOMAIN
OPTION, CLOCKWISE = .TRUE.
BOUNDARY.
U=0.0 ONLINE 4.,4. TO 1., 4.
TO 1., 0.5
U= (X-4.)*(Y-.5) T0 4.,-0.5
ON X = 4.+.1*P*(P-4.5)%¢2, Y=-.54+P FOR P=0. TO 4.5

This example shows how omitting the boundary condition specifies it to be the

previous one and how the LINE specifications continues from piece to piece,

A second complicated example follows:

o SIX SIDED REGION WITH 3 STRAIGHT SIDES

U=0.0 ON X=-T, Y=(T-1,)**2 FORT = 1. TO 2.
ON X=(P-1)*+2-2, Y=P FOR P = 1. TO 2.

U=(2.%%X-Y)**2 ON LINE -1.,2. TO .5,2. TO 1.,1. TO 0.,0.

UX-3.0°U=.5 ON X=-SQRT(PHI), Y=SIN(PI*PHI)/s5. FOR PHI = 0.0 TO 1.0

There is a special abbreviated form for rectangular domains {in two or




SECTION 2.B . -20-

TFigure 2.1. A nonrectangular domain with its parameterization and
boundary conditions given.

Loy
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three dimensions) where <piece> is of the form
<variable> = <constant>
Here <variable> is one of X.Y.Z and <c$nstant> is a Fortran expression that
-evaluates to a constant. Two examples of defining a two dimensional domain and

its boundary ceonditions fellow:

o ABBREVIATED BOUNDARY FORM FOR A RECTANGLE
BOUND.

U=1.0 ONX =0.0

U + X*UX = (X+Y)*EXP(Y) ONX=1.0

UY = 0.0 ONY = 0.0

U = EXP(X) ONY =1.0
° BOUNDARY CONDITION CARRIED PORWARD FROM PIECE TO PIECE
BO. U=0.0 ON Y = 0.0

ON Y = Plsz.

ON X = 0.0
EXP(1.)*SIN(2. 'PI*Y) ON X = EXP(1.0)

o
1]

The preceding example can be written in a more compact form using the 3

separator as follows

BOUNDARY .
U=0.00Y =0.0% ONY=PIs2. $ONX=0.0
U = EXP(1.)*SIN(2.*PI*Y) ON X = EXP(1.0)

The extension of this notation to three dimensional rectangles is straight for-
ward,; six rather than four sides and conditions are required and boundary con-

ditions can include U, UX, UY and UZ terms.

GRID. segment

The GRID. segment defines a rectangular grid placed over the
domain. The general form of the segment is a set of terms:

<n> <variable> POINTS <point list>
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where
<n> = number of peints; must be constant unless MAXGRID
option is used
<variable> = variable involved (cne of X, Y or Z),
<peint list> = list of grid coordinates in increasing order.

These terms must be on separale lines or separated by a 8. For two dimensional
domains there must be one set of points specified for X and another for Y. In
three dimensions there must also be a specification for Z. If the following grid is
specified

7y X POINTS z,, Z2u.uTn,

n2 Y POINTS ¥y, ¥z.....¥n,

then the rectangular grid is made up of the lines

T=T), T=2y,..., T =Ty,

Y=Y Y=Yz Y =Yn,

See 'Figure 2.2 for an example 4 by & grid.

Figure 2.2 The rectabpgular grid defined by 4 X POINTS $ 5 Y POINTS

For uniformly spaced grids <point list> may take the form

<a>» TO <b>»

where

initial value of the grid variable
final value of the grid variable

<a>
<b>
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In this case the points used to discretize the variable are

po=(i-1) ¥ (:;_-_i) +ta, =18, -1

For rectangular domains <a> TO <b> is not used end the initial and final values

of the variable correspond to the rectangle.

Some possible combinations are illustrated by the following examples:

. GENERAL NON-UNIFORM CASE
GRID. 7 X POINTS -1.0, -.8, -.5, 0.0, .5, .B, 1.0
5 Y POINTS 0.0, .2, .5, .8, 1.0
. UNIFORM GRID - FOR NON-RECTANGULAR DOMAINS
GRID. 7 X POINTS -1.0 TO 1.0 & 4 YPOCINTS 0.0 TO 1.0
L}
' UNIFORM GRID - ON A RECTANGLE
. FORM VALID ONLY FOR RECTANGULAR DOMAINS
GRID. 7 X-POINTS & | 4 Y-POINTS
L
* HIXED CASE FOR 3-D, - ALWAYS RECTANGULAR
GRID. 7 X-POINTS & 4 YPOINTS -2.0 TO -1.0
6 Z POINTS -1.0, -.7. -.25, .25, .7, 1.0

2.C SEGMENTS WHICH SPECIFY THE METHODS TO BE USED

We next describe the four segments which specific methods (that is, partic-
ular ELLPACK library modules) te be used in solving the problem. These are
DISCRETIZATION, INDEXING, SOLUTION and TRIPLE. Most ELLPACK programs
have three segments present corresponding to the three steps in approximately
solving the problems (See Figure 1.2). However, medules in a TRIPLE segment

incorporate all three of these steps.

A summmary description of each of these modules is given in Chapter 8.
Relerences are given there for further information about the numerical methods
used. Note that each module has restrictions on its use {such as a self-adjoint

equation or a rectangular domain). One must read the descriptions before using
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the modules. Many modules accept parameters which are placed in parentheses
following the module name. These parameters may be specified in any order
and default values are provided; setting a parametaer value for one use of a
module does not affect the default value for later appearances. The module
parameters are specified as <parameter> = <value>, the <parameter> is an
actual variable in the Fortran program generated so one must not use the same
name for something else. This is true even if the default parameter value is

used. Two simple examples of the use of parameters follow

SOR(OMEGA = 1.8, [TMAX=100, IADAPT=1)
SOR(ZETA = 1.E-4, OMEGA = 1,88)

Module names (unlike segment names and ELLPACK reserved words) may have
dashes and blanks in them. All dashes and blanks are removed before the word
is to be reorganized. The following are legal

5 POINT STAR, 5-POINT STAR, 5 POINT-STAR, 5-POI NT STAR

B X POINTS, 8 X-POINTS, 8 XPOINTS, 8-POINTS, 8 XPP0 INTS

LINPACK BAND LINPACKBAND, LIN-FACK-BAND

Examples of method specifications follow.

L

¢ ORDINARY FINITE DIFFERENCES AND GAUSS ELIMINATION

DISCRETIZATION. 5-POINT STAR
INDEXING. ' AS IS

SOLUTION. BAND GE

L}

. A FINITE ELEMENT METHOD WITH ITERATION

L

DISCRETIZATION. SPLINE GALERKIN(DEGREE=3,5MOOTH=2}

INDEXING. AB IS

SOLUTION. S0R

L)

y A SINGLE MODULE FOR THE PROBLEM

L]

TRIPLE. " FFT B-POINT(ORDER=4}

L]

* SOLVE THE SAME PROBLEM BY GAUSS ELIMINATION
¢ SPARSE MATRIX METHOD AND TWO [TERATIVE METHODS
. THE OQUTPUT BETWEEN SOLUTIONS [S OMITTED

. .

DIS. 6-POINT STAR
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INDEX, AS IS

SOLUT[ON. SPARSE (NSP=18000)

SQL. JACOBI CG(ITMAX=200, ZETA=1.E-4)

[NDEX. RED-BLACK .

50. REDUCED SYSTEM CG(ITHAX=200,ZETA=1.E-4,]ADAPT=1)

The last code segment illustrates the action of ELLPACK interfaces. Once the
discretization is made by 5-POINT STAR the resulting information is held fixed at
this interface until another discretization is made. Similarly, after the AS IS the
‘indexing inf.erfaca is held fixed while SPARSE and JACOBI CG solution modules
are used. Then the RED-BLACK indexing module replaces the indexing interface
information and REDUCED SYSTEM CG can be used. The 5-PUOINT STAR interface

is not affected by using the second indexing module.

It is important to note that not all combinations of modules are legal.
ELLPACK users should understand the basic premises of each module so they
can determine whether a combination of modules is legal. Seme illegal combi-
nations are fairly obvicus such as using the symmetric linear equation solver
LINPACK SPD BAND with a discretization module that does not yield a symmetric

linear system. Similarly, an INDEXING module which tries to minimize matrix

bandwidth is not likely to help with a module for solving the equations itera-

tively. The medule descriptions in Chapter 9 indicate some combinations which
are legal. There are many other combinations possible and one should be cau-
tious when the first using a new combination. A table at the beginning of

Chapter 9 also gives some guidance as to which combinations are legal.

DISCRETIZATION. segment
This segment names a module to be used te form a linear system of equa-
tions. The content of this segment is a single module name and the list of avail-

able modules is expandable. The basic set in ELLPACK consists of
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5-POINT STAR Ordinary second order divided central differences
(Restricted to two dimensional domains)

7-POINT STAR Ordinary second order divided central differences
(Restricted to three dimensional rectangular
domains with Dirichlet boundary conditions)

SPLINE GALERKIN Galerkin method with piecewise polynomials of gen-
eral degree and smoothness (Restricted to self-
adjoint problems on twe dimensional rectangular

_ domains)

HERMITE COLLOCATION Collocation methed with bi-cubic Hermite piecewise
polynomials (Restrieted to rectangular domains in
two dimensions)

HODIE ACF Higher order finite differences for
a(Z,y )z + o (z.y)uyy, + f(z.y)u (Restricted to rec-
tangular domains in two dimensions)

COLLOCATION Collocation method with Hermite bicubics on nonrec-
tangular domains. (Restricted te two dimensions)

The complete set of modules supplied with the ELLPACK system contains abeut
10 more dlscretization modules, a st of these modules is given at the start of
Chapter 9. Note that INTERIOR COLLOCATION is more elficient than HERMITE

COLLOCATION, but not quite as general in the boundary cenditien it handles.

INDEXING. segment
These modules take the linear system produced by the DISCRETIZATION and
reorganize it by renumbering the equations and/or unknowns. For example, one

may wish to have the nested dissection ordering of the equations before using

Gauss-elimination to solve them. The basic set in ELLPACK consists of:

NESTED DISSECTION Computes the nested dissection ordering of the equa-
tions.

A IS The ordering is that of the generation of the equa-
tions and unknowns by the discretization modules.
This is the default case.

RED-BLACK The variables and unknowns are numbered as on a
checker board, all "red" points before the "black"
points, Used only with REDUCED SYSTEM iteration.

Y e wd
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MINIMAL DEGREE Computes the minimal degree ordering of the equa-
tions

There are several other INDEXING modules supplied with the complete ELLPACK

system described in Chapter 9.

SOLUTION. segment

These modules solve the linear system of equations. This step may also
involve reformatting the equatlons. For example, modules for solving banded
systems of linear equations require the equations to be in a certain band matrix
format before the Gauss elimination is done, so they do the reformatting as well

as the solution of the equations. The basic set in ELLPACK are

BAND GE Gauss elimination with scaled partial pivoting for a
general band matrix

LINPACK SPD BAND Cholesky elimination for a symmetric- positive defin-
ite band matrix

JACOBI CG Jacobi iteration with conjugate gradient acceleration

'REDUCED SYSTEM CG Reduced system iteration with conjugate gradient
acceleration (Assumes the RED-BLACK indexing)

SCR S0R iteration

SPARSE General sparse matrix Gauss elimination
There are several other SOLUTION modules deseribed in Chapter 8 and supplied

with the complete ELLPACK system.

TRIPLE. segment

~ These modules combine the functions of discretization, indexing and solu-
tion of the resulting linear system. The one included in the basic set of ELLPACK
modules is FFT 9-POINT which solves the Helmholtz equation on two dimensional
rectangles witﬁ second, fourth or sixth (for Poisson problems only) order finite

differences using Fast Fourier Transform techniques. There are several other

Cz
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TRIPLE modules described in Chapter 8 and supplied with the complete ELLPACK

systern.

2.D. FORTRAN AND PROGRAM CONTROL

Fortran has two distinct uses in ELLPACK. The first and simplest is to
define various funetions that appear in the problem., Simple expressions like
SIN(X+2.5*Y) ecan just be inserted wherever needed, but more complex funetions
may need several Fortran statements. These functions can be defined as ordi-
nary Fortran FUNCTION subprograms and appended to the ELLPACK program in
the SUBPROGRAM segment just before the END segment. They can then be used
to define coefficients in the EQUATION or BOUNDARY segments just like built-in

Fortran functions.

The second use of Fortran is to allow speecial calculations to be done. They
might be something slmple like printing a heading and a few key parameters or
computing the maximum of UX(X,Y)**2 + UY(X,Y)**2. They might be complex
auxiliary computati;)ns that require the full range of Fortran facilities. They
might be computations that interact with the ELLPACK modules to solve non-
linear or other special problems. The more complicated uses are presented and

illustrated in Chapters 4 and 5.

There are three segments for Fortran use,

FORTRAN. segment,

The FORTRAN segment indicates lines of executable Fortran code to be
inserted into the control program generated by ELLPACK. The ELLPACK system
uses statemnent labels starting at 20000, so such labels must be avoided in the

users program. This segment is illustrated as follows:
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. PRINT A HEADING
c QIDATE IS AN ELLPACK UTILITY TO PROVIDE THE DATE

CALL QIDATE(IMO, IDAY,IYR)
WRITE(6,20) IMO, IDAY, IYR
20 FORMAT(//s/20X, 'WING LIFT CALCULATION', 58X, I2, 2('-',I2)/
A 20X, 'USING FINE GRID AND CUBIC SPLINES'///)

COMPUTE SOME PROPERTIES OF THE SOLUTION
AFTER THE PROBLEM [S SOLVED, U, UX AND UY ARE FUNCTIONS
DEFINED FROM THIS APPROXIMATE SOLUTION.

FORTRAN.
. DMAX = 0,0
USUM = 0.0
DO 10 I = 1,10
YG = ([-1)4.2
DO 10T = 1,10
X6 = (I-1)*.1
DMAX = AMAX1(DMAX, UX(XG,YG)**2 + UY(XG, YG)**2)
10 USUM = DSUM + ABS(SQRT(U{XG,YG))

PRINT 20, DMAX,USUM
20 FORMAT(//'DMAX =', F10.4, 10X, 'SIZE SQRT(U)' = F10.4)

DECLARATION. segment
The DECLARATION segment indicates lines of Fortran declaration state-
ments to be placed at the beginning of the ELLPACK centrol program. For

example:

DECLARATIONS, '
INTEGER DIGIT, COUNTS(10)
REAL MAXU4, MINU4, LOADS(20)

There is a real work space array R1WORK always available for use. This array is
used for temporary storage by modules; it may also be used for seratch storage
in Fortran segments. Note that the contents of RIWORK are probably altered by
any ELLPACK module. Its size {glven by the Fortran variable IIMWRK) is usually

fairly large and can be made larger using the OPTIONS segment. i

SUBPROGRAMS. segment

The SUBPROGRAMS segment indicates Fortran complete FUNCTIONS or w2

SUBROUTINES. For example, the user can define A(X,Y) or A(XY.Z) to be the
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" coeflicient of UXX in the PDE. This segment must be at the end of the ELLPACK

- 130 -

program, just before the EHD segment.

Lines with a 3 in column 1 are handled specially in SUBPROGRAM segments;
the ¥ is stripped off and the line is copied, shifted one character to the leit. The

8 Is for those Fortran systems (merclfully rare) that require control cards for

each Fortran subprogram.

2.E. OUTPUT AND OPTIONS SEGMENTS

OPTIONS. segment

This segment sets various switches of the ELLPACK system. The OPTIONS
segment must be near the start of the program, similar to a declaration, Some
options rmay be changed during execution by geiting internal ELLPACK Fortran

variables. If this can be done, the variables are listed with the description of the

option.,

INTERPOLATION=k

k=QUADRATICB
k=3PLINES

LEVEL = k
LEVEL=0

LEVEL=1
LEVEL=2
LEVEL=3,4,5
IILEVL

MEMORY

Select the method of interpolation to define U{X,Y).
ete. off the grid (for finite difference methods only).
Local quadratic polynomials (default)

Use B-splines of degree appropriate for the order of
the discretization module. TFor nonrectangular
domains...***. See [deBoor, 1978] for a description of
B-splines; the interpolation routines were adapted
from deBoor's PPPACK software

Set output levels (0-5) in ELLPACK run.

Requests no oubtput from modules except fatal error
messages

Request minimal cutput (default)

Kequests reasonable summary of what happened
More and more intermediate output, primarily useful

for debugging
Fortran variable for LEVEL

Give estimates of the memory used in the ELLPACK
run with seme breakdown

l\._
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NO EXECUTION - Do not run ELLPACK program
PAGE=k Select type of pagination for module output
PAGE=0 No page advances
PAGE=1 New page before DIS, TRIPLE, TABLE or SUMMARY
‘ (default)
PAGE=2 New page before every module and OUTPUT segment
[1PAGE Fortran variable for PAGE
SELF-ADJOINT=k Set the switch for self adjoint form of the PDE. k may
be .TRUE. or .FALSE.
L1SELF Fortran variable for SELF-ADJOINT
TIME Give the execution times of each module
LiTIME Fortran variable for TIME(can only turn TIME off)

MAX WORKSPACE=k Limit the automatic workspace estimate and declare
the workspace array R1IWORK to have dimension at
most JIMWRK=k.

MIN WORKSPACE=k Set workspace array RIWORK to have dimension at
least [1MWRK=k. '

Options are not dynamic and, if given more than once, the last appearance

is used.

The INTERPOLATION option specifies how the functions U{X,Y), UX(XY), etc.
are defined for some, mainly finite difference, modules. If a discretization pro-
duces approximate values only on a grid of points, then an interpolation alge-
rithm is used to provide values off the grid. Only one interpolation algerithm
can be used in an ELLPACK run. The choice INTERPOLATION = SPLINES usually
involves a substantial computation, but is more appropriate for use with higher

order accurate finite difference discretizations.

There are several other options that are discussed in Chapter 4. Some

OPTIONS segment examples fellow,

L]

¢ REQUEST BASIC STATISTICS ON PERFORMANCE
L}
OPTIONS. TIME & MEMORY

. ENLARGE WORKSPACE, REQUEST MORE OUTPUT

o
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QPT. MIN-WORKSPACE=7500 § LEVEL=2

L

* ENLARGE WORKEPACE, SUPFPRESS PAGING
L}

OPT. MIN-WORKSPA_CE=12000 $ PAGE=0

OUTPUT. segment

This segment specifies various kinds of cutput from the computation. The

requests are of the forms:

<type> or <type>(<function>) or <type>(<function),<grid>}

where <type> is a keyword, <function> is a function name and <grid> defines a
grid. The default <grid> is the one defined in the GRID segment. A uniform grid
‘within the standard grid is defined by NX,NY or NX.NY,NZ where NX, NY and NZ

are integers, the number of grid lines for each of the XY, Z variables. The list of

types is:

MAX(E)
MaAX(f,grid)

RMS(f)
RMS(f,grid)

NORM(f)
NORM(f,grid)

PLOT(E)
PLOT(f,grid)

PLOT DOMAIN

Print maximum value, simple least squares and aver-
age absclute value (L; norm of f), all based on the
grid. These values are, respectively,

max 1| I (zoyp
——— 2

1
o AR
where the gridis (z;,;), =1 to NX j=1 to NY.

Same as MAX
Same as MAX

Contour plot of a function(f) of twe variables. Here
the grid size determines the smoothness of the con-
tour lines, the default grid is 20 x 20.

Display the dornain with grid lines
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TABLE(f) Print table of function f at grid points
TABLE(f,grid)

SUMMARY{f) Equivalent to MAX(f) 8 TABLE(f)
SUMMARY(f,grid)

The function f may be one of the following standard ELLPACK [unctions or any

user named function of two variables (or 3 variables in three dimensions):

U, UX, UY, UZ, The solution function and its derivatives (defined
UXX, UYY, UZZ, after the sclution is computed or after U has been
UXY, UXZ, YYZ initialized in & TRIPLE segment.,) '

TRUE : The known seclution of the problem. Defined by the
. user in the SUBPROGRAM segment as

REAL FUNCTION TRUE(X,Y)

or

REAL FUNCTION TRUE(X.Y.Z).

ERROR The error in the computed sclution. The function
TRUE must be provided, otherwise TRUE=0 is used.

RESIDU If Zu = f represents the partial differential equation,
then the residual is LU = f where U is the computed
solution. If the equation is given in self-adjeint form
(p(z.y)usy, + (g(zy)uy, +rlzy)u = f(z.y)
then the user must supply the Fortran functions
REAL FUNCTION CDXU(X.Y)

and
REAL FUNCTION CDYU(X.Y)

which return the values of %*:i-and %q—-respectively.

Three dimensions requires similar functions CDXU,
CDYU, CDZU with arguments X,Y,Z.

The following illustrate the OUTPUT segment's use.

’ CHECK HOW GOOD A SOLUTION IS (TRUE SOLUTION KNOWN)
QUTPUT.  HMAX(ERROR) $ PLOT(ERROR) $§ MAX(RESIDU)

L]

* QUICK LOOK AT RESULTS
.
OUTPUT. SUMMARY(U)}- & PLOT(U)

. _
. QUTPUT FUNCTIONS RELATED TO SOLUTION AND THE FORTRAN FUNCTION
. REAL FUNK(X.Y)

. FUNK = UX(X,Y)**2 + UY(X.Y)**2

. RETURN

. END

»

0

UT. TABLK (U) $ TABLE(UXX) $ TABLE(FUNK)
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. TABLE ON A GRID DIFFERENT THAN [N DISCRETIZATION

QuT. TABLE(U,12,12) $ TABLE(ERROR,8,8)

2.F DEBUGGING FLLPACK PROGRAMS

+ + « DRAFT DEFERRED * * *
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CHAPTER 3. ELLPACK EXAMPLES

This chapter gives example ELLPACK programs with output to illustrate the
"use of the facilities of Chapter 2. The first example is a revision of the initial
example of Chapter 1; the domain has been made non-rectangular, and a normal
derivative boundary condition used on one piece. The second example is a com-
pletely general equation with mixed boundary conditions on a rectangular
domain, The third example shows how ELLPACK and Fertran interact. A prob-
lem is discretized and then solved several times with an iterative method; each
time the convergence test is changed and the purpose is to examine the effect

on accuracy achieved and execution time.

3.A PROBLEM OF CHAPTER 1 REVISED WITH NON-RECTANGULAR DOMAIN

The first example shows a simple case of non-rectangular demain; a :iuadri—
lateral. The quadrilateral could be specified completely by the LINE facility, but
actual parameterized pieces are given to illustrate their use. Note how a rec-
tangular grid is placed over the domain. Ordinary finite differences are used
along with band Gauss elimination; there are only a few discretization modules
in ELLPACK that are applicable to non-rectangular demains, Once the problem

is discretized, several indexing or solution modules may be applied.

LA AL LR R R N R R N R R LR R N R R N I R R R N RN TR TN Y]

L]
* » *
v * EXAMPLE ELLPACK PROGRAM 3.A1 ’
. . L]
. *  REMARKS .
. v THIS IS5 THE SAME EQUATION AS THE EXAMPLE IN ¢
. . CHAPTER 1. THE BOUNDARY CONDITIONS ARE CHANGED ¢
o . AND THE DOMAIN IS NO LONGER RECTANGULAR. ’
L] . L]
L] LA AN AR EE AL E SRR R R AR RN RRRNERRY RN RN
.
EQUATION. UXX + UYY + 3*UX - 4*U = EXP(X+Y)*SIN(PI*X)
BOUNDARY. U = 0. ON X=0.,Y=T FOR T=-1.T02,

U =X"*2 ON X=R, Y=2. FOR R= 0, T0 1.

U=1, +Y/2, ON LINE1.,2. TO 1., 0.

U = X*Ys2. ON X=1.-5, Y=-5 FORS=0. TO 1.
GRID. 6 X POINTS 0. TO 1.

8 Y POINTS -1, T0 2.

R
A
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DISCRET. 5 PQINT STAR
INDEXING. A8 [B
SOLUTION. BAND GE

QUTPUT.  TABLE(U) & FPLOT(U)

END.

SYMBOL TABLE INPUT TIME
PROGRAM PROCESSING TIME
TEMPLATE QUTPUT TIME
TOTAL TIME

Output of ELLPACK run:

- 38 -

2.47 SECOND3

.83 SECONDS
2.08 SECONDS
5.38 SECONDS

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 19 BOUNDARY POINTS WHERE THE
4 PIECES INTERSECT THE 6 X 8 GRID

5-POINT STAR
DOMAIN NON-RECTANGULAR
UNIFORM GRID ) 868X 8
HX . 200E+00C
HY . 800E+0C
QUTPUT LEVEL 1
BOUWDARY CONDITLIONS
PIECE 1 TYPE 1
PIECE 2 TYPE 1
PTECE 3 TYPE 1
PIECE 4 TYPE 1
NUMBER OF EQUATIONS 14
MAX NO. OF UNKNCWNS PER EQ. 5
EXECUT [ON SUCCESSFUL

IN'DEKU-\T(-}“MODULE_
NATURAL
NUMBER OF EQUATIONS 14

EQUAT LONS /UNKNOWNS NUMBERED
IN ORDER GENERATED
EXECUTION SUCCESSFUL

ELLPACK BAND

(.:‘}-
[~
o
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NUMBER OF .ROWS 13
NUMBER OF COLUMNS 14
NUMBER QF LOWER CO-DIAGONALS 4
NUMBER OF UPPER CO-DIAGONALS 4

ELLPACK BAND GIVES 2 TIMINGS
SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

. 000000E+00 . 200000E+00 . 400000E+00 . 800000E+00
. BOOGOOE+00 - 100000E+01
' = .200000E+01
.000000E+00 .400000E-01 . 160000E+00 , 380000E+00
- 840000E+00 - 100000E+01
Y = .140000E+01
.000000E+00  -.D88931E-01  -.B848897E-01 .664861E-01
- 3512656400 - 700000E+00
Y = .800000E+00
.Q00000E+00  -.743894E-01  -.727578E-01 .180445E-01
- 191884E+00 - 400000E+00
Y = .200000E+00
.000000E+00  -.717648E-01  -.915115E-01  -.587201E-01
. 135870E-01 - 100000E+00
Y = -.400000E+00
.000000E+00 - ,776785E-01  -.114505B+00  -.120000E+00
. 000000E+00 . 000000E+00
Y = -.100000E+01
. 000000E+00 . 000000E+00 . 000D00E+00 . 000000E+00
- 000000E+00 . 000000E+00

3.B GENERAL EQUATION WITH BOUNDARY CONDITIONS RECTANGULAR
DOMAIN

The second example shows a comparison of solving a problem with mixed

boundary conditions by two different methods. Ordinary finite differences (5 _
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Figure 3.1. The contour plot produced by PLOT(U) in example

ELLPACK program 3.41.
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POINT STAR) and Gauss elimination (BAND GE) gives an error of 1.5 percent while
collocation (HERMITE COLLOCATION) and sparse Gauss elimination with pivoting
(SPARSE PIVOTING) gives an error of 0.0055 percent. The times are time**FD

and time**COL, both relatively small,

LBANEARRERER RN RLERERRIR LRI RRERIERRNTNYEYN)

EXAMPLE ELLPACK PROGRAM 3.B1

L)
*
*  REMARKS
. THIS PROBLEM HAS MIXED BOUNDARY CONDITONS.
. SOLVING THE SAME PROBLEM.

»

L

r

]
+
»
[ ]
THE PROGRAM COMPARES 'TWO DISTINCT METHODS FOR .
»
L]
L
L]

(AN R AR AR AR LR AR RN ERERRR RSN RRRRRARRRRLERRR2D S]]

- 4 4 & 4 ¢ 3 8 % & v

CPTIONS. LEVEL=1 § TIME

EQUATLON-
UXX + (1.04Y*92)°UYY - UX - (1.04Y**2)*UY = F(X,Y)
BOUNDARY .
-U+ UX=o. ON X=1.
U = TRUE(X,Y) ON Y=0.
U+ UX = 2.0EXP(Y) ON X=0.
U = TRUE(X,Y) ON Y=1.
GRID. 4 X POINTS $ 5 Y POINTS
QUT. MAX(TRUE)
DIS. 5 POINT STAR
- [NDEX. AS IS
SOL. BAND GE
OUT. TABLE(U) $ MAX(ERROR,7,6)
DIS. HERMITE COLLOCATION
INDEX. AS IS
S0L, . SPARSE PIVOTING (MAXNZ=800)
QUT. TABLE(U) $ MAX(ERROR,7,8)
SUBPROGRAMS ,
FUNCTION TRUE(X,Y)
c THE STANDARD ELLPACK FUNCTION (IF KNOWN)
TRUE = EXP(X+Y) + ((X*(X-1.0))*°2)vALOG(1.0+Y**2)
RETURN
END
FUNCTION F(X,Y)
c CONSTRUCT F SO TRUE [S AS GIVEN

= ALOG(1.0+Y**2) * (2.0 + X*(-14.0 + X*(18.0 - 4.0°'K}))}
) + 2,0°({(X*(X - 1.0))**2)*(1.0 - Y - 2.0°Y**2/(1.0+Y**2))
RETURN

END

SYMBOL TABLE INPUT TIME 2.55 SECONDS
PROGRAM PROCESSING TIME 1.33 SECONDS
TEMPLATE OUTPUT TIME 2.22 SECONDS
TOTAL TIME 8,10 SECONDS
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Output of ELLPACK run:

+ HAX{ ABS(TRUE ) ) ON 4 X
+

- 40 -

5 GRID =

S-POINT STAR
DOMAIN RECTANGLE
X INTERVAL .000E+00, .100QE+01
Y INTERVAL .000E+00, .100E40]
DISCRETIZATION UNIFORM
GRID 4X b5
HX . 333E+00
oY . 250E+00
B.C.5 ON PIECES 1,2,3.4 3,1,3,1
CUTPUT LEVEL 1
NUMBER OF EQUATIONS 12
MAX NO. OF UNKNCWNS PER EQ. 5
EXECUTION SUCCESSFUL

INDEXING MODULE
NATURAL
NUMBER OF EQUATIONS i2
EQUAT [ONS/UNKNCWNS NUMBERED

IN ORDER GENERATED

EXECUTION SUCCESSFUL

SOLUTION MODULE
LINPACK BAND
NUMBER OF ROWS 13
NUMBER OF COLUMNS 12
NUMBER OF LOWER CO-DIAGONALS 4
NUMBER OF UPPER CO-DIAGONALS 4

LINPACK BAND GIVES 2 TIMINGS
SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

ELLPACK 7%v COUTPUT

.73880568E+01
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R
4 X 5 GRID

TABLE OF U

¥-+1-+

X-ABSCIBSAE ARE

ON

. 0GO000RE+00 . 333333E+00

Y = .100000E+01

\271828E+01 . 3B2780E+01

Y .= .750000E+00

.211120E+01 .2B7H28E+01

= .500000E+00

. 182045E+01 .23118BE+0]

Y = .250000E+00

. 12584 2E+01 . 179158E+0

= ,000000E+00

.100000E+01 .139581E+01

- 4] -

. B8BEBTE+00

.532872E+01

.418831E+01

.324632E+01

.2517808E+01

.194773E+01

S e o e o o

+
+
+

. 100000E+01

. 738B0BE+01

.586084E4+01

.457441E+H01

. 354874E+01

. 27182BE+01

e e e
+

COLLOCATION

CASE
DOMAIN

X INTERVAL
Y INTERVAL

GRID

HX

HY

OUTPUT LEVEL
NUMBER OF EQUATIONS

MAX NO. OF UNKNOWNS PER EQ.

EXECUTION SUCCESSFUL

NATURAL

NONHOMGENEQUS

.000E+Q0,
. 000E+00,
HOUND. COLLOC. PTS. PARAMS.

RECTANGLE

. 100E+01
100E+01
. D0DE+00
.DO0E+00
4X b
. 333E+00
. 250E+00
1

80

18
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NUMBER OF EQUATIONS 80
EQUAT LONS /UNKNQWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

SPARSE GE-PIVOTING

NUMBER OF EQUATIONS 80
ESTIMATED MAX NUMBER COF NON-ZERO

ELEMENTS [N UPPER TRI. FACTOR 800
SIZE OF WORKING STORAGR 3383
SP. GE-PIV. GIVES 2 TIMINGS

SETUP TIME AND SOLUTION TIME.
NUMBER OF NON-ZERO MATRIX ELEMENTS 851
NUMBER OF NON-ZERQ ENTRIES IN

" UPPER TRIANGULAR PFACTOR 783

EXECUTION SUCCESSFUL

. 000000E+00 . 333333E+00 ., 886867E+0D . 100000E+01
Y = .100000E+01

.B;Iéééf—d;(-];-""jQBEBIGE-I-Ol . 532003E+01 , 738040B+01
Y = .%50000E+00

.2;;'-?1_36;3;[-);“-"?597BBOE+01 .414562E+01 . 5754B0E+01
Y = .500000E+00

.lé;é;él;.‘.;{;;-""jé31217E+01 . 322243E+01 .44B1B0E+01
Y = .250000E+00

1éé;; %]E];'S;-----:;?95DBE+01 . 250400E+01 . 34804 0E+01
Y = .000Q0CE+0C

.166666&-;-{-);"“-:;39563E+01 .1947768E+01 .271828E+01
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R ' o L e o o o e e

-3.C EXAMPLE SHOWING HOW FORTRAN AND ELLPACK INTERACT

The third example is somewhat more complicated. The iteration methed
JACOBI CG has a-parameter ZETA to terminate the iteration; the iteration on the
linear system is done until the estimated error is less than ZETA. The object
here is to test the effect of changing ZETA; values of 1073, 107* and 107° are
used.

An important feature here is that parameters of the module JACOBI CG are
changed at each iteration. Caution must be used as this does not always work;
sorne parameters affect the program at preprocessing time rather than at exe-
cution time. (e.g. parameters which affect array sizes). Thus
SPARSE(NSP=NWORK) will fail because a numerical value for NSP is required by
the preprocessor and the value of the Fortran variable NWORK is not known until
execution time. Another feature of this example is the use of self-adjeint form
for the PDE.

| This test shows that the stopping criterion has a substantial effect on the

number of iterations. The results are surmmmarized as [ollows:

10-% 10* 10-%
30 48 50

ZETA
Number of iterations

-The maximum error in solving the elliptic problem is unaffected by these
changes as it is due to the diseretization error and not to the error in solving
_ the linear system. LEven with ZETA = 1073 the error in solving the linear system
is less than the error .0B in diseretizing the elliptic problem, thus no improve-

ment is made by taking more iteractions.
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* & & 4+ 9 2 8 4 4 & & B

EQUATION.
BOUNDARY .

GRID.

OuT.

DISCRET.
INDEXING.

FORTRAN.
c

PRINT NUMBER OF ITERATIONS FOR JACOBI CG WITH STCPPING CRITERION

[ E XN YN R RN SRR NRIRN N NSNS AN AR LRI RN NR])

L]

¢ EXAMPLE ELLPACK PROGRAHM 3.C1 .
L L}
* REMARKS .
. SELF-ADJOINT PROBLEM SOLVED BY FINITE DIFFERENCES *
. AND ITERATION. THE FROGRAM TESTS THE EFFECT OF  °*
. USING A BETTER GUESS TO START THE ITERATION AND ¢
’ OF CHANGING THE STOPPING CRITERLON. .
[ ] [ ]
Y L L L L s X R N R R s R N R X R R R RS R AR R RRERETERR R RN R N )

{ WX, UX )X + (WXY)UY )Y = F(X.Y)

UX=0.0 ON X=0,5

U =0.0 ON X=1.0

UY = 0.0 ON Y=0.5

U =0.0 ON Y_= 1.0

17 X POINTS

17 Y POINTS

PLOT(TRUE) § MAX(TRUE)

5 POINT STAR

AS IS

C
C ZETA=1710.**N FOR N=3.4.,5
c

Do

100 NZETA =3 , 5

PRINT 10, 1./10.°*NZETA
10  FORMAT(//5X,'* * ZETA =',E10.3," ¢ **)

SOL.

JACOBI G (ITMAX = 50, ZETA = 1./10.**NZETA)

OUT. MAX (ERROR)

FORTRAN .
c

100 CONTINUE

SUBPROGRAMS.

FUN

CTION W(X,Y)
COMMON /CONCOM/ PI

DATA P1/3.14159285358878/

c

END

FUNCTION TRUE(X,Y)

COMMON /CONCOM/ PI

TRUE = SIN(PI*X)*SIN(PI*Y)
RETURN

END

W= {EPI’COS PL 'X; ’SINEPI '}"B'% +

sCOS(PLsY))**2)+90.15

PI*SIN(PI*X

FUNCTION F(X,Y)

COMMON /CONCOMs PI
CONSTRUCT F S0 TRUE [5 AS GIVEN

Plz =PI * PI

SINPIX = SIN’{PI'X)
SINPLY = SIN(PI*Y)
COSPIX = COS(PI*X)
COSPIY = COS{PL*Y)

TU = SINPIX*SINPIY
TUX = PI*COSPIX*SINPLY
TUXX = -PI2*TU

Qe
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TUY = PI*SINPIX*COSPIY

TUYY = ~PI2*TU

F = W(X.Y) " (TUXX + TUYY) + CDXU(X,Y)*TUX + CDYU(X,Y)*TUY
ENDRETURN

SYMBOL TABLE INPUT TIME 2.57 SECONDS
FROGRAM PROCESSING TIME 1.57 SECONDS
TEMPLATE OUTPUT TIME 2.17 SECONDS
TOTAL TIME 8.30 SECONDS

Output of ELLPACK run {(abbreviated, **** indicates where lines are deleted):

:
i

+
+ MAX( ABS(TRUE ) ) ON 17 X 17 GRID = .1000C00E+01 +

5§-POINT STAR

DOMAIN RECTANGLE
X INTERVAL .500E+00, .100E+01
Y INTERVAL .500E+00, .100E+01
DISCRETIZATION UNIFORM
GRID 17X 17
HX .313E-01
HY .313E-01
B.C.3 ON PIECES 1,2,3.4 1,2,2,1
OUTPUT LEVEL 1
NUMBER OF EQUATIOQNS 256
MAX NO. OF UNKNOWNS PER EQ. 5

EXECUT[ON SUCCESSFUL

* v ZETA = .100E-02 ¢ *

JACOBI CG
JACOBI-CG HAS CONVERGED IN 30 ITERATIONS.
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+
+ MAX( ABS(ERROR ) ) ON 17 X 17 GRID = .B0O15486E-01  +
+ +
b e e

* » ZETA = .100E-03 + *

JACOBI CG
JACOB[-CG HAS CONVERGED IN 48 ITERATIONS.

¢ v ZETA = .100E-04 * ¥

SOLUTION MODULE

JACOBI cG
9 WA RNTING vevrsrtritre

IN [TPACK ROUTINE JCG.
ZETA = .100E-04. A VALUE THIS SMALL MAY HINDER CONVERCENCE.

JACOBI-CG HAS CONVERGED IN 50 ITERATIONS.

=
o

T

-
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} cohtour valus
- 1 -.87e-07
2 . 11400
3 .22e+00
9 . 33e+00
5 442400
3 .56e400
7 .672+00
8 . 782400
9 892400
10 .10e401
| | | [ |
500 (583 | 667 1750 Las3 lo17 - 1l

X

Figure 3.2. The contour plot produced by PLOT{TRUE) in example 3.C1
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CHAPTER 4 ADVANCED ELLPACK FEATURES

This chapter presents features of ELLPACK which gives one more control
over the problem solving process. The use of these features to solve more com-
plex problems is illustrated in the final section of this chapter. Even more diffi-
cult examples are presented in Chapter 5. The additionsl ELLPACK language

features are:

OPTICNS : TO SAVE OLD SQOLUTIONS FOR ITERATION
TO CONTROL STORAGE :
T0 SET PROBLEM CHARACTERISTICS
HOLE, ARC: TO HANDLE MORE CCMPLEX DOMAINS
GLOBAL : TO PROVIDE PARAMETERS FOR THE PDE AND BOUNDARY CONDITIONS
PROCEDURE: TO DISPLAY THE PATTERN OF NONZEROS [N THE MATRIX
TO INITIALIZE UNKNOWNS FOR ITERATION METHODS
TO COMPUTE EIGENVALUES OF THE DISCRETIZATION MATRIX

TRIPLE : TO INTERPOLATE BOUNDARY CONDITIONS
TO INITIALIZE THE SOLUTION U
QUTPUT : TO TABLE INTERNAL ELLPACK VARIABLES FOR THE

ELLIPTIC PROBLEM
EQUATIONS, UNKNOWN AND INDEXES
DOMAIN AND BOUNDARY

In addition, there is a section deseribing how one can access internal ELLPACK
variables, including "preprocessor” or "template"” variables. These features pro-
vide:

1. -the capability to handle more general problems,

2. the capability to construct iterative methods (for nonlinear problems,

ete.),
3. the ability to reduce computer resource use,
4. means to study the methods

5. more convenient programming in certain applications.

4_A ADDITIONAL SEGMENTS
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- There are four additional segments in ELLPACK described here.

HOLE. segment

| This segment defines a hole te be removed from the domain of the problem.
Its form is exactly like BOUNDARY except that the name HOLE is used. HOLE
segmenls must appear alter the BOUNDARY segment, and several HOLE seg-
ments may appear. The Iboundary of the hole must be given in the opposite
direction of that of the domain boundary. Thus if CLOCKWISE =..TRUE. (specily-
ing the domain boundary is defined clockwise) then the boundaries of the holes

must be specified counter-clockwise.

The grid must be fine enough so that at least one Interior grid point lies on
any grid line between the boundary of a hele and the boundary of the demain,
The short notation for rectangular domains cannot be used if there are holes in
the rectangle. The reason is that short cuts are taken for rectangles in the

preprocessor which leave it unprepared for a HOLE segment.

ARC. segment

This segment defines an arc or curved slit to be removed from the domain
of the problem as well as side (boundary) conditions that apply on it. Its form is
exactly like 'BOUNDARY and the same restrictions apply te ARC that apply to
HOLE. Note that a single boundary condition is given on the are. If "two sided"
boundary cenditions are needed, then long, narrow holes must be specified. See
Sectlon 5.4 for examples whieh illustrate the technique.‘ Ares cannot divide the

demain inte two or more disjoint parts.

GLOBAL segment

L

b4
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This segment puts declarations in the ELLPACK control program as well as

in all the Fortran subprograms generated by the ELLPACK preprocessor which

define the PDE, the domain, and the boundary conditions. It does not aifect the

ELLPACK library subprograms {modules). Specifically. the internal ELLPACK

affected are subprograms

Q1PRHS
Q1PCOE
Q1BCOE
Q1BRHS

Q1BCOR

The PDE right hand side function

The PDE coefficients subprogram

The boundary condition coefficients function
The boundary condition right hand side function

The boundary coordinates subroutine

This facility allows us to parameterize the elliptic problem and provide con-

trol of these parameters at the ELLPACK program level, To do this, one simply

includes Fortran COMMON blocks in the GLOBAL segment. If the segment

© GLOBAL. COMMON/SPECIL/A,K

is ineluded then the generated right side function in the ELLPACK control pro-

gram is

REAL FUNCTION QiPRHS(X,Y)
COMMON/SPECIL/A
QIRPRHS = A *(1.4X)/(A+X°*Y)

RETURN
END

Consider the following ELLPACK program fragment

EQ. UXX + UYY - KeU = A(1.4X) 7 (A+X*Y) o
COMMON /PARAM/A K e

GLOBAL.

REAL X
FORTRAN .
DO 101 =1
A=1. +

B
l-

1) * 2.




SECTION 4.4 - 51 -

K=1
TRIPLE. FFT 9-POINT( [ORDER=4)
QuT. PLOT(U)_ $ SUMMARY(U)
FORTRAN.
i0 CONTINUE

This problem is solved B times with B different values of the parameter A and K.

PROCEDURE. segment

The PROCEDURE segment provides facilities that are useful in sclving or
analyzing an elliptic problem but which are not one of the standard steps in solv-
ing the problem. The ELLPACK system is designed to allow one to add PRO-
CEDURES for particular applications or specialized situations. The form of the
PROCEDURE segment is the same as the DISCRETIZATION; a keyword with, possi-
bly. parameters in parentheses,

There are four PROCEDURE facilities in the complete ELLPACK system:

EIGENVALUES: Compute eigenvalues of the discretization matrix

HOMOGENIZE BOUNDARY CONDITIONS: Use the interpolant of INTERPOLATE
BOUNDARY CONDITIONS to reduce the elliptic problem to one whose boun-
dary conditions have zero right sides.

DISPLAY MATRIX PATTERN: Provides a printout of the pattern of non-zero ele-

ments in the matrix of the discretization.

INITIALIZE UNKNOWN FOR FINITE.DIFFERENCES (U: <fnrame>). The values of the

Foriran function
FUNCTION <fname> {X.Y)
are used to initial the unknowns RIUNKN of the linear system.
The default value for <fname> is U/, otherwise <fname> must be pro-

vided in the SUBPROGRAM segment. If the default function U(X.Y) is
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used, then this PROCEDURE must be invoked before the DISCRETIZA-

TION. The standard use of this PROCEDURE is:

TRIPLE. INTERPOLATE BOUNDARY CONDITIONS BY BLENDING
PROCEDURE. INITIALIZE UNKNCWNS FOR FINITE DIFFERENCES
DIS. 5-POINT STAR

INDEX. AS IS

SOLUTION. SOR

The TRIPLE used here is described in the next section. This procedure
depends on the discretization module's ordering of the grid points, it is

applicable to the 5 POINT STAR, 7 POINT STAR and HODIE discretiza-

tions.

More detalled descriptions are given in Chapter 9 for each of these pro-

cedures.
4.B ADDITIONAL FEATURES OF BASIC SEGMENTS

OPTION. segment

There are several additional options useful for complex ELLPACK applica-

tions. There are:
{a) Creation of functions for previous solutions of the problem.

The option OLDU=k provides functions

U1, UX1, UYi, UXX1, UXY1, UYY1

which are the k£ previous sclutions of the elliptic problem. These functions are

used in iterations for nonlinear problems or for steps in time dependent prob-

lems. There are corresponding arrays RIUNK1, RIUNK2, ..., R1UNKk for the unk-

nowns. Note that, except in a very few instances, the diseretization or grid can-

not be changed while using a set of previous solutions.
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(b) Control of dimensions in ELLPACK

The ELLPACK system creates a Fortran program with dimensions declared for all
variables, Sometimes ELLPACK creates arrays for a particular problem which
are not used or which are declared larger than needed. Every dimension of an
array has its own variable in the ELLPACK preprocessor and these can be set in
the OPTIONS segment. Effective use of this facility requires one to become fam-

iliar with the ELLPACK control program.

For example, the dimension of the array of unknowns is JIMUNK and the

statement
OPTION. I1iMUNK=388

sets this dimension to 388 independent of what the normal size of this array is.
Table 4.1 gives a sample set of the more important array names, their dimension
variables and a brief description of the array. See the tables in Chapter 18 for
the complete set. Note that these variables all have third character #, the
second character is 1 to indicate that this variable belongs to the ELLPACK con-

trol program.
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Table 4.1. Variables for Control of more Important Array Dimensions in ELLPACK

Preprocessor
Array Dimension
Name Control Description
RI1IUNKN [1MUNK The unknowns of the linear system
RI1ICOEF I11MCOE The discretization coefficients
11IpCco IiMIDC The column identification for R1ICOEF
I1ENDX I1IMEND The equation reordering permutation vector
IIUNDX 1iMUND The unknown reordering permutation vector
IIMXEQ RICOEF, I1IDCO, Maximum number of equations
I1IENDX, T1UNDX,
R1UNKN
IIMXBP  R1XBND, R1YBND Maximum number of points on
[1PECE, R1BPAR non-rectangular boundary
I1BPTY, 11BGRD
I1BNGH

(e} Control of problem characteristics. The ELLPACK system auftomatieally
examines the equation and sets ,TRUE. or .FALSE. values for the following For-

tran variables:

LILAPL  Laplace's equation
L1CSTC  Constant coefficients
L1POIS  Poisson problem
L1HMEQ Homogeneous PDE

These automatic settings can be overridden by assigning new values to these

variables in a Fortran segment. Thus, for example, setting
L1STC = .FALSE.

would have the PDE

EQUATION. 3*UXX + 2*UYY - 7*U = 0

classified as variable coefficients and thus a module which does something spe-

cial for constant coefficients would not do that in this run. HODIE ACF is an

—

—t
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example of such a module and one can evaluate the benefit of its special action

for constant coefficients.

Warning: These options must be used with caution because

(a) there is no guarantee that a module acts upon these variables,

(b) a module can do its own analysis of the problem, and hence there might be
no effect, and

(¢) since values of these variables are known te the preprocessor, they some-
times determine the dimensions of arrays or even the selection of a subpro-
grams loaded, In summary, these options should be tried on an experimental
basis. Although the;'e are many situations where they are convenient, there are

some where they cause the ELLPACK run to fail (perhaps in a mysteriotis way).

(d) Initialization of solution function «(z.y).

Iteration metheds may be used in ELLPACK to solve nonlinear problems,
time depeﬁde‘nt problems or systems of algebraic equations. Each of these
processes must be initialized; the facilities here are in the TRIPLE segment
because initialization flas the same elfect as completely solving the elliptic prob-
lermn. Here, however, we do not expect to obtain much accuraey. The three TRI-

PLE modules are:

INTERPOLATE BOUNDARY CONDITIONS BY BLENDING: Use Bilending Funetion
interpolations to define U(X.Y) as a smooth function which exactly
matehes the elliptic problem's boundary conditions. Applicable only for

rectangular domains and boundary conditions with constant ceefficients.

INTERPOLATE BOUNDARY CONDITIONS BY BI-CUBICS: Use Hermite bi-cubies to
define U(X,Y) which interpolates the elliptic preblem's boundary condi-
tions at the boundary grid points plus two peints in between each pair

plus at the corners. Applicable only for rectangular domains and
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uncoupled boundary conditions (only UX or UY specified at any point).

INITIALIZE SOLUTION (U= <fname>): The values of the Fortran function
FUNCTION <fname> (X, Y)
are tabled at the grid and then extended by interpolations to define

U(X,Y), ete. everywhere.

In each case these TRIFLES create all the standard ELLPACK functions
U, UX, UY, UXX, UXY and UYY. Note that INTERPOLATE BOUNDARY CONDI-
TIONS BY BI-CUBICS produces a U(X,Y) which is identically zero away from the
boundary; its use is primarily for boundary layer problems where this interpo-
lant provides an approximation to the differences between the "smooth" solution

in the interior and the actual solution.

(e) Tabulate internal variables in QUTPUT

Certain tables of internal ELLPACK variables can be printed. These can be
useful for complicated probleﬁls where one has to interact with the internal data
of ELLPACK. The additional output statements are given below with a brief

description of the resulting output.

TABLE PROBLEM List of current status of ELLPACK variables
which define the problem

TABLE INDEXES Table of equations produced by discretization
modules

TABLE INDEXES Table of ELLPACK indexing arrays

TABLE UNKNOWN Table of unknowns of the linear system

TABLE DOMAIN Tables that define a non-rectangular domain's
relation to the rectangular grid

TABLE BOUNDARY Tables of the arrays produced by the domain
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processor for non-rectangular domains.

To understand the inforrnation provided by these statements users must be fam-

iliar with the ELLPACK interfaces defined in Part 3, Chapter 14.

4.C ACCESS TO PREPROCESSOR YARIABLES

" In some applications of ELLPACK one needs to refer to values which the
preprocessor computes and which are inconvenient (or worse) to compute while
writing the ELLPACK program. _The simplest instance of this is the dimension of
an array, say workspace RIWORK or the unknowns R1IUNKN. If one wants to
create a new array of the same or related size, one does not know what size to
dimensicn it. There is a mechanism which allows access to certain variables of

this type, called templale variables from the ELLPACK program. In the above

cases, the dimension of the RIWORK and RiUNKN arrays are 11WORK and

BI1MUNK; these are exaclly the same names asg listed in Table 4.1 preceeded by

a 8. Thus, the ELLPACK code fragment

DECLARATIONS.
REAL COFYU($I1MUNK), WORK2($I1WORK,2)
GLOGAL.
" COMMON/PASSER/UNKOLD($ [ 1UNK)

- is read by the preprocessor and correct numerical values substituted for tem-
plate variables that appear. This substitution is made when the ELLPACK control

program is generated so that it will compile.

Table 4.2 gives the more useful of these variables, a few others may be iden-

tified firom the-tables in Chapter 18.

Table 4.2. Availeble Template Variable

Name Description

BI1KBAN Band width of matrix generaed for band solver
$I1XWRK Dimension of RIWORK, workspace

(L]

-
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$IIMEND Dimension of I1ENDX, indexing vector
SI1MIXD  Dimension of I1UNDX, indexing vector
$I1MNCO Column dimension of R1COEF, ceefficient matrix
$11MXEQ Dimension of I1IUNKN, maximum number of unknowns
$IIMXPT Row dimension of RICOEF, ceefficient matrix
SIINBND Number of boundary pieces
BIIMXPT Maximum number of boundary points
Bl1INGRX Dimension of RINGRX, x-grid vector
SIINGRY Dimension of RINGRY, y-grid vector
BIINGRZ Dimension of RINGRZ, z-grid vector

If the variables are used in a context where they are not followed by a blank or
special character (which is unlikely), the six characters may be enclosed in
parentheses. That is 311 KBAN and $(11KBAN) are treated the same so one can
use the Fortran stitements

WRITE(I10UTP,20) RICOEF

20 FORMAT(/ s ‘THE $(1MXEQ)X$(I1MNCO) COEFFICIENT ARRAY' /
A { $(I1MNCO)F10.5))

The Fortran 77 PARAMETER staterment can be used with these variables to
create dimensions for arrays of related sizes. For example, the statements

(assuming ELLPACK is being used with a Fortran 77 compiler).

DECLARATIOINS.

PARAMETER (NSIDE = ($LINGRX-2) * ($I1NGRY-2))
PARAMETER (ENEDGE = 2*($T1NGRX + S[INGRY-1)

REAL INTER(NSIDE,3), RECTB(NEDGE), UUINTER(NSIDE)
INTEGER IDEDGE(NEDGE), KTYPE(NSIDE) -

gives numerical values to NSIDE and NEDGE by the time the ELLPACK control
program is generated. Thus, one has five arrays whose dimensions are related

"to the number of interior and edge points of the rectangular grid.

4.D ADVANCED ELLPACK EXAMPLES
This section presents four example problems selved with ELLPACK. The

first illustrates how to make a parameter study (vary physical parameters) for

an application to the solidification of alloys. This is an actual applicafion of

ok

et
Lr .

i
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ELLPACK to a real world problem. The second example shows how to use
ELLPACIKK PROCEDURES to analyze numerical methods. While this example is
artificlally simplified here, these procedures can be very useful in practice. The
third example illustrates how to solve nonlinear problems using Picard iteration.
It also illustrates how one can use internal ELLPACK variables if one knows about
them and needs to. In this instance, we could avoid any use of internal variables
as pointed out in the discussion. Finally, there is an example solving a problem

on an elliptical demain with an elliptical hole in it.

EXAWPLE 4.D1 Parameter study for Alloy Solidification.

The following elliptic boundary value problem is of interest in the study of

the selidification of metallic alloys.

Vi — (B/2)°u =¢

u =0 O Y = Yo
u, =0 ony =0andz=1/2
U + fu/R2 =—-Bsinh(By/R) ony =y=w(x)

The domain represents a liquid alloy behind & solidification front w(z) moving at
constant veloeity V in the —y direction. The coordinate system is taken to be
moving at this veleoecity and the system is assumed at steady-state. The function
& is then related to the concentration of solute in the liquid according to the

formula

c(z.y) = coly) + u{z.y) exp(—Py/R)

where ¢g(y) = 1 + ezp(~By) is the concentration for an unperturbed solid-liquid
interface (6=0), The sides of the container are at x = 1/2 and z = ~i/2, but
the demain is truncated at 2=0 due to symmetry. Also the boundary condition

along the topmost edge is actually # —> 0 as ¥y --> o, but is truncated to some
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Figure 4.1. The demain for Example 4.1,

L
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finite value ¥ °.

We wish to perform parameter studies with respect to befe 5, and y.. The
parameter 6 is the amplitude of the solid-llquid interface, and 8 = VZ/ D where
V s the solidification velocity, L is the aetual half-width of the contaner, and D
s the diffusivity of the solute in the liquid. In each case we wish to determine
the solute distribution along the solid-liquid interface. For more information
see: S.R. Coriell, R.F. Boisvert, R.G. Rehm, and R.F. Sekerka, Lateral solute
segregation during unidiretional solidification of a binary alloy with a curved
solid-liquid interface II; large departures from planarity, J. Crystal Growth, 54

(1881}, pp. 167-175.

The following ELLPACK program sclves this problem. Note the use of the
GLOBAL segment to parameterize the program. The parameter values for the

run are read and set in the Fortran segment,

L AE NI AR AL LR AR R LR R R LRI R R R N R SRR RN TR RN Y

EXAMPLE ELLPACK FROGRAM 4,D1

]
L ]
[ ]
REMARKS .
MODEL OF SOLUTE SEGREGATION DURING UNIDIRECTIONAL *
SOLIDIFICATION OF A BINARY ALLOY WITH A CURVED  *
SOLID-LIQUID INTEFACE .

»

]

FRPEN RPN SRR PR P NP PP R R PR R PRI RO N RN RN RRNEP PRI Y Ry

- & & % & 5 & 8 " 8 9
- 4 2 9 8 0 8 9

EQUATION, UXX + UYY - BDV23Q*U = 0.0

BOUNDARY. UX = 0.0 ON X=0.0 Y=T FOR T=W(0.0) TC YINF
U = 0.0 ON X=T, Y=YINF FOR T=0.0 TC 0.5
UX = 0.0 ON X=0.5, Y=YINF-T FOR T=0.0 TO YINF-W(0.5)

-DW(X) *UX + UY + BOV2U = -BETA*SINH(BOVZ*Y)
ON X=0.5-T, Y=H(0.5-T) FOR T=0.0 TO 0.5

GLOBAL.
COMMON sPARAMS/ BETA,BOVZ,BDV23q.YINF, DELTA, TWOP1, TWOPID

EORTRAN .
g SET PROBLEM PARAMETERS

READ(5, ¢) YINF,BETA,DELTA
BOVZ = Q.5*BETA

BOV28q = BOV2+BOV2

TWOPI = 2.0*PI

TWOPID = TWOPI*DELTA

[N H

4 3
R
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GRID.
30 X POINTS
40 Y POINTS

. SOLVE PDE PROBLEM FOR THE FUNCTION U
DISCRETIZATION. 5-POINT STAR

-INDEXING. MINIMUM DEGREE

SOLUTION. SPARSE

* PLOT CONTQURS OF SOLUTE CONCENTRATION
OUTPUT. PLOT(C)

FORTRAN.

C

C  TABULATE CONCENTRATION ALONG INTERFACE

c

READ(5,*) NPTS .
WRITE(8,2000)

2000 FORMAT('1 TABLE OF CONCENTRATION ALONG INTERFACE'H)
r ' X

C(X,W(X)) 7
DX = 0.5°FLOAT(INPTS-1)
DO 100 I=1,NPTS
X = FLOAT(I-1)*DX
CVAL = C(X,W(X))
WRITE(8,2001) X,CVAL
100 CONT INUE
2001 FORMAT(1X,2E18.8)

SUBPROGRAMS.
REAL FUNCTION W(X)

C
g SHAPE OF THE SOLID-LIQUID INTERFACE

COMMON /PARAMS/ BETA,BOV2,BOV25Q,YINF,DELTA, TROPI, TROPID
W = DELTA*COS(TWOPI *X)

RETURN

END

REAL FUNCTION DW(X)

DERIVATIVE OF SOLID-LIQUID INTERFACE SHAPE

COMMON /PARAMS/ BETA.BOVZ,BOVeSQ,YINF,DELTA, TWOPI, TROPID
DW = -TWOPID*SIN(TWOPI *X)

RETURN

END

REAL FUNCTION C(X.,Y)

COMPUTES SOLUTE CONCENTRATION FROM PDE SOLUTION

COMMON /PARAMS/ BETA,BOVZ2,BOV2SQ,YINF,DELTA, TWOPI, TROPID
C = 1.0 + EXP(-BETA*Y) + U(X,Y) *EXP(-BOV2*Y)

RETURN

END

REAL FUNCTION SINH(Z)

DIRECT COMPUTATION OF HYPERBOLIC SINE FUNCTION

SINH = 0.5%(EXP(Z)-EXP(-Z))
RETURN
END

END.

eXoNp]

lvReRp]

anen

EXAMPLE 4.D2 Use of PROCEDURES to analyze a method.

One of the objectives of ELLPACK is to assist in the analysis of numerical

methods for PDEs. Two ELLPACK tools for this purpose are the procedures
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DISPLAY -MATRD( PATTERN and EIGENVALUES. The first is useful in analyzing
various data structures and techniques for Gauss elimination methods and the
second is useful to analyzing the applicability of iterative methods. The follow-
ing example shows the results of applying these tools to the 5 POINT STAR

discretization with three indexings (NATURAL, RED BLACK and NESTED DISSEC-

TION).
L] .!1llllllll!....ll...‘..."..'..'.'!!.lllll’"l..i"'.i....
L] L] A
. * EXAMPLE ELLPACK PROGRAM 4.D2 .
L] » »
¢ * REMARKS d
. . STUDY OF ZERQ PATTERNS AND EIGENVALUES OF .t
. . MATRICES OBTAINED FROM 5 POINT STAR WITH .
. ’ DIFFERENT INDEXINGS OF THE EQUATIONS. .
» L] L
. LR R R R N N R Y Y R Y R XX )
L]
EQUAT[ON.
. - X - UYY =0
BOUND.
U=0. ONX = 0.0
ONX =1.0
ONY =0.0
ONY =1.0
GRID. B8 X POINTS & 8 Y POINTIS
OPTION. TIME
DIS. 5 POINT STAR
INDEX. AS I3
PROC. DISPLAY MATRIX PATTERN (MATNBR=1,MATNBC=1,MATBLK=6)
FORT .
HX = RIHXGR
HY = RIHYGR
WRITE([1QUTP, 1000)

DO 10 M =1, IINGRX-2
DO 10 N = 1, T1INGRY-2
B = (4.-2.*COS(PI*HX'M)-2, *COS(PI*HY*N)) 7 (PIv*2*HX*HY)
WRITE(I10UTP,1010) M, N, E
10 CONT INUE
1000  FORMAT(//4X,1HM, 3X, 11N, 5X, 17THEXACT EIGENVALUES /)
1010  FORMAT(1X,214,4X,E15.8)

PRac. EIGENVALUES (SCALE = 1./PI**2)

INDEX. RED BLACK

PROC. DISPLAY MATRIX PATTERN (MATNBR=1,MATNBC=1,HMATHLK=18)
[NDEX. NESTED DISSECTION (NDTYPE=5)

PROC. DISPLAY MATRIX PATTERN (MATNBR=1,MATNBC=1,MATZER=1H )
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SYMBOL TABLE INPUT TIME 2.70 SECONDS
PROGRAM PROCESSING TIME 1.27 SECONDS
TEMPLATE OUTBUT TIME 2.15 SECONDS
TOTAL TIME 6,12 SECONDS
Output of ELLPACK run:
DISCRETIZATION MODULE
5-POINT STAR
DOMAIN RECTANGLE
X INTERVAL .000E+00, . 100E+01
Y INTERVAL '000E+00. . 100E+01
DISCRETIZATION UNTFORM
GRID g8X 8
HY . 143E+00
HY . 1458+00
B.C.S ON PIECES 1,2.3.4 1.1.1,1
OUTPUT LEVEL ;
NUMBER OF EQUATIONS 38
MAX NO. OF UNKNOWNS PER EQ. 5
EXECUTION SUCCESSFUL
INDEXING MODULE
NATURAL
NUMBER OF EQUATIONS 36

EQUAT [ ONS /UNKNOWNS NUMBERED
IN ORDER GENERATED
EXECUTION SUCCESSFUL

DISPLAY MATRIX PATTERN

1 2 3
123456 788012 345878 801234 587BE0 123458

—

=
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14 . XYL XL e
15 ...... ... XDX.. .. X... ...... ... .
18 ...... oo XDX, X e e
7 ... o X .. XDX . X ‘e '
16 LI I I L B ) L] x . -XD ----- x ------ »
10 .00 s X..... DX.... X...otv vvvnns
20 N X.... oX... X.... ......
21 ... o, X... .X0X.. X .
B2 .. caiaa XL L XDX Xo. oinn
= X. ... XX . X, ...,
24 ...l Lol e X....XD ..... b
25 e e e Xo.o... DX.... X.....
= X.... XX... X

27 .o e e . X... XX.. . .X

28 ... Ve e . X, ..o . ..X
20 ...... Vi e X LW XDX X
an .. Ce e e X ... XD ..... X
£ X.o.... DX....
32 b reee e anaes X.... XDX. ..
a3 . . A 4 JXDX. .
Moo e . . . X XX
5 e i e e XXX
FB s i i e s X ....XD

DISPLAY MATRIX PATTERN
EXECUTION SUCCESSFUL

M N EXACT EIGENVALUES

. 188883E+01
.472188E+01
. 870328E+01
.131223E+02
.171037E+02
. 168588E+02
. 472188E+01
. 747710E+01
. 114585E+02
. 15B775E+02
. 198590E+02
.228142E+02
.870328E+01
.114585E+02
. 154398E+02
.198500E+02
. 230404E+02
.285858E+02
. 131223E+02
. 15B775E+02
. 198500E+02
. 242780E+02
. 282594E+02
.310146E+02
. 171037E+02
. 198590E402
.238404E+02

O d e B WURWWLINNMNNDN =~ =
WA 2WNOME DN~ G @D IR~
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(R R N N B N ]
DN LN D

COMPUTE
SCALE FACTOR

=

DO~ @ b LI D)=

. 282504E402
.322408E+02
. 3480980E+02
.188580E+02
.22B8142E+02
. 205858E+02
.310148E+02
. 348080E+02
.377512E+02

- 86 -

EIGENVALUE

. A77513E+02
. 3499818+02
. 349881E+02
.322408E+02
.3101478402
.310147E+02
. 2825045402
. 282504E+02
. 268585B8E+02
.2B5B58E+02
. 2427808402
. 230404E+02
.238404E+02
.228142E+02
.226142E+02
. 188580E+02
. 168589E+02
. 128580E+02
. 1885898402
. 188580E+02
. 198588E+02
. 171038E+02
L 171037E4+02
. 158775E+4+02
. 158775E4+02
.154388E+02
.131223E+02
.131223E+02
.114585E+02
. 114585E+02
.870330E+01
. 870320E+01
LT4ATT11E+0]
.472180E+01
.4721838E+01
. 1B6BE7E+D1

RED-BLACK

RBNDX BEGINNING EXECUT[ON
RBNDX EXECUTION SUCCESSFUL

-000000E+00
. 00QQOGE+00
.000000E+00
. 00DOOOE+O0
. 000000E+00
.000000E+00
.0000Q0E+00
. 00QO0C0E+D0
-000000E+H0
.00D000E+00
. 000000E+00
»000000E+00
. 000000E+00
. 000000E+00
. 000000E+H00
.000000E+00
. 000000E+00
.000000E+HOO
. 000000E+00
. 00Q000E400
.000000E+00Q
. 000000E+D0
. 000000E+00
.000000E+00
. OGOOO0OE+O0
.000000E+]0
. 000000E+00
. 000000E+00
. 00C000E+0D
» Q00000E+HDO
. 000000E+00
. 000Q00E+00
. 000000E+00
. OOOO0OEHDO
.000000E+00
.00DOOOE+OO

EIGENVALUES
.101321E+00

HAGNITUDE

»377513E4+02
»J488681E+02

. 3496861E4+02

. 322408E+02
.310147E+02
.310147E+02
.282584E+02
.282594E+02
. 285058E+02
.285956E+02
.242780E+02
.238404E+02
2384046402
.228142E+02
.228142E+02
. 198580E+02
. 1980288E+02
. 188589E+02
.198588E+02
. 18B588E+02
. 198589E+02
.171038E+02
.171037E+02
. 158775E4+02
.158775E+02
. 154390E+02
. 131223E+02
.131223E+02
.114585E+02
.114585E+02
.B70330E+01
.8703285+01
.74T7T11E+01
.472100E+01
. 472188E+01
.196667E+01

ANGLE/PI

. 006000
. 000000
.00Q000
. 000000
. Q00000
.000000
. 000000
. 000000
.000000
» 000000
. 000000
. 000000
. 00G000
.000000
. 000000
.000C000
.000000
. 000000
. 0000060
.000000
.000000
. 000000
000000
. 000006
. 000000
.000Q000
. 000000
. 000000
. 000000
. 000000
. 000000
. 000000
. 00C000
.000000
. 000000
. 000000

[

——
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DISPLAY MATRIX PATTERN

1 2 3
'123456780012345678 B01234567880123458

DISPLAY MATRIX PATTERN

EXECUTION SUCCESSFUL

NESTED DIBSECTION

)
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5-PT NESTED DISSECTICN BEGINNING EXECUTION
5-PT NESTED DISSECTION EXECUTI[ON SUCCESSFUL

DISPLAY MATRIX PATTERN

1 2 3
1234587880123456878001234587880123458

D X XX
DX XX
DX . X o
p.0.8.00) .
D XX
DX X ¢4
DX pod

DT I PN RN DD m-m U S 68—
5 54
>
>
3, [+ g
[
L]
fa
> ﬁ c:c
1 54 <Rl T
: Shdal*ial IV
e 552
v 2 e
ﬁ > ]
54 v o
3% g o
y Nw 2
" Uﬁx e »
Uﬁg 5 54
i [+ 1 2 B ne
o e
= ;Eﬁ 24
[+ 19"

€ 63 L0 €0 €2 € €0 N 20 D0 B0 20 10 03 B3 B3 A
QUERUN—RODDNIOURGN—~ O
=]

B4 e
H2s

DISPLAY MATRIX PATTERN
EXECUTION SUCCESSFUL
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tHHHH R
+ +
+ EXECUTICN TIHMES +
+ +

- HEHHH AR

MODULE NAME SECONDS
5-POINT STAR .12
NATURAL . .08
DISPLAY MATRIX PATTERN .45
EIGENVALUES 3.85
RED-BLACK . .02
DISPLAY MATRIX PATTERN .40
NESTED DISSECTION .07
DISPLAY MATRIX PATTERN 39
TOTAL TIME 5.38

EXAMPLE 4.D3 Nonlinear PDE Solution by Picard iteration.

An ELLPACK program is shown below for the problem
Uzg + Uy = uF (2B yP) e

on the unit square with boundary values so the true solution is ¢®. The method
of Picard (or fixed point iteration) is used to solve this non-linear problem
through a sequence of linear ones. HODIE higher order finite differences and
Gauss elimination are used and the solution is obtained quickly. See Section 5.B

" for another example of using Newton iteration with ELLPACK for a nonlinear

problem.

» ...0....'l!;'0!.0'!..'..!!....‘UU.'.!0.'..‘.'.....0.!0!0’.0
L) v L]
. * EXAMPLE ELLPACK PROGRAM 4.D3 .
[ ] L] ]
, *  REMARKS .
. . NONLINEAR PCISSON PROELEM WITH U**2 ON RIGHT .
¢ * SIDE. FIXED PQINT [TERATION IS USED. .
¥ L] . [ ]
.. » L ]
] LR A AL A R R AR A L A N R R N T R Y R N N RN R RS ARR ]
*

EQU. UXX + UYY = (X**2 + Ye*2) *» EXP(-X'Y) * U(X,Y)**2
BOUND. U=1.0 ON X =0.0
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ON Y

U=EXPr(Y) oN X

U=FEXP(X) ON Y

GRID. 7 X POINTS % 7 Y POINTS

OPT. OLDU = 1 $ MEMORY

0.0
1.0
1.0

Hl

]
~

[NITIALIZE U AND INDEXING VECTORS
ONE GETS BETTER RESULTS IF U IS INITIALIZED BY

TRIPLE.  INTERPOLATE BOUNDARY CONDITIONS BY BLENDING
OR BY

TRIPLE.  INTIALIZE U(U=START)

WHERE START(X.Y) = 1 + XY

BUT THE CURRENT EXAMPLE SHOWS HOW ELLPACK INTERNAL VARIABLES
MAY BE USED BY SOMEONE KNOWLEDGEABLE ABOUT ELLPACK

THIS WILL BE DONE WHEN POSSIBLE
DO 10 I =

Qo000 O0O00

1,1 N'E
I; .0 + I*,001
I

[y =

10 CONT INUE
DO 50 [ = 1,8
IF (I .GT. 1) [1LEVL =

WRITE(8,20) I
20  FORMAT(//8X,10(iH*), 11HITERATION = ,I3,2X,20(1H*)/)

DIS. HODIE ACF
IND. AS IS
SOL, BAND GE
oUT. MAX (ERROR)
FOR.

DIFMAX = 0.0

DO 30 I = 1,IINEQN
RJWORK(J) = RIUNKN(J)-R1UNK1(J)
DIFMAX = AMAX1(DIFMAX, ABS(RIWORK(J)))
30  CONTINUE
WRITE(8, 40) DIFMAX, (J,RIWORK(I), I=1, [ INEQN)
40  FORVAT(BX,25HMAX CHANGE IN UNKNOWNS = , E186.5, x.

A 18H DIFFERENCES ARE s (5X,5([3,F10.8)))
50 CONTINUE
SUB,
FUNCTION TRUE(X,Y)
TRUE = EXP(X*Y)
RETURN
END
END.
APPROXIMATE MEMORY REQUIREMENTS
WORKSPACE 99 GRID LINES 15
LINEAR EQNS 800 UNKNOWNS 50
INTERPOLATION 208 DOMAIN [NFO 0
AMATRX, BVECTR 200 TOTAL MEMORY 1173
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SYMBOL TABLE INPFUT TIME 2.83 SECONDS
PROGRAH PROCESSING TIME 1.43 SECONDS

TEMPLATE QUTPUT TIME 2.42 SECONDS
TOTAL TIME 6.48 SECONDS
COutput of ELLPACK run:
.t.!'...t![TERATION: 1 O"O..!O!'.!!!.'.;l.

DISCRETIZATION MODULE
HODIE-HELMHOLT?Z
DOMAIN RECTANGLE
X INTERVAL .0DOEHIC, .1:00E+01
Y INTERVAL .000E+00, .100E+01
DISCRETIZATION UNIFORM
GRID TX 7
HX . 1B87E+00
HY . 187E+00
QUTPUT LEVEL 1
METHOD CHOSEN 41
NUMBER OF EQUATIQNS 25
MAX NO. OF UNKNOWNS PER EQ. g
EXECUTION SUCCESSFUL

INDEXING MODULE
NATURAL
NUMBER OF EQUATIONS 25
EQUAT IONS /UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL
"SOLUTION HODULE

LINPACK SPD BAND
NUMBER OF ROWS 7
NUMBER OF COLUMNS 25
NUMBER OF UPPER CO-DIAGONALS 8

LINPACK BAND GIVES 2 TIMINGS

SETUP TIME AND SOLUTION TIME

EXECUTION SUCCESSFUL

+ MAX( ABS(ERROR ) ) ON 7 X

7?7 GRID =

.7088170E-01

+
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+

MAX CHANGE IN SOLUTION =

1 1.0375056 2 1.074653 3
6 1.074953 7 1,150476 8
11 1.111803 12 . 1.225777 13
18 1.145313 17 1.2p7412 18
21 1.171595 22 1.358044 23

coo'voovo-[TERATION = 2

+ MAX( ABS(ERROR ) ) ON T X
+

+H

MAX CHANGE IN SQLUTION =

1 -.000915 2 -.018858 3
6 -.0188580 7 -.035174 8
11 -.026280 12 -,0474981 13
18 -.020503 17 -.051885 18
21 -.023B18 22 -.040185 23

sttt et [TERATION = 2

+
+ MAX( ABS(ERROR )} ) ON 7 X 7 GRID = .3271103E-03 +
+

- 72 -
+

. 20528E+01 DIFFERENCES ARE
1.111803 4 1.145313 5 1.171505
1.226777 © 1.287412 10 1.358045
1.,3420B83 14 1.458878 15 1.588834
1.4586878 19 1.830315 20 1.7080659
1.568834 24 1.799950 25 2.052578

PEEINNIIR ORI PRI RNPITISS

7 GRID = .4832781E-02 +
+

. 75824E-01 DIFFERENCES ARE
-.026280 4 -,020503 5 -.023818
-.047481 0 -.0518685 10 -.040185

-.0831B4 14 -.0B8624 15 -.053187
-.088024 19 -.075824 20 -.0B050%9
-.053187 24 -.0805680 25 -.052800

-+

+

e B S B o B e T A

MAX CHANGE IN SOLUTION =

1 .000815 2 .001210 3
8 .001208 7 .0023686 8
11 .0018686 12 . 003281 13
16 .001821 17 .003521 18
21 .001285 22 .002488 23

.OUOOOOUI'.ITERATION:-' 4

. 5258BE-02 DIFFERENCES ARE
.001888 4 .001821 5 .001285
.003281 9 .003521 10 .002488
.004534 14 004884 15 .003442
.004864 18 005260 20 .003778
.003441 24 .003778 25 .002760

MAX CHANGE IN SOLUTION =

1 -.000C040 2 -.00007% 3
8 -,0000%8 7 -.000158 A
11 -.000110 12 -.000216 13

7 GRID = ,1502037BE-04
+
-

.34201E-03 DIFFERENCES ARE
-.000110 4 =-.000117 5 ~-.000081
-.00021¢ © -.000230 10 -.00015%
~.000300 14 -.000320 15 -.000221

0

]
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18 -,000117 17 -.000220 18 ~-.000320 19 -.000842 20 -.000238
21 -.000081 28 -.000159 23 ~-.000221 24 -.000238 25 -.000187

.U..i..!!![TERATION: 5 LR AALARRL AL NS D)

o+

+
+ MAX( ABS(ERROR ) ) ON 7 X 7 GRID = .703334BE-05
+ .

+

MAX CHANGE IN SQLUTION = .22173E-04 DIFFERENCES ARE

1 .goocel 2 000005 3 .000007 4 000008 5 .000005

8 .000005 7 .000010 & .000014 ©  .000015 10 -000010
11 . 000007 12 -000014 13 .000020 14 .000021 15 -000014
18 .0000Q8 17 .000015 18 .gooo21 18 . Q00022 20 .000015
21 . 000005 22 .0oo010 23 -000014 24 . 000015 25 .0ooo010

.lllll...l[TERAT[ON: 8 LA ARR R R RSN D]

+ +
+ MAX( ABS(ERROR ) ) ON 7 X 7 GRID = ,5722046E-05  +
+ +

e B L e e
MAX CHANGE I[N SOLUTION = . 15487E-05 DIFFERENCES ARE
1 .pooooo 2 .000000 3 .000OCO 4 -.000001 S5 .0QOOCO
6 .000000 7 ~-.00000C1 8 -,000001 B -.Q00001 10 -.000001

11 000000 12 -.000001 13 -.000002 14 -.0C0002 15 -.000001
18 .000000 17 -.0060001 18 -.000001 1@ ~-,0Q00001 20 -.000001
21 . 000000 22 -.000001 23 -.000001 24 -.000001 25 ~-.000001

We diseuss four of the more interesting points about this program.
1. Treatment of the nonlinearity. Note that the ELLPACK function U(X,Y) is

used directly in the right side of the PDE. This facility can be used for more

complex PDEs, for example

7.4UXX + (U(X,Y)**2+1.)*UYY + SIN(UX(X,Y))*UX - UY(X.Y)*U = 0

for the equation

-
L4

L

R
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gy + (1+ud)uy, + sin(u;) up —uy u =0

The discretization module uses the current definition of U{X,Y), UX(X.Y), ete.
in forming the linear'system for the problem. This mesans that U(X,Y), ete..

must be initialized. see the next point for one simple approach.

There is a word of caution about nonlinearities, it is not guaranteed that
the functions U(X,Y) are not disturbed during the discretizations. This tech-
nigue works normally in most situations, but there are cases where it fails
because the discretization module may change something about how the solu-
tion U(X.Y) is computed during its execution. For example, suppose that one
changes the grid size between two uses of 5 POINT STAR. After the first use, the
unknowns are stored in table corresponding to the [first grid. Once the grid is
changed this table no lc_mger corresponds to the existing grid. When 5 POINT
STAR is used again, it sets variables to determine how to evaluate the new solu-
tion. At some point in this sequence U(X,Y) becomes improperly defined, this
might occur right in the middle of a discretization module's execution. If one
suspects there may be a problem like this, the information about U(X.Y), ete
should be moved to user defined arrays and then used from there. An example

of this is given in Chapter 5.

The fixed point iteration method is used to handle the nonlinearity. This
method is very simple to implement in ELLPACK, in this case it corresponds to

the iteration

Uip*) ¢ gl = (U322 + yf) e W n =0,12...

where one has a linear problem to obtain g+ from U™). One could also

attempt to use the iteralions

2
R
o
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Ugu) + Urg;n) - U{n)(za + yz) e~ ppn+l) = g

in much the same way. The strength of fixed point iteration is its simplicity. Iis
weakness is that one cannot predict whether it will work dnd, if it does work, how
well it will work. In this instance it works well. When one formulation of the

iteration fails, others should be attempted.

2. Initialization of the iteration. The unknown function U(X.Y)} is initialized
indirectly by setting the ith unknown te 1+ 1/1000. This is done here merely
to illustrate how one can use detailed information about ELLPACK's internal
structure to set various things. Here one knows that there are IINEQN unk-
nowns 'in the array R1UNKN; one also initializes the indexing arrays I1ENDX and
I1UNDX to the identity. While this is & more complicated and less effective way
for this exarnple than discussed below, it is a useful technique in some more
complex situations.‘ One cou;ld use the ELLPACK triple INTERPOLATE BOUNDARY
CONDITIONS BY BLENDING to initialize U(X.Y). Once this TRIPLE is executed
then U(X.,Y), D."X(X. ¥), etec. are defined and, in fact, the blending function
method used frequently produces very good approximations. If one knows a
good approximation to (X, Y), say START then one can use the ELLPACK étate-
ment INITIALIZE UNKNOWN (U = START). Both of these TRIPLES define [J just as

though a numerical method were used to approximate U with a more standard

set of ELLPACK modules.

3. Testing for convergence. A simple convergence test is used based on the
maximum changes in the unknowns from one iteration to another. In order to
make this test, one needs to have both the current and previous unknowns avail-
able. The option OLDU=1 cereates the array R1UNK1 which always contains the

values of the previous unknowns. This allows the test to be made even if cne
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does not understanri how the unknowns are used by the discretization module to
represent U(X,Y).

An alternate (and simpler) convergence test would be to compute the max-
- imum change on the grid of the solution itself. The option OLDU = 1 also creates

the function U1(X,Y) and one could replace the DO 30 locp by

DoOs30 I =1,5
X = [/s8.
D30 J=1,5
Y = Js8,
DIFMAX = AMAX1(DIFMAX, ABS(U(X,Y)-U1(X.Y)))
a0 CONTINUE

One can easily modify this to store the individuel differences in the worksPac;e

array R1IWORK for printing with FORMAT 40.

4, Use of Workspace. The Fortran code is written at the end of the DO-loop to
use a temporary array. The standard ELLPACK array R1IWORK can be used, its
size IIMWRK is obtained with the option MEMORY. If a larger temporary array is

needed, the size of RIWORK can be set to n with the option MAX-WORKSPACE=n.

EXAMPLE 4.D4 Nonrectangular domain with a hole

This example illustrates the use of the HOLE segment and non-rectangular

demains.
L] LA R R R NN ERER RN RN R AR R AR RN R YRR RN RN TRRRY)
- ., . L}
. * EXAMPLE ELLPACK PROGRAM 4.D4 .
[] [ ] L]
. *  REMARKS .
. ’ THIS PROGRAM USES THE HOLE FEATURE IN ELLPACK. .
. ’ THE REGION [S BETWEEN TWO CONFOQCAL ELLIPSES. ’
» L] L]
L] .‘.'.0....0"....0.‘...!........"......O...CO.........‘...'
EQ.
UXX + UYY = 0.0 “~
BO. U=o0. ON X = COSH(3.0)*SIN(T), Y = SINH(S.0)*COS(T) P
: FOR T = 0.0 TO 2¢PI i
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HO. U=1. ON X = COSH(2.3)*SIN(T), Y = SINH(2.3) *COS(T)
: FOR T = 0.0 TO 2%P]
GR. 17 X POINTS, -COSHES'D; T0 cosnga.o}
17 Y POINTS, -SINH(3.0} TO SINH(3.0
nI. 5 POINT STAR
IN. AS IS
. s0. BAND -GE
oP. TIME $ MEMORY
QU. PLOT-DOMAIN
MAX(TRUE) $ MAX(U) $ MAX(ERROR)
SUBPROGRAMS .

FUNCTION TRUE(X,Y)

g1 = SQRT((X-1.0)*e2+Y*e2)
R2 = SQRT((X+1.0)**2+Y**2)
u = ACOSH(O.ﬁ'(R1+R23)
TRUE = (3.0-U)/(3.0-2.3
RETURN )

END

FUNCTION ACOSH(X)
ACOSH = ALOG(X+SQRT(X**2-1.0))

RETURN
END
END.
APPROXTMATE MEMORY REQUIREMENTS
WORKSPACE 331 GRID LINES 35
LINEAR EQNS 4824 UNKNOWNS 288
[NTERPOLATION 757 DOMAIN INFO 280
AMATEX, BVECTR 13583 TOTAL MEMORY 19808
SYMBOL TABLE INPUT TIME 2.50 SECONDS
-PROGRAM PROCESSING TIME .85 SECONDS
TEMPLATE OUTPUT TIME 2.20 SECONDS
TOTAL TIME 5.55 SECONDS
Ontput of ELLPACK run:

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 63 BOUNDARY POINTS WHERE THE
1 PIECES INTERSECT THE 17 X 17 GRID

TIME TO PROCESS BOUNDARY 4.933
TIME TCO PROCESS INTERIOR .100
TOTAL PROCESSING TIME 5.033

DOMAIN PROCESSOR

DOMATN PROCESSOR BEGINNING EXECUTION
FOUND 32 BOUNDARY POINTS WHERE THE
1 PIECES INTERSECT THE 17 X 17 GRID

- '_-_‘
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TIME TO PROCESS BOUNDARY 2.733
TIME TO PROCESS [NTERIOR "033
TOTAL PROCESSING TIME 2.787

DISCRETIZATION MODULE
5-PO0INT STAR
DOMAIN NON- RECTANGULAR
UNIFORM GRID 17 X 17
HX . 128E+01
HY . 125E+01
QUTPUT LEVEL 1
BOUNDARY CONDITIONS
PIECE 1 TYPE 1
PIECE 2 TYPE 1
NUMBER OF EQUATIONS 146
MAX NO. OF UNKNOWNS PER EQ. 5
EXECUTION SUCCESSFUL

INDEXING MODULE
NATURAL
NUMBER OF EQUATIONS 148
EQUAT [ONS /UNKNOWNS NUMBERED

IN ORDER GENERATED

EXECUTION SUCCESSFUL

SOLUTION MODULE
LINPACK BAND
NUMDER OF ROWS 40
NUMBER OF COLUMNS 146
NUMBER OF LOWER CO-DIAGONALS 13
NUMBDER OF UPPER CO-DIAGONALS 13

LINPACK BAND GIVES 2 TIMINGS
SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

+ MAX( ABS(TRUE ) ) ON 17 X
+

- A e

17 GRID =

. 8787284400

+ 4+
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+
+ MAX( ABS(U ) ) ON 17X 17 GRID = .9795400E+00  +
+

+ *-
+ MAX( ABS(ERROR ) } ON 17 X 17 GRID = ,1475811B-02  +
+ +

-+

. +
+ EXECUTION TIMES +
+ +

++—++-++—+++—+—+++H

MODULE NAME SECONDS
DOMAIN 5.03
HOLE 2.78
5-POINT STAR .28
NATURAL .02
LINPACK BAND SETUP .18
LINPACK BAND .73
PLOT DOMAIN .30
MAY 27
MAX .70
BAXY .45
TOTAL TIME 10.80

e
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domain of
solution
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Figure 4.2. The contour plot produced by PLOT(DOMAIN) in the exam-

ple ELLPACK program 4.D4.
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CHAPTER 5: EXTENDING ELLPACK TO NON-STANDARD PROBLEMS

ELLPACK can be used to solve or study problems where its "automatic”

problem solving capabilities do not apply. To use ELLPACK in this way requires

that one has an understanding of both the ELLPACK system and the numerical

methods involved. Even meore complicated applications depend on knowing

some of the delails of the implementations in the ELLPACK modules. We illus-

trate this use of ELLPACK with [ive examples.

1

A prablem with o double-valued boundary condition along e slif, Such prob-

lems arise when their objects are placed in electrical fields. Many prob-
lems of this type can be solved using ELLPACK once one learns the tech-
nique.

Diffusion problem with interior interface conditions. The melting of a
metallic alloy introduces an interface with a derivative jump condition.
The 5-POINT STAR equations are modified along the liquid-sclid interface to
be this condition.

Three monlinear problems. Newton iteration methods for handling non-
linearities can be implemented easily in ELLPACK The examples given

show very rapid convergence and two are real world applications.

Atlime dependent problem. Consider the parabolie problem

u = fu

where [ is an elliptic operator in two or three variables. Many numerical
metheds for such problems are implicit so they can take large time steps.
At each time step these methods solve an elliptic boundary value problem.
Several of these methods can be concisely formulated in ELLPACK to use
its elliptic problem solving capabilities. We illustrate this technique for

the PDE
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Uy = uyPun + wy + St+tan(cry HE)uy +u + F(zy.8)

5.  The tronsifor equations. This problem involves three simultaneous, highly
nonlincar clliptic equations. This problem arises from a model of the elec-
tric field in.a transistor and is difficult to solve. A particular iteraticn is
deti.ned'ﬁhich might loosely be called a Newton-Jacobi iteration. Jacobi
iteration is used in going from equation to equation and Newton's method

is used f[or the nonlinearities.

5.A SPECIAL INTERIOR BOUNDAIRRY CONDITIONS

ELLPACK has the capability to handle auxillary conditions along curves
inside the domain. These might be conditions on ‘slits' as occurs at a thin plates
is inserted in an electric field or at the interface between a solid and liquid. The
' ARC segment allows one to specify single valued boundary conditions in a
straight forward way. This example also illustrates the various output that one
can obtain from ELLPACK. The output TABLE-BOUNDARY is primarily useful for
people who want to know how ELLPACK works internally. This technique is illus-

trated in prograrm 5.A2.

LA A AL L AR R A R R LA R R N A RN N N R LR R R R R LR R RN R TN NN NN

L]

L ] L ]
. * EXAMPLE ELLPACK PROGRAM 5.A1 .
L] L] [ ]
. *  REMARKS .
. . TH[S PROGRAM USES THE ARC FEATURE IN ELLPACK,  *
. . THE REGION IS BOUNDED BY CONFOCAL ELLIPSES. .
. . THE SLIT IS A DEGENERATE ELLIPSE, '
L] - L ]
L] LA IRl RN R R R R R R R R R R R I R RS SRR RIRRE L]
OPT. TIME

EQ. UXX + UYY = o.0

BOUND. U =0. ON X = COSH(2.0)*SIN(T), Y = SINH(2.0)*COS(T)
. FOR T = 0.0 TO 2Pl

ARC. U=1. ON LINE -1.0, 0.0 TO 1,0, 0.0

GRID. 11 X POINTS  -COSH(2.0) TQ COSH(2.0)
11 ¥ POINTS  -SINH({2.0) TC SINH(2.0)
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DIS. 5-POINT STAR
IND. AS IS
SoL. BAND GE
ouT. SUMMARY(U) 3 MAX(ERROR)
TABLE-DOMAIN $ TABLE-BOUNDARY
PLOT-DOMAIN % PLOT(U)
SUBPROGRAMS ,
FUNCTION TRUE(X,Y)
R1 = SQRT((X-1.0)**2+Yve2)
RZ = SQRT({X+1.0)**2+Y*2)
U = ACOSH(0.5¢(R1+R2))
TRUE = (2.0-U)/2.0
RETURN
END
FUNCT[ON ACOSH(X)
ACOSH = ALOG(X+SQRT(X¢*2-1.0))
RETURN
END
END.

Output of ELLPACK run (some output has been deleted for brevity):

*¢* 5 POINT STAR, AS [S5 AND BAND GE CUTFUT DELETED e**

SYMBOL TABLE INPUT TIME 2.88 SECONDS
PROGRAM PROCESSING TIME 1.00 SECONDS
TEMPLATE QUTPUT TIME 2.72 SECONDS
TOTAL TIME 8.40 SECONDS

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 32 BOUNDARY POINTS WHERE THE
1 PIECES INTERSECT THE 11 X 11 GRID

TIME TO PROCESS BOUNDARY 2.533
TIME TO PROCESS INTERIOR .087
TOTAL PROCESSING TIME 2.800

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 4 BOUNDARY POINTS WHERE THE
1 PIECES INTERSECT THE 11 X 11 GRID

TIME TO PROCESS BOUNDARY .033
TIME TO PROCESS INTERIOR .017
TOTAL PROCESSING TIME .050

C
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-
—_

-
FRNWk U@ IDDO

+
+ MAX( ABS(U ) ) ON 11X 11 GRID = ,1000000E+01
+

+ TABLE OF U ON 11 X 11 GRID
+
+++-++—+-+ e R

++ +

TABLE(U) OUTPUT- DELETED ***

+ MAX( ABS(ERROR ) } ON 11 X 11 GRID = .8435743E-01

B o T o o o o o o o o o o o o o o o

+ +
+ TABLE OF THE POINT TYPES ON 11 X 11 GRID +
+ +
R AR m e m i L B

THE POINT XGRID{1)}, YGRID(1) IS AT THE LOWER LEFT.

* 0 0 -4028 -4030 -6001 1 -12001 -4003
. 0 -802& 20 e0249 1031 1001 1002 3003
* -2028 <06 8028 299 ape 6o 12300:) 2eg
. -2027 8027 898 8909 ope 808 g8 pEe
* -8025 8026 888 299 4035 4038 4037 2 )
* 25 8025 p8s 2034 35 a6 37 a0arv
. -3023 8023 099 069 1035 1036 1037 898
* -2022 12021 28g 2100 eeo gee 2048 28
* -2021 21 12020 999 Bee Bog poo eiel)
* 0 -3020 20 12019 4018 4017 4015 8013
. o 0 =-1020 ~-1019 -3017 17 -8015 -1014
.
L}

b A | 2 3 4 ] 5} 7 8

-4004 0 o
4 -12004 o
3004 5 -8005
898 3005 -Boos
888 2007 -12007
68 2000 2]
800 2016 -85008
]t 8011 -8011
8012 12 -8012
13 -8012 o
-1013 1] o
g 10 11
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+ TABLE OF THE BOUNDARY POINT TYPES ON 11 X 11
-+
o LA I 0 O e e

NUMBER XBOUND

1 .000000
2 . 752438
3 1.504879
4 2.2567318
8 3.008757
B 3.448108
7 3.6881856
8 3.762150
g 3.782186
10 3.6888184
11 3.44B1009
12 3.008757
13 2.257314
14 1.504879
15 . 752438
18 .006181
17 . Q00000
18 -. 752439
1 -1.504878
20 -2.257317
21 -3.009757
e -3.448110
23 -3.688184
24 -3.782188
a5 -3.762198
28 -3.686184
27 -3.448110
28 -3.009757
29 -2.257317
30 -1.504878
a1 -. 702439
32 -.005453
a3 .000a00
a4 -1.000000
35 - . 752438
36 . 000000
ar . 702430

YEOUND

3.828880
3.553583
3.324072
2.901489
2.176118
1.450744
.T25372

. 007547
.0000Q00

- . 725372
-1.450744
-2.178118
-2.901488
-3.324073
-3.553584
-3.8288080
-3.028880
-3.553584
-3.324073
-2.801488
-2.1781186
-1.450744
-. 725372
-.007158
. Q00000
.TRO372
1.450744
2.178118
2.801488
3.324074
3.553583
3.826860
3.826860
.000000
.000000
.000000
.000000

o o o o o e S

+

+

+ EXECUTION TIMES +

+

+

++++-H—++-++H

MODULE NAME

DOMAIN

ARC

5-POINT STAR
NATURAL

LINPACK BAND SETUP
LINPACK BAND

MAX

TABLE

MAX

SECONDS

2

.82
07
.22
.05
.10
27
.43
97
.35

BPARAM

. 000000

.201358

411517

843502

.p2T208
1.158278
1.369441
i.568718
1.5707088
1.772154
1.6682313
2.2142098
2.468082
2.730076
2.940237
3.138850
3.141583
3.342049
3.553100
3. 785004
4.0888488
4.300872
4.5110382
4,710418
4,712380
4,813747
5.123805
5.355890
5.639604
5.871668
8.001828
6.281738
8.283185

. 000000

. 123780

. 500000

. 876220

PIECE

NNNNHI—ll—ib—ll—ll—'l-'HI-DI—lI—lHHHHD—II—IHHI—'HHI—DI—IHHHI—'I—'I—JHI—II—!

BPTYPE

CORN
VERT
VERT
BOTH
BOTH
HORZ
HORZ
VERT
BOTH
HORZ
HORZ
BOTH
BOTH
VERT
VERT
HORZ
BOTH
VERT
VERT
BOTH
BOTH
HORZ
HORZ
VERT
BOTH
HORZ
HORZ
BOTH
BOTH
VERT
VERT
HORZ
JUMP
CORN
BOTH
BOTH
BOTH

4
+

BGRID

11008
10007
10008
10008
2010
a0190
7010
8011
8011
5010
1010
3010
2008
1008
1007
1008
1006
1005
1004
2003
3002
4001
S001
5001
8001
7001
8001
o002
10003
10004
10005
11005
11008
6004
8005
8008
8007

ENEIGH

10007
10008
8008
8010
8010
7010

B010
5010
4010
3009
3008
2008
2007

2008
2005
2004
3003
4002
4002
5002

8002
7002
8002
2003
9003
10004
10005

5065
5008
5007
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TABLE DOMAIN .23
TABLE BOUNDARY .45
PLOT DOMAIN .23
PLOT 5.80
TOTAL TIME 11.35

'i‘o solve problems with double valued boundary conditions one must use the
HOLE segment to place a very thin hole (slit or arc) in the domain and then
specify boundary conditions on each side of the hole. Care must be taken at the
ends of the hole so that the domain processor can follow the boundary. One

should meke the ends of the hole pointed and the ends of different pieces of the

boundary.
L} 0.!0'!000'0'.ll..ttlrl‘.ltl000UOOGl"!t'!0....'.0000.0..0.00.0'0.0!'.
L] L]
’ * EXAMPLE ELLPACK PROGRAM 5.A2 .
L} L} *
’ * REMARKS .
* . THIS PROGRAM IS FOR A PROBLEM WITH AN INTERIOR TWO ’
¢ . VALUED BOUNDARY CONDITION ON A SLIT. THE ARC FACILITY .
. * OF ELLPACK DOES NOT APPLY SO A HOLE I[N THE SHAPE OF 4 .
° ¢ LONG, VERY THIN DIAMOND IS USED INSTEAD. CARE MUST BRE *
* * TAKEN IN DEFINING THE SLITS THIS WAY SO THE ELLPACK .
. * DOMAIN PROCESSOR DOES NOT GET LOST. DEFINING THIS SLIT *
* * AS A LONG, VERY THIN RECTANGLE OR ELLIPSE WILL PROBABLY *
’ ¢ FAIL. THE ELLPACK PLOT ROUTINES ALSO ARE INACCURATE IN ¢
’ . THE NEIGHBORHOOD OF TWO-VALUED HOUNDARY CONDITIONS. *
L) L} L}
* !.0'.'.0000'!.'0.0.!.'0.!000!0..ll’l’i!'.t.ll.l..!.!.'l....0.0!.'..
OPT. TIMG
EQ. UXX + UYY = 0.0
BOUND, U =0. ON X = COSH(2.0)*SIN(T), Y = SINH(2.0)*COS(T)
. FOR T = 0.0 TQ 2°*PI
HOLE, U=1. ON LINE -1.0, 0.0 TO 0.0, 0,010 TO 1.0,0.0
U=2.-X*2 ON LINE 1.0, 0.0 TO 0.0, -0.010 TQ -1.0,0.0
GRID, 21 X POINTS -COSHEZ.O; TO COSHEB.O}
21 Y POINTS -SINH(2.0) TO SINH{2.0
DIS. 5-POINT STAR
IND, AS IS8
SOL. BAND GE
OUT. MAX(U) $ PLOT(U)
END.

SYMBOL TABLE INPUT TIME =2.87 SECONDS
FROGRAM PROCESSING TIME 1.22 SECONDS
TEMPLATE QUTPUT TIME 2.70 SECONDS
TOTAL TIME 86.58 SECONDS

Cutput of ELIPACK run:

a
-t
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domain of

solution

3.898
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Figure 5.1 Problem domain for program 5.A1
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DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 72 BOUNDARY POINTS WHERE THE
1 PIECES INTERSECT THE 21 X 21 GRID

TIME TO PROCESS BOUNDARY 5.187
TIME TO PROCESS INTERIOR .187
TOTAL PROCESSING TIME 5.333

DOMAIN PROCESSOR BEGINNING EXECUTION
FGUND 12 BOUNDARY POINTS WHERE THE
4 PIECES INTERSECT THE 21 X 21 GRID

TIME TO PROCESS BOUNDARY L117
TIME TO PROCESS I[NTERIOR 017
TOTAL PROCESSING TIME .133

5-POINT STAR

DOMAIN NON-RECTANGULAR
UNI[FORM GRID 21 X 21
HX . 376E+H00
HY . 363E+00
OUTPUT LEVEL 1
BOUNDARY CONDITIONS

PIECE 1 TYPE 1
PIECE 2 TYPE 1
PIECE 3 TYPE 1
PIECE 4 TYPE 1
PIECE 5 TYPE 1
NUMBER COF EQUATIONS 300
MAX NO. OF UNKNOWNS PER EQ. 5

EXECUTION SUCCESSFUL

NATURAL
NUMBER OF EQUATIONS 300
EQUAT [ONS UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUT[ON SUCCESSFUL

LINPACK BAND

NUMDELR OF ROWS 58
NUMBER OF COLUMNS 300
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FIGURE 5.2 CONTOUR PLOT OF SOLUTI1ON FOR PROGRAM 5. A1
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NUMBER OF LOWER CO-DI[AGONALS 19
NUMBER OF UPPER CO-DIAGONALS 18
LINPACK BAND GIVES 2 TIMINGS

SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

1
............................................................

............................................................

-
+ +
+ EXECUTION TIMES +
+ +

A

MODULE NAME SECONDS
DOMAIN 5.33
HOLE - .17
5-POINT STAR .43
NATURAL . .03
LINPACK BAND SETUP . .37
LINPACK BAND 3.03
MAX 1.00
PLQT 5.00
TOTAL TIME 15.52

5.B A TWO-I’HASE DIFFUSION PROBLEM

Censider a rectangular container 0<z <1, —1/2<y<1 filled with a metallic
alloy. The sides of the container {z =0, £=1) are Insulated, while the top of the
container (y=1) is held at some fixed temperature above the melting point of
the metal and the bottom (¥ = 1/2) is held at a constant temperature below the
melting point. The vessel eventually contains both molten and solid metal, and
we assume that the solid-liquid interface lies along the line % =0. In addition, we
assume that the liquid metal is stirred by some external rmeans. We wish to

determine the steady-state temperature distribution of this system.

i
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u
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Figure 5.3 Contour plot of solution for program 5.A2

Frn
S0y

i




SECTION 5.B -92-
Let the functions » and v represent the temperature of the liquid and seolid
respectively. We then have the following models for the diffusion of heat in the

two phases.

In the solid:

Vu =0.0 for0<z<l, -1/2<y<0
du/dr =0.0 for z=0,1, —-1/2<y <0
v = 0.0 for 0<z <l,y=-1/%

In the ligquid:
Ve = f{z.y) forO<z<l,0<y<i
du/sdz = 0.0 for z=0,1, 0<y <1
u = 1.0 for 0<z <1, y=1

The function f is a source term that acecounts for the heat intreduced as a
resull of externally induced convection. For this example we f(z,y)} =
4y (1—y)sin({3z +1/ 2)).

The diffusion problems are coupled by two continuity conditions along the

solid-liquid interface {for 0 < z < 1, y=0):

u =v

du/dy = k(dv/dy)
The latter is a jurnp condition that results from the release of heat during soli-
. dification. The constant & is the ratio of thermal eonductivity of the selid to the

thermal conductivity of the liquid. We take ¥ = 1/2.

If we ignore the jump condition then this problem is equivalent to a single
phase steady state diffusion problem and is easily solved by the following
ELLPACK program. Note that there is no need to distinguish between » and # in

this program.
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EQUATION. UXX + UYY = F(X.Y)

BOUNDARY . UX =0.0 ONX= 0.0
UX =0.0 ONX=1.0
U =0.0 ONY=-1/2
U =1.0 ONY=1.0

GRID. 8 X POINTS
3 Y POINTS

DIS. 5-POINT STAR

INDEX. AS S

SOL. BAND GE

OQUTPUT, TABLE(U) $ PLOT(U)

SUBPROGRAMS .

REAL FUNCTION F(X,Y)
IF (Y .GE. 0.0) THEN
P =.4.vY*(1.-Y)*SIN(1.57080° (3. *X+0.5))
ELSE
F = 0.0
ENDIF
RETURN
END

This program produces the temperature distribution given in Figure 5.4,

One way to incorporalte the jump condition is to modify the outputl of the 5
POINT STAR module. We wish to change the finite difference equations gen-
erated for points along the line ¥ =0. We write a subprogram ADJUMP to do this

and insert the following code after the existing OUTPUT statement.

FORTRAN .
CALL, ADJUMP(R1COEF, [11DCO, [ 1HNEQ, I IMNCO)

SOL. BAND GE

QUTPUT.  TABLE(U) $ PLOT(U)

This will cause the equations to be modified and the problem solved again with
the new discretization. To write the subprogram ADJUMP one must be familiar
with the difference equations produced by 5 POINT STAR as well as with the
sparse matrix storage scheme used by ELLPACK.

Let (=i, yj), 1=i=12, denote the uniformly spaced grid point locations and
let wij, vij, and fij denote functions evaluated at the point {zi. 7). The differ-
ence cquation written by 5-POINT STAR for the point (zi, ¥4) in the interior of

the domain is



SECTION 5.B -94 -~

Figure 5.4: Solution of diffusion problem without jump condition.
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In the liquid:

Uirrg ¥ Ut U g T U gy + —dy g = REF (1)

In the solid;

Uirig F gt Yy Fu — 4oy =0 (2)

where k2 = 1/8 in this example. (The 5-POINT STAR module actually divides
these equations by ~?) Along the left and right sides of the domain these equa-
tions must also incorporate the boundary conditions du/dz = 0. For the liquid

phase Lhese equations become

Upjear t BUz; + Uy 5o ~duyy = ARF ' (3)

At the polnt (I B'yj):

Voje1 t 2Vay + Vgyy —4Ugy = hEf g, (4)

with similar equations for the solid phase.
Along the line ¥ =0 we also wish these finite difference equations to satisfy
the jump condition du/dy = k(dv/ dy). Replacing the derivatives by central

differences at the point (zi,y5) we get the discrete analogue

Upg — U g = KUy — vy ) (5)

Note that we have introduced two fictitious quantities, 5, ~1 and v5,7+1,
representing a liquid temperature in the solid and a solid temperature in the
liquid respectively. We eliminate these using the relations (1) and (2) and use

the continuity condition ui,5 = vi,5 to get

(L4 )y s + Rug g + (L4 )y 5 + ekv; o — 4(1+k Yu; 5
= h-afi.s
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for i=1 and 1=0 we must use the boundary finite difference equations (3) and (4)
and their solid analogues to eliminate the fictitious points from (5). Doing this,
and using continuity, we obtain

At the point (z,,ys):

2L 1.8 4 2(1+k)u2'5 + 2@1.4 - 4(1+k)u,.5 = h2f 1,5

At the point (z5.75)

Rugg + {14k )ugs + Bhkvgy — 4{1+kugs = R f o

Note again that there is no need to distinguish between = and » in the ELLPACK

program since exactly one value is defined at each grid point.

In ELLPACK each equation and unknown is given a single index number from
ohe to the number of equations and unknowns. 'Thus we must also know how 5-
POINT STAR maps the double subscripts used above into the single subscripts
used in ELLPACK (equivalently, how grid points are numbered). 5-POINT STAR
uses the so-called natural ordering, so the (i,7)th peint is given the index
(7 —R)+%.

The coeflicients of the kth finite difference equation are loaded into the kth
row of Lhe array R1COEF. The indices of the unknowns that these coefficients
multiply are loaded into the corresponding locations of the array I1IDCO. (See
Chapter 14 for details.) Note that as a result of the way in which we defined the
function F’ we need not modify the right-hand sides of these equations. The fol-

lowing subprogram performs all these operations.

o SUBROUTINE ADJUMP (COEF, IDCO,MNEQ,MNCO)
C CHANGE EQUATIONS ALONG Y=0 T0 ACCOUNT FOR JUMP CONDITION

REAL COEF(MNEQ.INCO)
INTEGER IDCO(MNEQ,MNCO)
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NX =90
H = 1.0/FLOAT(NX-1)
Hz = H*H
RK = 0.5
RK1 = 1.0 + RK
[NTER = 5

COMPUTE NEW DIFFERENCE EQUATION COEFFICIENTS

CO = -4.0* 1/H2
CE = RK1/H2
CW¥ = RK1/H2
CN = 2.0/H2
CS = 2.0'RE/H2

c
C LOAD COEFFICIENTS FOR MODIFIED INTERIOR POINTS
c

ISTART = NX*(INTER-2) + 1
ISTOP = ISTART + NX-1
DO 100 ISTART, ISTOP

IN=1 + NX
IS=1 - NX
IE=1+1
wWw=1I-1

DO 50 K=1,MNCO
INDEX = [DCO(I,K)
IF (INDEX .EQ. 1) THEN
COEF([,K) = CO
ELSE IF (INDEX .EQ. IN) THEN
CORF(I.K) = CN
ELSE [P (INDEX .EQ. IS) THEN
COEF(I,K) = C3
BLSE IF (INDEX .EQ. IE) THEN
COEF(!,K) = CE
ELSE IF (INDEX .EQ. IW) THEN
COEF(I,X) = CW
ENDLF
50  CONTINUE
100 CONTINUE

LOAD COEFFICIENTS FOR MODIFIED BGUNDARY POINTS

I [START
IE [ +1
DO 110 K=1 ,BNCO :
[F (IDCO(I,K) .EQ. IE) COEF(I.K)

110 CONTINUE
I = ISTQP
IW=1-1
DO 120 K=1,HNCC
IF (IDCO(I,K) .EQ. IW) COEF(L.K)
120 CONTINUE
c

C  PRINT MODIFIED EQUATIONS
c

DO 150 I=ISTART, [STOP
WRITE(I110UTP) |
DO 150 K=D,MNCO

IF {IDCO([.K) .NE. 0) WRITE(8,3001) K, IDCO(I,X).COEF(I,K)

00
i

2.0*COEF(I,K)

2.0*COEF(I,K)

150 CONTINUE
. RETURN
3000 FDRLM'I‘{' EQUATION ',I3 oonnoouootouocuotooo')
3001 HORMATC(® K=",12," Ib=",13,"' COEF=", 1PE15.8)
END

The result of the solution of the modified finite difference equations is shown in
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Figure 5.5.

5.C NEVITON ITERATION FOR NONLINEAR PROBLEMS

Program 4.C1 in the previous chapter illustrates one way to sclve nonlinear
problerns using ELLPACK. Fixed point iteration (also known as Picard's method)
" has a rate of convergence that is rarely fast. Newton's method usually con-
verges usually very rapidly once one gets reasonably close to the solution and is
very efficient when it works. If one visualizes the noblinear elliptic PDE as just
an equation for w (admittedly more complicated than usual) then we want to

solve

Flu)=0

Newton's method is to expand « in a Taylor's series at a point, say wp, then dis-
card all but the linear terms in § = w ~uy and solve for 5. Symbollically, the

Newton change & satisfies

Flugt+ Fug)d =0

In the case of systems of nonlinear equations, 6 is a vector and F'(ug) is the
Jacobian matrix {(with entries 87,/ 8u;). For a partial differential equation the
"derivative” F (up) & the Frechet derivative at ug. The Newton estimate =

obtained at uq.satislies

Flug) + L{ugu) =0

where £ is a linear partial differential equation. Thus Newton's method for the

nonlinear partial differential equation F{u) = 0 is as follows:

COMPFUTE THE FRECHET DERIVATIVE L (U, V)

(3
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FIGURE 5.5: SOLUT 10N OF DIFFUSION PROBLEM WITH JUMP CONDITION
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QUESS U = U,
FOR K = 0 TO LIMIT DO

EXIT IF CONVERGENCE TEST IS5 PASSED
END- L.OOP
PRINT RESULTS

Newton's method can be implemented directly in ELLPACK. The computa-
tion of L is straightforward (it is the linearized perturbation of ©+6 in F(u)). a
. MACSYMA program is given below for this which is very helpful when the algebra

becomes tedious. The technique is illustrated first for the simple example

Fu) =1y, +vPu, —e¥ -7 =0 Oz y=<1

where f (z,y) and the boundary conditions are chosen to make the true solution
be uw(z .y} = sin(z) cos (y).
If we make a perturbation 8 of 2 in this example and discard all powers of &

beyond the first we obtain

(w+8)s + (u+8)2(uw+0)y, ~e¥¥ —f
= (Upy + 8z} + (P, + Buluy, + uPd,) — (e“ + 6e*) ~ f
= (Upy + Uiy, —e® — f) + 6 + uBSy,, + (2u —e2%)8

= f(u) + L(w,uw+6)

We change the notation to correspond to the iteration by selting v = uyp and
then let % in the ELLPACK notation denote the new iterate (wi.,). Thus

8 = % — upin the new notation and the above equation becomes

Uz + (o), + (B uqugy — e“%u
= Ruwo)lugy, + e"°(1-+uu) + f D=zy =1
with boundary conditions u(z ) = sin{z) cos(y). Actually, in the ELLPACK pro-
gram, both ug(x,¥) and « (z,5) are denoted by w. The u's in the coefficients of

L are evaluated before the problem is solved and thus are the previous estimate
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1g; the estimate produced by solving the linearized problem is also « - and it

becomes the %4 for the next iteration.

An ELLPACK program for this example follows which has the initial guess
w(z.y) = 0; solves the linearized problem by collocation with Hermite bi-cubics
and limits Lthe method to 5 iterations. Various other features of the program are
explained in the comments. The only cutput we give is the table_produce& by

the subroutine SUMMARY; it shows the convergence is quite fast.

» L LR X N R N LR N R R X R R R REA RN RN IR RN RN R0 Y)
L] » L ]
. * EXAMPLE ELLPACK PROGRAM 5.C1 *
L ] » L ]
b *  REMARKS *
. * APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM ¢’
* * .
. ’ UXX + UUYY = EXP(U) + F(X.,Y) .
. » »
] N X2 N X R AR R R R IR ERRETERRRRARE RN RRRE R RN NRAR AL R RN ] Y
»
DECLARATIONS.
REAL ERRMAX(100)
. USE THE PDE FOR THE NEW U(X,Y) OBTAINED BY LINEARIZING THE
» NONLINEAR PROBLEM
EQUATION.
UXX + (U(X.Y)**2) *UYY + (2.°UX,Y)'UYY(X, Y)}-EXP(U(X,Y)))*U =
2o (U(X,Y)**2) *UYY(X,Y) - EXP(UX.Y))*(UX,Y)-1.) + F(X.Y)
BOUNDARY .
U = TRUE(X,Y) ON X = 0.
ONX=1.
ON Y = 0.
ON Y=1.

GRID, 5 X POINTS & 5 Y POINTS

. INITIALIZE THE NEWTON ITERATION BY GUESSU = 0

TRIPLE. INITIALIZE U ( U = GUESSU )
’ USE FORTRAN TO CONTROL ITERATION AND OUTEUT
FORTRAN.

[1LEVL = 1

NITERS = 5

DO 10 NITER = 1, NITERS
. SOLVE THE LINEAR!ZED PROBLEM
DISCRETIZATION. HERMITE COLLOCATION
INDEXING AS 1S -
SOLUT [ON BAND GE

FORTRAN.

. COMPUTE INTERMEDIATE MAX ERROR, SAVE FOR TABLED OUTEUT

. TURN OFF ELLPACK OUTPUT

“uo.
-
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10

CALL MAXERR(ERRM(N[TER))
[iLEVL =

CONT [NUE

PROCESS FINAL RESULTS

CALL SUMARY({ ERRMAX, NITERS)

SUBPROGRAMS.

lpRelvle]

o000

10
20

10

END.

L3

FUNCTION F(X,Y)
F IS CHOSEN TO MAKE THE TRUE SCLUTION SIN(X)*COS(Y)

TRUE SIN(X) *COS(Y)

TRUEXX = -TRUE

TRUEYY = -TRUE

F = TRUEXX + TRUE**2°TRUEYY + (2. *TRUE*TRUEYY-EXP(TRUE)) *TRUE
- 2. +TRUE**2+TRUEYY + EXP(THUE)*(TRUE-1.}

RETURN

END

FUNCTION GUESSU(X,Y)

GUESSU = 0,

RETURN

END -

FUNCTION TRUE(X,Y)

TRUE = SIN(X) ocosm

RETURN

END

SUBROUTINE MAXERR (ERRMAX)

COMPUTE THE MAXIMUM ERROR ON THE GRID, SAVE FOR LATER
ACCESS [NTERNAL ELLPACK VARIABLES

COMMON s C1IVGR s [INGRX, [INGRY, [INGRZ, [1NBPT, I1MBPT
COMMON 7 CIGRDX / RIGRDX(1)
COMMON / Ci1GRDY / RI1GRDY(1)
ERRMAX = 0.
DO 20 I = 1, [iINGRX
X = RIGRDX(I)
DO 10 I = 1, [INGRY
Y = RIGRDY(I)
ERRMAX = AMAX1(ERRMAX,ABS(TRUE(X.Y)-U(X,Y)))
CONTINUE
CONT INUE

RETURN
END
SUBROUTINE SUMARY (ERRMAX, NITERS)

PRINT SUMMARY OF RESULTS

REAL ERRMAX(1)
PRINT 100
DO 10 NITER = 1, NITERS
PRINT 110, NITER, ERRMAX{NITER)
CONTINUE -
RETURN

100 FORMAT('1 EXAMPLE ELLPACK PROGRAM 5.C1'//
A

T8, ' ITER',T18, 'MAX ERROR',/T7,8('-'}),2X,10('-"))

110 FORMAT(TB, [4,1X,1P1E12.4)

END

The table produced by program 5.C1 is

PROGRAM 5.C1 ERRORS IN NEWTON ITERATES
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ITER MAX ERROR

096433
031135
004753
00010151
000000298

D OIS0 —

Example program, 5.C} illustrates the use of Newton's methed in ELLPACK,
it and the two following examples may be viewed as ELLPACK "teruplate™ as they

show the general structure of such progmams.

Since linearizing the nonlinear operator can be tedious (and error prone)
we give a MACSYMA program that produces the linear operator L(ugu ) automat-
ically for this problem. This program can be adapted for nonlinear problems of
all types; the linear operator B(ugu) can alse be obtained by a similar pro-
gram.

To illustrate this technique and to show that ELLPACK can solve difficult
real world problems, \_{re provide two more example proBlems. See also G, Birkh-
off and R. Lynch, Numerical Methods for Elliptic Paortiel Differential Equations
SIAM, 1983 for the solution of Plateau's problem using this approach. The

second example is from nonlinear, laminar, non-Newtonion flow [Ref: W.F. Ames,

Nonlinear Partiel Differenfial Equations in Engineering , Academic Press, .

1965]. The nonlinear elliptic problem is

ww) Uy + Uy ) +w (e + wy(uhy = f(zy)
w. =0 on z =01

u=b(z) on ¥ =01

where the function w(u) varies depending on the application. Set

.

a(u) = Vul+ uyz then physically meaningful cases of w(u) are
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This

tion

w{u)=a(u) (i.e. a=1). We choose f (z.y) and d(z) so that the true solution of

wlu) = [a(u)]"

nonlinear problem is the source of problems 19 and 23 in the PDE popula-

given in Appendix 3. We take one of the simplest possible cases here,

the problem is

(c1)

(c2)
(c3)
(c4)
(Cs)
(ce)
(C7)
(ce)

(Ce)

(C10}
(C11)
(c12)
(C13)
{C1a)
(C15)
(C16)
(C17)
(Ci18)
{ci9)
(can)
(C21)

/* EXAWPLE PROGRAM 5.C2
/* LIST THE NONLINEAR PDE COEFFICIENTS

AL = WU)s

B(U) := 0%
c(U) = WU)S

D(U) := DIFF(W(U).X)$
E(U) := DIFF(W(U}.Y)$

F(U) := 0%

G(U) := 0%
W(U) :=
/* DEFINE DERIVATIVES OF Uo, UoX, ETC.

GRADEF (U0, X, U0X) §
GRADEF (U0X, X, UOXX) $
GRADEF (U0X, Y, UOXY) $
GRADEF (UOY, X, UOXY) $
GRADEF (U0, Y, UOY) $
GRADEF (UOY, Y, UOYY)$
GRADEP (U1, X, UtX)$
GIADEF (U1X, X, U1XX) $
GRADEF (U1X,Y, U1XY) §
GRADEF (U1Y,X,U1XY)$
GRADEF(U1,Y,U1Y)$
GRADEF (U1Y,Y,U1YY) 8

7* WRITE THE NONLINEAR PDE */

PDE(U) := A(U)*DIFF(U,X,2) + B(U)*DIFF(DIFF(U,X
+ D(U) *DIFF(U,X) + E(U)*DIFF(U,Y) + F(U

w(n) = 1/ (a+fa(u))
wlu) = elow)/apal)l g () w(u) = atankh(fa{w))/ a(w)

u(z,y) ={1+e¥) cos(nz)

SQRT ( DIFF(U,X)**2 + DIFF(U,Y)**2 )%

.Y) + C(U)*DIFF(U,Y.2)
W+ G(U)S
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(c2z2)

(€23)
(C24)
(c25)
(C28)
(€27)
(c28)
(c29)
(€30)
(c31)
(c32)

(€33)
(C34)

{D34)

(C35)
(D35)

(C38)
(D38)
(€37)

(D37)

(C38)

(D38)

(539)

(C40)
(D40)

7* DIFFERENTIATE AND COLLECT TERMS ¢/
DERIVATIVE: DIFF(PDE(U0+EPS*(U1-U0)) ,EPS)$
TSERIES:PDE(U0) + EV(DERIVATIVE,EFS=0)%
RATSIMP(TSERIES)S
TSERIES : EXPAND(TSERIES)$
COEU1XX: COEFF (TSERIES, U1XX) 8

COEU1XY : COEFF ( TSERIES, U1XY) $
COEU1YY: COEFF( TSERIES,U1YY)$

CORU1X: COEFF(TSERIES, U1X)$

COEU1Y: COEFF(TSERIES,U1Y)$

COEU1: COEFF(TSERIES,U1)$

RS: {COEULIXX*U1XX + COEUIXY*U1XY + COEUIYY*UIYY + COEUIX'UIX +
COBU1Y+U1Y + COEU1*U1)-TSERIESS

RATSIMP(RS)$
s+ DISPLAY THE COEFFICIENTS OF THE LINRARIZED PDE FOR NEWIONS METHOD */
COEU1X(: RATS IMP(COEUIXX * W(U0));

UOY? +2 on2

COEU1IXY: RATS IMP(COEUIXY * W(U0));
2 {0x UoY

COEU1YY: RATS IMP{COEU1YY * W(UC));
2
2 UoY + UoX

2

COEU1X RATSIHP(COEUlX . W(UO)). 2
UOX UoYY + 2 UoXY UUY + 3 UoX UCXX UoY + 2 UOX 8]1).9.4

2 2
uoY + UoX
COEU1Y :RATSIMP(COEULY * W(UD)):
3 2 3 3
(2 UOY + 3 UOX UDY) UOYY + UOXX UOY + 2 UoX UOXY

2 2
UoY + UoX
COEU1  :RATS[MP(COEU1 * W(U0));
0

RS :RATSIHP (RS . W(Uo)).
2
(2 UOY + Uox- ) UOYY + UOXX UoY- + 2 UOX UOXY UOY + 2 WX~ UoXX

The algebra to derive the linearized problem is formidable even in this sim-

plest possible case. The result from using the MACSYMA program is used in pro-

gram 5.C4.

Y Az I S RN R R NN AN RN RN R N R R LA LA

-
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L] [ ] ]
> * EXAMPLE ELLPACK PROGRAM 5.C3 .
L] [ ] | ]
' *  REMARKS .
. ’ APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM  *
» L] »
. . W(U) (UXX + UYY) + WX(U)UX + WY(U)UY = F v
» L] [ ]
[ ] [ AL R R L AR RN R R R R R R R R R R R RSN RN N YN SNN YRS} X ]
»
DECLARATIONS .

REAL ERRMAX(100)
. USE THE PDE FOR THE NEW U(X,Y) OBTAINED BY LINEARIZING THE
. NONLINEAR PROBLEM
EQUAT [ON.
BOUNDARY .

UX = 0. ON X = 0.

ON X = 1.
U = z.-cosgpx-xg ON Y = 0.
U = (1.+EXP(-1.))*COS(PI*X) ON Y = 1.

GRID. 5 X POINTS & 5 Y POINIS

INITIALTZE THE NEWTON ITERATION BY INTERPOLATING THE
¢ BOUNDARY CONDITIONS BY BLENDING FUNCTIONS

*RIPLE. INTERPOLATE BOUNDARY CONDITIONS BY BLENDING
TRIPLE. INITIALIZE U ( U = GUESSU )

* USE FORTRAN TG CONTROL [TERATION AND OUTPUT

FORTRAN.
[1LEVL 1
NITERS = 5
DO 10 NITER = 1, NITERS

' SOLVE THE LINEARIZED PROBLEM
DISCRET[ZATION. HERMITE COLLOCATION

INDEXING AS[S
S0LUTION BAND GE

FORTRAN.
* COMPUTE INTERMEDIATE MAX ERROR, SAVE FOR TABLED OUTFUT

CALL MAXERR(ERRMAX(NITER))
IILEVL = 0
10  CONTINUE

. PROCESS FINAL RESULTS
CALL SUMARY(ERRMAX,NITERS)

SUBPROGRAMS .
FUNCTION W(X,Y)
W = SQRT(UX(X.¥)**2 + UY(X,Y)**2)
RETURN
END
FUNCTION WX(X,Y)
WX = 2, *UX(X,Y) *UXX(X,Y) /SQRT(UX(X,Y) **2 + UY(X,Y)**2)
RETURN
END
FUNCTION WY(X.Y)
WX = 2. *UY(X,Y) *UYY(X,Y) /SQRT(UX(X.Y) **2 + UY(X,Y)**2)
EE%URN
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FUNCTION F(X,Y)
F IS CHOSEN TO MAKE THE TRUE SOLUTION (1.+EXP(-Y))°*COS(PI*X)

COMMON s C1RVGL s RI1EPSG, R1EPSM, PI
F=._

RETURN

END

FUNCTTON GUESSU(X,Y)

GUESSU = 0.

RETURN

END

FUNCTION TRUE(X,Y)

C ACCESS PI = 3.14159... FROM ELLPACK COMMON
COMMON s CIRVGL s RI1EPSG, R1EPSM, PI
TRUE = (1.4+EXP(-Y))*COS(PI*X)

RETURN

END
SUBROUTINE MAXERR (ERRMAX)

COMPUTE THE MAXIMUM ERROR ON THE GRID, SAVE FOR LATER
ACCESS INTERNAL ELLPACK VARIABLES

COMMON s C1IVGR s [INGRX, [INGRY. [INGRZ, [1NBPT, [1MBPT
COMMON / CIGRDX s R1GRDX 1;
COMMON / CIGRDY s RIGRDY(1
ERRMAX = 0.
DO 20 [ =1, LINGRX
X = R1GRDX(I)
DO 10 J = 1, LINGRY
Y = RIGRDY(J)
ERRMAX = AMAX1(ERRMAX,ABS(TRUE(X,Y)-U(X.Y)))
i0  CONTINUE
20 CONTINUE

RETURN
END
SUBROUTINE SUMARY (ERRMAX, NITERS)

PRINT SUMMARY QF RESULTS

REAL ERRMAX(1)

PRINT 100

DO 10 NITER = 1, NITERS

PRINT 110, NITER, ERRMAX(NITER)

10 CONTINUE

RETURN .
100 FORMAT('1 EXAMPLE ELLPACK PROGRAM 5.C2'//

A T8, ' ITER',T18, 'MAX ERROR',/T7,8("-'),2X,10('-'))
110 ESEMAT(TB.I4.1X.1P1E12.4]

ano

leTolole]

QOO0

END.

The next real application comes from gas lubricaticn, this is the effect that
keeps high speed tapes émd disks from making physical contact with read/write
heads. Two views of the physical situations are shown in Figure 5.6, The separa-
tion between the disk and head is only a few thousandths of an inch. The high
speed of the disk pulls the air into the gap; it is compressed as it goes through

and this builds up a pressure to keep the two parts separated.

o
Tyt

-
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Figure 5.6. Top view (left) of a magnetic read had and side view (right)
of the space between the head and disk.
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The nonlinear elliptic problem to be solved on the domain shown in Figure

5.6a is

(uhlu;); + (uhPyy) +c(uh), =
uw(zy) =1 on the boundory

The function i (z ,y) is

h(zy)=1 0=z <5
=1+2(z-.5) .5=<z =15

and ¢ is a physical constant. The expanded form of the elliptic operator is

‘ 3h ¢ 3h
u*un+u*uw+(u=+-ﬁ—+};z—u,+(uy+uﬂuy+ PE

w=0
The linearized equation to be solved is

w0 %+ uly, + (Rul, + 3h/u0 + c/ h¥)u,

chy

R

+ (Ru0y + 3h/ul)uyy + (uly + uly + %('u.l}z + 20y) +

= u0(wly +ul, )+ u0f+ 20Z + Bh(u0, + u0,)/u0

Program 5.C4 uses this linearized equation to solve this problem with Newton's
. methed. The principal result needed {rom this problem is the integral of w(z )
over the domain which is the load that the lubricant supports. The IMSL library

routine DBLINT is used but not given in the subprograms.

L AA MRS RN LRERERLLER RN SRR E SRR RN TR RN EEIT N RYYYN]

EXAMPLE ELLPACK PROGRAM 5.C4

REMARKS
APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM

3 3
(LHU) + (VHU) +C(UH =0
X'X Y'Y X

* % & % 2 8 & % 4 F a8
- & & 3 B W SO0 S5 K E S
S 7 4 & 3 8 8 % b 9 oa b

THI3 IS A FORM OF REYNOLD'S EQUATION FOR
COMPRESSIBLE -FLUID LUBRICATION.
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» ’ L)
L] LA AL R A N R R R Y R N R R R Y YR T
L]

OPTIONS. OLDU = 1

DECLARATIONS.
REAL DIFMAX(100)

. USE THE PDE FOR THE NEW U(X,Y) OBTAINED BY LINEARIZING THE
¢ NONL INEAR PROBLEM

EQUATION.

BOUNDARY .
U

GRID. 5 X POINTS § 5 Y PCINTS

. INITIALIZE THE NEWTON ITERATION BY GUESSU = 0
TRIPLE. INITIALIZE U ( U = GUESSU )}

* USE FORTRAN TO CONTROL ITERATION AND QUTPUT

FORTRAN .
[1LEVL = 1
NITERS = 5
DO 10 NITER = t, NITERS

* SOLVE THE LINEARIZED PROBLEM

DISCRETIZATION. HERMITE COLLOGATION
INDEXING ASIS
SOLUTION BAND GE

FORTRAN .
¢ COMPUTE INTERMEDIATE MAX DIFF, SAVE FOR TABLED OUTPUT

CALL MAXDIF(DIFMAX(NITER))
I1LEVL = 0
10  CONTINUE

. PROCESS FINAL RESULTS
CALL SUMARY(DIFMAX, NITERS)

SUBPROGRAMS .
FUNCTION GUESSU(X.Y)
GUESSU = D.
RETURN
END
END
SUBROUTINE MAXDIF (DIFMAX)

COMPUTE THE MAXIMUM U DIFFERENCES ON THE GRID, SAVE FOR LATER
ACCESS INTERNAL ELLPACK VARIABLES

COMMON + C1IVGR / [INGRX, I1NGRY, [INGRZ, I[1NBFT, [1MBPT
COMMON / CIGRDX s RIGRDX(1)
COMMON / CIGRDY ¢/ RIGRDY(1)
DIFMAX = 0.
DO 20 I =1, [INGRX
X = RIGRDX(I)
DO 10 J = 1, [INGRY
Y = RIGRDY(])
DIFMAX = AMAX1(DIFMAX,ABS(U1(X.Y)-U(X.Y)))
10 CONTINUE

elvizie)

10
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20 CONTINUE

c
RETURN
END
SUDROUTINE SUMARY (DIFMAX, NITERS)

PRINT SUMMARY OF RESULTS

REAL DIFMAX{1)

PRINT 100

DO 10 NITER = 1, NITERS

PRINT 110, NITER, DIFMAX(NITER)

10 CONT INUE

RETURN
100 FORMAT( "1 EXAMPLE ELLPACK PROGRAM 5.C4'//

A 78, ' [TER',T16, 'MAX DIFF',/T7,6('-'),2X,10('-"))
110 FORMAT(TS,I4,1X,1P1E12.4) :

END

o000

END.

5.D TIME DEPENDENT PROBLEM

ELLPACK can be used fairly directly for the following time dependent prob-

lem:

u =l + f u =ul{z,y) for £=0
u = ubound(z y.t) for (z.y) on boundary

where L is a linear elliptic operator; an example of L is

In = ayu,, +uy + (R + tan(z+y+t) )y, +u

Note that the coefficients in I could depend on z,y and £ as well as the forcing
function f. ELLPACK does not automatically diseretize the wu; term, so this
must be done in the program explicitly. The simplest discretization is

w(t) — u(t—Af)
At

Uy ~

which leads to the discrete equation

w(t) =w(t—At) + At*(fae(z y. £ —AL) + f(z .yt —AL))

ELLPACK can be used to discretize the Iw{z y.,t) term, but this is not an
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attractive use of the ELLPACK facilities. It is better in most cases to use the

more accurate Crank-Nicolson time discretization.

The Crank-Nicolson discretization uses the same approximation to «;, but it
is viewed as estimating u; at {~Af/ 2 instead of at £ —Af. The partial differential

equation is then discretized to be

w(t) =w(t—At) + BAL[fa(z y.t) + [u(z y,t — AL)
+ flzy.t) + Fzy.t—AL)]
This discretization in tirme is always stable so that large time steps Af can be

taken. For each time step one must solve the elliptic problem

Tu(zy.t) — (/A )u(z y.t)
= —(B/ At u(zy. t—At) — Lu(z gy .t —A)+ f(z,y.t) + f(z.y . t—AL)

The terms on the right are known and on the left we have a linear elliptic equa-

tion which ELLPACK can solve.

Note that any ELLPACK method ¢an be used to solve this pro_blem. but there
should be an interaction between the method chosen and the choice of Af. To
discretize space we choose an z,% grid and, for simplicity, we assume that z and
Yy spacings are the same, h. We are essentially applying the methods of lines
with one line (in time) for each grid node. However, we do not need to examine
these lines individually or label the corresponding line solutions. The time
discretization error from Crank-Nicolsen is order {(Af)* and this should be simi-
lar to the space discretization error. Ii 5-POINT STAR is used with diseretization
error order 2% then cne should have h and At of about the same size. Al least, if
they arc decreased, they should be decreased proporticnally. If HERMITE COL-
LOCATION or SPLINE GALERKIN (DEGREE=3.ISM00TH=B) is used, then their

discretization errors are order h* and one should have 2% and At about the same
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size. With these discretizations one can take many fewer time steps for a given
accuracy.

We give the ELLPACK program to solve this example. The functions

w0(z,y), ubound(z v.t) and f (z.y.f) are chosen so that the true solution is

w(z,y.t) = sin(z+y+t)/ 4 e vt
1=t=2 0=zy=1

The elliptic problem is solved with INTERIOR COLLOCATION which uses bi-cubic
Hermite polynomials and has error of order A% We set Af = A2/2 and put the

elliptic problem in a simple loop for the time steps.

ALY RANER NN SRR RN ARRRELNLERRRNRRRRRRRRLRRRNTER 2NN

L]

» L]
. * EXAMPLE ELLPACK PROGRAM 5.D1 v
[ ] [ ] L]
. *  REMARKS .
. . TIME DEPENDENT PROBLEM ’
o . SEE THE ELLPACK PROGRAM TEMPLATE FOR GENFRAL ,
. . COMMENTS, COMMENTS ARE GIVEN FOR STATEMENTS »
. . SPECIAL TO THIS PROGRAM. .
. L ] ]
» (A XA R R E SRR R R RN R RN A RN RN AR RN R AL RN RTRND N
[ ]

*  DECLARE FORTRAN ARRAYS FOR USE [N SUMMARY AT END.

DECLARATIONS.

REAL TRUMAX(100), ERRMAX(100)

GLOBAL.
COMMON s GCOMON s T, DELTAT, NSTEP

EQUATION. (4. %72 92)UXX + UYY + (2. +TAN((X+Y+T}/4.))UY
: + (1.-2./DELTAT)U = PDERS(X,Y)

BOUNDARY . U = UBOUND(X,Y) ON X
ON X

ON Y
ONY

GRID. 3 X POINTS £ 3 Y POINTS
OPTIONS. CONSTANT COEFFICIENTS=.FALSE.
FORTRAN.
[1LEVL = 1
TSTART = 1.
T8TOP =2
C
C CHOOSE DELTA T = (DELTA X)**2 OVER 2
c
DELTAT = RIIXGR**2/2
NSTEPS = [NT((TSTOP-TSTART)/DELTAT + .5)
DELTAT = (TSTOP-TSTART) /NSTEPS

DO 10 NSTER = 1, NSTRPS
T = TSTARI + NSTEP*DELTAT

0.

1.
0.
1
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DISCRETTZATION. HERMITE COLLOCATION

INDEXING. ASIS
SOLUTION. BAND GE
FORTRAN.

C

C COMPUTE MAX ERROR FOR THIS EXAMPLE, SAVE FOR SUMBIARY QUTPUT AT END
c

CALL THXERX( TRUMAX(NSTEP) , ERRMAX(NSTEP) )

[1LEVL = 0
c 10 CONTINUE
C PRINT SUMMARY OF RESULTS FOR THIS EXAMPLE
C

CALL SUMARY(TRUMAX, ERRMAX, TSTART ,NSTEPS)

SUBPROGRAMS .

FUNCTION PDERS(X,Y)
COMMON s GCOMON / T, DELTAT, NSTEP

c
T = T - DELTAT
IF (NSTEP .EQ. 1) THEN
UOFT = Uo(X,Y)
ELSE
UOFT = U(X,Y)
ENDIF
c
PDERS = - (2./DELTAT) *UOFT
A - (REUXYT(X.Y) + F(X.Y,T))
. B - F(X,Y,T+DELTAT)
T = T + DELTAT
RETURN
END
. FUNCTION RLUXYT(X.Y)
REAL COEFOF(8)
COMMON / GCOMON ¢/ T, DELTAT, NSTEP
INTEGER CUXX, CUXY, CUYY, CUX, CUY, CU
DATA  CUXX, CUXY, CUYY, CUX, CUY, CU
A /1, 2, 3, 4, 5, 8/
CALL Q1PCOE(X,Y.COEFOF)
IF (NSTEP .EQ. 1) THEN
RLUXYT = COEFOF(CUXX) * UOXX(X,Y)
A + COEFOF(CUYY) * UOYY(X,Y)
B + COEFOR(CUY) * UOY(X,Y)
. c + (COEFOF(CU) + 2./DELTAT) * U0O(X,Y)
ELSE
RLUXYT = COBFOP(CUXX) * UXX(X.Y;
A + COEFOF(CUYY) * UYY(X,Y
B + COEFOF(CUY) ¢ UY(X,Y)
C + (COEFOF(CU) + 2./DELTAT) * U(X.Y)
ENDIF
RETURN
END

FUNCTION F(X.Y.T)

T1 = .25*(X+Y+T)

T2 = EXP(-Y**2-T)

F =- (.25%C0S(T1) - 2.°*Y*SIN(T1)) * T2 * (TAN(T1) + 2.)
A+ (.0825 - 3,75%Ye*2) *+ T2 * SIN(T1)

B + (.25 +Y) * T2 * COS(T1)

RETURN

END

FUNCT ION UOXX(X,Y)
COMMON /GCOMON/ T, DELTAT, NSTEP
UOXX = -( EXP(-Y**2-T) * SIN((X+Y+T)/4.))/16.
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RETURN
END

FUNCT [ON UOYY(X,Y)

COMMON /GCOMON/ T, DELTAT, NSTEP

UDYY = EXP(-Y*%2-T) * ((4.%Y**2-2.0025)SIN((X+Y+T)/4.)
A - Y*COS{ (X+Y+T)74.} )

RETURN

END

FUNCTION UQY(X,Y)
COMMON /GCOMON/ T, DELTAT, NSTEP

UOY = EXP(-Y**2-T) 7 4. * (COS((X+Y+T)/4.)-8, *Y'SIN((X+Y+T)/4.)}
RETURN

END

FUNCTION UG(X,Y)
COMMON sGCOMON/ T, DELTAT, NSTEP
= SIN{(X+Y+T)s4.) * EXP(-Y**2-T)
RETURN
END

FUNCTION UBOUND(X,Y)

COMMON /GCOMON/ T, DELTAT, NSTEP
UBOUND = TRUE(X,Y)

RETURN

END

FUNCTION TRUE(X,Y)

COMMON ,sGCOMON/ T, DELTAT, NSTEP
TRUE = SIN((X+Y+T)s4.) * EXP(-Y**2-T)
RETURN

END

SUBRQUTINE TMXEMX (TRUMAX, ERFMAX)

THIS ROUTINE FINDS THE MAX ABSOLUTE VALUE OF TRUE AND ERROR

ON THE GRID AT THE CURRENT TIME STEPF. USE ELLPACK CCMMON BLOCKS
TO GAIN ACCESS TO VARIABLES DEFINING THE GRID. ONE COULD EASILY
COMPUTE THESE ONESELF.

COMMON s C1IVGR » [iINGRX, [1INGRY, I1NGRZ, I1NBPT, [1MBPT
COMMON™ s CiGRDX s RlGRDXElg
COMMON s CIGRDY / R1GRDY(1

OOO0O0O00

0.
0.

TRUMAX
EREMAX

Do 20 I =1, [INGRX
X = RIGRDX(I)
DO 10 J = 1, IINGRY
Y = RIGRDY(J)
TRUXYT = TRUR(X,Y)
TRUMAX = AMAX1(TRUMAX, TRUXYT)
ABSERR = ABS(TRUXYT-U(X.Y))
ERRMAY = AMAX1(ERRMAX, ABSERR)
10 CONT [NUE
20 CONTINUE

RETURN
END

SUBROUTINE SUMARY (TRUMAX, ERRMAX, TSTART, NSTEPS)

THIS ROUTINE PRINTS A TABLE OF SOLUTION AND RELATIVE ERROR AT EACH TIME
BTEP. THESE VALUES HAVE BEEN SAVED (N THE ARRAYS TRUMAX AND ERRMAX.

It

REAL 'I'RUHM{( 1), ERIMAX(1) D

ACCESS GRID INFORMATION FROM ELLPACK VARIABLES. THESE ALSO CAN BE
COMPUTED EASILY WITHOUT REFERENCE TO ELLPACK. o

oo ocOoo
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COMMON s GCOMON s T, DELTAT, NSTEP

COMMON s CIRVGR s/ RIAXGR, RIAYGR, R1AZGR, R1BXCR, RI1BYGR,
o A R1BZGR, R1HXGR, R1HYGR, R1HZGR
C FRINT PROBLEM/METHOD INFORMATION
p :

TSTOP = TSTART + NSTEPS*DELTAT
c PRINT 100, RIHXGR, R1HYGR, TSTART, TSTQOP, DELTAT

g PRINT HEADING

PRINT 110
DO 10 NSTEP = 1, NSTEPS
T = TSTART + NSTEP¢DELTAT
IF (TRUMAX({NSTEP)} .NE. 0.) THEN
PRINT 120, NSTEP, T, TRUMAX(NSTEP),

A L ERRMAX (NSTEP) s TRUMAX (NSTEP)
ELSE
PRINT 120, NSTEP, T, 0.
ENDIF
10 CONTINUE
RETURN
c
100 FORMAT('1 TIME DEPENDENT PROBLEM'//
A 77, 'HX =' 1P1F12.4/
B 77, 'HY =',1P1E12.4/
c 77, "ISTART =',1P1E12.4/
D T7,"TSTOP =',1P1E12.4/
E T7,'DELTA T =',1P1E12_4//)

110 FORMAT (T8, 'STEP',T18, 'TIME',T28, 'MAX TRUE',T38, ‘MAX RELERR'/
I7.6("-').3(2X.10("-")))
120 FORMAT(TS, I4,1X, 1P3E12.4)

END

e

END.

We do not comment on the programming details here because a "template” for
solving such problems is given later and the comments there explain most of
-these points. The bulk of the code is to evaluate Lu (z,y,f —Af) for both the pre-
vious time value and the initial conditions (which is a similar, but separate
case). A small routine to measure the maximum error is included and the

results are listed below for grids of 3x3(At = 1/8B), 5x5(Af = 1/32), and

9x9(At = 1/1RB).
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Table 5.1. Behavior of the error in solving a time dependent preblem with
Crank-Nicelsen and INTERIOR COLLOCATION.

Maxirmum Relative (%, ¥)-Grid
Error att = dx3d 5x5 9x9

1+1/8
1+1/4
1+3/8
1+1/2
1+ 5/8
1+ 3/4
1+ 7/8
2

Ve end this section with a general "template” for solving time dependent

problems in ELLPACK. The témplate is heavily cornmented to explain its use.

ELLPACK TIME DEPENDENT PROBLEM TEMPLATE
Ur = LU + F(X,Y,T)

U=U0(X.Y) FOR T = TSTART, 0 < X,Y < 1
U = UBOUND(X,Y,T) FOR TSTART < T < TSTOP, (X,Y) ON BOUNDARY
WHERE

L IS A LINEAR ELLIPTIC OPERATOR
U0 SPECIFIES THE INITIAL VALUES
UBOUND SPECIF[ES THE BOUNDARY VALUES

% & 5 8 8 5B e S R e eeow

* GLOBAL. COMMON BLOCK GIVES FUNCTIONS ACCESS TO CURRENT TIME T, TIME
. SPACING DELTAT, AND CURRENT STEP NUMBER NSTEP,
L
GLOBAL. '
COMMON 7 GCOMON s T, DELTAT, NSTEP

EQUATION. DEFINE EQUATION FOR EACH TIME T. L IS THE LINEAR OPERATOR.
DEFINE RIGHT SIDE FDERS(X,Y) BELOW,

- * =

EQUAT ION, LU - (2./DELTAT)U = PDERS(X,Y)
»
¢ BOUNDARY. SPECIFY BOUNDARY VALUES. DEFINE UBOUND(X,Y) BELOW.
[ ]
BOUNDARY . U = UBOUND{X,Y) ON X = 0
ONX =1,
ONY=0.
ONY =1
L]
* GRID. CHOOSE GRID LINES FOR PROBLEM,
L
GRID. 5 X BOINTS $ 5 Y POINTS
[ ]
* OPTIONS. PFORCE ELLPACK TO EVALUATE COEFFICIENTS OF L FOR EACH TIME T
. IF SOME COEFFICIENTS DEPEND ON T BUT NOT X OR Y.
* : ad
OPTIONS. CONSTANT COEFFICIENTS=.FALSE. S,
L -
)

s

* FORTRAN. SET TSTART, TSTOP, SET DELTAT, DEPENDING ON DISCRETIZATION
. HETHOD. IN THIS EXAMPLE, DELTAT IS SET TO HX (THE ELLPACK
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. VARIABLE R1HXGR). COMPUTE NSTEPS (NUMBER OF STEPS), THEN
. RECOMPUTE DELTAT TO MAKE THE STEPS COME QUT EVEN. .
]
FORTRAN.
[1LEVL = 1
T3TART = 0,
TSTOP = 1.
DELTAT = R1HXGR
NSTEPS = [NT({TSTOP-TSTART)/DELTAT + .5)
c DELTAT = (TSTOP-TSTART) /NITEPS
C MAIN LOOP OVER TIME. T IS5 THE TIME FOR THE CURRENT STEP.
C
DO 10 NSTEP = 1, NSTEPS
o T = TSTART + NSTEP*DELTAT

C CHOO3E MODULES TO BE USED ON PROBLEM AT EACH STEP. ONE OF MANY
C POSSIBLE COMBINATIONS IS SHOWN.

C
DISCRETIZATION. 5 POINT STAR

INDEXING . ASIS

SOLUT [ON . LINPACK BAND

OUTPUT. MAX(ERROR)

gORPRAN.

C SET OUTPUT LEVEL=0 TO AVOID REPEATED OUTPUT FROM EVERY TRIP THROUGH LOOP.
C

[1LEVL = 0
10 CONTINUE

SUBPROGRAMS. DEFINE PDERS, RLUXYT, INITIAL VALUES, BOUNDARY VALUES,
AND TRUE (IF KNOWN).

UBPROGRAMS .
FUNCTION PDERS(X,Y)

THIS FUNCTION EVALUATES THE PDE’S RIGHT SIDE FOR THE CURRENT TIME T.
PDERS = (-2/DELTAT)*U(X,Y,T-DELTAT) - LU(X,Y,T-DELTAT)
- P(X,H,T-DELTAT) - F(X,Y,T). NOTE THAT T 13 PASSED [N GCOMON.

VARIABLES:
XY - SPACE VARIABLES AT WHICH TO EVALUATE RIGHT SIDE
T - TIME AT WHICH TO EVALUATE RIGHT SIDE
DELTAT - TIME SPACING
UQFT - TEMPORARY VARIABLE, HOLDS U(X,Y) AT LAST TIME T.
PDERS - RETURNED VALUE OF RIGHT SIDE

COMMON s GCOMON s T, DELTAT, NSTEP

NEED U, LU, AND F AT (X,Y,T-DELTAT). MOVE TIME T BACK ONE STEP SO ALL
FUNCTIONS ARE EVALUATED AT THE PREVIOUS TIME STEP.

T = T - DELTAT

FIND U(X,Y,T-DELTAT); [T'S EITHER U0(X,Y) FOR THE INITIAL STEP,
OR U{X,Y) WHERE U !5 THE ELLPACK FUNCTION WHICH GIVES THE RESULT
AT THE PREVIQUS TIME STEP.

IF (NSTEP .EQ. 1) THEN
UOFT = U0(X,Y)
ELSE
UOFT = U(X,Y)
ENDIF

- EVALUATE RIGHT SIDE USING RLUXYT FOR LU AT PREVIOUS TIME STEP
PDERS = - (2./DELTAT) *UOFT
A (RLUXYT(X.Y) + F(X,Y.T))
B F(X.Y.T+DELTAT)

RESTORE T TO CURRENT VALUE.

COOoOO0 OOO0 0000000000 N0 Wesre

Ipivle]
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o000
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T = T + DELTAT
RETURN

END

FUNCTI{ON RLUXYT(X,Y)

THIS FUNCI'ION EVALUATES LU(X,Y,T). NOTE THAT T I3 PASSED [N GCOMON, AND
THAT (2/DELTAT) MUST BE ADDED TO THE COEFFICIENT OF U BECAUSE ELLPACK THINKS

THE (-2/DELTAT)U [S PART OF LU.

VARIABLES: _
XY SPACE VARIABLES AT WHICH TO EVALUATE LU

COEFFICIENTS OF L, EVALUATED AT TIME T

TIME AT WHICH TO EVALUATE LU

CURRENT STEP

INDICES INTO COEFOF

TEMPORARY VARIABLES

RETURNED VALUE OF LU(X,Y.T)

COEFOF(8)
T

NSTEP

CUXX, CUXY, ...
UXYSAV, UXSAV, UYSAV
RLUXYT

REAL COEFQF(8)

COMMON / GCOMON s T, DELTAT, NSTEP
INTEGER CUXX, CUXY, CUYY, CUX, CUY, CU
DATA CUXX, CUXY, CUYY, CUX, CUY, CU
A / 1, 2. 3, i, 5, 8/

CALL BLLPACK ROUTINE QIPCOE TO EVALUATE THE COEFFICIENTS OF THE PDE AT
TIME T AND FILL COEFQF.

leislsialinlinlielnlelelnReYuly]

CALL Q1PCOE(X,Y,COEFOF)

IF QN 18T STEP, NEED INITIAL VALUES (UC AND [TS DERIVATIVES). OMIT TERBS
WITH ZERO COEFFICIENTS IN AN ACTUAL CASE.

IF (NSTEP .EQ. 1) THEN

OO0 Oooan

RLUXYT = COEFQF(CUXX) * UOXX(X.Y;
A + COEFOF (CUXY) * UOXYEK.Y
B + COEFOF(CUYY) * UOYY(X,Y)
C + COEFQF(CUX) * UOX(X,Y
D + COEFOF(CUY) * UOY(X.Y
| + (COEFOF(CU) + 2./DELTAT) * Uo(X,Y)

¢
¢ ELSE, NEED RESULTS OF PREVIOUS TIME STEP (U,UX,UY,...). OMIT THOSE
C TERMS WITH [DENTICALLY ZERO COEFFICIENTS IN AN ACTUAL CASE.
c
ELSE
RLUXYT = COEFOF(CUXX) * UXX(X,Y)
A + COEFOF(CUXY) * UXYSAV
B + COEFOF{CUYY) » UYY(X,Y)
C + COEFOF{CUX) * UXSAY
D + COEFOF(CUY; + UYSAV
E + (COEFOF(CU) + 2./DELTAT} * U(X,Y)
ENDIF
RETURN
END

DEFINE THE FUNCTION F.
FUNCTION F(X,Y,T)
F=. ..

RETURN
END

DEFINE INITIAL VALUE UD AND NECESSARY DERIVATIVES; OMIT DERIVATIVES
NOT APPEARING IN PDE.

FUNCTION UOXX(X,Y)

COMMON s GCOMON s T, DELTAT, NSTEP
v = . . .

RETURN

END

FUNCT ION UOGXY(X,Y)

COMMON s GCOMON / T, DELTAT, NSTEP
UOXY = . . .
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RETURN

END

FUNCT [ON UOYY(X.Y)

COMMON / GCOMON / T, DELTAT, NSTEP
voYyY = . . .

RETURN

END

FUNCTION UOX(X.Y)

Sa)\?lon / GCOMON s T, DELTAT, NSTEP
oX=...

' FUNCTION UOY(X,Y)

COMMON / GCOMON 7 T, DELTAT, NSTEP
UoY = .

RETURN

END

FUNCTION UO(X,Y)

SOML{ON 7 GCOMON' 7/ T, DELTAT, NSTEP
0=. ..

RETURN

END

DEFINE THE BOUNDARY VALUES UBOUND(X,Y,T). NOTE THAT T IS PASSED IN GCOMON.

FUNCTION UBOUND(X,Y)

COMMON s GCOMON s T, DELTAT, NSTEP
UBOUND = . . .

RETURN

END

L]
* DEFINE THE FUNCTION TRUE(X,Y.T), IF KNOWN. NOTE THAT T IS PASSED IN GCCMON.

FUNCTION TRUE(X,Y)

COMMON s GCOMON s T, DELTAT, NSTEP
TRUE = , .

RETURN

END

5.1 THE TRANSISTOR EQUATIONS

* + * DRAFT DEFERRED * * *
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CHAPTER 6: INTRODUCTION TO THE ELLPACK MODULES

The ELLPACK language and system described so far is only half of the story;
the other half is the heart and muscle of ELLPACK, the ELLPACK modules. No
problem solving system is better than its underlying programs. The design of
ELLPACK allows the collection of modules to grow or shrink, so a particular
ELLPACK system may have more or fewer modules than presented in Part 2 of

this book, Chapters 6, 7 and 9.

In late 1982 the complete ELLPACK system had well over 40 modules; so
many that some will find it difficuit to choose among them. Part 1 of this book is
written with reference to a smaller set, about 18 modules that comprise the
basic set. This set includes the more important methods as well as one example
of each "variety"” of problem solving module. Part 3 of this book, Chapters 11, 12
and 13, illustrate the performance of many ELLPACK modules on a set of 9
model proi::l_ems. This performance data gives some guidance in choosing
modules for a particular problem, but one must keep in mind that it is not possi-
ble to predict reliably the relative performance of the medules for any untested
problem. This is pértit;:ularly so if the preblem has any unusual features - as

most real problems do.

Within the ELLPACK system there are two important collections of modules,
" the ITPACK software and the YALEPACK software, described in Chapters 7 and B.
respectively. The purposes of these two chapters is to present an overall view of
the design, capabilities and ﬁethods in the packages. These two chapters are
written by some of the developers of these packages; David Kincaid and David
Young for ITPACK, and Stanley Eisenstat and Martin Schultz for YALEPACK. User
instructions for specific modules in these collections are given in Chapter 9

along with instructions for all the other ELLPACK modules.

-~
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The user ingtructions for ELLPACK modules given in Chapter 9 are intended
to include a summary of the modules properties and restrictions. However,
there is not enough space to describe the design and methods for each module
so references are given to more detailed descriptions. The information for each
meodule is written by the authors of that module except for a few standard pro-
grams or simple methods that have been incorporated into ELLPACK. The for-

mat for each module description is:

Module Name
Author’s Name or Module Source
Purpose A brief statement of what the module does.
Method A brief surnmary of the method used,
References to more detailed description are
usually givern.
Parameters Definiton of the parameters (arguments) of-
"~ the module.
Restrictions Summary of the restrictions on the
_ applicability of the method or module.
Performance Estimates Indicators of the amount of computer
resources one can expect the module to use.
References

The modules are put into five groups, three of which - Dis_cretizat.ion.
Indexing and Solution - correspond to a modular viéwpoint of solving elliptic
problems as illustrated in Figure 6.1. The fourth group, called Triples are
modules which solve an elliptic problem entirely by themselves. Triples
correspend to methods where it is either inefficient or unnatural to divide the
problem solutiens into three separate phases. The final group, called Pro-
cedures, do nol correspond to a step in solving the elliptic problem, but rather
to some supporting computations. Examples include computing matrix eigen-
values (perhaps to analyze the convergence of an interative method), displaying
the pattern of non-zeres in a matrix, and initializing the unknowns {perhaps to

initiate some iteration method).
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Figure 6.1. Medular viewpoint of solving an elliptic problern. The inter-
faces between the modules are precisely defined which allows modules
to be used in various combinations, The triple modules go from Inter-
face 1 to 4 directly.
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