
Purdue University Purdue University 

Purdue e-Pubs Purdue e-Pubs 

Department of Computer Science Technical 
Reports Department of Computer Science 

1982 

Solving Elliptic Problems Using ELLPACK Part 1: ELLPACK User's Solving Elliptic Problems Using ELLPACK Part 1: ELLPACK User's 

Guide; Part 2: The Problem Solving Modules Guide; Part 2: The Problem Solving Modules 

John R. Rice 
Purdue University, jrr@cs.purdue.edu 

Ronald F. Boisvert 

Report Number: 
81-414 

Rice, John R. and Boisvert, Ronald F., "Solving Elliptic Problems Using ELLPACK Part 1: ELLPACK User's 
Guide; Part 2: The Problem Solving Modules" (1982). Department of Computer Science Technical Reports. 
Paper 338. 
https://docs.lib.purdue.edu/cstech/338 

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. 
Please contact epubs@purdue.edu for additional information. 

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci


SOLVlNG ELlJPTIC PROBLEMS USING ELLPACK

Part 1: ELLPACK USER'S GUIDE
Part 2: THE PROBLEM SOLVlNG MODULES

John R. Rice
Computer Science Department

Purdue University

Ronald F. Boisvert
Scientific Computing Division
National Bureau of Standards

September 24. 1982

CSD-TR 414

ABSrRACT

This report describes how to. use the ELLPACK system and language for solv­

ing elliptic problems. ELLPACK provides many facilities for solving two dimen-

sional. linear elliptic partial differential equations on rectangular domains.

several facUlties for non-rectangular domains and for three dimensional rec-

tangular domains. The system allows a user to attack non-linear problems by

constructing various iterations of linear methods.

The current revision is a draft for part of. the final documentation of the

ELLPACK system. Corrections and suggestions for improvements are welcomed.
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PRE:FACE
The ELLPACK system is the outgrowth of a cooperative project to study

methods and software for elliptic problems. This project was coordinated by
John R. Rice of Purdue University; the principal members of the project were

Randy Bank
Garre tt Birkhoff
Ronald Boisvert
Stanley Eisenstat
William Gordon
Elias Hous tis
David Kincaid
Robert Lynch
Donald Rose
Martin Schultz
Andrew Sherman
David Young

University of Texas
Harvard University
National Bureau of Standards
Yale University
Drexel University
University of South Carolina
University of Texas
Purdue University
Bell Telephone Laboratories
Yale University
Exxon Research
University of Texas

Substantial contributions of software were made by many others: Carl de Boor,

John Brophy, Wayne Dyksen, Roger Grimes, Hartmut Foerster, UNPACK, William

Mitchell, W. Proskurowski, John Respess Granville Sewell, Van Snyder, Paul

Swarztrauber, Roland Sweet, Linda Thiel, William Ward and Alan Weiser. This pro-

ject has received support from the National Science Foundation, the Department

of Energy and the Office of Naval Research as well as from the participants' insti-

tutions.

ELLPACK was originally developed as a research tool to evaluate and com-

pare mathematical software for solVing elliptic problems. The idea was to create

a system where individuals can contribute software modules which either com-

pletely or partially solve an elliptic problem. Those modules that partially solve

the problems (e.g. discretize It) are combined with other modules to complete

the solution. With all the software operating in the same environment one can

make a performance evaluation of the modules. Several studies of this type

have been made and Part 3 of this book presents simple examples of perfor-

mance evaluation.

Considerable effort was put into making ELLPACK easy to use and to aug-

ment. The ELLPACK system presented in this book is useful not only tor
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research into the performance of numerical methods and software, but also for

education and actual problem solving. Standard elliptic problems of moderate

difficulty can be stated and solved in a direct, simple manner. Many more com­

plex problems. including nonlinear, time dependent and simultaneous equations.

can be ,solved using more advanced ELLPACK facilities.

A. The ELLPACK Project

B. Mathematical Preliminaries (not included)

C. NUmerical Methods Preliminaries (not included)

In



CHAPTER ONE: GENERAL DESCRIPrlON AND A SIMPLE PROGRAM

l.A GENERAL DESCRIPTION

ELLPACK is a computer programming system for elliptic boundary value

problems. The problems addressed include linear variable-coefficient elliptic

equations of the form

a.u= + cUyy + dUz + eu", + /'11, = g

or, in self-adjoint form,

defined on general two-dimensional domains, and their three-dimensional coun-

terparts defined on rectangular boxes. For two~dimensionalproblems, boundary

conditions may take the form

where ex, {3, 15 and rp are functions of:r: and y. The three-dimensional case is simi-

lar. Periodic boundary conditions are also admitted when the domains are ree-

tangular. In addition. ELLPACK is organized so that it is possible to set up itera-

lions to solve nonlinear problems (Le. a J C, d, e. f,g I p, q. 0.:, (J. 0, rp are also

functions of '11" u~ etc.).

ELLPACK users specify the problem they wish to solve in an ELLPACK pro-

gram written in a simple user-oriented ELLPACK language. The ELLPACK system

processes this program by first translating it to a FORTRAN source program

called the ELLPACK control program.; this program is then compiled and linked

to a precompiled ELLPACK module library. Finally, the program is executed,

producing a solution to the problem. The process is illustrated in Figure 1.1.

The ELLPACK language is an extension of Fortran. and ordinary Fortran

code can be mixed with ELLPACK statements. Elliptic equations. domains, and
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USER'S ELLPACK ELLPACK PREPROCESSOR PRINTED VERSION

INPUT = A FORTRAN PROGRAM OF USER'S INPUT

l
SOURCE FORTRAN FOR

ELLPACK CONTROL PROGRAM

~
FORTRAN

COMPILER

J
ELLPACK CONTROL RESULTS

PROGRAM SAVED

~
ELLPACK LI IlRARY OF EXECUTION OF

COMPILED I-KJDULES ELLPACK RUN ELLPACK

OIJTPtrr

Figure 1.1. Schematic diagram of the processing of an ELLPACK run.
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boundary conditions can be declared in this language, and powerful statements

are available to help users get from the specified problem to useable output.

These statements invoke modules in the ELLPACK module library. There are five

basic types of modules:

Discretization. Replace the partial differential equation and boundary con-

ditions by an approximate. finite system of linear algebraic equations.

Indexing. The equations and unknowns of the discrete system are reor-

dered to facilitate solving the system.

Solution. The system of equations is solved.

Triple. Discretization and solution are performed as a single step.

Output. The approximate solution is tabulated or plotted.

One specifies the numerical method to be used by invoking, in tW'n. a discretiza-

lion module, an indexing module, and a solution module (or a single triple

module). In the ELLPACK language this is done by simply giving their names.

A large number of modules are available in ELLPACK for each stage of the

computation. For example, discretization by various types of finite difference

and finite element methods are possible, as well as solution of algebraic equa-

lions by both iterative and direct methods. Detailed descriptions of the avail-

able modules are given in Part 2. This easy access to a large repertoire of

numerical methods makes ELLPACK useful in comparing solutions obtained by

vastly different methods, as well as a "pilot plant" for large scale application

problems.

DW'ing execution, ELLPACK modules communicate through fixed pre-

defined collections of variables called interfaces. This process is illustrated in

Figure 1.2 and described in detail in Part 4, where a complete specification of

.-. ,, ,

~,
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"LLPACK~ INPUT

ELL PACK CONTROL
PROGRAM

,
I

Equation Equation I
I d . '-h,,! Solut1'on '-,-<10utputn eXl.ng I I I Module
Module Module

I
I

I

I
I

In'terface
1

I

I
I

•Interface
2

I
Interface

3

,
Interface

4

Figure 1.2. Basic organization of an ELLPACK computation. The user
specifies the modules to be used and more than one combination may
be used on a single ELLPACK run.

<::)
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how to add new modules to the ELLPACK system is given.

The final essential ingredient in the solution of an elliptic problem with

ELLPACK is the spe.clfication of a rectangular grid to cover the domain. When

this grid is made finer the approximations used by discretization modules are

more accurate (within the constraints of machine arithmetic), but computer

time and memory requirements also increase (i.e. there are more algebraic

equations generated). When a non rectangular domain is specified in ELLPACK,

the domain processor is invoked. It sets up tables which relate the rectangular

grid to the domain in a way useful to discretization and triple modules.

l.B A SIMPLE ELLPACK PROGRAM

We show a very simple elliptic problem and an ELLPACK program which gen-

erates an approximate solution. A table of this solution is printed and a contour

plot is produced;

Elliptic Problem

The partial differential equation lJu =f is

"= + "w + 3"" - 4u ~ ."PCz+y)sin(17z),

the domain R is the rectangle O<x<l, -1<y<2 and the boundary conditions

Mu=g are

u =0,
u =x,

%=0, -1<y<2
0<%<1, y=2

u = }; x=l, -1<y<2

u = sin(rr%) - ~. O<x<l, y=-l

The ordinary finite difference approximation (5-POlNT STAR) is used to discre-

tize the problem at points of a square grid with spacing 1/5. The resulting linear

system is solved with ordinary Gauss elimination for band matrices.

,"':
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• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •
• • EXAMPLE ELLPACK PROGRAM 1. B1 •

• • •
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

•
OPTIONS ,
•
EQUATION.

T rME $ MEMORY

uxx· + uyy + 3.0'UX 4.0·U = EXP(X+Y)'SIN(pr'X)

BOUNDARY. U = 0.0
U = SIN(PI 'X)
U = Y/2.0
u=x

ON X=O.O
X/2.0 ON Y=-1.0

ON X = La
ON Y=2.0

•
GRW. 6 X POINTS • 6 Y POINTS
•
DISCRETIZATION. 5 POINT STAR
INDEXING. NATURAL
SOLUTION. LrNPACK BAND
•
OUTPUT. TABLE (U) • PLOT (U)

END.

APPROXIMATE MEMORY REQUIREMENTS

WORKSPACE 1875 GRID LINES 13
LrNEAR EQNS 576 UNKNOWNS 36
INTERPOLATION 141 DOMAIN INFO 0
AMATRX,BVECTR 504 TOTAL MEMORY 3145

SYMBOL TABLE INPUT TIME
PROGRAM PROCESS ING TIldE

TEMPLATE OUTPUT TIME
TOTAL TIME

Output of ELLPACK run:

or SCRET I ZAT ION MODULE

2.52 SECONDS
.90 SECONDS

1 . gO SECONDS
5.32 SECONDS

.5-POINT S TAR

DOMAIN
X INTERVAL .000E+oO,
Y INTERVAL -.100E+Ol,
DISCRETIZATION
GRID
!IX
HY
B.C.S ON PIECES 1,2,3,4
OUTPUT LEVEL
NUMBER OF EQUATIONS
MAX NO. OF UNI<NOWNS PER EQ.
8XECUTION SUCCESSFUL

INDEXiNG MODULE

RECTANGLE
.100E+Ol
.200E+Ol
UNIFORM,X ,

.200E+OO

.600E+OO
1 , 1 , 1 , 1

1
16

5
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NATURAL

NUMBER OF EQUATrONS
EQUAT IONS/UNKNOWNS NUMBERED

tN ORDER GENERATED
EXECUTION SUCCESSFUL

SOLUT ION MODULE

- 7 -

16

LINPACK BAN D

NUMBER OF ROWS 13
NUMBER OF COLUMNS 16
NUMBER OF LOWER CO~DIAGONALS 4
NUMBER OF UPPER CO-DIAGONALS 4
LINPACK BAND GIVES 2 TIMINGS

SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

ELLPACK 77 OUTPUT

I r 1111 r I r 111111 r 11111 J III I 111I r r I r 1I1I1 r 111111
+ +
+ TABLE OF U ON 6 X 6 GRID +
+ +
J 111111111111111 J I J J 1111111 rill r II r II r I r 111111

X-ABSCISSAE ARE

. OOOOOOE+OO

.600000E+00
.200000E+00
.100000E+Ol

.400000E+OO ,600000E+OO

y = .200000E+Ol

.OOOOOOE+OO

.600000E+00
.200000E+OO
.100000E+Ol

. 400000E~'00 .600000E+00

Y = .140000E+Ol

.OOOOOOE+OO

.3680~9E+OO

-.669090E-Ol
.700000E+OO

-,478790E-Ol .978628E-Ol

Y "'- . 800000E+00

.OOOOOOE+OO

. 194251E+OO
-.691466E-Ol

.400000E+00
-.663472E-Ol .238169E-Ol

Y = .200000E+00

.0000008+00

. 147178E-Ol
-,621819E-Ol

.100000E+00
·.808831E-Ol -.S3~813E-Ol

Y = -.400000E+OO

.0000008+00
-.1359458+00

-.202565E-02
-.200000E+OO

-.252810E-Ol -.732527E-Ol

Y = -.100000E+Ol

.OOOOOOE+OO

. 187785E+00
.4877858+00

-.500000E+OO
.751057E+OO . 651056E+OO
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ELLPACK 77 OUTPUT

1111111111111111111111++++
+ +
+ EXECUTION TIMES +
• +
11111111111111111111111111

- 8 -

MODULI!: NAME

5-POIN'I' STAR
NATURAL
L INPACK BAND SETUP
L INPACK BAND
TABLE
PLOT
TOTAL TIME

SECONDS

.12

.02

.03

.03

.38
6.37
7.06

This program consists of several segments whose names (EQUATION, BOUN-

DARY, and so on) begin in column 1 of a line, the rest is written in free format

(excluding column 1). The dollar sign is a separator to allow more than one item

on one line in a segment, Par:ts of the program include F9rtran expressions

(+3., EXP(X+Y)"'SIN(PI"'X). etc.) which must follow the rules of Fortran. Lines

beginning with'" are comments.

This example Ls the simplest case of an ELLPACK program: one defines the

elliptic problem in the EQUATION and BOUNDARY segments, OPTIONS are chosen,

a rectangular grid is defined in the GRID segment, the solution method is speci-

tied in the DISCRETIZATION. INDEXING and SOLUTION segments and the desired

output is specified in the OUTPUT segment, Every ELLPACK program ends with

END.

The ELLPACK preprocessor lists the pJ::'ogram with an identifying heading. It

also prints the' memory estimates as requested in the 'OPTIONS segment along

with its execution time. Each ELLPACK module prints a simple summary mes-

sage. The output segment contains two requests, one is a table of the solution

on the grid and the other is a contour plot produced by some graphics device. "'i-
f ,'.

~{
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0
0
0

U

COhtOtJrS

contour W111m

0 1 -.501'+000
2 -.J3e+OO~

A 3 -.17e+OO
4 .OOe+OO
5 • 17e+OO
6 •33e+OO
7 .50e+OO

0 8 •67e+OO0
0 9 .63eTOO

10 • LOe+Ol

o
ill,

g
o-, .000 .500

x

Figure 1.3. The contour plot produced by PLOT(U) in the example

ELLPACK lBl program. This plot is made with an electrostatic printer.
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The graphics connected to ELLPACK will vary from installation to installation,

l.C ORGANIZATION OF THE BOOK

The basic features of the ELLPACK language are presented in the next

chapter. then three more examples are presented in detail in Chapter 3 (one

solves the same problem with two different choices of methods. another illus-

trates non-rectangular geometry and the third shows how Fortran can be inter-

spersed with ELLPACK statements.) Chapters 4 and 5 describe and illustrate

more advanced features of ELLPACK. Th~re are a number of examples of

advanced applications in these two chapters. Part 2 (Chapters 6 through 9) con-

tains summary descriptions of the over 40 modules aVailable and an overview of

the ITPACK and YALEPACK software included in ELLPACK. Part 3 (Chapters 10-

12) presents a basic performance evaluation of many of the ELLPACK modules.

The objective is to give the reader some feel for the properties of various

methods (software modules) and not to present a complete scientific evaluation,

Part 4 (Chapters 13-16) is a Contributor's Guide; it prOVides the information

to prepare a new module for the ELLPACK system. The ELLPACK system is

designed so that new modules can be easily added (and corresponding additions

made to the language). There is useful information for those who wish to

attempt advanced ELLPACK applications, otherwise this and the following Part 5

are not relevant to the use of ELLPACK. Part 5 (Chapters 19 and 20) is an Instal-

lation Guide; it provides detailed information on how to install ELLPACK and to

make modifications to it. The basic ELLPACK system can be installed without

much difficulty; one needs to know how to manipulate !ties and to create a

library from a set of Fortran programs. Tailoring the ELLPACK system is more

complicated and while it does not require specific expertise of a system pro-

grammer, one is more likely to have seen the kinds of things that have to be

(!), ..
"l:fu~
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done.

- 11 -

i

The Appendices contain reference material. there are brief summaries of

the PG system and the mOLPACK template processor which are used to create

the ELLPACK system. There is the PDE population a set of over 60 linear elliptic

partial differential equations on two dimensional rectangular domains. These

can be used as a problem population for a systematic performance evaluation.

,

,~
'..')

'.

I~·

..'
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CHAPTER 2. THE ELLPACK lANGUAGE

2.A GENERAL ORGANIZATION OF AN ELLPACK PROGRAJ(.

The ELLPACK program should be interpreted as the main program of a Fortran

job. The basic blocks of statements in an ELLPACK program are segments. The

segments that define the elliptic problem and options are like declarations: they

must come first and they are not executed. The other segments (except END)

are executed and the flow of the computation is controlled by placing them in

the proper sequence. Ordinary Fortran statements may be interspersed among

the executable segments. and there is also a facility to specify Fortran subpro-

grams (but not ELLPACK SUbprograms).

A brief summary of the segments is given in groups,

Group 1 Segments define the elliptic problem. They must appear before any

from Group 2 and. except for GRID. appear exactly once,

EQUATION. Specifies the partial differential equation.

BOUNDARY. Specifies the domain and boundary conditions,

GRID, Specifies a set of vertical and horizontal grid lines.
GRID can appear more than once to change the grid
size provided that MAXGRID is set in an OPTION seg­
ment before the first GRID segment.

HOLE. Defines a hole in the domain and associated boundary
conditions. This segment can appear more than once
if several holes are present, It must follow the BOUN­
DARY segment.

ARC. Defines an inlerface or slit 1n the domain on which
additional conditions are prescribed. Its use is
governed by the same rules as the HOLE segment.

manks are not ollowed in these or any other segment names. Segment names

may be abbreviated by two or more of their leading characters.

" "

.,

I
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Group 2 Segments specify the executable ELLPACK modules and may appear

more than once. A specific ordering is usually required; e.g., DISCRETIZATION,

INDEXING, SOLUTION, OUTPUT or TRIPLE, OUTPUT.

DlSCRET1ZATION. Specifies a module to define a discrete approximation
to the elliptic problem; this generates a system of
linear algebraic equations. (This is the first phase of
an ELLPACK solution algorithm.)

lNDEXING. Specifies 0. module to reorder the linear equations
and the unknowns. (This is the second phase of an
ELLPACK solution algorithm.)

SOLUTION. Specifies a module which solves the linear equations.
(This is the final phase of an ELLPACK solution algo­
rithm.)

TRIPLE. Specifies a combination method which includes
discretization, indexing and solutions all in one
module.

PROCEDURE. Specifies various other optional actions in solving or
analyZing the problem.

OUTPUT. Selects desired ELLPACK-generated output (printed
and graphical).

Group 3 Segments may appear anywhere in the program and as many times as,

desired.

•

oPTloNS.

FORTRAN.

Specifies a comment.

Specifies which of various options are desired.

Specifies that the statements which follow are user
supplied executable Fortran statements.

(blank line) Allowed at any point

Group 4· Segments specify various information and can appear at most once.

DECLARATIONS. Provides ForLran declarations for the user provided
executable Fortran statements. Must appear at the
beginning of the program.

-,
.,
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SUBPROGRAMS. Specifies that a set of Fortran subprograms (FUNC­
TION or SUBROUTINE) follows. This segment must go
just before the END segment.

GLOBAL, Gives declarations (primarily COMMON blocks) that
are placed within Fortran programs generated by
ElJ..,PACK to define the elliptic problem. Must appear
at the beginning of the program.

END. Specifies the end of the ElJ...PACK program,

Two or more letters of the beginning of a segment name form an acceptable

abbreviation. All segment names and their abbreviations must end with a

period. Each DlSCRETIZATlON, INDEXING, SOLUTlON, EQUATlON, TRIPLE and PRO-

CEDDRE segment must be on a single line. The line may, however, be continued

by putting a period in column 1. No segment can be longer than 1000 charac-

ters. The OPTIONS, OUTPUT, BOUNDARY, GRID, HOLE and ARC segments may use

several lines and the separator S may be used to place several parts of these

segments on one line. If these segments are broken in the middle of a word or

expression, th~m the continuation convention (period in column 1) must be used.

The segments FORTRAN, SUBPROGRAMS, DECLARATIONS and GLOBAL start with

the segment name on a separate line followed by lines of Fortran code.

The independent variables are denoted by X, Y, and Z (X and Y for two-

dimensional problems). The dependent variable is denoted by U, its first derlva-

tives U;., 'ILy and U:>; by UX, UY, and UZ, and the second derivatives UXX, UYY,

UXY, and so on. These names are reserved in ELLPACK and Fortran variables

with these names cannot be used safely. Once the PDE is solved the functions

U(X,Y), UX(X.Y), etc. (U(X,Y,Z), UX(X,Y,Z), etc. in three dimensions) become

defined and may be used as ordinary Fortran functions. The complete set of

reserved names in ELLPACK is:

x, y, Z U, UX, UXX, Uy, UYY, UYX, UXY, UZ. UZZ, UZX, UXZ, Uzy, uyz, TRUE,

ERROR, RESlDU, ON, FOR, TO, LINE, PI

.' .

i
I

I
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plus any 6 character name starting with C, I, L. Q or R followed by a digit. The

words ON. FOR, TO and LINE must actually only be avoided in Fortran functions

of the BOUNDARY segment. The variable PI is set to the mathematical constant

1f and can be used anywhere in the ELLPACK program. The six character names

are internal Fortran variables for ELLPACK; their use would create a name con-

flict. The meanings of the initial characters are

C Common blocks

I Integers

L Logical

Q Subprograms

R Real (or double precision)

2.D SEGMENTS WlllCH DEFINE THE PROIlLEI.l AND GRID (GROUP 1)

W:e describe the rules (syntax) for defi..ning the PDE problem and associated rec-

tangular grid. The notation <word> is used to specify an item that is to be pro-

vided or defined later. Thus

<coef> u;;; <right side>

can represent (x 2 +1) U =x COS (x) with cae! =x2 +1 and right side =z cos(z).

EQUATION. segment

The EQUATION segment specifies the partial differential equation to be

solved. In the definition of the equation. the dependent variable and its deriva-

lives are denoted by V, UX, UXX, etc. The equation is specified in the form

<operator> ;;; <right side>

where <operator> is a list of terms of the form

<coefficient> • <derivative>

CJ
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The terms <coefficient> and <right side> denote any valid Fortran real Brith-

metic expressions as well as the separators + or·, and <derivative> denotes one

of V, UX, UY, VZ, and so on. If the coefficient of a derivative is zero, then the

associated term need not appear.

Some examples of the EQUATION segment are given below.

• LA.PLACE' S EQUATION
•
EQUATION. UXX + UYY = o.

• AN EQUATION WITH CONSTANT COEFFICIENTS
•
EQUATION. -4.·UXX; + .377'UXX - 3. ·PI·UYY + 3.E+4'UX = SIN(X+COS(X'Y)

• THE COEFFICIENTS OF UYY AND U ARE GIVEN AS FORTRAN FUNCTIONS.
• THESE ARE SUPPL [ED BY THE USER IN THE SUBPROGRAMS SEGMENT.

EqUATION. (X·.2 + Y••2 + IB.)'UXX + VALUYY(X,Y)'UYY
-2.234E- 3'ATAN2(Y,X) ux: + 1.4'UY - VALU(X,Y)·U = O.

There is a special ELLPACK form for sell-adjoint equations which are writ-

ten in the form

(p(x,y)u:l: + (q(x,y)",,). + r(x,ylu = f(x,y)

IUs

Eq. (P(X,y)'UX)X'" (Q(X,Y)'UY)Y'" R(X,Y)·U = G(X,y)

The functions P, Q, R and G may be replaced by any Fortran expressions.

There is an alternate way to indicate a self-adjoint equation by using the

OPTIONS segment as follows:

, SELF-ADJOINT, ALTERNATE FORM

OPT ION. SELF- ADJO INT = .TRUE.

EQUA. P(X,Y)·UXX + Q(X,y)·UYY + R(X,Y)'U =G(X,y)

'.' .
~" ,-
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Note that several modules apply only to PDEs written in self-adjoint form.

~Alr.r. segD1ent

The BOUNDARY segment specifies the boundary of the domain R and the

boundary conditions on them. We first describe general two-dimensional

domains in ELLPACK; the special facilities for the simpler cases of rectangular

two- and three-dimensional domains are described after that. The boundary is

broken up into a series of pieces which must join together in sequence. A piece

and condition are specified by

<condition> ON <piece>

where <condition> is one of the following:

PERIODIC or

<expression>"'UX + <expression>"'UY + <expression>"'U = <expression>

where <expression> is a legal Fortran expression. The three terms on the left

can be in any order, and any term may be omitted if its coefficient expression is

zero. If the <condition> preceeding ON is omitted, then the preceeding <condi­

tion> is used as the default condition.

Periodic boundary conditions may only be applied in the case of .rectangu­

lar domains. It PERIODIC is specified on one side, then it must also be specified

on the opposite side. Any of the other usual types of boundary conditions can be

specified using the second form. For instance, a Dirichlet condition is specified

as

U = F(X,Y)

and a Neumann condition as

A(X,Y)'UX + B(X,y)'UY = F(X,y)

where (X,Y) 'is a point on the boundary and (A(X,y), B(X,y») is the unit vector

normal to the boundary (pointing outward). The latter reduces to ± UX=F(Y) or
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± UY=F(X) for rectangular domains.
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A non-rectangular two dimensional domain is specified as a sequence of

parameterized sides. The general form of <piece> is

x = <expression>. Y = <expression> FOR <parameter> = <a> TO <b>

where

<parameter> is a real Fortran variable that parameterizes the side

<expression> is a Fortran expression in the parameter

<a>. <b> are Fortran .expressions that evaluate to constants which deter-

mine the initial and final value ot the parameter,

The pieces are assumed to be given in counter-clockwise order. (this may be

overridden by putting CLOCKWISE = .TRUE. in an OPTION segment). Each piece

starts on a new line unless the $ separator is used. The parameter must

increase from <a> to <b>. It is essential that the parameterization be of ordi-

1llll'Y size and not vary erratically along the boundary. The continuity of joining

the pieces is checked and the joining must be done accurately. Two simple

examples of non-rectangular boundary and boundary condition specification fol-

low:

• CIRCULAR DISK WITH CENTER 1.1

BOUND. U = 0.0 ON" X = l.-COS(PI'THETA). Y = l.-SIN(PI'THETA)
FOR THETA =O. TO 2.

•
QUARTER ANNULUS

BOUNDARY.

U=100.
U=100."(2.·X)
U=O.O
U=100. '(2.-y)

ON X=SIN"(PI 'T), Y=COS(PI'T)
ON X=R, ¥=O.
ON X=2. 'COS (P[ 'T) ,Y=2. '8 IN(PI 'T)
ON X=o.O, Y=2.-R

FOR T=O.
FOR R=1.
FOR T=O.
FOR R=O.

TO 0.5
TO 2.0
TO 0.5
TO 1.0

The reserved words ON. FOR, LlNE and TO cannot have blanks in them and must

have blanks on both sides of them.

There is a special simple form for straight line pieces of the boundary. In

this case <piece> appears as:
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LINE <x-constant>, <y-constant> TO <x-constant>,'<y-constant>

where <x-constant>, <y-constant) are the coordinates of the end point of the

piece: they may be any Fortran expression that evaluates to a constant.

Straight line sides may be connected by the following multiple side form:

<condition> ON LINE <x>, <y> TO <x>, <y>
<condition> TO <:X>, <y>

<condition> TO <x>. <y>

The boundary condition <condition> may be omitted if it is the same as for the

preceeding pieces (for both straight line pieces or parameterIzed pieces).

Several groups of TO <X>, <y> Gan be placed on one line as long as the same

boundary condition holds. as for example

U=1.0 LINE <x1>.<yl> TO <x2>.<y2> TO <x3>, <y3> TO ... TO <xK>.<yK>

The complex example in Figure 2.1 of a non-rectangular domain specifica-

lion follows:

FOUR SrDED. NON-RECTANGULAR DOJAAIN
CLOCI&ISE = . TRUE.

•
OPTION.
BOUNDARY.

U = 0.0 ON LINE 4 .• 4. TO 1. I 4.
TOl. , 0.5

U = (X~4.).(Y-.5) TO 4 .. -0.5
ON X = 4.+.1 9P9(P-4.5)992, Y=-.5+P FOR P=O. TO 4.5

This example shows how omitting the boundary condition specifies it to be the

previous one and how the LlNE specifications continues from piece to piece.

A second complicated example follows:

9 SIX SIDED REGION WITH 3 STRAIGHT SIDES

u=o.o ON X=-T , Y=(T-].) 112 FOR T = 1. TO 2.
ONX=(P-l)"2~2. Y=P FOR P = 1. TO 2.

U=(2. I X-Y)"12 ON LINE -1,,2. TO .5,2. TO 1,,1. TO 0.,0.
UX-3.0 9U=.5 ON X=-SQRT(PHI)I Y=SIN(Pl"PHI)/5. FOR PHI = 0.0 TO 1.0

There is a special abbreviated form for rectangular domains (in two or
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Figure 2.1. A nonrectangular domain with its parameterization and
boundary conditions given.
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three dimensions) where <piece> is of the form

<variable> = <constant>

Here <variable> is one of X,Y,Z and <constant> is a Fortran expression that

evaluates to a constant. Two examples of defining a two dimensional domain and

its boundary conditions follow:

o ABBREVIATED BOUNDARY FORM: FOR A RECTANGLE
BOUND.

U = 1.0
U + X'UX = (X+Y) 'EXP(Y)
UY = 0.0
U = EXPeX)

ONX=O.O
ON X = 1.0
ONY=O.O
ONY= 1.0

• BOUNDARY CONDITION CARRIED FORWARD FROM PIECE TO PIECE

BO. U=O.O ONY=O.O
ON Y = PIt2.
ONX=O.O

U = E:XP(l.)'SIN(2.'PI'Y) ONX = EXP(1.0)

The preceding example can be written in a more compact form using the $

separator as follows

BOUNDARY.
U = 0.0 ON Y = 0.0 $ ON Y = PIt2. $ ON X= 0,0
U = EXP(1.)'SIN(2.'PI'Y) ON X = EXP(l.O)

The extension of this notation to three dimensional rectangles is straight for-

ward; six rather than four sides and conditions are required and boundary con-

ditions can include U, UX, UY and UZ terms.

GRID. segment
The GRID. segment defines a rectangular grid placed over the

domain. The general form of the segment is a set of terms:

<n> <variable> POINTS <point list>



SECTION 2.8

where
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<n> = number of points: must be constant unless MAXGRID
option is used

<variable> = variable involved (one of X, Y or Z),
<point list> = list of grid coordinates in increasing order.

These terms must be on separate lines or separated by a $. For two dimensional

domains there must be one set of points specified for X and another for Y. In

three dimensions there must also be a specification for Z. If the following grid is

specified

then the rectangular grid is made up of the lines

See Figure 2.2 for an example 4 by 5 grid.

Figure 2.2 The rectangular grid defined by 4 X POINTS $ 5 Y POINTS

For uniformly spaced grids <point list> may take the form

<a> TO <b>

where

<a> = initial value of the grid variable
<b> = final value of the grid variable
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ln this case the points used to discretize the variable are

p, =(i-l) • ~~=-~l + a., i =1.2, ... ,n

For rectangular domains <a> TO <b> is not used and the initial and final values

of the variable correspond to the rectangle.

Some possible combinations are illustrated by the following examples:

•• GENERAL NON-UNIFORM CASE

GRID. 7 X POINTS -1.0, ~,8, -.5, 0.0, .5, .8, 1.0
5 Y POINTS 0.0, .2, .5, .6, 1.0

• UNIFORM GRID - FOR NON~RECTANGULAR DOMAINS

GRID. 7 X POINTS -1.0 TO 1.0 :Ii 4 YPOINTS 0.0 TO 1.0

UNH'ORM GRID - ON A RECTANGLE
• FORM VALID ONLY FOR RECTANGULAR DOMAINS

GRID. 7 X-POINTS :Ii 1 Y-POINTS

•
• MIXED CASE FOR 3-D, - ALWAYS RECTANGULAR

GRID. 7 X-POINTS $: 4,YPOINTS -2.0 TO -1.0
6 Z POINTS -1,0, -.7. - .25, .25, .7, 1,0

2,C SEGMENTS WHICH SPECIFY TIlE METHODS TO BE USED

We next describe the four segments which specific methods (that is, partic-

ular ELLPACK library modules) to be used in solving the problem. These are

DISCRETIZATION, INDEXING, SOLUTION and TRIPLE. Most ELLPACK programs

have three segments present corresponding to the three steps in approximately

solving the problems (See Flgure 1.2). However, modules in a TRIPLE segment

incorporate all threr;;: of these steps.

A summary description of each of these modules is given in Chapter 9.

References are given there for further information about the numerical methods

used. Note that each module has restrictions on its use (such as a seH-adjoint

equation or a rectangular domain). One must read the descriptions before using

.... )
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the modules. Many modules accept parameters which are placed in parentheses

following the module name. These parameters may be specified in any order

and default values are provided; setting a parameter value for one use of a

module does not affect the default value for later appearances. The module

parameters are specified as <parameter> = <value>. the <parameter> is an

actual variable in the Fortran program generated so one must not use the same

name for something else. This is true even i! the default parameter value is

used. Two simple examples of the use of parameters follow

SOR(OMEGA = 1. 6, ITMAX=100. IADAPT=1)
SOR(ZETA = 1.E-4. OMEGA = 1.66)

Module names (unlike segment names and EIJ..PACK reserved words) may have

dashes and blanks in them. All dashes and blanks are removed before the word

is to be reorganized. The following are legal

5 POINT STAR, 5-POINT STAR, 5 POINT-STAR, 5-POI NT STAR

8 X POINTS, 8 X-POINTS, 8 XPOINTS, 8-POINTS, 8 XPO INTS

LINPACK BAND LINPACKBAND, LIN-PACK-BAND

Examples of method specifications follow.

•

•
•
DISCRETIZATION.
INDEXING.
SOLtrrION.

DISCRETIZATION.
INDEXING.
SOLtrrION.
•

TRIPLE,
•
•
•
•
•
DIS.

ORDINARY FINITE DIFFERENCES AND GAUSS ELIMINATION

5-POINT STAR
AS IS
BAlm GE

A FINITE ELEMENT METHOD WITH ITERATION

SPLINE GALERKIN(DEGREE=3, SMOOTH=2)
AS IS
SOR

A SINGLE MODULE FOR THE PROBLEM

FFT 8-POINT(ORDER--4)

SOLVE THE SAME PROBLEM BY GAUSS ELIMINATION
SPARSE MATRIX METHOD AND TWO ITERATIVE METHODS
THE OUTPUT BETWEEN SOLUTIONS IS OMITTED

5-POINT STAR
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INDEX.
SOLUTION.
SOL.
INDEX.
SO.
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AS IS
SPARSE (NSP=18000)
JACOBI CG(ITMAX=200, ZETA=1,E-4)
RED-BLACK
REDUCED SYSTEM OO( [TMAJ(=200, ZETA=l . E-4, IADAPT=l)

The last code segment illustrates the action of ELLPACK interlaces. Once the

discretization is made by 5-POlNT STAR the resulting information is held fixed at

this interface until another discretization is made. Similarly, after the AS IS the

indexing interface is held fixed while SPARSE and JACOBI CG solution modules

are used. Then the RED-BLACK indexing module replaces the indexing interface

information and REDUCED SYSTEM CG can be used. The 5-POlNT STAR interface

is not affected by using the second indexing module.

It i3 important to note that not all combinations or modules are legal.

ELLPACK users should understand the basic premises of each module so they

can determine whether a combination of modules is legal. Some illegal combi-

nations are fairly obvious such as using the symmetric linear equation solver

UNPACK SPD BAND with-a discretization module that does not yield a symmetric

linear system. Similarly, an INDEXING module which tries to minimize matrix

bandwidth is not likely to help with a module for solving the equations itera-

lively. The module descriptions in Chapter 9 indicate some combinations which

are legal. There are many other combinations possible and one should be cau-

lious when the first using a new combination. A table at the beginning of

Chapter 9 also gives some guidance as to which combinations are legal.

DISCRETIZATION. segment

This segment names a module to be used to form a linear system of equa-

lions. The content of this segment is a single module name and the list of avail-

able modules is expandable. The basic set in ELLPACK consists of 0J
( )

o
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5-POINT STAR
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Ordinary second order divided central differences
(Restricted to two dimensional domains)

7-POINT STAR Ordinary second order divided central differences
(Restricted to three dimensional rectangular
domains with Dirichlet boundary conditions)

SPLINE GALERKIN Galerkin method with piecewise polynomials of gen­
eral degree and smoothness (Restricted to self­
adjoint problems on two dimensional rectangular
domains)

HERMITE COLLOCATION Collocation method with bi-cubic Hermite piecewise
polynomials (Restricted to rectangular domains in
two dimensions)

HODIE ACF Higher order finite differences for
a (x ,y )u= + c (x ,Y)Uyy + f (x ,y)u (Restricted to rec­
tangular domains in two dimensions)

COLLOCATION Collocation method with Hermite bicubics on nonrec­
tangular domains. (Restricted to two dimensions)

The complete set of modules supplied with the ELLPACK system contains about

10 more dIscretization modules, a list of these modules is given at the start of

Chapter 9. Note that INTERlOR COLLOCATION is more efficient than HERMITE

COLLOCATION, but not quite as general in the boundary condition it handles,

INDEXlNG. segment

These modules take the linear system produced by the DISCRETIZATION and

reorganize it by renumbering the equations and/or unknowns. For example, one

may wish to have the nested dissection ordering of the equations before using

Gauss~eIiminationto solve them. The basic set in ELLPACK consists of:

NESTED DlSSECTION Computes the nested dissection ordering of the equa­
tions.

AS IS The ordering is that of the generation of the equa­
tions and unknowns by the discretization modules.
This is the default case.

RED-BLACK The variables and unknowns are numbered as on a
checker board, all "red" points before the "black"
points. Used only with REDUCED SYSTEM iteration.
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MINIMAL DEGREE ,Computes the minimal degree ordering of the equaw

lions

There are several other INDEXING modules supplied with the complete ELLPACK

system described in Chapter 9.

SOLUTION. segment

These modules solve the linear system of equations. This step may also

involve reformatting the equatlons. For example, modules for solving banded

systems of linear equations require the equations to be in a certain band matrix

format before the Gauss elimination is done, so they do the reformatting as well

as the solution of the equations. The basic set in EI..J..PACK are

BAND GE GauSs elimination with scaled partial pivoting for a
general band matrix

UNPACK SPD BAND Cholesky elimination for a symmetric· positive defin­
ite band matrix

JACOBI CG Jacobi iteration with conjugate gradient acceleration

REDUCED SYSTEM CG Reduced system iteration with conjugate gradient
acceleration (Assumes the RED-BLACK indexing)

SOR SOR iteration

SPARSE General sparse matrix Gauss elimination

There are several other SOLUTION modules described in Chapter 9 and supplied

with the complete ELLPACK system.

TRIPLE. segment

These modules combine the functions of discretization, indexing and solu-

tion of the resulting linear system. The one included in the basic set of ELLPACK

modules is FIT 9-POINT which solves the Helmholtz equation on two dimensional

rectangles with second. fourth or sixth (for Poisson problems only) order finite

differences using Fast Fourier Transform techniques. There are several other

':.,;:J"

o
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_TRIPLE modules described in Chapter 9 and supplied with the complete ELLPACK

system.

2.D. FORTRAN AND PROGRAM CONTROL

Fortran has two distinct uses in ELLPACK. The first and simplest is to

define various functions that appear in the problem. Simple expressions like

SlN(X+2.5·Y) can just be inserted wherever needed, but more complex functions

may need several Fortran statements. These functions can be defined as ordi-

nary Fortran FUNCTlON subprograms and appended to the ELLPACK program in

the SUBPROGRAM segment just before the END segment. They can then be used

to define coefficients in the EQUATION or BOUNDARY segments just like built-in

Fortran functions.

The second use of Fortran is to allow special calculations to be done. They

might be something sImple like printing a heading and a few key parameters or

computing the maximwn of UX(X,y)n2 + UY(X,Y) ....2. They might be complex

auxiliary computations ~hat require the full range of Fortran facilities. They

might be computations that interact with the ELLPACK modules to solve non-

linear or other special problems. The more complicated uses are presented and

illustrated in Chapters 4 and 5.

There are three ·segments for Fortran use.

FORTRAN. segment

The FORTRAN segment indicates lines of executable Fortran code to be

inserted into the control program generated by ELLPACK. The ELLPACK system

uses statement labels starting at 20000, so such labels must be avoided in the

users program. This segment is illustrated as follows: , ,
C,1
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PRINT A HEADING
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FORTRAN,
C QlDATE IS AN ELLPACK IITILITY TO PROVIDE THE DATE

CALL QlDATE( IMO,lDAY, IYR)
WRITE(6,20) IMO, IDAY, IYR

20 FORMAT(11120X, 'WING LIFT CALCULATION', 5X, I2, 2('-',I2)1
A 20X, 'USING FINE GRID AND CUBIC SPLlNES'III)

•
- COMPUTE SOME PROPERTIES OF THE SOLUTION

AFTER THE PROBLEM IS SOLVED. U, UX AND UY ARE FUNCTIONS
DEFINED FROM THIS APPROXIMATE SOLUTION.

FORTRAN.
DMAX = 0,0
USUM = 0.0
DOIOI=l,lO

YG- = (I-l)-.2
DOIOJ=l,lO

XC = (I-I)-,l
DMAX = AMAXl(DMAX, UX(XG,YG)"2 + UY(XG,YG) "2)

10 USUM = DSUM + ABS(SQRT(U(XG,YG))
USUM =UEUM' .02
PRINT 20, miAX,USUM

20 FORMAT(II'DMAX =', FlO.4, lOX, 'SIZE SQRT(U)' = FIO.4)

DECLARATION. segment

The DECLARATION segment indicates lines of Fortran declaration state-

ments to be placed at the beginning of the ELLPACK control program. For

example:

DECLARATIONS .
INTEGER DIGIT, COUNTS(lO)
REAL MAXU4, MINU4, LOADS(20)

There is a real work space array RlWORK always available for use. This array is

used for temporary storage by modules; it may also be used for scratch storage

in Fortran segments. Note that the contents of Ri WORK are probably altered by

any ELLPACK module. Its size (gIven by the Fortran variable llMWRK) is usually

fairly large and can be made larger using the OPTIONS segment.

SlTBPROG~S.segInent

The SUBPROGRAMS segment indicates Fortran complete FUNCTIONS or

SUBROUTlNES. For example, the user can define A(X,Y) or A(X,Y,Z) to be the

::.0
c' ;
CJ
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coetricient of UXX in the PDE. This segment must be at the end of the ELLPACK

program.. just before the END segment.

Lines with a $ in column 1 are handled specially in SUBPROGRAM segments;

the $ is stripped off and the line is copied, shifted one character to the left. The

$: Is for those Fortran systems (mercifully rare) that require control cards for

each Fortran subprogram.

2.E. OUTPUT AND OPTIONS SEGMENTS

OPrIONS. segment

This segment sets various switches of the ElLPACK system. The OPTIONS

segment must be near the start of the program, similar to a declaraUon. Some

options may be changed during execution by setting internal ELLPACK Fortran

variables. If this can be done, the variables are listed with the description of the

option.

INTERPOLATION=k

k=QUADRATICS
k=SPLINES

LEVEL = k
LEVEL=O

LEVEL=!
LEVEL=2
LEVEL=3,4.5

IlLEVL

MEMORY

Select the method of interpolation to define U(X,y) ,
etc. off the grid (for finite difference methods only).
Local quadratic polynomials (default)
Use B-splines of degree appropriate for the order of
the discretization module. For nonrectangular
domains See [deBoor, 1976] for a descripUon of
B-splines; the interpolation routines were adapted
from deBoor's PPPACK software

Set output levels (0-5) in ELLPACK run.
Requests no output from modules except fatal error
messages
Request minimal output (default)
Requests reasonable summary of what happened
More and more intermediate output, primarily useful
for debugging
Fortran variable for LEVEL

Give estimates of the memory used in the ELLPACK
run with some breakdown

I~­,
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NO EXECUTION

PAGE=k
PAGE=O
PAGE=l

PAGE=2
I1PAGE

SELF-ADJOlNT=k

L1SELF

TIME
L1TIME

MAX WORKSPACE=k

- 31 -

Do not run ELLPACK program

Select type of pagination for module output
No page advances
New page before DIS. TRIPLE. TABLE or SUMMARY
(default)
New page before every module and OUTPUT segment
Fortran variable for PAGE

Set the switch for self adjoint form of the PDE. k may
be .TRUE. or.FALSE.
Fortran variable for SELF-ADJOINT

Give the execution times of each module
Fortran variable for TIME(can only turn TIME off)

Llmit the automatic workspace estimate and declare
the workspace array Ri WORK to have dimension' at
most IlMWRK=k.

MIN WORKSPACE=k Set workspace array Ri WORK to have dimension at
least.I1MWRK=k,

Options are not dynamic and. if given more than once. the last appearance

is used.

The INTERPOLATION option specifies how the functions U(X.Y), UX(X,Y). etc.

are defined for some, mainly finite difference, modules. If a discretization pro-

duces approximate values only on a grid of points, then an interpolation algo-

rithm is used to provide values off the grid. Only one interpolation algorithm

can be used in an ELLPACK run. The choice INTERPOLATION = SPlJNES usually

involves a substantial computation. but is more appropriate for use with higher

order accurate finite difference discretizations.

There are several other options that are discussed in Chapter 4. Some

OPTIONS segment examples follow.

OPTIONS. TIME S IdEMORY

ENLARGE WORKSPACE, REQUEST MORE OUTPUT

•
•
•

REQUEST BASIC STATISTICS ON PERFORMANCE
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OPT. MIN-V/ORKSPACE=7500 $ LEVEL=2
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~ ENLARGE WORKSPACE, SUPPRESS PAGING
•
OPT. MIN-WORKSPACE=12000 $ PAGE=O

O~UT.seg~ent

This segment specifies various kinds of output from the computation. The

requests are of the forms:

<type> or <type>«function» or <type>«function),<grid»

where <type> is a keyword, <function> is a function name and <grid> defines a

grid. The default <grid> is the one defined in the GRID segment. A uniform grid

within the standard. grid is defined by NX,NY or NX,NY,NZ where NX, NY and NZ

are integers, the number of grid lines for each of the X,Y,Z variables. The list of

types is:

M_\X(f)
MAX(f,grid)

RMS(f)
RMS(f,grid)

NORM(f)
NORM(f,grid)

PLOT(f)
PLOT(f,grid)

PLOT DOMAlN

Print maximum value, simple least squares and aver­
age absolute value (L I norm of f), all based on the
grid. These values are, respectively,
max If(%"YJ)1 *
[NX:NY fj f

2
(%"YJ)]

1
NX'NY L. If (%, ,YJ) I

where the grid is (Xi,Yj), i=l to NX j =1 to NY.

Same as MAX

Same as MAX

Contour plot of a function(f) of two variables. Here
the grid size determines the smoothness of the con­
tour lines, the default grid is 20 x 20.

Display the domain with grid lines
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TABLE(f) Print table of function f at grid points
TABLE(f,grid}

SUMMARY(f} Equivalent to MAX(f} $ TABLE(!}
SUMMARY(I,grid}

The function f may be one of the following standard ElJ..PACK functions or any

user named function of two variables (or 3 variables in three dimensions):'

U, UX, UY, UZ,
UXX, UTI, UZZ,
UXY, UXZ, TIZ

TRUE

The solution function and its derivatives (defined
after the solution is computed or after U has been
initialized in a TRIPLE segment.)

The known solution of the problem. Defined by the
user in the SUBPROGRAM segment as
REAL FUNCTION TRUE(X,y)
or
REAL FUNCTION TRUE(X,Y,Z}.

ERROR The error in the computed solution. The function
TRUE must be provided, otherwise TRUE;::Q is used.

£!L respectively.
ay
functions CDXU,

.QE.. andax
Three dimensions requires similar
CDYU, CDZU with arguments X,Y,Z.

If Lu ;:: f represents the partial differential equation,
then the residual is LU ;:: f where U is the computed
solution. If the equation is given in self-adjoint form
(P(x,y}u.). + (g(x,y}u,,), +r(x,y}u = f(x,y}
then the user must supply the Fortran functions
REAL FUNCTION CDXU(X,Y}
and
REAL FUNCTION CDYU(X,Y}

which return the values of

RESlDU

The following illustrate the OUTPUT segment's use.

•
•
OUTPUT .

CHECK HOW GOOD A SOLUTION IS (TRUE SOLUTION KNOWN)

MAX(ERROR) $ PLOT(ERROR) ! MAX(RESIDU)

•

OUTPUT.

QUICK LOOK AT RESULTS

SUMMARY(U)·.! PLOT(U)

•
•
•
•
•
•
•

OUTPUT FUNCTIONS RELATED TO SOLUTION AND THE FORTRAN FUNCTION
REAL FUNK(X, Y)
FUNK ~ UX(X,Y)··2 + UY(X,Y)·'2
RETURN
END

OUT. TABLIll (U) $ TABLE(UXX) ! TAELE(FUNK)
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• TABLE ON A GRID DIFFERENT THAN IN DISCRETIZATION

OUT. TABLE(U,12,12):Z TABLE(ERROR,6,6)

2.F DEBUGGING ELLPACK PROGRAMS

•• • DRAFT DE}i'ERRED •••

,. ':

""'
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CHAPTER 3. ELLPACK EXAlIPLES

This chapter gives example ELLPACK programs with output to illustrate the

use of the facilities of Chapter 2. The first example is a revision of the initial

example of Chapter 1: the domain has been made non-rectangular, and a normal

derivative boundary condition used on one piece. The second example is a com-

pletely general equatioD.- with mixed boundary conditions on a rectangular

domain. The third example shows how ELLPACK and Fortran interact. A prob-

lem is discretized and then solved several times with an iterative method; each

time the convergence test is changed and the purpose is to examine the effect

on accuracy achieved and execution time.

3.A PROBLEM OF CHAPTER 1 REVISED 1IITJI NON-RECTANGULAR DOMAIN

The first example shows a simple case of non-rectangular domain; a quadri-

lateral. The quadrilateral could be specified completely by the LINE facility, but

actual parameterized pieces are given to illustrate their use. Note how a rec-

tangular grid is placed over the domain. Ordinary finite differences are used

along with band Gauss elimination; there are only a few discretization modules

in ELLPACK that are applicable to non-rectangular domains. Once the problem

is discretized, several indexing or solution modules may be applied.

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• • •
• • EXAMPLE ELLPACK PROGRAM 3.AI •

•
• REMARKS •

• • THIS IS THE SAME EQUATION AS THE EXAMPLE IN
• • CHAPTER I. THE BOUNDARY CONDITIONS ARE CHANGED •
• • AND THE DOMAIN IS NO LONGER RECTANGULAR. •
• •

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
EQUATION.

BOUNDARY.

uxx + UYY

U = o.
U = X"2
U= 1. +YI2.
U=X'Y/2.

+ 3'UX - 4'U '" EXP(X+Y) 'SIN(PItX)

ON X = 0., Y = T FOR T'" -I. TO 2.
ON X=R, Y=2. FOR R'" o. TO 1.
ON LINE 1. ,2. TO]" o.
ON X = I.-S, Y = -8 FOR S = o. TO 1. '-

GRID. 6 X POINTS o. TO 1.
6 Y POINTS -1. TO 2.
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DISCRET.
INDEXING.
SOLUTION.

OUTPUT.

END.

5 POINT STAR
AS IS
BAND GE

TABLE(U) $ PLOT(U)

SYMBOL TABLE INPUT TIME
PROGRAM PROCESS ING TIME

TEMPLATE OUTPUT TIME
TOTAL ·TlME

2.47 SECONDS
.83 SECONDS

2.08 SECONDS
5.36 SECONDS

Output of ELLPACK run:

DOMAIN PROCESSOR

DOMAIN PROCE:SSOR BEGINNING EXECUTION
FOUND 19 BOUNDARY POINTS WHERE THE

4 PIE:CE:S INTERSECT THE 6 X 6 GRID

DISCRETIZATION MODULE

5-POINT S TAR

TYPE 1
TYPE 1
TYPE 1
TYPE 1,.

6

NON· RECTANGULAR
6 X 6

.200E+OO

.600E+OO
1

DOMAIN
UNIFORM GRID
fIX
HY
OUTPUT LEVEL
BOUNDARY CONDITIONS
PIECE 1
PIECE 2
PIECE 3
PIECE 4
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUTION SUCCESSFUL

INDEXING MODULE

NATURAL

NUMBER OF EQUATIONS
EQUATIONS/UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

14

SOLUT ION MODULE r--
o

ELL PACK BAND
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NUlISER OF .ROWS 13
NUMBER OF COLUMNS 14
NUMBER OF LOWER CO-DIAGONALS 4
NUMBER OF UPPER CO-DIAGONALS 4
ELLPACK BAND GIVES Z TIMrNGS

SETUP TIME AND SOLUTION TlIdE
EXECUT ION SUCCESSFUL

ELLPACK 78 OUTPUT

11111111 ~++++++++++11111111111r II r II ri'" l' 111111111
+ +
+ TABLE OF U ON 6 X 6 GRID +
+ +
++1111111111++11111111111111111 [1111 [I [1111111111111

X-ABSCISSAE ARE

.OOOOOOE+OO

.800000E+OO
.200000E+00
.100000E+Ol

.400000E+OO .600000E+OO

Y = .200000E+Ol

.OOOOOOE+OO

. 640000E+00
.400000E-Ol
. 1OOOOOE+O 1

. 160000E+00 . 360000E+OO

Y = .140000E+Ol

.OOOOOOE+OO

.351265E+OO
-.966931E-Ol

.700000E+OO
-,846697E-Ol .664861E-Ol

Y = .800000E+00

.OOOOOOE+OO

. 191964E+OO
-.743694E-Ol

.400000£+00
-,727578E-Ol . 169445E-Ol

Y = .200000E+00

,OOOOOOE+OO
. 135870E-Ol

-.717549E-0]
.100000£+00

-.915115E-Ol -.567291E-Ol

Y = -.400000E+00

. 000000£+00

.OOOOOOE+OO
-,776765E-Ol

.OOOOOOE+OO
-.114505E+OO -.120000E+OO

Y = -.100000E+Ol

.000000Eof-OO

.OOOOOOE+OO
.OOOOOOE+OO
.OOOOOOE+OO

.OOOOOOE+OO .OOOOOOE+OO

3.B GENERAL EQUATION WITH :MIXED BOUNDARY CONDITIONS RECTANGULAR

DOMAIN

The second example shows a comparison of solving a problem with mixed

boundary conditions by two different methods. Ordinary finite differences (~

!.( )

,
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0
0
0

N

U

contours
0 contour va luec-", ---

I -.13e+OO
2 -.5&-03
3 . 12e+OO
4 .2513+00
5 . 3f'~+OO

0 6 .50c+OO
0

7 .63e+OO0

B .7513+00
9 .883-1-00

10 .1013+01

,-::-

'""'>-

\
" -'-c'
0

i,
i,,'

'--1

'. C\<, .\'.000

Figure 3.1. The contour plot produced by PLOT(U) in example
ELLPACK program 3.Al.

co
f' ..
C)
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POINT STAR) and Gau~s elimination (BAND GE) gives an error of 1.5 percent while

collocation (HERMITE COLLOCATION) and sparse Gauss elimination with pivoting

(SPARSE PIVOTING) gives an error of 0.0055 percent. The times are time··FD

and time"COL. both relatively small.

• "",","""",","",".,""""""."""""""""","""",II"

• •
."'"'."""".'." .. '"" ..""" ....".,.,."., .. ,., ... ,., ..""'

•
•
•
•
•
•
•
•
•
•

•
, EXAMPLE ELLPACK PROGRAM 3.81
•
• REMARKS• THIS PROBLEM HAS MIXED BOUNDARY CONDITONS.
• THE PROGRAM COMPARES TWO DISTINCT METHODS FOR
, SOLVING THE SAME PROBLEM.
•

•
•
•
•
•
•
•

OPTIONS .

EqUATION,

LEVEL=l $ TIME

ux: - (l.O+Y"2)'UY = F(X,Y)

BOUNDARY.
U + UX = O.
U = TRUE(X,y)
U + ox: = 2,O'EXP(Y)
U = TRIJE(X, Y)

ON X=I.
ON Y=O.
ON x=o.
ON Y=l.

GRID.

OUT,

DIS.
. INDEX.
SOL.

4 X POINTS S 5 Y POINTS

MAX(TRUE)

5 POINT STAR
AS IS
BAND GE

OUT. TABLE(U) $ MAX(ERROR,7,g)

DIS. HERMITE COLLOCATION
INDEX. AS IS
SOL. SPARSE: PIVOTING (MAXNZ=BOO)

OUT. TABLE(U) $ MAX(ERROR,7,g)

SUBPROORAMS,
~UNCTION TRUE(X,Y)

C THE STANDARD ELLPACK FUNCTION (IF KNOWN)
TRUE = EXP(X+Y) + ((X·(X-l.0»"2)·ALOG(1.0+Y"2)

RETURN
END
FUNCTroN F(X,Y)

C CONSTRUCT F SO TRUE IS AS GIVEN
F = ALOG(l.O+Y"2) • (2.0 + X·(-14.0 + X'(lB.O - 4.0'X»))

5i + 2,0'«X'(X - 1.0»"2)'(1.0 - ¥ - 2.0·¥"21(1.0+¥"2»
RETURN
END

END,

SYMBOL TABLE INPUT TIME
PROGRAM PROCESSING TIME

.TEMPLATE OUTPUT TalE
TOTAL T[ME

2.55 SECONDS
1 .33 SECONDS
2.22 SECONDS
6,10 SECONDS

"-,
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Output of ELLPACK run:

ELLPACK 77 OUTPUT

- 40 -

-H+++HIIII r rill r r 1I1I rIll rill r 111111111111I r r 1111111111111I
+ +
-I- MAX( A8S(TRUE ) ON 4 X B GRro = ,73S90:>6E-I-01 -I-
+ +
-H+++HIIIIIII J 1 J J 1111 J I J I J I111IIIIII11111111I1I 1111II11I111

DISCRETIZATION MODULE

:>-POINT S TAR

DOMAIN
X INTERVAL . OOOE+OO,
Y INTElWAL .000£+00,
D[SCRETIZATION
GElID
HX
HY
S.C.S ON PIECES 1,2,3,4
OUTPUT LEVEL
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUTION SUCCESSFUL

INDEXING MODULE

NATURAL

NUMBER OF EQUATIONS
EQUAT IONS/UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

SOLUTION MODULE

RECTANGLE
.100E-I-01
.100E-I-0]
UNIFORM
• X ,

,333E-I-00
.250E+00
3,1,3,1

1
12,

,2

LINPACK BAND

NUMBER OF ROWS
NUMBER OF COLUMNS
~fBER OF LOWER CO-DIAGONALS
NUMBER OF UPPER CO-DIAGONALS
LINPACK BAND GIVES 2 TIMrNGS

SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

ELLPACK n OUTPUT

"12

••

::0
J', ..

U
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111111111' 1111111111111111111111111' 1111111111
+ +
+ TABLE OF U ON" 4 X 5 GRrD +
+ +
++++++++11111111111111111111111111111111111111

X-ABSCISSAE ARE

.OOOOOOB+OO .333333E+OO . 666667E+00 .100000E+01

y = .100000E+Ol

. 271828E+Ol . 382790E+Ol .5326728+01 . 736906E+Ol

¥= .750000E+00
-------._-------

.2111208+01 . 297926E+Ol .416631E+Ol . 586884E+O 1

¥= .500000E+OO
------~---------

. 162045E+Ol .231166E+0] .3248328+01 .4574418+0 1

¥= .250000E+00
----------._-~--

. 125842E+Ol . 179158E+Ol .251799E+Ol .354874E+Ol

¥= .OOOOOOE+OO.. ~~~-----------
. 1OOOOOE+O] . 139561E+Ol . 194773E+Ol •271828E+Ol

ELLPACK 77 OUTPUT

+++1111111111111111111111111' 1111' 1I111I1 f 1111111" 111111111
+ +
+ MAX( ABS(ERROR ) ) ON" 7 X 9 GRID = .1142387E+OO +
+ +
I11111111111 J 1111++++++1111111111111111111111111' I' 11111111I

DISCRETIZATrON MODULE

NONHOMGENEOUS
RECTANGLE

.100E+Ol

.100E+Ol

.000E+OO

.OOOE+OO
4 X ,

. 333E+00

. 250E+OO
1

80
18

. OOOE+OO ,

. OOOE+OO ,
PARAMS.PlS.

COL L 0 CAT ION

CASE
DOMAIN
X INTERVAL
Y INTERVAL
BOUND. COLLOC.

GRID
HX
HY
OUTPUT LEVEL
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUT ION SUCCESSFUL

INDEXING MODULE

NATURAL
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NUMBER OF EQUATIONS
EQUAT IONS/UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

SOWT ION MODULE

- 42

80

SPARSE GE-PIVOTIN"G

NUMBER OF EQUAT IONS 80
ESTIMATED MAX NUMBER OF NON-ZERO

ELEMENTS IN UPPER TRI. FACTOR 800
SIZE OF WORKING STORAGE 3363
SP. GE-PIV. GIVES 2 TIMrNGS

SETUP TIME AND SOLUTION TIME.
NUMBER OF NON-ZERO MATRIX ELEMENTS 951
NUMBER OF NON-ZERO ENTRIES IN

UPPER TRIANGULAR FACTOR 783
EXECUTION SUCCESSFUL

ELLPACK 77 OUTPUT

~+++++~I I I II I I I I I I I I 11 I 1 1 I 11 I I I I II r I I II I
+ +
+ TAELE OF U ON 4 X 5 GRID +
+ +
I I I I I II I I I I II I 1 I II I I I 11 I 1 I I I I 1 I 1 11 1 I I I II I I I I I I

X-ABSCISSAE ARE

.OOOOOOE+OO . 333333E+OO . 666667E+00 .IQOOOOE+Ol

Y = .100000E+Ol

.271858E+Ol .382819E+Ol •532903E+Ol •738940E+Ol

Y = .750000E+00

.211736E+Ol . 297680E+Ol .414562E+Ol .575480E+Ol

Y = .500000E+00

. 164899E+Ol .23]217E+Ol •322243E+Ol .448180E+Ol

y = .250000E+00

. 128415E+Ol . 179508E+Ol .250400E+Ol •349040E+Ol

Y = .000000E+00

.100000E+Ol

ELLPACK 77 OUTPUT

. 139563E+0 1 . 194776E+Ol .271828E+Ol

111111111111111++-1-++111111111111111 J 11111 r 11111111111111111'
+ +
+ MAX( ABS(ERRoR ) ) ON 7 X 9 GRID = .4091263E-03 +
+ +

'.: ."
'21
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+++1111111 [11111111111111111111111111111111111' 11'1111111111

·3.C EXAMPLE SHOWlNG HOW FllRTIlAN AND ELLPACK INTERACT

The third example is somewhat more complicated. The iteration method

JACOBI CG has a parameter ZETA to terminate the iteration; the iteration on the

linear system is done until the estimated error is less than ZETA. The object

here is to test the effect of changing ZETA; values of 10-:3, 10-4- and 10-6 are

used,

An important feature here is that parameters of the module JACOBI CG are

changed at each iteration. Caution must be used as this does not always work;

some parameters affect the program at preprocessing time rather than at exew

cution time. (e.g. parameters which affect array sizes). Thus

SPARSE(NSP=NWORK) will fail because a numerical value for NSP is required by

the preprocessor and the value of the Fortran variable NWORK is not known until

execution time. Another feature of this example is the use of self-adjoint form

for the PDE.

This test shows that the stoppi~ criterion has a substantial effect on the

number of iterations. The results are summarized as follows:

ZETA
Number of iterations

10-8

30
10-4
46

The maximum error in solving the elliptic problem is unaffected by these

changes as it is due to the discretization error and not to the error in solving

the linear system. Even with ZETA = 10-8 the error in solving the linear system

is less than the error .06 in discretizing the elliptic problem, thus no improve-

ment is made by taking more iteractions.
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• •••••••••••••••••••••••••••••••••••••••••••••••••••••• ••••
•
•
•

•
• EXAMPLE ELLPACK PROGRAM 3,Cl
•

•••
• • REMARKS •
• • SELF-ADJOINT PROBLEM: SOLVED BY FIN! TE DIFFERENCES
• • AND ITERATION. THE PROGRAM TESTS THE EFFECT OF
• • USING A BETTER GUESS TO START THE ITERATION AND •
• • OF CHANGING THE STOPPING CRITERION. •
• • •
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•
EQUATION.

BOUNDARY.

GRrD.

( W(X. y).UJ( )X + ( W(X.y)·uy )Y = F(X, y)

ux: = 0.0 ON X= 0,5
U = 0.0 ON x= 1.0
UY "" 0.0 ON Y= 0.5
U =0.0 ON Y= '-0

17 X POINTS
17 Y POINTS

OUT. PLOT(TRUE) $ MAX(TRUE)

DISCRET •
INDEXING.

5 POINT STAR
AS IS

FORTRAN.
C
C PRINT NUMBER OF ITERATIONS FOR JACOBI CG WITH STOPPING CRITERION
C ZETA""11l0. "N FOR N:=3,4,5
C

C

10

SOL.

OUT.

DO 100 NZETA = 3 , 0

PRINT 10, 1./IO.··NZETA
FORMAT(1I5X," • ZETA ",' ,EI0,3,' • I')

JACOBI OG (ITMAX =50, ZETA = 1./I0. ' ·NZETA)

llAX(ERROR)

FORTRAN.
C .

100 CONTINUE

SUBPROGRAMS .
FUNCTION W(X,y)

COMMON ICONCOMI PI
DATA PI/3,1415928535B9?91
W = «(PI'COS(PI'X)'SIN(PI'Y))"2 +

C (PI 'SIN(PI .X) 'COS(PI'Y)) • '2) "0.15
RETURN

ENO
FUNCTION TRUE(X, Y)

COMMON ICONCOMI PI
TRUE "" SIN(PI'X) .SIN(PI Iy)
RE'rURN

ENO
FUNCTION F(X, Y)

COMMON ICONCOW PI
C CONSTRUCT F SO TRUE IS AS GIVEN

PI2""PI·PI
SINPIX "" SIN(PI·X)
SINPIY = SIN(PI'Y)
COSPIX = COS(Pl·X)
COSPIY =COS(Pl·y)
TU = SINPIX'SINPIY
TUX = PI'COSP1X'SINPIY
TUXX "" wpI2'TU

::.; .,'
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TOY = PI 'SINPIX'COSPIY
TUYY = -PIZ'TU
F = W(X,Y)"(TUXX + TUYY) + CDXU(X,Y)'TUX + CDYU(X,y)'TUY
RETURN

END

END.

SYMBOL TABLE INPUT TIME 2.57 SECONDS
PROGRAll: PROCESS ING TIME 1 . 57 SECONDS

TEMPLATE OUTPUT" TIME 2.17 SECONDS
TOTAL TIME 6.30 SECONDS

Output or ELLPACKrun (abbreviated, •••• indicates where lines are deleted):

ELLPACK 77 OUTPUT

+++++++[11 [I [II [11111111111111111111 J I11II11I1I11I11I1111I11

+ +
+ MAX( ABS(TRUE » ON 17 X 17 GRID = .1000000E+Ol +
+ +
+++11111111111111.11111111111111111111111111111 J J 111111111111

DISCRETIZATION MODULE

S TAR

DOMAIN
X INTERVAL .500E+00,
Y INTERVAL •500E+OO,
DISCRETIZATION
GRID
HJ(

HY
B.C.S ON PIECES 1,2,3,4
OUTPUT LEVEL
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUT ION SUCCESSFUL

••••

• I ZETA = .100E-02"

SOLUTION MODULF.
-_._----------~---

RECTANGLE
.100E+Ol
.100E+Ol
UNIFORM

11 X 17
.313E-Ol
.313E-OI
1,2,2,1

1
25.

5

JACOBI CG

JACOBI -CG HAS CONVERGED IN 30 I TERAT IONS.
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ELLPf\CK 77 OUTPUT

- 46 -

I I I I I I I I I r I I I r I I I I I I I I I I I I I , I I , , , I II 1 1 1 II r r I , , I , , 1 II 1 1 1 II I r I
+ +
+ MAX( ABS(ERROR ) ) ON 17 X 17 GRID = .B015466E-01 +
+ +
'II r 111111111 r 11111111111'111'11111'11 r I r 1111I1II11I11111111

•• ZETA = ,lOOE·03··

SOLUT I ON MODULE

JACOBI CG

JACOEI-CG HAS CONVERGED IN

••••

• • ZETA = .100E-04··

-_._-_._ .. _~------
SOLUTION MODULE

JACOBI CG

••• WAR N I N G'···"""'·

46 ITERATIONS .

IN ITPACK ROUTINE JCG.
ZETA = .100E-O-l. A VALUE THIS SMALL MAY HINDER CONVERGENCE.

••••

JACOBI-CG HAS CONVERGED IN 50 ITERATIONS .
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true
COl1tours
cOhiour val~

1 -.8le 07
2 .11e+OO
J .22e+OO
"\ .33e-tOO
5 •44e+OO
6 •56e+OO
7 .67e+OO
8 .780..00
9 .890..00

o 10 .IOe+018-,- -----,

8
~_lP::_:_:_--_+=:_-....I'L+_:;:;_-'-_+;!.:----.J-l_;;:;'?_--'---_t,:~---.J'---___;i

.500 .583 .667 .750 .833 .917 1.000

x

Figure 3.2. The contour plot produced by PLOT(TRUE) in example S.Cl

"
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CIlAPl'ER 4 ADVANCED ELLPACK FEATlJl!ES

This chapter presents features of ELLPACK which gives one more control

over the problem solving process. The use of these features to solve more com-

plex problems is illustrated in the final section of this chapter. Even more diffi-

cult examples are presented in Chapter 5. The additional ELLPACK language

features are:

OPTIONS

HOLE, ARC:
GLOBAL :
PROCEDURE:

TRIPLE

OUTPUT

TO SAVE OLD SOLUTIONS FOR ITERATION
TO CONTROL STORAGE
TO SET PROBLEM CHARACTERISTICS
TO HANDLE MORE COMPLEX DOMAINS
TO PROVIDE PARAMETERS FOR THE PDE AND BOUNDARY CONDITIONS
TO DISPLAY THE PATTERN OF NONZERos rtf THE MATRIX
TO INITIALIZE UNKNOWNS FOR ITERATION METHODS
TO COMPUTE EIGENVALUES OF THE DISCRETIZATION MATRIX
TO INTE:RPOLATE BOUNDARY CONDITIONS
TO INITIALIZE THE SOLUTION U
TO TABLE INTERNAL ELLPACK VARIABLES FOR THE

ELLIPT[C PROBLEM
EqUATIONS, UNKNOWN" AND INDEXES
DOMAIN AND BOUNDARY

In addition. there is a section describing how one can access internal ELLPACK

variables, including "preprocessor" or "template" variables. These features prow

vide:

1. the capability to handle more general problems,

2. the capability to construct iterative methods (for nonlinear problems,

etc,),

3. the ability to reduce computer resource use,

4. means to study the methods

5. more convenient programm.i.ng in certain applications.

4.AADDmONAL SEGMENTS
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There are four additional segments in ELLPACK described here.

HOLE. segment

This segment defines a hole to be removed from the domain of the problem.

Its form is exactly like BOUND~ except that the name HOLE is used. HOLE

segments must appeur alter the BOUNDARY segment, and several HOLE seg-

ments may appear. The boundary of the hole must be given in the opposite

direction of that of the domain boundary. Thus if CLOCKWISE = .TRUE. (specify-

ing the domain boundary is defined clockwise) then the boundaries of the holes

must be specified counter-clockwise.

The grid must be fine enough so that at least one Interior grid point lies on

any grid line between the boundary of a hole and the boundary of the domain.

The short notation for rectangular domains cannot be used if there are holes in

the rectangle. The reason is that short cuts are taken for rectangles in the

preprocessor which leave it unprepared for a HOLE segment.

ARC. segment

This segment defines an arc or curved slit to be removed from the domain

of the problem as well as side (boundary) conditions that apply on it. Its form is

exactly like BOUNDARY and the same restrictions apply to ARC that apply to

HOLE. Note that a single boundary condition is given on the arc. If "two sided"

boundary conditions are needed. then long, narrow holes must be specified. See

Sectlon 5.A for examples which illustrate the technique. Arcs cannot divide the

domain into two or more disjoint parts.

GLOBAL segment
i..n
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This segment puts declarations in the ELLPACK control program as well as

in all the Fortran subprograms generated by the ELLPACK preprocessor which

define the PDE, the domain. and the boundary conditions. It does not affect the

ELLPACK library sUbprogra~s (modules). Specifically. the internal ELLPACK

affected are subprograms

Q1PRHS The PDE right hand side function

Q1PCOE The PDE coefficients subprogram

Q1BCOE The boundary condition coefficients function

Q1BRHS The boundary condition right hand side function

Q1BCOR The boundary coordinates subroutine

This facility allows us to parameterize the elliptic problem and provide con­

trol of these parameters at the ELLPACK program level. To do this, one simply

includes Fortran COMMON blocks in the GLOBAL segment, ]f the segment

GLOBAL. COMMON/SPECIL/A,K

is included then the generated right side function in the ELLPACK control pro-

gram is

REAL FUNCTION QIPRHS(X,Y)
COMMON/SPECIL/A
QIRPRHS =A '(1.+X)/(A + X, Y)
RETURN
END

Consider the following ELLPACK program. fragment

EQ. UXX + UYY - KtU = lI(l.+X)/(A+XtY)
GLOBAL.

COMMON/PARAM/A,K
REAL K

FORTRAN.
00101=1,6

A = 1. + (1-1) • 2.

" -,



SECTION 4.A

K=

TRIPLE. FFT e-POINT(IORDER~)

OUT. PLOT(U) :Ii SUMMARY(U)

FORl'RAN.
10 CONTINUE

- 51 -

This problem is solved 8 times with 8 different values of the parameter A and K.

The PROCEDURE segment provides facilities that are useful in solving or

analyzing an elliptic problem but which are not one of the standard steps in solv-

ing the problem. The EllPACK system is designed to allow one to add PRO-

CEDURES for particular applications or specialized situations. The farm of the

PROCEDURE segment is the same as the DISCRETIZATION; a keyword with, possi-

bly. parameters in parentheses.

There are four PROCEDURE facilities in the complete ELLPACK system:

EIGENVALUES: Compute eigenvalues of the discretization matrix.

HOMOGEN1ZE BOUNDARY CONDITIONS, Use the interpolant of INTERPOLATE

BOUNDARY CONDITIONS to reduce the elliptic problem to one whose boun-

dary conditions have zero right sides.

DISPLAY MATRIX PATTERN: Provides a printout of the pattern of nan-zero ele-

ments in the matrix of the discretization.

INITIALIZE UNKNOWN FOR FINITE· DIFFERENCES (U: <fname». The values of the

:l"ortran function

FUNCTION <lname> (X,Y)

are used to initial the unknowns Hi UNKN of the linear system.

The default value for <fname> is U. otherwise <fname> must be pro-

vided in the SUBPROGRAM segment. If the default function U(X, Y) is
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used, then this PROCEDURE must be invoked before the DlSCRETlZA-

TlON. The standard use of this PROCEDURE is:

TRIPLE.
PROCEDURE.
DIS.
INDEX.
SOLUTION.

INTERPOLATE BOUNDARY CONDITION'S BY BLENDING
INITIALIZE UNKNOWNS FOR FIN[TE DIFFERENCES
5-POINT STAR
AS IS
SOR

The TRIPLE used here is described in the next section. TI::P-s procedure

depends on the discretization module's ordering of the grid points, it is

applicable to the 5 POINT STAR, 7 POINT STAR and HODIE discretiza-

tions.

More detailed descriptions are given in Chapter 9 for each of these pro-

cedures.

4.B ADDITIONAL FEATURES OF BASIC SEGMENTS

OPTION. segment

There are several additional options useful for complex ELLPACK applica-

tions. There are:

(a) Creation of functions for previous solutions of the problem.

The option OLDU=k provides functions

Ul, UXl, UYl, UXXl, UXYl, UYYl

UK, UXK, UYK, UXXK, UXYK, UYYK

which are the k previous solutions of the elliptic problem. These functions are

used in iterations for nonlinear problems or for steps in time dependent prob-

Ierns. There are corresponding arrays R1UNK1, R1UNK2, .", R1UNKk for the unk- .

nowns. Note that, except in a very few instances, the discretization or grid can-

not be changed while using a set of previous solutions.
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(b) Control of dimensions in ELLPACK

The ELLPACK system creates a Fortran program with dimensions declared for nil

variables, Sometimes ELLPACK creates arrays for a particular problem which

are not used or which are declared larger than needed. Every dimension of an

array has its own variable in the ElJ..PACK preprocessor and these can be set in

the OPTIONS segment. Effective use of this facility requires one to become fam­

iliar with the ELLPACK control program.

For example, the dimension of the array of unknowns is I1MUNK and the

statement

OPTION. llMUNK=3BB

sets this dimension to 388 independent of what the normal size of this array is.

Table 4.1 gives a sample set of the more important array names, their dimension

variables and a brief description of the array. See the tables in Chapter 18 for

the complete set. Note that these variables all have third character M. the

second character is 1 to indicate that this variable belongs to the EIJ..PACK con­

trol program.

{ ,
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Table 4.1. Variables for Control of more Important Array Dimensions in ELLPACK

Array
Name

RIUNKN
RICDEF
l1IDCD
l1ENDX
l1UNDX
l1MXEQ

l1MXBP

Preprocessor'
Dimension

Control

l1MUNK
l1MCDE
IlMIDC
IIMEND
l1MUND
R1CDEF, l1IDCD,
l1ENDX, 11UNDX,
RIUNKN
RIXBND,R1YBND
l1PECE, RIBPAR
IlBPTY, l1BGRD
IlBNGH

Description

The unknowns of the linear system
The discretization coefficients
The column identification for RICOEF
The equation reordering permutation vector
The unknown reordering permutation vector
Maximum number of equations

Maximum number of points on
non-rectangular boundary

(c) Control of problem characteristics. The ELLPACK system automatically

examines the equation and sets .TRUE. or .FALSE. values for the following For-

tran variables:

LILAPL Laplace's equation

LICSTC Constant coefficients

LIPOIS Poisson problem

LIHMEQ Homogeneous PDE

These automatic settings can be overridden by assigning new values to these

variables in a Fortran segment. Thus. for example, setting

L1STC = .FALSE.

would have the PDE

classified as variable coefficients and thus a module which does something spe-

cial for constant coeJficients would not do that in this run. HODIE ACF is an
, ,
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example of such a module and one can evaluate the benefit of its special action

for constant coefficients.

Warning: These options must be used with caution because

(a) there is no guarantee that a module acts upon tJ:1ese variables,

(b) a module can do its own analysis of the problem, and hence there might be

no effect, and

(c) since values of these variables are known to the preprocessor, they some­

times determine the dimens.ions of arrays or even the selection of a subpro­

grams loaded, In summary, these options should be tried on an experimental

basis. Although there are many situations where they are convenient, there are

some where they cause the ELLPACK run to fail (perhaps in a mysterious way).

(d) Initialization of solution function u (z ,y).

Iteration methods may be used in ELLPACK to solve nonlinear problems,

time dependent problems or systems of algebraic equations. Each of these

processes must be initialized; the facilities here are in the TRIPLE segment

because initialization has the same effect as completely solving the elliptic prob­

lem. Here, however, we do not expect to obtain much accuracy. The three TRI­

PLE modules are:

INTERPOLATE BOUNDARY CONDITIONS BY BLENDING: Use Blending Function

interpolations to define U(X, y) as a smooth function which exactly

matches the elliptic problem's boundary conditions. Applicable only for

rectangular domains and boundary conditions with constant coefficients.

INTERPOLATE BOUNDARY CONDITIONS BY Bl-CUBICS: Use Hermite bi-cubics to

define U(X, Y) which interpolates the elliptic prob.lem's boundary condi­

tions at the boundary grid points plus two points in between each pair

plus at the corners. Applicable only for rectangular domains and

~- i

,
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uncoupled boundary conditions (only UX or UY specified at any point).

INITIAlJZE SOLUTION (U= <fname»: The values of the Fortran function

FUNCTION <loome> (X, Y)

are tabled at the grid and then extended by interpolations to define

U(X, Y), etc. everywhere.

In each case the~e TRIPLES create all the standard ELLPACK functions

U. UX. UY. WOC UXY and UYY. Note that INTERPOLATE BOUNDARY CONDI­

TIONS BY BI-CUBICS produces a U(X, Y) which is identically zero away from the

boundary; its use is primarily for boundary layer problems .where this interpo­

lant provides an approximation to the differences between the "smooth" solution

in the interior and the actual solution.

(e) Tabulate internal variables in OUTPUT

Certain tables of internal EI.J...PACK variables can be printed. These cnn be

useful for complicated problems where one has to interact with the internal data

of ELLPACK. The additional output statements are given below with a brief

description of the resulting outPl.lt.

TABLE PROBLEM

TABLE INDEXES

TABLE INDEXES

TABLE UNKNOWN

TABLE DOMAIN

TABLE BOUNDARY

List of current status of EI.J...PACK variables

which define the problem

Table of equations produced by discretization

modules

Table of ELLPACK indeXing arrays

Table of unknowns of the linear system

Tables that define a non-rectangular domain's

relation to the rectangular grid

Tables of the arrays produced by the domain
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processor for non-rectangular domains.

To understand the information provided by these statements users must be fam.-

iliar with the ELLPAC:K interfaces defined in Part 3, Chapter 14.

4.C ACCESS TO PREPROCESSOR VARIABLES

In some applications of Eu...PACK one needs to refer to values which the

preprocessor computes and which are inconvenient (or worse) to compute while

writing the ELLPACK program. The simplest instance of this is the dimension of

an array, say workspace R1WORK or the unknowns RiUNKN. If one wants to

create a n~w array of the same or related size, one does not know what size to

dimension it. There is a mechanism which allows access to certain variables of

this type, called template variables from the EI..J.PACK program. In the above

cases, the dimension of the HiWORK and RiUNKN arrays are 11WORK and

SI1MUNK; these are exacLly the same names as listed in Table 4.1 preceeded by

a $. Thus, the Eu...PACK code fragment

DECLARAT IONS.
REAL COPYU(SIIMtJNI(), WORK2(SIIWORK,2)

GLOGAL .
. COMMON/PASSER/UNKOLD(SIIUNK)

is read by the preprocessor and correct numerical values substituted for tem-

plate variables that appear. This substitution is made when the ELLPACK control

program is generated so that it will compile.

Table 4.2 gives the more useful of these variables,_ a few others may be iden-

tified from the·tables in Chapter lB.

Table 4.2. Available Template Variable
(Y)

Name
$I1KBAN
SI1KWRK

Description
Band width of matrix generaed for band solver
Dimension of Ri WORK, workspace

,_. ,
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SI1MEND
SI1MIXD
S]lMNCO
S]lMXEQ
S]lMXPT
SI1NBND
SI1MXPT
SI1NGRX
SIlNGRY
SI1NGRZ

- 56-

Dimension of IlENDX, indexing vector
Dimens{on of 11UNDX, indexing vector
Column dimension of R1COEF, coefficient matrix
Dimension of I1UNKN, maximwn number of unknowns
Row dimension of R1COEF, coefficient matrix
Number of boundary pieces
Maximum number of boundary points
Dimension of R1NGRX, x-grid vector
Dimension of R1NGRY, y~grid vector
Dimension of R1NGRZ, z-grid vector

If the variables are used in a context where they are not followed by a blank or

special character (Which is unlikely), the six characters may be enclosed in

parentheses. That is SI1KBAN and S(IlKBAN) are treated the same so one can

use the Fortran statements

WRITE{II0UTP,20) RICOEF
20 FORMAT(I I 'THE $(IMXEQ)XS(IIMNCO) COEFFICIENT ARRAY' I

A ( $(IIYNCO)FIO.5»

The Fortran 77 PARAMETER statement can be used with these variables to

create dimensions for arrays of related sizes. For example, the statements

(assuming ELLPACK is being used with a Fortran 77 compiler).

DECLARATIONS.
PARAMETER (NSIDE = ($llNGRX-2) • ($IINGRY-2»
PARAMETER (ENEDGE =2'($I1NGRX + SI1NGRY-l)
REAL INTER (NS IDE , 3), RECTB{NEDGE), UUINTER(NSIDE)
INTOOER IDEOOE(NEOOE), KTYPE{NSIDE)

gives numerical values to NSIDE and NEDGE by the time the ELLPACK control

program is generated. Thus, one has five arrays whose dimensions are related

. to the number of interior and edge points of the rect;;\ngular grid.

-i.D ADVANCED ELLPACK EXAMPLES

This section presents four example problems solved with EI.J...PACK. The

first illustrates how to make a parameter study (vary physical parameters) for

an application to the solidification of alloys. This is an actual application of

L.> •



SECTION 4.D - 59-

ElJ...PACK to a real world problem. The second example shows how to use

ELLPACK PROCEDURES to analyze numerical methods. While this example is

artificially simpllfied here, these procedures can be very useful in practice. The

third example illustrates how to solve nonlinear problems using Picard iteration.

1t also illustrates how one can use internal ElJ...PACK variables if one knows about

them and needs to. 1n this instance, we could avoid any use of internal variables

as pointed out in the discussion. Finally, there is an example solving a problem

on an elliptical domain with an elliptical hole in it.

EXAMPLE 4.D1 Parameter study tor Alloy Solidification.

The following elliptic boundary value problem is of interest in the study of

the solidification of metallic alloys.

v"u - (W 2)'u = 0

u =0

Un =0

Un + ~u/2 =-~si7>h.(~y/2)

on y = Yoo
on y =0 and%=1/2

any =y=w(z)

The domain represents a liquid alloy behind a solidification front w (%) moving at

constant velocity V in the -y .direction. The coordinate system is taken to be

moving at this velocity and the syste011s assumed at steady-state, The function

u is then related to the concentration of solute in the liquid according to the

formula

cez,y) = oa(Y) + u(z,y) e"P(-~y/2)

where c ~(y) = 1 + ezp (-fly) is the concentration for an unperturbed solid-liquid

interface (6=0), The sides of the container are at % = 1/2 and % = -1/2, but

the domain is truncated at %=0 due to symmetry. Also the boundary condition

along the topmost edge is actually u -> 0 as y --> 00, but is truncated to some

Lf)

,
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Figure 4.1. The domain for Example 4.1.
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finite value y •.
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We wish to perform parameter studies with respect to beta.,l), and y"". The

parameter 8 is the amplitude of the solid-liquid interface. and fJ = VL/ D where

V 1s the solidification velocity. L is the actual hall-width of the contaner, and D

is the diffusivtty of the solute in the liquid. ]n each case we wish to determine

the solute distribution along the solid-liquid interface. For more information

see: S.H. Coriell, Rf. Boisvert, R.G. Rehm, and R.F. Sekerka, Lateral solute

~egregation during unidiretional solidification ot a binary alloy with a curved

solid~liquid interface II; large departures from planarity, J. Crystal Growth. 54

(19B1), pp. 167-175.

The following ELLPACK program solves this problem. Note the use of the

GLOBAL segment to parameterize the program. The parameter values for the

run are read and set in the Fortran segment.

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
•
• EXAMPLE ELLPACK PROGRAM 4,01
•

•
•
•

• • REMARKS •
• • MODEL OF SOLUTE SEGREGATION" DURING UNIDIRECTIONAL
• • SOLIDIFICATION OF A BINARY ALLOY WITH A CURVED

• SOLID-LIQUID [NTEFACE •
• •
••••••••••••••••••••••••••••••••••••••••••••••••••••••••••

EQUATION, uxx: of. UYY - BDV2SQ'U = 0.0

BOUNDARY. UX = 0.0 ON X=O.O
U = 0.0 ON" X=T,
UX = 0.0 ON X=o.s,

y",
Y=YINF
Y=YINF~T

FOR T=W( 0.0) TO YINF
FOR T=O.O TO O.S
FOR 1'=0.0 TO YINF-W(0.5)

-DW(X)·UX of. UY of. sova'u = -BETA·SINH(SOva'Y)
ON X=o.s-T, Y=H(O,S-T) FOR T=O,O TO a,s

GLOBAL.
COMMON IPARAMSI BETA, 1l0V2, BDV2SQ. YINF, DELTA, TWOP1, TWOPID

FORTRAN.
C
C SET PROBLEM PARAMETERS
C

READ (5 , .) YINF,BETA,DELTA
SOV2 = O,S·SETA
BOV2SQ =SOV2'SOY2
TWO?! =a.O'PI
TI'i'QPID = TWOPI 'DELTA

,.",
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GRID.
30 X POINTS
40 Y POINTS
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•
DISCRETIZATION,
-INDEXING.
SOLUTION.

•
OUTPUT .

SOLVE PDE PROBLEM FOR THE FUNCTION U
5-POINT STAR
MINIMUM DEGREE
SPARSE

PLOT CONTOURS OF SOLUTE CONCENTRATION
PLOT(C)

C
C
C

FORTRAN.
C
C TABULATE CONCENTRATION ALONG INTERFACE
C

READ(5,·) NPTS
WR[TE(6,ZOOO)

2000 FORMAT ( '1 TABLE OF CONCENTRATION ALONG INTERFACE'II
• 'x C(X,W(X»'/ )
DX = 0.5'FLOAT(INPTS-l)
DO 100 I=I,NPTS

X = FLOAT(I-l)'DX
CVAL = C(X,W(X))
WRITE(6,2001) X,CVAL

100 CONT INUE
2001 FORMAT(IX,2EIB.6)

SUBPROGRAMS .
REAL FUNCTION W(X)

SHAPE OF THE SOLID-LIQUID INTERFACE

COMMON IPARAMSI BETA,BOYZ,BOV'ZSQ,YINF ,DELTA, TWOPI, TWDPID
W = DELTA'COS(TWOPI 'X)
RETURN
END
REAL FUNCTION DW(X)

C
C DERIVATIVE OF SOLID-LIQUID INTERFACE SHAPE
C

COMMON IPARJ\MSI BETA. BOV2,BOVZSQ, YINF ,DELTA, TWOPI, TWOPID
DW = -TWOPID'SIN(TWOPI 'X)
RETURN
END
REAL FUNCTION C(X,Y)

C
C COMPUTES SOLUTE CONCENTRATION FROM PDE SOLUTION
C

COMMON IPARAMBI BETA,BOV2,BOV2SQ,Y[NF,DELTA,TWOPI,TWOPID
C = 1.0 + EXP(-BETA'Y) + U(X,Y)'EXP(-BOV2'Y)
RETURN
END
REAL FUNCTION SINH(Z)

C
C DIRECT COMPUTATION OF HYPERBOLIC SINE FUNCTION
C

SINH =0.5'(EXP(Z)-EXP(-Z»)
RETURN
END

END,

EXAMPLE 4,D2 Use of PROCEDIillES to analyze a method.

One of the objectives of ELLPACK is to assist in the analysis of numerical

methods for PDEs. Two ELLPACK tools for this purpose are the procedures

-.:)

,~ _.'
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DISPLAY MATRIX PATI'ERN and EIGENVALUES, The first is useful in analyzing

various data structures and techniques for Gauss elimination methods and the

second is useful to analyzing the applicability of iterative methods. The follow-

ing example shows the results of applying these tools to the 5 POINT STAR

discretization with three indexings (NATURAL, RED BLACK and NESTED DISSEC-

TION).

. "., ........•............ , .." , ...•.......
• • •
• • EXAMPLE ELLPACK PROGRAM 4.02• • •
• REMARKS •

• STUDY OF ZERO PATTERNS AND EIGENVALUES OF •
• • YATRICES OBTAINED FROM 5 POINT STAR WITH •
• • DIFFERENT INDEXINGS OF THE EQUATIONS. •
• • •.......... , .
EQUATION.

uxx - UYY= 0,

BOUND.

GRID.

OPTION.

DIS.
INDEX.

PROC.

FORT.

U = O. ON X =0.0
ONX= 1.0
ONY=O.O
ONY=1.0

B X POINTS :Ii 6 Y POINTS

TIME

5 POINT STAR
AS IS

DISPLAY MATRIX PATTERN (MATNBR==l,MATNBC=l, MATBLK==6)

HX = R1HXGR
frY =RHIYGR
WRITE( I I OUTP , 1000)
DO 10 M = 1, IINGRX·Z

DO 10 N = 1, IINGRY"~2

E = (4.-2.·COS(PI·HX'M)-2,·COS(PI'HPN» I (PI"Z'HX'HY)
WRITE(IIQUTP,101O) M, N, E

10 CONTINUE
1000 FORMA.T( 114X, IBM, 3X, lHN, 5X, 17HEXACT EIGENVALUES I)
1010 FORMAT(IX,ZI4,4X,EI5.6)

PROC.

INDEX.

PRDe.

INDEX.

PROC.

END.

EIGENVALUES (SCALE = 1./PI liZ)

RED BLACK

DISPLAY MATRIX PATTERN (MATN8R=l,MATNBC=l ,MATBLK=18)

NESTED DISSECTION (NDTYPE=5)

DISPLAY MATRIX PATTERN (MATN8R=l,MATNBC=l ,MATZER::IH )
c>

" '-,
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SYMBOL TABLE INPUT TIME 2.70 SECONDS
PROGRAM PROCESSING TIME 1.27 SECONDS

TEMPLATE OUfPUT TIME 2.15 SECONDS
TOTAL TIME 6.12 SECONDS

Output of KLLPACK run:

DISCRETIZATION MODULE

S TAR

DOMAIN
X INTERVAL . OOOE+OO I

Y INTERVAL .oOOE+OO,
DISCRETIZATION
GRID
HX
HY
B.C.S ON PIECES 1,2,3,4
OUTPUT LEVEL
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUTION SUCCESSFUL

INDEXING MODULE

NATURAL

NUMBER OF EQUATIONS
EQUAT IONS/UNKNOWNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

PROCEDURE MODULE

RECTANGLE
.100E+Ol
.100E+Ol
UNIFORM
6 X 6

. 143E+OO
,143E+OO
1,1,1,1

1
36

5

36

DISPLAY MATRIX PATTERN

1 2 3
123456 789012 345678 901234 567890 123456

1 OX. .. X. .. ..
2 XDX. .. .X.. ..
3 .XDX.. .. X..., ..XDX. ...X..
5 .. .XDX .. X.
6 .. .XD .. .X

7 X..... OX.... X....
6 .X.. .. XDX. .X., .. X. .XDX.. .X ... ",..

.~

10 .X.. . . XDX. . .. X.. '.J'":
11 .... X. .. .XDX .. .X. ..--112 ... .X .. XD .. .X



SECTION 4.D

13

"15
16
17
16

10
20
21
22
23
24

25
26
27
26
2.
30

31
32
33
3.
35
36

X" .
.X ..
.. X .
...X ..
.... X.
..... X

.......

ox .
XDX .
.XDX . .
. .XDX.
.. .XDX
....XD

x.....
.X." .
.. X...
.. ,X ..
.... X.
.....X

- 65 -

x , .
.X ..
.. X .
" ,X..
.. .. X.
..... X

DX.. ,. X .....
XDX X""
.XDX X...
. .XDX X..
... XDX X.
.... XD X

X DX X .
.X XDX X .
. .X., ..XDX X .
.. .X XDX X ..
... .X XDX ." .X.
. ....X XD X

X DX .
.X XDX .
.. X XDX..
",X" .. XDX.
.. .. X, XDX
.. ... X XD

PROCEDURE MODULE

DISPLAY MATRIX PATTERN

EXECUTION SUCCESSFUL

M N

1 1
1 2
1 3
1 •
1 5
1 6
2 1
2 2
2 3
2 •
2 5
2 6
3 1
3 2
3 3
3 •
3 5
3 6

• 1
• 2
• 3• •
• 5
• 65 1
5 2
5 3

EXACT EIGENVALUES

.198665E+Ol

.472188E+Ol

.670329E+Ol

. 131223E+02

. 171037E+02

. 198569E+02

.472188E+Ol

. 74771 OE+O 1

.114585E+02

.158775E+02
· 198590E+02
.228142E+02
. 870329E+Ol
.114.S85E+02
. 154399E+02
.196S90E+02
. 238404E+02
. 265956E+02
. 131223E+02
.158775E+02
· 198500E+02
,242780E+02
· 262594E+02
.310146E+02
. 171037E+02
· 196590E+02
.238404E+02
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5 •
5 5
5 •

• 1
• 2· ,• •
• 5• •

. 262S94E+02

.32240BE+02
,349960E+02
. 198589E+02
. 226142E+02
.2fJS956E+02
.31014BE+02
. 349960E+02
. 377512E+02

• 66 •

- - - _.. - - - -.. - - - -..
PROCEDURE MODULE

-..._---_._----_.-
COMPUTE EIGENVALUES

SCALE FACTOR .101321E+00

N E 1 GENVALUE MAGNITUDE ANGLE/PI
1 .3?7513E+02 .OOOOOOE+OO .377513E+02 .000000
2 .349961E+02 · OOOOOOE+OO .34.9961E+02 ,000000, .349961E+02 .OOOOOOE+OO '.349961E+02 .000000• . 322408E+02 .OOOOOOE+OO , 322406E+02 .000000
5 . 310147E+02 .OOOOOOE+OO .310141E+OZ .000000• .310141E+02 .OOOOOOE+OO .310147E+02 .0000007 · 282594E+02 .OOOOOOE+OO . 282594E+02 .000000• · 282594E+02 .OOOOOOE+OO . 262594E+02 .000000, .26S956E+02 .OOOOOOE+OO .265956E+02 .000000

10 .2659568+02 .OOOOOOE+OO · 28S9S8E+02 .000000
11 . 242180E+02 .OOOOOOE+OO .242160E+02 .00000012 . 238404E+02 .OOOOOOE+OO . 236404E+02 .000000

" · 238404E+OZ · OOOOOOE+OO ,238404E+02 .000000,. .Z26142E+02 .OOOOOOE+OO . 226142E+02 .000000
15 .226142E+02 .OOOOOOE+OO .226142E+02 .000000I. · 198590E+02 ..OOOOOOE+OO · 198590E+02 .000000
17 . 198589E+02 .OOOOOOE+OO . 198569E+02 .000000I. .198589E+02 .OOOOOOE+OO · 198589E+02 .000000

" . 196589E+02 .0000008+00 · 198589E+02 .00000020 . 198589E+02 .OOOOOOE+OO . 198569E+OZ .000000
21 . 198589E+02 .OOOOOOE+OO · 198589E+02 .000000
22 · 111038E+02 .OOOOOOE+OO .171036E+02 .000000
2' . 111031E+02 .OOOOOOE+OO . 111031E+OZ ,000000
2. . 156775E+02 .OOOOOOE+OO · 156775E+OZ .00000025 · 156775E+02 · OOOOOOE+OO .156715E+02 .0000002. . 154399E+02 .OOOOOOE+OO · 154399E+02 .00000027 . 131223E+02 .OOOOOOE+OO .131223E+02 .0000002. . 131223E+02 · OOOOOOE+OO . 131223E+02 ,000000
2' . 114585E+02 .OOOOOOE+OO .114585E+02 .000000
'0 .114565E+02 .OOOOOOE+OO .114585E+02 .000000

" . 870330E+Ol , OOOOOOE+OO .810330E+Ol .000000'2 · 810329E+0 I .000000E+00 .670329E+Ol .000000

" . 147711E+Ol .OOOOOOE+OO .747111E+Ol .000000,. .472190E+Ol , OOOOOOE+OO . 472190E+Ol .000000

'" .472188E+Ol .OOOOOOE+OO ,412168E+Ol .000000,. . 196661E+Ol .OOOOOOE+OO . 196661E+Ol ,000000

INDEXING MODULE

RED-BLACK

RBNDX BEGfNN[NG EXECUTroN
RBNDX EXECUT ION SUCCESSFUL

.'..1
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PROCEDURE MODULE
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DISPLAY MATRIX PATTERN

1 2 3
'1234567BQ012345678 Q012345678Q0123456

1 D " •. "" .•. , .•... ,X..X
2.0 , X•.XX
3 .. 0 , X ..XX".
4 0 , X.XX .. X
5 0 X.XX..X.
6 0 X ..X..X ..
7 D X..X ..X .. ,
B 0 X .. XX.X ..
Q D X.. XX.X .

10 D X.XX..X .
11 D , " .X.XX•. X .
12 ....•...... 0 X ..X ..X .
13 - D X..X .. X .
14 D X. .XX.X .
15 , 0 X .. XX.X .
16 D XX.. X .
17 , •.•... 0. XX"X , .
18 , DX .. X .

lQ X.XXD .
20 X.XX..D .
21 X ..X D , .. "" ,.
22 X ..X ..X 0 .
23 X ..XX.X D.. , •..•......
24 X.. XX.X D .
25 X.XX.. X 0 .
26 X.XX.. X D .
27 X.. X..X 0 .
28 X .. X .. X 0 .
29 .._..X .. XX.X D .
30 ...X ..XX.X...••........ ,.".,. D" , .
31 ..X.XX.. X D .
32 .X.XX..X D .
33 X ..X ..X ,., "., , 0 .
34 .. X .. X D..
35 .XX.X D.
36 XX,X , D

PROCEDURE MODULE

DISPLAY MATRIX PATTERN

EXECUTION SUCCESSFUL

INDEXING MODULE "",
NESTED DISSECTION
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5-PT NESTED DISSECTION BEGINNING EXECUTION
5~PT NESTED DISSECTION EXECUTION SUCCESSFUL

PROCEDURE MODULE

DISPLAY MATRIX PATTERN

123
123456769012345676901234567690123456

xx
XX

XX
XX

X

X
XX

X XX

XX

XX

xx
.X

1 D X
2 D X
3 DX
4 XXXD
5 D X)Q[
6 D X X
7 DX
, XXXD
9 X X D

10 X X XX D
11 D X
12 D XX
13 D X
14 D XX X
15 DX X

" =17 XX X 0
16 DX
19 XX XD
20 DX XXX
21 D X X XX
22 DX XXX
23 DXXX
24 =
25 DX
26 X X XI)
27 DXXX
26 XX XD
29 X XD
30 X-XXXD
31 X X X X D
32 X XX D
33 XX XX D
34 X X X X D
35 XX XX D
36 X XX D

PROCEDURE MODULE

DISPLAY MATRIX PATTERN

EXECUTION SUCCESSFUL
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ELLPACK 77 OtrrPUT

I I I II I I I II I I I I I I I r I I r I I I II

+ +
+ EXECUTION TIMES +
+ +
-H-+lllllll+i-+1111 [11111111

- 69 -

MODULE NAME

5-POINT STAR
NATURAL
DISPLAY MATRIX PATTERN
EIGENVALUES
RED-BLACK _
DISPLAY MATRIX PATTERN
NESTED D[SSECTION
DISPLAY MATRIX PATTERN
TOTAL TIME

SECONDS

.12

.02

.•5
3.65

.02

.•0

.07

.35
5.38

EXAMPLE 4.D3 Nonlinear PDE Solution by Picard iteration.

An ELLPACK program is shown below for the problem

on the unit square with boundary values so the true solution is e~. The method

of Picard (or fixed point iteration) is used to solve this non-linear problem

,through a sequence of linear ones. HOmE higher order finite differences and

Gauss elimination are used and the solution is obtained quickly. See Section 5.B

for another example of using ~ewton iteration with ELLPACK for a nonlinear

problem.

· _.....•....•.•...........••.•...........•
•
•
•
•
•
•

•
• EXAMPLE ELLPACK PROGRAM 4. D3

• REYARI<S• NONLINEAR POISSON PROBLEId. WITH U"2 ON RIGHT
• SIDE. FIXED POINT ITERATION IS USED.
•

•
•
•
•

• • • •· ...................•..................•...•........••. " ..
• L()

UXX + UYY =- (X··2 + Y"2) • EXP(-X·Y) • U(X,Y)"2EQU.

BOUND. U =- 1.0 ON X=- 0.0
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u = EXP(Y)
U '" EXP(X)

ON y", 0.0
ONX=l.O
ON y", 1.0

INTERPOLATE BOUNDARY CONDIT IONS BY BLENDING

INTIALIZE U(U"'START)

7 X POINTS :s 7 Y POINTS

OLDU = I $ MEMORY

[NITIALIZE U AND INDEXING VECTORS
ONE GETS BETTER RESULTS IF' U IS INITIALIZED BY

TRIPLE.

OR BY

TRIPLE.

WHERE START(X,Y) '" I + XY

BUT THE CURRENT EXAMPLE SHOI'f''S HOW ELLPACK INTERNAL VARIABLES
MAY BE USED BY SOYEONE KNOWLEOOEABLE ABOUT ELLPACK

THIS WILL BE DONE WHEN POSSIBLE

DO 10 I -", 1, IINEQN
RIlJNI<N

f
I) = 1. 0 +

[lENOX r) '" I
IlUNDX I) '" I

10 CONTINUE

GRID.

OPT.

F'OR.
C
C
C
C
C
C
C
C
C
C
C
C
C
C
C

DO:)01"'1,6

20

DIS.
IND.
SOL,

IF (I .GT. 1) IILEVL =0
WRITE(6,20) I
F'ORMAT( 116X, 10(lHt ) ,1lHITERATION := ,Ia, 2X, 20(1Ht) I)

HOOlE ACF
AS IS
BAND GE

OUT. MAX(ERROR)

FOR.
DIF'Mf\X '" 0.0
DO 30 J '" 1,IlNEQN

RIWORK(J) =Rl~(J)-RlUNKl(J)

D!F'MAX. '" AMAXl (DIFMAX,ABS(RlWORK(J»)
30 CONTfNUE

WRITE(6,40) D[F'MAX, (J . RlWORK(J) , J=l , IlNEQN)
40 FORMAT(8X,25HMAX CHANGE IN UNKNOWNS '" • E16.5.3X,

A lBH DIFFERENCES ARE I (5X,5(I3,FlO.6))

:)0 CONTINUE

SUB.
FUNCTION TRUE(X,Y)

TRUE = EXP(Xty)
RETURN
END

END.

APPROXIMATE MEMORY REQUIREMENTS

WORKSPACE 99 GRID LINES
LINEAR EQNS 600 UNKNOWNS
INTERPOLATION 209 DOMAIN INFO
AMATRX,BVECTR 200 TOTAL MEMORY

lS
50
o

1173
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SYMBOL TABLE INPUT TIME
PROGRAM PROCESSING TIME

TEMPLATE OUTPUT T1MB
TOTAL TIME

Output of ELLPACK run:

- 71 -

2.63 SECONDS
1 .13 SECONDS
2.42 SECONDS
6.48 SECONDS

··········ITERATION = 1 ••••••••••••••••••••

DISCRETIZATION MODULE

HOD I E - H ELM H 0 L T Z

DOMAIN
X IN'fERVAL . OOOE+OO.
Y INTERVAL . OOOE+OO,
DISCRETIZATION
GRro
fIX
BY
OUTPUT LEVEL
METHOD CHOSEN
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
E:XE:CUTION SUCCESSFUL

INDEXING MODULE

NATURAL

NUMBER OF EQUATIONS
EQUATIONS/UNKNOWNS NUYBERED

IN ORDER GENERATED
E:XE:CUTION SUCCESSFUL

SOLUTION MODULE

RECTANGLE
.100E+Ol
.100E+Ol
UNIFORM
7 X 7

.167E+OO

. 167E+OO
1

41
25

•

LINPACK S P D BAND

NUMBER OF ROWS 7
NUMBER OF COLUMNS 25
NUMBER OF UPPER CO-DIAGONALS 6
L INPACK BAND GIVES 2 TLMINGS

SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

ELLPACK 77 OUTPUT

++1-01-+01-+1111111111111111111111111111111111111111111111 I I II III

• •
of. MAX( ABS(ERROR ) ) ON 7 X 7 GRro = .7069170E-Ol of.

'-
.~ ..
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+ +
I I I I I I I II I I I 11 I I I I I I I I I II I I I II I I I I II I I I I I I I I I 11 I I I II I I I I I I I I

MAX CHANGE IN SOLUTION = ,20526E+Ol DIFFERENCES ARE
1 1.037500 2 1.074953 3 1.111603 4 1.145313 5 1.171595
6 1.074953 7 1.150476 6 1.225777 9 1.29741210 1.358045

11 l.111603 12 .1.225777 13 1.342963 14 1.459678 15 l.566834
16 1.145313 17 1.297412 18 1.459678 19 1.63031520 1.799959
21 1,17159522 1,35804423 1.56683424 1,79995925 2.052578

··········ITERATION = 2 ••••••••••••••••••••

-ELLPACK 77 OUTPUT

01+1-++1111111111++111111111111 I I I I II I 1111 I I 1 11111111 I I I I III I I
+ +
+ MAX( ABS(ERROR ) ) ON" 7 X 7 GRID = .4932761E-02 ...
+ +
+++++++11111111+++01-++1 J 111I111I11111 I I I II I III J J 111111 I I I I I I I

MAX CHANGE IN SOLUT ION = .7GB24E~01 UIFFERENCES ARE
1 -.009915 2 -.018959 3 -.026280 4 -.029503 5 -.023816
6 -.018959 7 -.035174 8 -.047491 9 -.05186510 -.040185

11 -.02628012 -.04.749113 -.06318414 -.06862415 -.053167
16 -.029503 17 ~.05Ia65 16 ~.068624 19 -.075624·20 -.060599
21 -.02381622 -.04018523 -,00316724 -.06059925 -.052609

··········ITERATION = 3 ••••••••••••••••••••

ELLPACK 77 OUTPUT

III J I I I I 11111 I I I II I 111111 I 1111111 J 111111111111111 I 111111111 ,
+ +
... MAX( ABS(ERROR ) ) ON 7 X 7 GRID = .3271103E-03 +
+ +
++++-0·++11,·1,1 I 1++1 III I II I 111111111 J 11+++-1-+1 I I I I 1111111I111 I I

MAX CHANGE IN SOLUTION = .52596E-02 DIFFERENCES ARE
1 .000015 2 .001210 3 .001686 4 .001821 5 .001295
6 .001209 7 .002366 8 .003281 9 .003521 10 .002486

11 .001686 12 .003281 13 .004534 14 ,004864 15 .003442
]6 .001821]7 .003521 18 .004664]9 ,005200 20 .003778
21 .00]29522 .00248823 .003441 24 .00377825 .002790

··········ITERATION" = " ••••••••••••••••••••

ELLPACK 77 OUTPUT

III I 1111 I 111111111111111111 I I II I I 11'1 I I 111111 I I1111 I 1111111 ,
+ +
+ MAX( A8S(ERROR ) ) ON 7 X 7 GRID = . ]502037E-04 oJ-
+ +
+++++++11 I I I I I I I 1+++++1 I I I I I II I I I I I I I I I I I I I I I II I 1++++++++++...

MAX CHANGE IN SOLUTION = .34201E-03 DIFFERENCES ARE
1 -.000040 2 -.000079 3 -.000110 4 -.000117 5 -.000061
6 -.000079 7 -.000]56 8 -.000216 9 -.000230]0 -.000109

11 -.000110 12 -.000216 13 -.000300 14 -.00032015 -.000221

.X)

u....
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16 -,000117 17 -.000230 16 -,000320 19 -.00034220 -.000236
21 -.000061 22 -.00015923 -.000221 24 -.00023825 -.000167

"""""ITERATION = 5 ." •• """""" •• ,

ELLPACK 77 OUTPUT

++++111' 11 Jill J J 11I1111111111I1111111111111I 11II II1II1111111
+ +
+ MAX( ABS(ERROR ) ) ON 7 X 7 GRID = .703334BE w 05 +
+ +
1111111111111 [111111111111111111111111111111111111111111111+

MAX CHANGE IN SOLUTION = . 22173E-04 DIFFERENCES ARE
1 .000003 2 ,000005 3 .000007 4 ,000008 5 .000005
6 .000005 7 .000010 8 .000014 e .000015 10 .000010

11 .000007 12 .000014 13 .000020 14 .00002] 15 .000014
16 .000006 17 .000015]8 .000021 Ie .000022 20 .000015
21 .000005 22 .000010 23 .0000]4 24 ,000015 25 .000010

"""""ITERATION = 6 ."."""""", •••

ELLPACK 77 OUTPUT

I11111111 [1111111111111111111 [1111111111111111111111111111' I
+ +
+ MAX( ABS(ERROR ) ) ON 7 X 7 GRID = ,5722048E-05 +
+ +
++++++++++++++++++++++1111111111111111111111 J II J IIII11111111

MAX CHANGE IN" SOLUTION = ,15497E-05 DIFFERENCES ARE
1 . 000000 2 . 000000 3 .000000 4 -. 00000] 5 . 000000
6 .000000 7 - .00000] 8 - ,000001 9 - .000001 10 •. 000001

1] ,000000 12 -.00000] 13 -.000002 14 -.000002]5 -.00000]
16 .000000]7 -.000001 18 -.000001 19 -.000001 20 -.000001
21 .000000 22 -.00000123 -.00000124 -.00000125 -.000001

We discuss four of the more interesting points about this program.

1. Treatment of the nonlinearity_ Note that the ELLPACK function U(X, Y) is

used directly in the right side of the PDE. This facility can be used for more

complex PDEs, for example

7."UXX + (U(X,Y)"2+1.)"UYY + SIN(UX(X,y)"UX - UY(X,Y)"U =0

for the equation

,.. :
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7u= + (1+u')""" + sin(u")u,, -"vu =0

The discretization module uses the current definition of U(X.Y), UX(X,y). etc.

in forming the linear system for the problem. ThiB means that U(X.Y). etc..

must be initialized. see the next point for one simple approach.

There is a word of caution about noolinearities. it is not guaranteed that

the functions U(X.Y) are not disturbed during the dlscretizations. This tech-

nique works normally in most situations, but there are cases where it fails

because the discretization module may change something about how the solu-

lion U(X.Y) is computed during its execution. For example, suppose that one

c.hanges the grid size between two uses of 5 POINT STAR. After the first use, the

unknowns are stored in table corresponding to the first grid. Once the grid is

changed this table no longer corresponds to the eXisting grid. When 5 POINT

STAR is used again, it sets variables to determine how to evaluate the new solu-

lion. At some point in this sequence U(X.Y) becomes improperly defined, this

might occur right in the middle of a discretization module's execution. If one

suspects there may be a problem like this. the information about U(X. Y), etc

should be moved to user defined arrays and then used from there. An example

of this is given in Chapter 5.

The fixed point iteration method is used to handle the nonlinearity. This

method is very simple to implement in ELLPACK, in this case it corresponds to

the iteration

n = 0,1.2, ...

where one has a linear problem to obtain u(n+l) from u(n). One could also

attempt to use the iterations



SECTION 4.0 - 75-

u1;+1) + UJlJ+l) - u(n)(%2 + y2) e-~ u(n+1) = Q

in much the same way. The strength of fixed point-iteration is its simplicity. Its

weakness is that one cannot predict whether it wiU work and, if it does work, how

well it will work. In this instance it works well. When one formulation of the

iteration fails. others should be attempted.

2. Initialization of the iteration. The unknown function U(X,Y) is initialized

indirectly by setting the ilh unknown to 1·+ 1/ 1000. This is done here merely

to illustrate how one can use detailed information about ELLPACK's internal

structure to set various things. Here one knows that there are IlNEQN unk­

nowns in the anay H1 UNKN; one also initializes the indexing arrays llENDX and

11 UNDX to the identity. While this is a more complicated and less effective way

for this example than disc~sed below, it is a useful technique in some more

complex situations. One could use the ELLPACK triple INTERPOLATE BOUNDARY

CONDITIONS BY BLENDING to initialize U(X,Y). Once this TRIPLE is executed

then U(X,y), UX(X,Y), etc. are defined and, in fact, the blending function

method used frequently produces very good approximations. If one knows a

good approximation to U(X, Y), say START then one can use the ELLPACK state­

ment INITIALIZE UNKNOWN (U = START). Both of these TRIPLES define U just as

though a numerical method were used to approximate U with a more standard

set of ELLPACK modules.

3. Testing for convergence. A simple convergence test is used based on the

maximum changes in the unknowns from one iteration to another. In order to

make this test, one needs to have both the current and previous unknowns avail­

able. The option OLOD=l creates the array R1UNKl which always contains the

values of the previous unknowns. This allows the test to be made even if one
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does not understand how the unknowns are used by the discretization module to

represent U(X, Y).

An alternate (and simpler) convergence test would be to compute the max-

imum change on the grid of the solution itself. The option OLDU = 1 also creates

the function Ul(X, Y) and one could replace the DO 30 loop by

D030I=l,5
X = lIB.
D030J=l,5

Y = J/6.
I)JFMl\X = AMAXI (DlFMAX,A8S(U(X,Y)-Ul (X.Y)))

30 CONTINUE

One can easily modify this to store the individual differences in the workspace

array RIWORK for printing with FORMAT 40.

4. Use of Workspace. The Fortran code is written at the end of the DO-loop to

use a temporary array. The standard ELLPACK array .RIWORK can be used, its

size llMWRK is obtained with the option MEMORY. ]f a larger temporary array is

needed, the size of RIWORK can be set to n with the option MAX-WORKSPACE=n.

EXAMPLE 4.~ Nonrectangular domain with a hole

This example illustrates the use of the HOLE segment and non-rectangular

domains.

"'"""'""""1""""""""""""""""""" ••••

• •

•

•
•
•

•
• EXAMPLE ELLPACK PROGRAM 4.D4

REMARKS
1 THIS PROGRAM USES THE HOLE FEATURE IN ELLPACK.
1 THE REGION IS BETWEEN TWO CONFOCAL ELLIPSES.

•

•
•
•• • •

"""""""""""""""11""""'"'"11""""'" ••••
EQ.

BO.

uxx + UYY ~ 0.0

U '" o. ON" X = COSH(3.0)'SIN(T), y", SINH(3.0)'COS(T)
FOR T = 0.0 TO a'PI

., .

. ": ...
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HO. U = 1. ON X =COSH(2.3)'SIN(T), Y =SINH(2.3)'COS(T)
FOR T = 0.0 TO 2'PI

GR. 17 X POINTS,
17YPOINTS,

DI. 5 POINT STAR
IN. AS IS
SO, BAND·GE

-COSH(3.0l TO COSH(3.0)
-S!NH(3.0 TO SINH(3.0)

OP. TIME $ MEMORY

au. PLOT-DOMAIN
MAX(TRUE) $ MAX"(U) $ YAX(ERROR)

SUBPROGRAMS .
FUNCTION TRUE(X,Y)
Rl = SQRT( (X-! . 0) "2+Y"2)
R2 = SQRT«X+1.0) "2+Y"2)
U = ACOSH(O':S'(R1+R2lJ
~RUE = (3.0-U)/(3.0-2.3
RETURN
END
FUNCTION ACOSH(X)
ACOSH = ALOG(X+SQRT(X"2-1.0»
RETURN
END

END.

APPROXIMATE MEMORY REQUIREMENTS

WORKSPACE
LINEAR EQNS
INTERPOLATION
AMATRX,BVECTR

33'
4624

757
13583

GRID LINES
UNKNOWNS
DOMAIN INFO
TOTAL MEMORY

35
289
299

19908

SYMBOL TABLE INPlIT TIME
.PROGRAM PROCESSING TrME

TEMPLATE OUTPUT TIME
TOTAL TIME

Output of ELLPACK run:

DOMAIN PROCESSOR

2.50 SECONDS
.85 SECONDS

2.20 SECONDS
5.55 SECONDS

DOMAIN PROCESSOR BEGINNING EXECurION
FOUND 63 BOUNDARY POINTS WHERE THE

1 PIECES INTERSECT THE 17 X 17 GRID

TIME TO PROC&'3S BOUNDARY
T1MB TO PROCESS INTERIOR
TOTAL PROCESSING TIME

DOMAIN PROCESSOR

4.933
.100

5.033

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 32 BOUNDARY POIN'l'S WHERE THE

1 PIECES INTE:RSECT THE 17 X 17 GRID

~--:
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TIME TO PROCESS BOUNDARY
TIME TO PROCESS INTERIOR
TOTAL PROCESSING TIME

2.733
.033

2.767

D[SCR~TIZATION MODULE

OS-POINT S TAR

TYPE 1
TYPE 1

146
o

NON- RECTANGULAR
17 X 17
.126E+01
. 125E+Ol

1

DOMAIN
UNIFORM GRID
!IX
HY
OUTPUT LEVEL
BOUNDARY CONDITIONS
PIECE 1
PrECE 2
NUMB~R OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUT ION SUCCESSFUL

INDEXING MODULE

NATURAL

NUMBER OF EQUATIONS
EQUATIONS/UNKNOWNS NUMBERED

IN ORDER GENERATED
-EXECUTION SUCCESSFUL

148

SOLUT ION MODULE

LINPACK BAN D

NUMDER OF ROWS 40
NUMBER OF COLUMNS 146
NUMBER OF LOWER CO-DIAGONALS 13
NUMDER OF UPPER CO-DIAGONALS 13
LINPACK BAND GIVES 2 TIMINGS

SETUP TIME AND SOLUTION TIME
EXECUTION SUCCESSFUL

ELLPACK 78 OUTPUT

11111111111111111111111I1111II1III rill I I I I I III I 11111111111 I I

+ +
+ MAX( ABS(TRUE )) ON 17 X 17 GRID = . 97£112£14E+OO +
+ +
~~++I I I I I I I I I I I I 1++++++++++++++++1 I I II I I I I I I I 1 1 I I I I I II I r I

ELLPACK 78 OUTPUT
•• _f-.-.

++HIIIII [1'111 11111111111111111'1111'1111111111111111[11111
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+ +
+ MhX( ABS(U ) ) ON 17 X 17 GRID = .979S400E+OO +
+ +
+++++111111111111111111111 I I 1'1111111111111 I III 111'11" I1111

ELLPACK 78 OUTPUT

I I II: I I I11111111111111 I III I 1111111'11'11'llllllllllll I III' I I
+ +
+ MAX( ABS(ERROR ) ) ON 17 X 17 GRID = .147~811E·02 +
+ +
I I I I I I I 11"1+++1 I 1111 I 11111I1 I I I 1111111111II11I11I11111 I1111

ELLPACK 77 OUTPUT

+++111111111 I 1111111111+++
• +
+ EXECUT ION" TIMES +
+ +
+++++++1111111111111111111

MODULE NAME

DOMAIN"
HOLE
5·POrNT STAR
NATURAL
LINPACK BAND SETUP
LINPACK BAND
PLOT DOMAIN
MAX
MAX
MAX
TOTAL TIME

SECONDS

5.03
2.78

.28

.02

.18

.73

.30

.27

.70

.40
10.80

,..
-' "

,
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1/

- BO-

domaih of

solutioh

~ -1=----+-JI/~f__+__+__++_+_j___j-t_+_+~-\f'\~1
1~/ \

! _I-=j~l__.. ..~_e-__ I-,l-r'iJ_--+-/" ----1__
1
'---. ~J---I,"-I--+-- _.~

\
8-L-+--W~I\-+-++-HH--+--+-"++-H

1\

, "/

3J=l_L,Hc;---l_l"--;t';J=::::=J",~+~;;;"k::::tC---C~~,L---l~'~~~Jl~"
310.068 -6'.712 3'.356 _. .000 3.356 6'.711 1O.06B

I

x

Figure 4.2. The contour plot produced by PLOT(DOMAIN) in the exam­
ple ELLPACK program 4.D4.
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CHAP1'ER 5: ElCl'ENDlNG ELLPACK TO NON-sTANDAHIl PROBLEMS

ELLPACK can be used to solve or study problems where its "automatic"

problem solving capabilities do not apply. To use ELLPACK in this way requires

that one has an understanding of both the EU.PACK system and the numerical

methods involved. Even more complicated applications depend on knOWing

some of the deLails of the implementations in the ELLPACK modules. We illus·

trate this use of ELLPACKwith five examples.

1. Aproblem with a double-'l)alued boundary condition along a slit. SUch prob-

lems arise when their objects are placed in electrical fields. Many prob-

lems or this type can be solved using ELLPACK once one learns the tech-

nique.

2. Diffusion pToblem with interiaT inteTface conditions. The melting or a

metallic alloy introduces an interface with a derivative jump condition.

The 5-POINT SfAR equations are modified along the liquid-solid interface to

be this condition.

3. Three nonlineaT problems. Newton iteration methods for handling non-

linearities can be implemented easily in ELLPACK. The examples given

show very rapid convergence and two are real world applications.

4. A time dependent problem. Consider the parabolic problem

Ut = Lu

where L is an elliptic operator in two or three variables. Many numerical

methods for such problems are implicit so they can take large time steps.

At each time step these methods solve an elliptic boundary value problem.

Several or these methods can be concisely formulated in ELLPACIC to use

its elliptic problem solving capabilities. We illustrate this technique for

the PDE
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u, = uy,,"= + "w + 2+t~n(z+y+t))uy + u + t (z,y,t)

5. The tra.nsitor equalinns. This problem involves three simultaneous, highly

nonlincnr elliptic equations. This problem arises from 0. model of the elec-

trie field in a transistor and is difficult to solve. A particular iteration is

defined 'which might loosely be called a Nemon-Jacobi iteration. Jacobi

iteration is used in ~oing from equation to equation and Newton's method

is used for the nonlinearities.

5.A SPECIAL INTERIOR BOUNDARY CONDITIONS

ELLPACK has the capability to handle auxiliary conditions along curves

inside the domain. These might be conditions on 'slits' as occurs at a thin plates

is inserted in an electric field or at the interface between a solid and liqu,id. The

ARC segment allows one to specify single valued boundary conditions in a

straight forward way. This example also illustrates the various output that one

can obtain from ELLPACK. The output TABLE-BOUNDARY is primarily useful for

people who want to know how Eu.PACK works internally. This technique is illus-

trated in program 5.A2.

..........•....•..........................•........... ,...
• • •
•

•
•
•

• EXAMPLE ELLPACK PROGRAM 5.Al

• REMARKS
• TH[S PROGRAM USES THE ARC FEATURE IN ELLPACK.
• THE REGION IS BOUNDED BY CONFOCAL ELLIPSES,
• THE SLIT IS A DEGENERATE ELLIPSE,
•

•
•
•
•
•
•

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
OPT. TIME

EQ. UXX + UYY = 0.0

BOUND.

ARC.

GRID.

U = O. ON X =COSH(2.0)"SIN(T), y", SINH(2.0)'COS(T)
FOR T = 0.0 TO 2'PI

U", I. ON LINE -1.0, 0.0 TO 1.0, 0.0

11 X POINTS -COSH(2.0) TO COSH(2.0)
1] Y. POINTS -SINH(2.0) TO SINH(2.0)

f' .
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DIS. 5-POINT STAR
IND. AS IS
SOL. BAND GE

OUT. SUMMARY(U):I: Mi\X(ERROR)
TABLE-DOMAIN :I: TABLE-BOUNDARY
PLOT-DOMAIN $ PLOT(U)

SUBPROGRAMS .
FUNCTION TRUE(X,Y)
Rl =SQRT(1X-1.0)"Z+Y"Z)
R2 = SQRT( XH. 0) "Z+Y"Z)
U = ACOSH 0.5'(R1+R2))
TRUE = (Z.0-U)/2.0
RETURN
END
FUNCTION ACOSH(X)
ACOSH = ALOG(X+SQRT(X"2-1. 0))
RETURN
END

END.

SYMBOL TABLE INPUT TrME 2.68 SECONDS
PROGRAM PROCESSING TIME 1.00 SECONDS

TEMPLATE OUTPUT TIME 2.72 SECONDS
TOTAL TIME 6.40 SECONDS

Output of ELLPACK run (some output has been deleted for brevity):

DOMAIN PROCESSOR

DOMAIN PROCESSOR BOOINNING EXECUTION
FOUND 32 BOUNDARY POINTS WHERE THE

1 PIECES INTERSECT THE 11 X 11 GRID

TIME TO .PROCESS BOUNDARY
TIME TO PROCESS INTERIOR
TOTAL PROCESSING TIME

DOMAIN PROCESSOR

2.533
.067

2.600

DOWl.IN PROCESSOR BEGINNING EXECUTION
FOUND t\. BOUNDARY POINTS WHERE THE

1 PIECES INTERSECT THE 11 X 11 GRID

T [}'lE TO PROCESS BOUNDARY
TIME TO PROCESS INTERIOR
TO'rAL PROCESSING TIME

.033

.017

.050

... 5 POINT STAR, AS IS AND BAND GE OUTPUT DELETED ".

ELLPACK 78 OUTPUT

+++++1 r r [[ r I II I I I I I r I I I II I I I J II 11111 1IIIII1 r I1I1 1III1II11I11

:./
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+ +
+ MAX( ABS(U » ON 11 X 11 GRID = .1000000E+Ol +
+ +
+++++1 III I I I II I I I I II I I I I f I I I II I I I I II I I II f 11III1 1II1I1I11I11 [

ELLPACK. 78 OUTPUT

++++111111111 f II f fill fill f f [f. f 1111111 filii f 1111111I
+ +
+ TABLE OF U ON 11 X 11 GRfD +
+ +
++++++++++++11111111 J 1111 J 1111 J 111I1111I11I1 J 111I111

,,' TABLE(U) OUTPUT-DELETED ,,'

ELLPACK 76 OUTPUT

f 111111+++111111111111 J I111I111111I11 J 1111111111111111111111
+ +
+ M!lX( ABS(ERROR ) ) ON 11 X 11 GRID = .9435743E-Ol +
+ +
+++++++1 J 11111111111 f f I f II f f f 11I1I1I1 f 111I1111 f II f 1111111111

ELLPACK 78 OUTPUT

.J-Ho++1 I II I I I II I I I I Iff f f I f.1 Iff., f f III I Iff I II I II I I III II 1111
+ +
+ TABLE OF THE POINT TYPES ON 11 X 11 GRID +
+ +
+++++++1111111111111111111 J 1111111I11I1I1111III11I f 111++++

THE POINT XGRID(l), YGRID(l) IS AT THE LOWER LEFT.
---~---------~~-~-~_. __ ..... __ .--.---------------~

11 0 0 -4029 -4030 -6001 1 -12001 -4003 -4004 0 0
10 0 -8028 2. 9029 1031 1001 1002 3003 4 - J2004 0

• • -2028 2B 9028 ••• ••• ••• ••• ••• 3004 • -8005
B • -2027 9027 ••• ••• ••• ••• ••• ••• ••• 3005 -8006
7 • -6025 6026 ••• ••• 4035 4036 4037 ••• ••• 2007 -12007
B • 2. 8025 .99 2034 3. 3B 37 8037 99. 2009 •
5 • -3023 8023 .9. ••• 1035 1036 1037 999 ••9 2010 ·9009
4 • -2022 12021 • 9. ••• ••• ••• ••9 999 .99 6011 -8011
3 • -2021 21 12020 ••• ••• ••• 9.9 ••• B012 12 -8012
2 • 0 ~3020 20 12019 4018 4017 4015 6013 13 -9012 0
1 • 0 0 -1020 -1019 -3017 17 -9015 -1014 -1013 0 0

•
"."" 1 2 3 4 • B 7 B • 10 11

ELLPACK 78 OUTPUT

+++++++111111111111111111.1111111111111111111111111.1. f II f I f I f 1111I1
+ +

C,.
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+ TABLE OF THE BOUNDARY POINT TYPES ON 11X 11 GRID +
+ +
I 1 I I I I • I I I 1 I II • 1 • 1 I I I I I .. I I I I I I I I I I I I I I I I I I I I 1 I 1 I I [I I I I I I I I I I II I I I I

NUMBER XBOUND YBOUND BPARAM PIECE BPTYPE BGRID BNEIGIl

I .000000 3.626860 .000000 1 CORN 11006 0
2 .752439 3.553583 .201358 1 VERT 10007 10007
3 1.504879 3.324072 .411517 1 VERT 10008 10008
4 2.257318 2.901469 .843502 I 80TH 10009 9009, 3.009757 2.176116 .927296 1 80TH 9010 8010
6 3.448109 1.450744 1.159279 1 HaRZ 8010 8010
7 3.686166 .725372 1.369441 1 HaRZ 7010 7010

• 3.762193 .007547 1.566716 1 VERT 6011 0.' 3.762196 .000000 1.570796 1 BOTH 6011 6010
10 3.666164 - .725372 1.772154 1 HaRZ 5010 5010
11 3.446109 -1.450744 1.962313 1 HORZ 1010 4010
12 3.009757 -2.176116 2.214298 I BOTH 3010 3009
13 2.2573]6 -2.901486 2.498092 1 80TH 2009 3009
14 1.504679 -3.324073 2.730076 1 VERT 1006 2006
15 .752439 -3.553584 2.940237 1 VERT 1007 2007,. .006181 -3.626660 3.139950 1 HORZ 1006 0
17 .000000 -3.626660 3.141593 1 BOTH 1006 2006,. -.702439 ~3.5535B4 3.342949 1 VERT ]005 2005,. -1.504878 -3.324073 3.553109 I VERT 1004 2004
20 -2.257317 -2.901468 3,765094 1 BOTH 2003 3003
21 - 3.009757 ~2.176116 4.068866 1 BOTH 3002 4002
22 -3.448110 -1.450744 4.300872 1 HORZ 4001 4002
23 -3.686184 -,725372 4.511032 1 HORZ 5001 5002
24 -3.762196 -.007156 4.710418 1 VERT 5001 0
25 -3.762196 .000000 4.712389 I BOTH 6001 8002
2. -3.686184 .725372 4.913747 1 HORZ 7001 7002
27 -3.448110 1.450744 0,123905 1 HORZ 8001 8002
2. - 3.009757 2.176116 5.355890 1 BOTH 9002 0003
20 -2.257317 2.901489 5.639664 1 BOTH 10003 9003
30 -1.504876 3.324074 5.871669 1 VERT 10004 10004
31 -.752439 3,553583 6.081626 1 VERT 10005 10005
32 -.005453 3.626860 6.281736 1 HaRZ 11005 0
33 .000000 3.626860 6.283185 1 JUMP 11006 0
34 -].000000 .000000 ,000000 2 CORN 6004 0
30 -.752439 .000000 .123780 2 BOTH 6005 5005
36 .000000 .000000 .500000 2 BOTH 6006 0006
37 .752430 .000000 .676220 2 BOTH 8007 5007

ELLPACK 77 OUTPUT

+++1111111 F[F 11II111111111
+ +
+ EXECUT ION TIME:) +
+ +
++++++++++++++++++++++++++

MODULE NAME

DOMAIN
ARC
5-POINT STAR
NA'£URAL
L rNPACK BAND SETUP
LINPACK BAND

"""TABLE
MAX

SECONDS

2.62
,07
,22
,0'
, 10
,27
,43
,57
,35

(:.J
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TABLE DOMAIN
TABLE BOUNDARY"
PLOT DOMAIN
PLOT
TOTAL TIME

.23

.45

.23
5.60

11.35

To solve problems with double valued boundary conditions one must use the

HOLE segment to place a very thin hole (slit or arc) in the" domain and then

&pecify boundary conditions on each side of the hole, Care must be taken at the

ends of the hole so that the domain processor can follow the boundary. One

should make the ends of the hole pointed and the ends of different pieces of the

boundary.

• •• "".,., ••••• ", •••• " •••••••• " I •• ' •••••••••••••••••••••• , •••••

•
•
•
•
•
•
•

•
•

• •
• EXAMPLE ELLPACK PROGRAM 5. A2 •
• •
• REMAR!<S •
• THts PR~RAM IS FOR A PROBLEM WITH AN INTERIOR TWO •
• VALUED BOUNDARY CONDITION ON A SLIT, THE ARC FACILITY
• OF ELLPACK DOES NOT APPLY SO A HOLE IN THE SHAPE OF A
• LONG, VERY TmN DIAMOND IS USED INSTEAD. CARE MUST BE •
• TAKEN IN DEFINING THE SLITS THIS WAY SO THE ELLPACK •
• DOMAIN PROCESSOR DOES NOT GET LOST. DEFINING THIS SLIT '
• AS A LONG, VERY THIN RECTANGLE OR ELLIPSE WILL PROBABLY •
, FAIL. THE ELLPACK PLOT ROUTINES ALSO ARE INACCURATE rN '
• THE NEIGHBORHOOD OF TWO-VALUED BOUNDARY CONDITIONS. •

• • •
, ." " .. ,."."" ,.,."., .. , ..••...... ,., " ".,.
OPT. TIMB

EQ. uxx + UYY "" 0,0

BOUND,

HOLE,

u "" O. ON X"" COSH(Z.O) 'SrN(T), y"" SINH(Z.O)'COS(T)
FOR T "" 0.0 TO Z'PI

U"" 1. ON LINE -1.0, 0.0 TO 0.0, 0.010 TO 1.0,0.0
U "" 2.-X"Z ON LINE 1.0, 0.0 TO 0.0, -0.010 TO ~1.0,0.0

GRID, 21 X POINTS
21 Y POINTS

DIS. 5-POINT STAR
IND. AS IS
SOL. BAND GE

-COSH(2,Oj TO COSH(2.0j
-SINH(2.0 TO SINH(2.0

OUT. MAX"(U) $ PLOT(U)

END.

SYMBOL TABLE INPUT TIME 2.67 SECONDS
PROGRflM PROCESS ING TIME 1 . 22 SECONDS

TEMPLATE OUTPUT TIME 2.70 SECONDS
TOTAL TIME: 6.58 SECONDS

','

Output of ELLPACK run: -.
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.-
~

domain of
50 Juhan

3.7622.5081. 25'1.0001.25'12.508

/-V '~
1"-0,,-

// 1"'"\
I 1\

/ \

\ /
\ II

+-
I'" 1/
~
~ -"V, ,

_,I - ,I

.,

~
N
~

1{-3.762

x

Figure 5.1 Problem domain for program 5.Al
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DOMA[~ PROCESSOR .

DOIr!A[N PROCESSOR BEGfNNING EXECUTION
FOUND 72 BOUNDARY POINTS WHERE THE

1 PIECES INTERSECT THE 21 X 21 GRID

TIME TO PROC&SS BOUNDARY
TIME TO PROCESS INTERIOR
TOTAL PROCESS ING TrIdE

5.167
.167

5.333

DOMAIN PROCESSOR

DOMAIN PROCESSOR BEGINNING EXECUTION
FOUND 12 BOUNDARY POINTS WHERE THE

" P[ECES INTERSECT THE 21 X 21 GRm

T [ME TO PROCESS BOUNDARY
TIME TO PROCESS INTERIOR
TOTAL PROCESSING TIME

.117

.017

.133

DISCRETIZATION MODULE

5-POINT S TAR

TYPE 1
TYPE 1
TYPE 1
TYPE 1
TYPE 1

300
5

NON-RECTANGULAR
21 X 21
. 376E+OO
. 363E+OO

1

DOMAIN
UN[FORM GRID
fIX
HY
OUTPUT LEVEL
BOUNDARY CONDITIONS
PIECE 1
PIECE 2
PIECE 3
P[ECE "
PIECE 5
NUMBER OF EQUATIONS
MAX NO. OF UNKNOWNS PER EQ.
EXECUTION SUCCESSFUL

INDEXLNG MODULE

NATURAL

NUMBER OF EQUATIONS
EQUAT IONS/UNKNOIYNS NUMBERED

IN ORDER GENERATED
EXECUTION SUCCESSFUL

300

SOLVT ION MODULE

LIN"PACK BAND

NUMlJGL~ Oli' ROWS 56
NUMBER OF COLUMNS 300

c'
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u
cOhtOurS

COhtour value
1.10eOl
2 ".lle+OO
3 .21e+OO
4 .3le+OO
5 ."lle+OO
6 .51e+OO
7 .6le+OO
8 .71e+OO
9 .81e+OO

10 .91e+OO

~

)
n-

~

9

'"
- 5,

4

~

~ C+=--~~te-co---
7-3.762 -2.508

x

31.762

FIGURE 5.2 CONTOUR PLOT OF SOLUTION FOR PROGRAM 5, Al
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NUJ.ffi8R OF LOWER CO-DIAGONALS 19
NUJ.fBER OF UPPER CO-DIAGONALS 19
L IN'PACK BAND GIVES 2 TIM[NGS

SETUP TIME AND SOLUT ION TIME
EXECUTION' SUCCESSFUL

ELLPACK 78 OUTPUT

+-1-1++11111111++++111111111 I 1111111I111111111111111 I11111 I III

+ +
+ MAX( ABS(U ) ) ON 21 X 21 GRID '" . 1488391E+01 +
+ +
1111111111111: I I 1111111111111111111III1I1I1111 I 1111II11I1I11

ELLPACK 11 OUTPUT

+-1-+1111 I II III 1111 II 1111 I II

+ +
+ EXECUTION TIMES +
+ +
+++1111111111+++++11111111

MODULE NAME SECONDS
--- .._---- ... _---------------------
DOMAIN
HOLE
5-POINT STAR
NATURAL
LINPACK BAND SETUP
LINPACK BAND
MAX
PLOT
TOTAL TIME

5.33
.17
.43
.03
.37

3.03
1 .00
5.00

15.52

5.B A TWO-PHASE DIFFUSION PROBLEM

Consider a rectangular container O<x<l, -1/Z<y<1 filled with a metallic

alloy. The sides of the container (%=0, %=1) are insulated, .while the top of the

container (y =1) is held at some tixed temperature above the melting point ot

the metal and the bottom (y = liZ) is held at a constant temperature below the

melting point. The vessel eventually contains both molten and solid metal. and

we assume that the solid-liquid intertace lies along the line y =0. In addition, we

assume that the liquid metal is stirred by some external means. We wish to

determine the steady-state temperature distribution of this system.
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6 _

~7

3

u
cotrloours

1 .00e+OO
2 .17e+OO
3 .3Je+OO
4 .50e+OO
5 •66e-+DO
6 •83e+OO
7 .9ge->CO
a .12e-+Dl
9 .1Je-+Dl

10 • 15e-+D 1

~

ill +=---_+--~-_+~::::o='~_+~".,,""'=-_,+=,__.--___of_;;;;_;;
f(-J.762 -2.508 -1.254 .000 1.254 2.508-

x

Figure 5.3 Contour plot of solution for program 5.A2

31.762

,-, ,
" '"
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Let the functions u and v represent the temperature of the liquid and solid

respectively. We then have the following models for the diffusion of heat in the

two phases.

In the solid:

In the liquid:

v'v
dv I d:x
v

= 0,0

= 0,0
= 0,0

for 0<% <1, -1/2<y<O
for % ;;0,1, -1/2<y <0
forO<x<1.y;;-1I2

v'u
dul cia:
u

=f(x,y)
= 0,0

= 1.0

for 0<% <1 , O<y <1
forx=0,1.0<y<1
for 0<x<1,y:;:1

The function f is a source term that accounts for the heat introduced as a

result of externally induced convection. For this elCample we J (z ,y) ;;

4y (l-y )sin((3x +112)),

The diffusion problems are coupled by two continuity conditions along the

solid-liquid interface (for 0 <:r: < 1. y;;O):

U :;:v

du/dy = k(dv/dy)

The latter is a jump condition that results from the release of heat during soli-

dificatlon. The constant k is the ratio of thermal conductivity of the solid to the

thermal conductivity of the liquid. We take k ;; 1/2.

If we ignore the jump condition then this problem is equivalent to a single

phase steady state diffusion problem and is easily solved by the following

ELLPACK program. Note that there is no need to clistinguish between u and v in

this program.
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EQUATION.

BOUNDARY.

GRro.

DIS.
INDEX.
SOL.
OUTPUT.

uxx: + UYY = F(X. Y)

UX "" 0.0 ON X= 0.0
UX = 0.0 ON X= 1.0
U = 0.0 ON¥=-1/2
U =1.OONY=1.0

9 X POINTS
13 Y POINTS

5-POINT STAR
AS [S
BAND GE
TABLE(U) $ PLOT(U)

- 93-

SUBPRCGRAMS .
REAL FUNCTION F(X,Y)
IF (Y .GE. 0.0) THEN

F = .4. ·Y·(l. -Y) ·SIN(l.570aO.(3. 'X+O.5»
ELSE

F =0.0
ENDIF
RETURN
END

END.

This program produces the temperature distribution given 1n Figure 5.4.

One way to incorporate the jump condition is to modify the output ot the 5

POINT STAR module. We wish to change the finite difference equations gen­

erated for points along the line y=O. We write a subprogram ADJUMP to do this

and insert the follOWing code after the existing OUTPUT statement.

FORTRAN.
CALL ADJUMP(RICOEF, IuDCO, rUINEQ. IIMNCO)

SOL. BAND G~

OUTPUT. TABLl':(U) $ PLOT(U)

This will cause the equations to be modified and the problem solved again with

the new discretization. To wrlte the subprogram ADJUMP one must be familiar

with the difference equations produced by 5 POINT STAR as well as with the

sparse matrix storage scheme used by ELLPACK.

Let (xi. yj), 1 ~i':=; 12, denote the Wliformly spaced grid point locations and

let uij, vij, and lij denote functions evaluated at the point (ri. yj). The differ­

ence equation written by 5-POlNT STAR for the point (ri. yj) in the interior of

the domain is

'..:.'
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Figure 5.4: Solution of diffusion problem without jump condition.

"
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In the liquid:

- 95-

'U.(+1,j + 'U.(,j+l + 'U.(-l,j + ut,f-I + -4U(,j = h 2J'iJ

In the solid;

(1)

(2)

where h = 118 in this example. (The 5-POINT STAR module actually divides

these equations by h 2.) Along the left and right sides of the domain these equa-

lions must also incorporate the boundary conditions dUI d3; = O. For the liquid

phase these equations become

(3)

At the point (xe'Yj):

(4)

with similar equations for the solid phase.

Along the line y=D we also wish these finite difference equations to satisfy

the jump condition duldy = k(dv/dy). Reptacing the derivatives by central

differences at the point (%i,y5) we get the discrete analogue

(5)

Note that we have introduced two fictitious quantities, u5,j-l and v5,j+1,

representing a liquid temperature in the solid and a solid temperature in the

liqUid respectively. We eliminate these using the relations (1) and (2) and use

the continuity condition ui,5 = vi,5 to get

(1 +k )~+l,5 + 2'lLf.e + (1 +k )'lLf-l,5 + 2kvi .4 - 4(1 +k }Zl;:.5

=h2fi,5
,..
v",
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c

for i=l and i=9 we must use the boundary finite difference equations (3) and (4)

and their solid analogues to eliminate the fictitious points from (5). Doing this,

and using continuity, we obtain

At the point (X 1'Y5':

At the point (X9'Y5)

Note again that there is no need to distinguish between'lL and'lJ in the ELLPACK

program since exactly one value is defined at each grid point.

]n ELLPACK each equation and unknown is given a single index number from

one to the number of equations and unknowns.. Thus we must also know how 5-

POINT STAR maps the double subscripts used above into the single subscripts

used in ELLPACK (equivalently, how grid points are numbered). 5-POlNT STAR

uses the so·called natural ordering, so the (i,j)th point is given the index

9(j -2)+i.

The coefficients of the k th finite difference equation are loaded. into the k th

row of the array R1CDEF. The indices of the unknowns that these coefficitmts

multiply are loaded into the corresponding locations of the array HIDCD. (See

Chapter 14 for details.) Note that as a result of the way in which we defined the

function F we need not modify the right-hand sides ot these equations. The tol-

lOWing subprogram performs all these operations.

SUBROUTINE ADJlJ1,1P (COEF, IDCO,MNEQ,MNCO)·c
C CHANGE EQUATIONS ALONG Y=O TO ACCOUNT FOR JUMP CONDITION

REAL COEF(MNEQ.MNCO)
INTEGER IDCO(MNEQ,MNCO)

'-'I
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NX = l}

f[ = 1.0/FLOAT(NX-l)
H2 = H-H
RK = 0.5
RK1 =l.O+RK
INTER = 5

- 97 -

c
c

COMPUTE NEW DIFFERENCE EQUATION COEFFICIENTS

CO '" -4.0- I/H2
CE = RKI/H2
CI'f = RIO/H2
CN = 2.0/H2
CS = 2.0'RKlH2

c
C LOAD COEFFICIENTS FOR MODIFIED INTERIOR POINTS
C

ISTART = NX'([NTER-2) + 1
ISTOP = ISTART + NX-l
DO 100 ISTART,ISTOP

IN=I+NX
IS = I - NX
IE=I+l
IW=I-]
DO 50 K=I, MNCO

INDEX '" IDCO( I. K)
IF (INDEX .EQ. I) THEN

COEF(I,K) '" Co
ELSE IF (INDEX .EQ. IN) THEN

COEF( I ,K) = CN
ELSE fF (INDEX . EQ. IS) THEN

COEF(I,K) = C3
ELSE IF (INDEX .EQ. IE) THEN

COEF(I,K) = CE
ELSE IF (INDEX ,EQ. IW) THEN

COEF(I,K) = av
ENDIF

50 CONTIN\J8
100 CONTINUE

c
C LOAD COEFFICIENTS FOR MODIFIED BOONDARY POINTS
C

I = ISTART
IE = r + 1
DO 110 K=] ,MNCO

IF (IDCO(I,K) .EQ. [E) COEF(LK) =2.0'COEF(I,K)

110 CONTINUE
I = ISTOP
IW = I - 1
DO 120 K=I,MNCO

IF (!DCOO,K) .EQ. IW) COEF(I,K) =2.0'COEF(I,K)
120 CONT INUE

c
C PRINT MODIFIED EQUATIONS
C

DO 150 I=ISTART, ISTOP
WRITE(II0UTP) r
DO 150 K=D, MNCO

IF (IDCO(LK) .NE. 0) WRITE(6,:300l) K,IDCO(I,K),COEF(I,K)
150 CONT [NUB

RETURN
C

:3000 FD~MT(' EQUATIO~ ',13 . """"""""'."'."")
3001 "'Oll.llt\'l'( , K='. f2,' !D=', [3.' COEF=', IPEI5.B)

END

The result of the solution of the modified finite difference equations is shown in .
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Figure 5.5.

- 96-

5.C NEWTON ITERATION FOR NONLINEAR PROBLEIoIS

Program 4.Cl in the previous chapter illustrates one way to solve nonlinear

problems using ELLPACK. Fixed point iteration (also known as Picard's method)

has a rate of convergence that is rarely fast. Newton's method usually con­

verges usually very rapidly once one gets reasonably close to the solution and is

very erficient when it works. If one visualizes the nonlinear elliptic PDE as just

an equation for u (admittedly more complicated than usual) then we want to

solve

F(u) = 0

Newton's method is to expand U in a Taylor's series at a point, say ua, then dis­

card all but the linear terms in a = u -Uo and solve for a. Symbollically, the

Newton change a satisfies

F(uo) + F (uo)6 = 0

In the case of systems of nonlinear equations, a is a vector and F (uo) is the

Jacobian matrix (with entries BFi/Bu;). For a partial differential equation the

"derivative" F (uo) a the Frechet derivative at uo. The Newton estimate u

obtained at uo.satisfies

F(uol + L(uo,u) =0

where L is a linear partial differential equation. Thus Newton's method for the

nonlinear partial differential equation F(u) = 0 is as follows:

COMP"LJTE THE FRECHET DERIVATIVE L (U, V)

(, )
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FIGURE 5.5: SOLUTION OF DIFFUSIONPROBLEMWITH JUMP CONDITION

(-, .
'"



I
SECTION 5.C - 100

GUESS U = UO
FOR K = 0 TO pMI,- 00

SOLVE F( UK) + L( UK, UK+1) ;:: 0

EXIT I'-" CONVERGENCE TEST IS PASSED
END-LOOP
PRINT RESULTS

Newlon's method can be implemented directly in ELLPACK. The computa­

tion of L is straightforward (it is the linearized perturbation of u+o In F(u»: a

MACSYMA program is given below for this which is very helpful when the algebra

becomes tedious. The technique is illustrated first for the simple example

F(u) =u= + 1£""-u. - e" - / =0 O~x,y:::: 1

where J (x ,y) and the boundary conditions are chosen to make the true solution

be 1£(x,y) = sin(x) cos(y).

]f we make a perturbation {j of 1L in this example and discard all powers of a

beyond the first we obtain

(1£+6)= + (1£+6)2(1£+6)w - e"+'-/

=(_ + 6=) + (1£2Uw + 21£6Uw + 1£ 26w ) - (e" + 6e") - /

;:: (u= + u2'U.w - e U
- f) + 0= + u 2ayy + (2u - eU)o

= F(1£) + L(1£,1£+6)

We change the notation to correspond to the iteration by setting u ;;;; '!LD and

then let u in the ELLPACK notation denote the new iterate (U.l;;+I). Thus

o= u - Uo in the new notation and the above equation becomes

~ + (uo)2.uyy + (2 uOufMI - eUO)u

=2(uO)2uOUU + e"O(l+uo) + f O~z,y ~ 1

with boundary conditions u(z,y) = sin(z) cos(y). Actually, in the ELLPACKpro-

gram, both uo(z ,y) and u (z ,y) are denoted by u. The u's in the coefficients ot

L are evaluated before the problem is solved and thus are the previous estimate

-.: ..:
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uo: the estimate produced by solving the linearized problem is also u - and it

becomes the Uo for the next iteration.

An ELLPACK program for tbis example follows which has the initial guess

u(z,y) = 0; solves the linearized problem by collocation with Hermite bi-cubics

and limits lhe method to 5 iterations. Various other features or the program are

explained in the comments. The only output we give is the table. produced by

the subroutine SUMMARY; it shows the convergence IS quite fast.

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••,
,
,
,
,,,

,
• EXAMPLE ELLPACK PROGRAM 5. Cl,
, REMARl<S
• APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM,
• UXX + U'UYY = EXP(U) + F(X,Y)

,
,
,
,,,,

, , ,
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••,

,
,

DECLARAT IONS.
REAL E~(lOO)

USE THE PDE FOR THE NEW U(X,y)
NONLINEAR PROBLEM

OBTAINED BY LINEARIZING THE

GRID,

,

EQUATION.
UXX + (U(X.Y)"2)'UYY + (2.·Uex,Y)·UYY(X,Y)-EXP(U(X,Y»))·U =

2'(U(X,Y)"2)'UYY(X,Y) - EXP(U(X,y)'(U(X,y)-1.) + F(X,Y)

BOUNDARY.
U =TRUE(X,Y) ON X =o.

ONX= l.
ON Y = o.
ONY=I.

5 X POINTS $ 5 Y POINTS

INITIALIZE THE NEWTON ITERATION BY GUESSU =0

TRIPLE. LNIT[ALIZB U ( U =GUESSU )

• USE FORTRAN TO CONTROL ITERATION AND OUTPUT

FORTRAN.
IILEVL = 1
NITERS =5
00· 10 NITER = 1, NITERS

SOLVE THE LINEARIZrm- PROBLEM

COMPUTE INTERMED'lATE MAX ERROR, SAVE FOR TABLED OUTPUT
TURN OFF ELLPACK OUTPUT

nISCRETIZAT ION.
INDl!.'XING
SOLIfl' ION"

[o'ORTRAN .

HERMITE COLLOCA"T ION
AS IS
BAND GIi:

<.0

" .'- -
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CALL ~(ERRMAX(NrTER»

1]LE:VL = 0
]0 CONTINUE

t PROCESS FINAL RESULTS

CALL SUMARY(ERRMAX,NITERS)

SUBPROGRAMS .
FUNCTION F(X,Y)

102 -

c
C F IS CHOSEN TO MAKE THE TRUE SOLUTION SrN(X) ·COS(y)
C

TRUE = SIN(X) tCOS(Y)
TiWEXX = -TRUE
TRUEYY = •TRUE
F = 'I'RUEXX + TRUE"2 t TRVEYY + (2. tTRIJEtTRUEYY-EXP(TRUE» tTRUE

$ - 2.tTRUE"2tTHUEYY + EXP(TRUE)t(TRUE-1.)
RETURN
END
FUNCT ION GUESSU (X, Y)
GUESSU =0,
RETURN
END
FUNCTION TRUE(K, Y)
TRUE = SIN(X) tCOS(Y)
RETURN
END
SUBROUTINE MAXERR (ERRMi\X)

c
C COMPUTE THE MAXIMUM ERROR ON THE GRID, SAVE FOR LATER
C ACCESS [NTERNAL ELLPACK VARIABLE:3
C

COMMON / ClIVGR / []NGRX, [lNGRY, IINGRZ, IINBPT, I1:MBPT
COMMON / C]GRDX / R]GRDX( 1)
COMMON / CIGRDY / RIGRDY( 1)
ERRMAX = O.
DO 20 I = I, IINGRX

X = RIGRDX( I)
DO 10 J = 1, I1NGRY

Y = RIGRDY(J)
ERRMAX = AMAJ(1 (ERRMAX, ABS(TRUE(X. y) -U(X, Y»)

10 CONTINUE
20 CONTINUE

c
RETURN
END
SUBROUTINE SUMARY (ERRMAX, NITERS)

C
C PRINT SUMMARY OF RESULTS
C

REAL ERRMAX( 1)
PRINT 100
DO 10 NITER = 1, NITERS

PRINT 110, NITER, ERnMAX(NITER)
10 CONTINUE

RETURN
100 FOruMT(' I EKAMPLE ELLPACK PROGRAM 5. CI 'II

A T8,'ITER',T16,'MAX ERROR',1T7,6('-'),2X,10('-'»
110 FORMAT(T8, 14, IX, IPIEIZ.4)

END

END.

The table produced by program 5.Cl is

PROGRAM 5.Cl ERRORS lN NEWTON lTERATES



SECTION 5.C

ITER
1
2
3
4
5

- 103-

MAX ERROR
.096433
.031135
.004753
.00010151
.000000298

Example program. 5.Cl illustrates the use of Newton's method in ELlPACK,

it and the two following examples may be viewed as ELLPACK "template" as they

show the general structure of such progmams.

Since linearizing the nonlinear operator can be tedious (and error prone)

we give a MACSYMA program that produces the linear operator L(uo,u) automat-

ically for this problem. This program can be adapted for nonlinear problems of

all types; the linear operator B(uo,u) can also be obtained by a similar pro-

gram.

To illustrate this technique and to show that ELLPACK can solve difficult

real world problems. we provide two more example problems. See also G. Birkh-

off and R. Lynch, Numerical Methods for Elliptic Partial Differential Equations

SlAM, 1983 for the solutioh of Plateau's problem using this approach. The

second example is from nonlinear. laminar, non-Newtonian flow [Ref: W.F. Ames,

Nonlinear Partial Differential Equatw1I.S in FJngineering , Academic Press,

1965]. The nonlinear elliptic problem is

w(11.)(11.= + u.",) + w.(11.)u" + "'(11.)"" = f(z,y)

U:r; =0 on x =0,1

'11, = b (x) on y = 0,1

where the function w(u) varies depending on the application. Set

a ('11,) =VU:r;2 + '!Ly2 then physically meaningful cases of w ('11,) are
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w(u) = [a(u))" w(u) = 11 (a+ffa(u))
w(u) = .[,(u)/(,.,,(u))/a(u) w(u) = atanh(ffa(u))/a(u)

This nonlinear problem is the source of problems 19 and 23 in the PDE popula-

lion given in Appendix 3. We take one of the simplest possible cases here,

w (u) = a (u) (Le. ex= 1). We choose f (.:z: ,y) and b (x) so that t.he true solution of

the problem is

u(z,y) =(1+ e "1l) cos(rrz)

(CI) ,. EXAMPLE PROGRAM G,C2 .,
,. LIST THE NONLINEAR POE COEFFICIENTS ./

A(U) ,= W(U)'

(C2) B(U) : = 0$

(C3) C(U) ;= W(U)$

(e4) D(U) ,= DICF(W[U) ,X)'

(C5) E(U) := DIFF(W(U),Y)$

(ca) F(U) : = 0$

(C7) G(U) := 0$

(Co) W(U) := SQRT ( DrFF(U,X)"2 + DIFF(U,Y)"2 )$

(ce) ,. DEFINE DERIVATIVES OF uo, UOX, ETC.•,

GRADEF(UO, X, UOX) $

(CIO) GRADEF(UOX.X.UOXX)$

(CII) GRADEF(UOX,Y,UOXY)$

(CI2) GRADEF(UOY,X,UOXY)$

(CI3) GRADEF(UO,Y,UOY)$

(CI4) GRADEF(UOY,Y,UOY¥)$

(CI5) GRADEl"(UI.X.UIX)$

(CIO) GIUlDi':I"(UlX,X,UlXX)$

(CI?) GRADEF(UIX,Y,UIXY)$

(CI8) GRADEF(UIY,X,UIXY)$

(Cle) GRADEF(UI. Y. UIY)$

(cao) GRADEF(UIY,Y,UIY¥)$

(Cal) '" WRITE THE NONLINEAR PDE t,
PDE(U) :", A(U)tDIFF(U.X,2) + B(U)tDfFF(DIFF(U.X).Y) + C(U)tDIFF(U,Y.2)

+ D(U)tDIFF(U,X) + E(U)tDfFF(U.Y) + F(U)tU + G(U)$

c
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(C22) /1 DIFFERENTIATE AND COLLECT TERMS ./

DERIVATIVE:DIF~(PDE(UO+EPS·(Ul-UO)).EPS)$

2 2
UOY + UOX

• W(llO»;
o

~-~~--------------------~---_.----~~---------~------

:RATS (MP (COEUI

:RATSIMP(RS • \,(UO)),
2 2 2 2

(2 UOY + UOX ) uoIT + UOXX uoY + 2 UOX UOXY UOY + 2 VOX VOXX

COEUI

2 2
uoY + UoX

COEVlY :RATSIMP(COEUIY • W(UO),
3 2 3 3

(2 UOY + 3 VOX UOY) UOIT + uoxx UOY ,f- 2 UOX UOXY

---------------_._------------.------------~--~--_._---

TSERIES:PDE(UO) + EV(DERIVATlVE,EPS=O)$

RATSIMP(TSERIES)$

TSERIES:EXPAND(TSERIES)$

COEUlXX: COEFF (TSERIES I UlXX) $;

COEUlXY:COEFF(TSERIES,Ulxy)$

COEUlYY: COEFF(TSERIES, UIyy)$

COEUIX:COEFF(TSERIES,UlX)$

COEUlY:COEFF(TSERIES.UIY)$

COEUl:COE~F(TSERIES,Ul)$

RS: (COEUl XX'UIXX + COEUIXY'UlXY + COEUlTI'VlYY + COEUIX'UlX +
COEUIY'UIY + COEUI'Ul)-TSERIES$

RATSn.lP(RS)$

/. DISPLAY THE COE~FICIENTS OF THE LINEARIZED PDE FOR NEWTONS METHOD 9'
COEUIXX:RATSIMP(COEUlXX • W(UO));

2 2
UOY + 2 UOX

COEUlXY: RATSIMP(COEUIXY • W(UO));
2 uoX UOY

COEUlTI:RATSIMP(COEUlYY • W(UO));
2 2

2 uoY + UOX

COEUIX :RATSIMP(COEVIX • W(llO)),
3 3 2 3

UOX UOIT + 2 UOXY UOY + 3 UOX uoXX UOY + 2 UOX UOXX

(036)

(C33)

(CM)

[C30)
(039)

(C40) RS

(D40)

(D37)

(C38)

(C23)

[C24)

(C25)

(C26)

(C27)

(C28)

(C29)

(C30)

(C3l)

(C32)

(D34 )

(C35)
(D35)

(C36)

(036)

(C37)

The algebra to derive the linearized problem is formidable even in this sim-

plest possible case. The result from using the MACSYMA program is used in pro-

gram 5.C4.

••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
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•
• • EXAMPLE ELLPACK PROGRAM 5. C3
" •
•
•
•

•
•

REMARKS
APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM

W(U) (UXX + UYY) + WX(U)UX + WY(U)UY =F

•
•
•
•

ON X = O.
ON X = 1.
ON Y = o.
ON Y = 1.

•
HERMITE COLLOCATION
ASIS
BAND GE

• • •.•••.......".""""""""", ,., , .
•
DECLARAT[ONS .

REAL ERRMAX(IOO)

USE THE PDE FOR THE NEW U(X,Y) OBTAINED BY LINEARIZING THE
• NONL INEAR PROBLEM

EqUATrDN.

BOUNDARY.
ux = o.

U = 2. 'COS(PI'Xl
U = (l.+EXP(-I.»'COS(P['X

GRID. 5 X POINTS $ 5 Y POINTS

• INIT[ALIZE THE NEWTON ITERATION BY INTERPOLATING THE
, BOUNDARY CONDITIONS BY BLENDING FUNCTIONS

·RIPLE. INTERPOLATE BOUNDARY CONDITIONS BY BLENDI~'G

TRIPLE. INITIALIZE U ( U = GUESSU )

, USE FORTRAN TO CONTROL ITERAT ION AND OUTPUT

FORTRAN.
IILEVL = 1
NITEI~ = 5
DO 10 NITER = 1, NITERS

SOLVE THE LINEARIZED PROBLEM

DISCRET[ZATION.
INDEXING
SOLUTION

FORTRAN .

, COMPUTE INTERMEDIATE MAX ERROR, SAVE FOR TABLED OUTPUT

CALL MAXERR(ERRMAX(NITER»
IILE:VL = 0

10 CONTINUE

• PROCESS FINAL RESULTS

CALL SUMARY(ERRMAX,NITERS)

SUBPROGRAMS .
FUNCTION \'l(X,Y)
IV = SQlt'['(UX(X, Y) "2 + UY(X, Y)' '2)
rmTUlUf
Io;ND
~UNCTION IYX(X,Y)
WX = 2. 'UX(X,Y) tUXX(X,Y) ISQRT(UX(X,Y) "2 + UY(X,y)tt2)
RETURN
END
FUNCTION'rY(X,Y)
WX = 2.·UY{X,Y)·UYY(X,Y)/SQRT(UX(X,y)··2 + UY(X,y)tt2)
RETURN
END

., .
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FUNCTION F(X,¥)
C
C F IS CHOSEN TO MAKE THE TRUE SOLUTION (l.+EXP(-Y)'COS(P[·X)
C

COMMON / CtRVGL / RtEPSG, RtEPSM, PI
F "" ...
RETURN
"NO
FUNCTION GUESSU(X,Y)
GUESSU = O.
RETURN
"NO
FUNCTION TRUE(X,Y)

C ACCESS PI = 3.14159 ... FROM ELLPACK COMMON
COMMON / CIRVGL / RIEPSG, RIEPSM, PI
TRUE = (1.+EXP(-Y»·COS(PI'X)
RETURN
"ND
SUBROUTINE MAXERR (ERRMAX)

C
C COMPUTE THE MAXIMUM ERROR ON THE GRID, SAVE FOR LATER
C ACCESS "INTERNAL ELLPACK VARIABLES
C

CmlMON / ClIVGR / ItNGRX, IINGRY, I INGRl: , I INBPT , ilM8Pl'
COMMON / CIGRDX / RIGRDX( 1)
COMMON I CIGRDY / RIGRDY( 1)
ERRMAX = O.
DO 20 r =1, IINGRX

X = RIGRDX(I)
DO 10 J "" 1, ItNGRY

Y = RlGRDY( J)
"RRMAX ' AMAXl (eRRMAX,ABS(TRUE(X, Y) -U(X,y))

10 CONTINUE
20 CONTINUE

c
RETURN
END
SUBROUTINE SUMARY (ERRMAX, NITERS)

C
C PRINT SUMMARY OF RESULTS
C

REAL ERRMAX(I)
PRINT 100
DO 10 NITER = I, NITERS

PRINT 110, NITER, ERRMAX(NITER)
10 CONTINUE

RETURN .
100 FORMAT('l EXAMPLE ELLPACK PROGRAM 5.CZ'//

A TB,' ITER', TtB, 'MAX ERROR' ,1T7, B(' -') ,ZX,IO(' -'»
110 FORMAT(T6, 14, IX, IPtEIZ. 4)

"ND
END.

The next real application comes from gas lubrication, this is the effect that

keeps high speed tapes and disks from maklng physical contact with read/write

heads. 1\'fO views of the physical situations are shown in Figure 5.6, The separa-

tion between the disk and head is only a few thousandths of an inch. The high

speed of the disk pulls the air into the gap: it is compressed a.s it goes through

and this builds up a pressure to keep the two parts separated.
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Figure 5.6. Top view (left) of a magnetic read had and side view (right)
of the space between the head and disk.
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The nonlinear elliptic problem to be solved on the domain shown in Figure

5.6a is

(uh'",,). + (uh'u,,) + c(uh). = 0
u(x,y) = 1 on the boundary

The function h (x ,y) is

h(x,y)=l
= 1+2(x -.5)

O:::=z ~ ,5
.5:::=z:::;1.5

and c is a physical constant. The expanded form of the elliptic operator is

ch."
--u=O
h'

The linearized equation to be solved is

uO~+ uOyy + (2uO,z: + 3hluO + c/ h 2)U.:z:

3 ch."
+ (2uOy + 3hluO)'Uy + (uO= + uOyy + 'f'{uO,z: + uOy ) +~u

= uO(uO= + uOyy ) + uO{+ '!LO: + 3h(uO,z: + uOy)/uO

Program 5.C4 uses this linearized equation to solve this problem with Newton's

. method. The principal result needed from this problem is the integral of u(x ,y)

over the domain which is the load that the lubricant supports. The IMSL library

routine DBLINT is used but not given in the subprograms.

• ..........•...••.... ~ ..........•••••••.•.•.....•.•••••....
• •

EXAMPLE ELLPACK PROGRAM 5.C4 •• •
• • REMARKS •, APPLY NEWTON'S METHOD TO THE NONLINEAR PROBLEM •• •• 3 3

(UR U ) + (UR U ) + C(UH) = 0 • -_.'-,,'• • XX yy X •
C~)• •• THIS IS A FORM 0[0' REYNOLD'S EQUATION FOR • '... '

• COMPRESSIBLE·FLUID LUBRICATION. •
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• • •· , " , ,.. , , ,., , ,
•
OPT IONS. OLDU '" I

•
•

DECLARAT IONS.
REAL DrF'MAX(IOO)

USE THE POE FOR THE NEW V(X,Y)
NONL INEAR PROBLEM

OBTAINED BY LINEARIZING THE

EQUATION.

BOUNDARY.
V"'l.ON ....

GRID,

•
TRIPLE.

•

5 X POINTS $ 5 Y POINTS

INITIALI.ZE THE NEWTON ITERATION BY GUESSU '" 0

INITIALIZE U C U '" GUESSU )

USE FORTRAN TO CONTROL ITERATION AND OUTPUT

•

FORTRAN.
IILEVL '" I
NITERS '" 5
DO 10 NITER'" I, NITERS

SOLVE THE LINEARIZED PROBLEM

HERMITE COLLOCATION
ASIS
BAND GE

DISCRETIZATION.
INDEXING
SOLUTION

FORTRAN,

• COMPUTE INTERMEDIATE MAX DIFF, SAVE FOR TABLED OUTPUT

CALL MAXDIF'CDrFMAXCNITER)
IILINL == 0

10 CONTINUE

PROCESS FINAL RESULTS

CALL SUMARY(DIFMAX,NITERS)

COMPUT~ THE MllXIMUf.{ U DIFFERENCES ON THE GRID, SAVE FOR LATER
ACCESS INTERNAL ELLPACK VARIABLES

CmfMON I CIIVGR I IINGRX, fINGRY, I INGRZ , IINBPT, IIMBPT
COMMON I CIGRDX I RIGRDX(l)
COMMON I CIGRDY I RIGRDY( 1)
DIFMAX == o.
DO 20 r = 1, llNGRX

X = RIGRDXCI)
DO 10 J::: 1, fINGRY

Y '" RIGRDY(J)
DrFMAX == AMAXI(DIFMAX,ABS(VI(X,y)-V(X,Y)))

10 CONTINUE

SUBPROGRfIMS ,
FUNCTION GUESSU(X,Y)
GUES8U = o.
RETURN
"ND
""0SUBROUTINE MAXDIF (DrFYAX)

c
c
c
c
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c
20 CONTINUE

RETURN
END
SUDROUTINE SUMARY (0 I FYAX; NITERS)

C
C PRINT SUMMARY OF RESULTS
C

REAL OIFMAX(I)
PRINT 100
DO 10 NITER = I, NITERS

PRINT 110, NITBR, DIFMAX(N[TER)
10 CONTINUE

RE'l'URN
100 FORMAT ( , 1 EXAMPLE ELLPACK PROGRAM 5. C4 '"

A T8, 'ITER' ,T16, 'MAX DIFF', IT7 ,6(' -') ,2:<, 10( '-'))
110 FORMAT(T8, I4, IX, IPIE12. 4)

END

END.

5.D TIME DEPENDENT PROBLEM

ELLPACK can be used fairly directly for the following time dependent prob-

lem:

Ul =1M + f U =uO(z,y) for t=o
U = ubound(x,y,t) for (z,y) on boundary

where L is a linear elliptic operator; an example of L is

Lu =4y'u= + 'Uyy + (2 + tan(z+y+t))u" + u

Note that the coefficients in L could depend on z ,y and t as well as the forcing

function f. ELLPACK does not automatically discretize the Ul term, so this

must be dane in the program explicitly. The simplest discretization is

_ u(t) - u(t-M)
'lLt At

which leads to the discrete equation

u(t) =u(t-M) + M'(Lu(z,y,t-M) + /(z,y,t-M))

ELLPACK can be used to discretize the Lu(x,y,t) term, but this is not an

:':'.
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attractive use of the ELLPACK facilities. It is better in most cases to use the

more accurate Crank-Nicolson time discretization.

The Crank-Nicolson discretization uses the same approximation to 'U1, but it

is viewed as estimating ue at t -At /2 instead of at t -At. The partial differential

equation is then discretized to be

u(t) =u(t-M) + .5IIt[Lu(x,y,t) + Lu(x,y,t - M)
+ f(x,y,t) + f(x,y,t-M)]

This discretization in time is always stable so that large time steps l!t can be

taken. For each time step one must solve the elliptic problem

Lu(x,y,t) - (2/M)u(x,y,t)

= -(2/ M)u(x,y,t-M) - Lu(x,y,t-M)+ f (x,y,t) + f (x,y,t-M)

The terms on the right are known and on the left we have a linear elliptic equa-

lion which ELLPACK can solve.

Note that any ELLPACK method can be used to solve this problem, but there

should be an interaction between the method chosen and the choice of I!t. To

dlscretize space we choose an z ,y grid and. for simplicity, we assume that x and

y spacings are the same, h. We are essentially applying the methods of lines

with one line (in time) for each grid node. However, we do not need to examine

these lines indiVidually or label the corresponding line solutions. The time

discretization error from Crank-Nicolson is order (At)~ and this should be simi-

lar to the space discretization error. If 5-POINT STAR is used with discretization

error order h 2 then one should have hand M of about the same size. At least. if

they arc decreased, they should be decreased proportionally. If HERMITE COL-

L~CATION or SPLINE GALERKlN (DEGREE=3,SMOOTH=2) is used, then their

discretization errors are order h 4 and one should have h 2 and At about the same
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size. With these discretizations one can take many fewer time steps for a given

accuracy.

We give the ELLPACK program to solve this example. The functions

uO(x ,y), ubound (x ,y ,t) and f (x ,y.t) are chosen so that the true solution is

u(x,y,t) = sin(x+y+t)/4 e-yLf

1 :s t :s 2 O:s z ,y :s 1

The elliptic problem is solved with lNTERIOR COLLOCATION which uses bi-cubic

Hermite polynomials and has error of order h 4 . We set I1t = h 2/2 and put the

elliptic problem in a simple loop for the time steps.

• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••• • •
• • EXAMPLE ELLPACK PROGRAM 5. D1 •

•
•
•
•
•
•

• RE!lARI<S
• TIME DEPENDENT PROBLEM
• SEm THE ELLPACK PROGRAM TEMPLATE FOR GENERAL
• COMMENTS, COMMENTS ARE GIVEN FOR STATEMENTS

- • SPEC I AL TO TBI S PROGRAM.

•
•
•
•

• • •
• ••••••••••••••••••••••••••••••••••••••••••••••••••••••••••
• DECLARE FORTRAN ARRAYS FOR USE IN SUMMARY AT END.
DECLARATIONS .

REAL TRUMAX(100), ERRMAX(100)

GLOBAL.
COMMON I GCQ~ON I T, DELTAT, NSTEP

EqUAT ION. (4 .•y. 02)UXX .-1- UYY -I- (2. +TAN«X-I-Y+T) 14.»UY
+ (1.·2./DELTAT)U = PDERS(X,Y)

BOUNDARY.

GRID.

OPTIONS.

U = UBOUND(X,Y) ON X = o.
ON X = 1.
ON" Y = o.
ON Y = 1.

3 X POINTS S 3 Y POINTS

CONSTANT COEFFICIENTS=.FALSE,

FORrRAN.
I1LEVL = 1
TSTART = 1.
TSTOP = 2.

c
C CHOOSE DELTA T = (DELTA X) "2 OVER 2
C

DELTAT "" R1HXGR"ZIZ
NS1'EPS = INT( (TSTOP-TSTART) IDELTAT + .5)
DE[,TA1 = (TSTOP-'fSTART) INSTEPS

00 10 NSTE? :: 1, NSTP.PS
T = TSTAR]' + NS'l'EP'DELTAT

i,. '.
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DISCRETIZATION.
INDEXING.
SOLUTION.

HERMITE COLLOCATION
ASIS
BAND GE

FORTRAN,
C
C COMPUTE MAX' ERROR FOR THIS EXAMPLE, SAVE FOR SUJdldARY OUTPUT AT END
C

CALL TMXEMX(TROYAX(NSTEP) ,ERRMAX(NSTEP»
IHEVL =0

10 CONTINUE
c
C PRINT SUMMARY OF RESULTS FOR THIS EXAMPLE
C

CALL SllMARY(TRUMAX, ERRMAX, TSTAnT, NSTEPS)

SUBPROGRlIMS.
FUNCTION PDERS(X,Y)
COMMON 1 GCOMON I T, DELTAT, NSTEP

1 UO(X,Y)

• U(X, Y)

ELSE
RLlIXYT = COEFOF(CUXX) 1 UXX(X, Y)

+ COEFOF(CUYY) 1 UYY(X, Y)
+ COEFOF (CUY) 1 UY(X, y)
+ (COEFOF(CU) + 2./DELTAT)

CALL QIPCOE(X,Y.COEFOF)

IF (NSTEP .EQ. 1) THEN
RLUXYT = COEFOF(CUXX) 1 UOXX(X, Y)

+ COEFOF(CUYY) 1 UOi'Y(X, Y)
+ COEFOF(CUY) 1 UOY(X,Y)
+ (COEFOF(CU) + 2./DELTAT)

T = T - DELTAT
IF (NSTEP .EQ. I) THEN

UOFT ::: UO(X,Y)
ELSE

UOFT = U(X,Y)
ENDIF

PDBRS = " (2.IDELTAT)"UOFT
A ~ (RLUXYT(X.Y) + F(X,Y,T»
8 - F(X,Y,T+DELTAT)

T ::: T + DELTAT
RETURN
END

FUNCTION RLUXYT(X.Y)

REAL COEFOF(6)
COMMON 1 GCOYON 1 T, DELTAT, NSTEP
INTEGER CUXX, cUXY, CUYY, CUX, CUY, cu
DATA CUXX, cUXY, CUYY, CUX, CUY, cu

A I I, 2, 3, 4, 5, 61

A
B
C

ENDIF
RETURN
END

A
8
C

c

c

c

c

c
c

c

FUNCTION F(X,Y,T)
TI ::: .25"(X+Y+T)
T2 = EXP(-YI12-T)
F ::: - (.25 I COS(Tl) - 2. I Y"SrN(TI) 1 T2 • (TAN(TI) + 2.)

A + (.0625 - 3.75"Y"Z) 1 T2 1 SIN(TI)
8 + (.25 + Y) • T2 1 COS(TI)

RETURN
END

FUNCTION UOXX(X,Y)
COMMON IGCOMONI T, DELTAT, NSTEP
uoxx::: -( EXP(-YIIZ-T) 1 SIN«(X+¥+T)/4.»/16.

c ..
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RETURN
END

• 115 -

FUNCT ION uoY¥{X, Y)
COMMON IGCOMONI T. DELTAT, NSTEP
UOY¥ '" RXP(_Y992_'1') 9 «-l .•Y992-2.0025)9SIN{{X+Y+T)/4.)

A - y9COS«X+Y+T)/4.) )
RETURN
END

FONCT rON UOY(X, Y)
COMMON IGCOMONI T, DELTAT, NSTE?
UOY = EXP{·Y"2-T) 14, • (COS«X+Y+T)/4.)-a. ·Y9SIN«X+Y+T)/4.»
RETURN
END

FUNCTION UO(X,Y)
COMMON IGCOMONI T, DELTAT, NSTEP
uo = SIN«XI-Y+T)/4.) 9 EXP(·Y"2-T)
RETURN
END

FUNCTION UEOUND{X,Y)
COMMON IGCOMONI T, DELTAT, NSTE?
UBOUND = TRUE(X,Y)
RETURN
END

FUNCTION TRUE(X,Y)
COMMON IGCOMONI T, DELTAT, NSTEP
TRUE'" SIN«X+Y+T)/4.) • EXP(-Y'92-T)
RETURN
END

SUBROUTINE TMXEMlC (TRUMAX, ERRMAX)
c
C TIUS ROUTINE FINDS THE MAX ABSOLUTE VALUE OF TRUE AND ERROR
C ON THE GRrD AT THE CURRENT TIME STEP. USE ELLPACK COMMON BLOCKS
C TO GAIN ACCESS TO VARIABLES DEFINING THE GRID. ONE COULD EASILY
C COMPUTE THESE ONESELF.
C

DO 20 I = I, IINGRX
X = RIGRDX( I)
DO 10 J = I, I1NGRY

Y = RIGRDY(J)
TRUXYT '" TRUE{X,Y)
TRUMAX = AMAXI (TRUMAX, TRUXYT)
ABSERR = ABS(TRUXYT-U(X,Y»
ERRMAX = AMAXI (ERRMAX,ABSERR)

10 CONT[NUE
20 CONTINUE

RETURN
END

SUBROUTINE SUMARY (TRUMAX, ERRMAX, TSTART, NSTEPS)

c

c

c

COw,rON I Cl IVGR I
COMMON' I CIGROX I
COWON I CIGROY /

TRUMAX = O.
ERRMAX '" O.

IINGRX, IINGRY, I1NGRZ, IINEPT, I1MBPT
RIGRDX( 1)
RIGRDY( I)

c
C THIS ROUTINE PR[NTS A TABL8 OF SOLUTION AND RELATIVE ERROR AT EACH TIME
C S·rEP. 'l'lII!:SIo: VALUES HAV~ DIo:EN SAVED LN" THE ARRAYS TRtJMAX AND ERRMAX.
C

l~EAL 'l'lUJMi\X( I), ERlt.\iAX( 1)
C
C ACCESS GRID INFORMAT!ON FROY ELLPACK VARIABLES. THESE ALSO CAN BE
C COMPUTED EASILY WI'fHOUT' REFERENCE TO ELLPACK.
C

,-'-~'
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T, DELTAT, NSTEP
RIAXGR, RIAYGR, RIAZGR, R1BXGR, R1BY'GR,
RIBZGR, RIHXGR, RIHYGR, RHIZGR

COMMON I GCOYON I
COMMON I CIRVGR I

A
c
C PRINT PROBLEM/METHOD INFORMATION
C

TSTOP = TSTART + NSTEps·DELTAT
PRINT 100, RIHXGR, RUfYGR, T5TART, TSTOP, DELTAT

c
C PRINT HEADING
C

120, NSTEP, T, O.

PRINT 110
DO 10 NSTEP = I, NSTEPS

T = TSTART + NSTE:FhDELTAT
IF (TRUMAX(NSTEP) .NE. 0.) THEN

PRINT 120, NSTEP, T, TRUMAX(NSTEP),
ERRMAX(NSTEP)/TRUMAX(NSTEP)A

ELSE
PRINT

ENOIF
10 CONTINUE

c
c

RETURN

100 FORMAT ( '1 T IIdE DEPENDENT PROBLEM'II
A T7, 'HX =' ,lPIE12.41
B T7,'HY =',IPIE12.41
C T7,'TSTART =',lPIEI2.41
D T7, 'TSTOP =' ,lPIEI2.41
E T7, 'DELTA T =' ,lP1E12.411)

110 FOHMAT(T8, 'STEP' , T18, 'TIME' , T28, 'MAX TRUE' , T39, 'MAX RELERR' I
A T7,6('-'),3(2X,10('-'»)

120 FORMAT(T8, [4, lX,IP3E12.4)
C

END

END.

We do not comment on the programming details here because a "template" for

solving such problems is given later and the comments there explain most of

these points. The bulk of the code is to evaluate Lu(x,y,t-At) for both the pre-

vious time value and the initial conditions (which is a similar, but separate

case). A small routine to measure the maximum error is included and the

results are listed below for grids of 3x3(At = 1/8), 5x5(.6.t = 1/ 32), and

9x9(M = 1/120).

. :
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Table 5.1. Behavior of the error in solving a time dependent problem with
Crank-Nicolson and INTERIOR COLLOCATION.

Maximum Relative
Error at t -

1 + 1/B
1 + 1/4
1 + 3/B
1 + 1/2
1 + 5/8
1 + 3/4
1 + 7/8

2

(x,y)-Grid
3x3 5x5 9x9

We end this section with a general "template" for solving time dependent

problems in ELLPACK. The template is heavily commented to explain its use.

• ELLPACK TIME DEPENDENT PROBLEM TEMPLATE
•

U = LV + F(X,Y,T)
T

•
• u = UO(X,Y) FOR T = TSTART, 0 < X,Y < 1

•
•
•
•

•

U = UBOUND(X,Y,T) FOR TSTART < T < TSTOP, (X,¥) ON BOUNDARY

WHERE
L IS A LINEAR ELLIPTIC OPERATOR
VO SPECFF[ES THE INiTIAL VALUES
UBOUND SPECIFIES THE BOUNDARY VALUES

•

• GLOBAL. COMMON BLOCK GIVES FUNCTIONS ACCESS TO CURRENT TIME T, TIME
SPACING DELTAT. AND CURRENT STEP NUMBER NSTEP,

GLOBAL.
COMMON I GeOMON IT, DELTAT, NSTEP

• EQUATION. DEFINE EQUATION FOR EACH TIME T. L IS THE LINEAR OPERATOR.
• DEFINE RIGHT SIDE PDERS(X,Y) BELOW,

EQUATION. LV - (2.1DELTAT)U = PDERS(X,n
•
• BOUNDARY. SPECIIT BOUNDARY VALUES. DEFINE USOUND(X,Y) BELOW.

BOUNDARY. U = UBOUND(X, Y) ON X = O.
ON X = 1.
ON Y = O.
ON Y = 1.

GRID. CHOOSE GRID LINES FOR PROBLEM,
•
GRID. 5 X POINTS :I> 5 Y POINTS

• OPTIONS. li'ORCE ELLPACK TO EVALUATE COEFFICIENTS OF L FOR EACH TIME T
• II<' SOME COEEo'FICIENTS DEPEND ON T BUT NOT X OR Y.

OP'['IONS. CONSTANT COEli'FICI ENTS=. FALSE.
•

FORTRAN. SET TSTART, TSTOP. SET DELTAT, DEPENDING ON DISCRETIZATION
METHOD. IN THIS EXi\MPLE, DELTAT IS SET TO HX (THE ELLPACK
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•
•
•
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VARIABLE RIHXGR). COMPUTE NSTEPS (NUMBER OF STEPS), THEN
RECOMPUTE DELTAT TO MAKE THE STEPS COIdE OUT EVEN.

5 POINT STAR
ABIS
LUWACK BAND
MAX(ERROR)

SPACE VARIABLES AT WHICH TO EVALUATE RIGHT SIDE
TIME AT WHICH TO EVALUATE RIGHT SIDE
TIME SPACING
TEMPORARY" VAR[ABLE; HOLDS U(X,Y) AT LAST TIME T.
RETURNED VALUE OF RIGHT SIDE

FORTRAN.
IILEVL = 1
TS'fART = O.
TSTOP = 1.
DELTAT '" RIHXGR
NSTEPS = INT«TSTOP-TSTART)/DELTAT + .5)
DELTAT = (TSTOP-TSTART)/NSTEPS

e
C MAIN LOOP OVER TIME. T IS THE TIME FOR THE CURRENT STEP,
e

DO 10 NSTEP = 1, NSTEPS
T = TSTART + NSTBP'DELTAT

e
C CHOOSE MODULES TO DE USED ON PROBLEM AT EACH STEP. ONE OF MANY
C POSSIBLE COMBINATIONS IS SHOWN.
e
DISCRETIZAT ION.
INDEXING.
SOLUTION.
OUTPUT.
FORTRAN.
e
C SET OUTPUT LEVEL=O TO AVOID REPEATED OUTPUT FROM EVERY TRIP THROUGH LOOP.
e

I1LEYL = 0
10 CONTINUE

'SUBPRQGRAJ.lS. DEFINE PDERS, RLUXY'f, INITIAL VALUES, BOUNDARY VALUES,
, AND TRUE (IF KNOWN) .
•
SUBPROGRAMS .

FUNCT ION PDERS (X, Y)
c
C THIS FUNCTION EVALUATES THE PDE'S RIGHT SLOE FOR THE CURRENT TIME T.
C PDERS "" (-21DELTAT) 'U(X, Y, T-DELTAT) - LU(X,Y, T~DELTAT)
C - li'(X,H,T-DELTAT) - F(X,Y,T). NOTE THAT T IS PASSED IN GeOMON".
e
C VARIABLES;
C X,Y
e T
C DELTAT
C UOFT
C PDlms
C

COMMON I GCOMON IT, DELTA!, NSTEP
e
c NEED U, W, AND F AT (X,Y,T-DELTAT). MOVE TIME T BACK ONE STEP SO ALL
C FUNCTIONS ARE EVALUATED AT THE PREVIOUS TUdE STEP,
C

T := T - DELTAT
e
C FIND U(X,Y,T-DELTAT); IT'S EITHER UO(X,Y) FOR THE INITIAL STEP,
C OR U(X,Y) WHERE U IS THE ELLPACK FUNCTION WHICH GIVES THE RESULT
C AT THE PREVroUS TIME STEP.
e

IF (NSTEP .EQ. 1) THEN
UOFT = UO(X,Y)

ELSE
uon = U(X,Y)

ENDIF
c
C· EVALUA'l.'E RIGHT SIDE USING RLUXYT FOR LU AT PREVIOUS
c

PDERS = - (2./DELTAT) 'UOFT
A • (RLUXYT(X,Y) + F(X,Y,T»)
B • li'(X,Y,T+DELTAT)

e
C RESTORE T TO CURRENT VALUE.
e

TIME STEP

'>1
~ ,
\. ;
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SPACE VARIABLES AT WHICH TO "EVALUATE LU
COEFFICIENTS OF L, EVALUATED AT TIME T
TIME AT WH[CH TO EVALUATE LU
CURRENT STEP
INDICES INTO COEFOF
TElAPORARY VARIABLES
RETURNED VALUE OF LU(X,Y,T)

T '" T + DELTAT
RETURN
END
FUNCT [ON RLUXYT (X, Y)

C
C THIS FUNC1'ION EVALUATES LU(X,Y,T). NOTE THAT T IS PASSED IN GCOMON, AND
C THAT (a/DELTAT) MUST BE ADDED TO THE COEFFICIENT OF U BECAUSE ELLPACK THINI<S
c THE (-ZIDELTAT)U IS PART OF LU.
C
C VARIABLES:
C X,Y
C COEFOF(6)
C T
C NSTEP
C CUXX,CUXY, ...
C UXYSAV,UXSAV,UYSAV-
C RLUXYT
C

REAL COEFOF(6)
COMMON I GCQ.YON IT, DELTAT, NSTEP
INTEGER CUXX, CUXY, curr, CUX, CUY, CU
DATA CUXX, CUXY, CUYY, CUX, CUY, CU
All, 2, 3, 4, 0, 61

C
C CALL ELLPACK ROUTINE QIPCOE TO EVALUATE THE COEFFICIENTS OF THE POE AT
C TIME T AND FILL COEFOF.
C

CALL QIPCOE(X,Y,COEFOF)
C
C IF ON 1ST STEP, NEED INITIAL VALUES (UO AND ITS DERIVATIVES). OMIT TERMS
C WITH ZERO COEFFICIENTS IN AN ACTUAL CASE.
C

IF (NSTEP . EQ. 1) TH8N
RLUXYT :::: COEFOF!CUXXl • UOXX(X, Y)

A + COEFOF CUXY • UOXY(X, Y)
8 + COEFOF CUYY • UOrr(X, Y)
C + COEFOF CUX) • UOX(X,Y)
D + COEFOF CUYl • UOY(X,y)
~ + (COEFOF(CU + 2./DELTAT) • UO(X,Y)

C
C ELSE, NEED RESULTS OF PREVIOUS TIME STEP (U,UX,UY, ... ). OMIT THOSE
C TERMS WITH rDENTICALLY ZERO COEFFICIENTS IN AN ACTUAL CASE.
C

• V(X, Y)

ELSE
RLUXYT '" COEFOF(COXX) • UXX(X,y)

+ COEFOF(CUXY) • UXYSAV
+ COEFOF(CUYY) • lJYY(X,Y)
+ COEFOF(CUX) • UXSAV
+ COEFOF(CUY) • UY5AV
+ (COEFOF(CU) + 2./DELTAT)

A
8
C
o
E

ENDIF
RETUHN
END

•
DEFINE THE FUNCTION F.

FUNCTION F(X,Y,T)
F' -=
RETURN
END

• DEFINE INITIAL VALUE UO AND NECESSARY DERIVATIVES; OMIT DERIVATIVES
NOT APPEARING IN PDE.

!<'UNCTION UOXX(X,Y)
COMMON 1 GCOMON IT, DELTAT, N8TEP
uOXX '" ...
RETURN
END
FUNCTION UOXY(X,Y)
COMMON I GeDMON I T, DELTAT, NSTEP
UOXY '" ...
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RETURN
END
PUNCT[ON UOYY(X,Y)
COMMON I GCOMON IT, DELTAT. NSTEP
UOIT = ...
RETURN
END
PUNCTION UOX(X,Y)
CC1WJON I GeDMON IT. DELTAT, NSTEP
UOX = ...
RETURN

. END
PUNCTION UOY(X,y)
COMMON I GeOMON IT, DELTAT, NSTEP
UOY = ...
RETURN
END
PUNCTION UO(X,Y)
COMMON I GCOMON / T, DELTAT, NSTEP
VO = .
RETURN
END

DEPlNE THE BOUNDARY VALUES UBOUND(X,Y,T). NOTE: THAT T IS PASSED IN GCOMON.
•

PUNCTIpN UBOUND(X,y)
COl.ru:ON I GeOMON IT, DELTAT, NSTEP
UBOUND =
RETURN
END

•
• DEPINE THE FUNCTION TRIJE(X,Y,T),

FUNCTION TRIJE(X,Y)
COMMON I GCOMON I T, DELTAT,
TRUE '"
RETURN
END

END.

5.E TIlE TRANSISTOR EQUATIONS

IF KNOWN. NOTE THAT T IS PASSED IN GCOYON.

NSTEP

• *,. DRAFT DEFERRED· ••

,.',,.' .
'- .'
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CHAPI'ER 6: INTRODUCTION TO THE ELLPACK MODULES

The ELLPACK language and system described so far is only half of the story:

the other half is the heart and muscle of ELLPACK, the ELLPACK modules. No

problem solving system is better than its underlying programs, The design of

ELLPACK aUows the collection of modules to grow or shrink, so a particular

ELLPACK system may have more or fewer modules than presented in Part 2 of

this book, Chapters 6, 7 and 9.

In late 1982 the complete ELLPACK system had well over 40 modules; so

many that some will find it difficult to choose among them. Part 1 of this book is

written with reference to a smaller set. about 18 modules that comprise the

basic set. This set includes the more important methods as well as one example

of each "variety" of problem solVing module. Part 3 of this book. Chapters 11. 12

and 13, illustrate the performance of many ELLPACK modules on a set of 9

model problems. This performance data gives some guidance in choosing

modules for a particular problem. but one must keep in mind that it is not possi­

ble to predict reliably the relative performance of the modules for any untested

problem. This is particularly so if the problem has any unusual features - as

most real problems do.

Within the ELLPACK system there are two important collections of modules.

the ITPACK software and the YALEPACK software. described in Chapters 7 and 8,

respectively. The purposes of these two chapters is to present an overaU view of

the design, capabilities and methods in the packages. These two chapters are

written by some of the developers of these packages; David Kincaid and David

Young for ITPACK, and Stanley Eisenstat and Martin Schultz for YALEPACK. User

instructions for specif~c modules in these collections are given in Chapter 9

along with instructions for all the other ELLPACK modules.
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The user inst.ruct.ions for ELLPACK modules given in Chapter 9 are intended

to include a summary of the modules properties and restrictions. However.

there is not enough space to describe the design and methods for each module

so references are given to more detailed descriptions. The information for each

module is written by the authors of that module except for a few standard pro-

grams or simple methods that have been incorporated into ELLPACK. The for-

mat for each module description is:

Module Name
Author's Name or Module Source
Purpose
Method

Parameters

Restrictions

Performance Estimates

References

A brief statement of what the module does.
A brief sumrnary of the method used,
References to more detailed description are
usually given.
Definiton of the parameters (arguments) or
the module.
Summary of the restrictions on the
appUcability of the method or module.
Indicators of the amount of computer
resources one can expect the module to use.

The modules are put into five groups, three of which - Discretization.

Indexing and Solution - correspond to a modular viewpoint of so~ving elliptic

problems as illustrated in Figure 6.1. The fourth group, called Triples are

modules which solve an elliptic problem entirely by themselves. Triples

correspond to methods where it is either inefficient or unnatural to divide the

problem solutions into three separate phases. The final group, called Pro-

cedures. do not correspond to a step in solving the elliptic problem, but rather

to some supporting computations. Examples include computing matrix eigen-

values (perhaps to analyze the convergence of an interative method), displaying

the pattern of non-zeros in a matrix. and initializing the unknowns (perhaps to

initiate some iteration method).
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Figure 6.1. Modular vic'ivpoint of solving an elliptic problem. The inter­
faces between the modules are precisely defined which allows modules
to be used in various combinations. The triple modules go from Inter­
face 1 to 4 directly.
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