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AIlSI'IlACT

Consider the self-adjoint elliptic problem CPua:-)= +{qUy)y +ru. =1 with Diri-

chlet boundary conditions on the unit square. This problem is symmetric in the

sense that if the data is symmetric then so is the solution. The usual finite

difference discretization has one expand the derivatives and apply differences to

1YU= +P='l.I..:i: +.... This discretization is not symmetric which has lead to the

derivation of symmetric difference discretizations [or .this problem. Symmetric

discretizations are attractive intUitively and are usually recommended. We have

observed that symmetric discretizations are sometimes much less accurate: a

simple analysis is made to compare the expected behavior of the two discretiza-

tions. Data from a simplified model problem confirms the expectations that non-

symmetric differences are more accurate than symmetric differences much

more orten than vice~versa.
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Symmetric versus Nonsymmetric Differencing for Self-Adjoint Elliptic Problems

Wayne R. Dyksent and John R. Ricet

1. The Dirtercnce Approximations

Consider the finite difference discretizations of the terms

One introduces a grid Xi =ih, for O~i~n +1 = 11 h, and uses the variables 1'-i to

approximate u(xd and Pi. =p(Xi.)' The symmetric discretization of (PU;Jz al xi

is

[Pi.-KUi-1 -(P"-M +Pi+H)u,; +Pi~+l]t h 2

+(hi 2)2[p,,+~'~*-PHf'~~+pt'u; +Pi.u,;(1.u) k:3 + O(h4)

where primes indicate differentiation with respect to x. The nonsymmetric

discretization of P'Uzz +pzuz at xi. is

[P,i h' -P;i (2h) ]"'_1 - [2P,i h' j", + [P,i h' +p;i (2h) ]"'+1

+h'[p,,,,e'v)i 4 +p;",'"k3 + O(h4 ).

The error terms of these two approximations are substantially dirrerent and

it is clear that one can construct problems (chose p (x) and u (x)) so that either

approximation is much more accurate than the other. The term

Pi~'~*-Pi-~~ is h(PU"Y + O(h3) and thus likely to be small. lntuitively, one

would expect the nonsymmetric difference to be more accurate when p(x) is

rapidly varying because the derivative pz is computed symbolically. This is

t Thi::l work ::IUpported in part by Department of EnerRY contract DE-AC02-81ERI09S7.
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indicated also by the presence of the third derivative of 'P (x) in the leading

error term for the symmetric diHC"rence while the nonsymmctric difference has

only the first derivative ofp(x) in the leading error term. On the other hand, if

u (x) is rapidly varying and p (x) is not, then one would expect the symmeLric

difference to be more accurate; it does not have p 'u'" in its leading error term.

2. An Experimental Study

We observed substantial differences in the discretization errors of these

difference approximations for several problems. To illustrate the nature of the

situation. we consider the simplified model problem

-(P(x)u.). =/ in [0.1]

u(O).u(1) given.

The function f (x) is chosen to make the model problem solution be as specified.

We choose ten functions foru(x):

1
1+x2

and ten functions forp(x):

.,"" , -1-+-1~10-X-2~' .sin10x, sinl'OOx. x
10

1
1+x2 •

e 10.:1:. 1.1 +sin100x, 1
1+10x 2

Then all 100 combinations of elliptic problems are solved. We compute the max-

imum relative errors eN and es of the nonsymmetric and symmetric differ-

ences. respectively. The results are tabulated in the following manner. A factor

R is chosen, Lhe two discretizations are said to tic H either

maX(SN,eS)

min(sN'ss)

or
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max(eN,eS )~round-off.

The computation is made on a VAX 11/780 (6 decimal digit arithmetic) and the

round~oIf level is determined from those cases where the discreli7.uLion is

theoretically exact. Table 1 has four arrays with entry '-' if the methods tie, 'N'

if the nonsymmetric error eN is smaller and there is no lie, 'S' if the symmetric

error es is smaller and there is no tie. Data are given for h = 1/20 with R =1.4,

4.0 and 10.0 and for h = 1/ 100 with R = 10.0

Table 1

Arrays showing the error performance of the two discretiza
lions. The columns correspond to the tenp(x) functions, the
rows to the ten u(x) functions. A dash means the discretiza- .
lions tie, Nand S mean that nonsymmetric and symmetric
are better, respectively.

s -

N 
- N -
- N -

N -

-NNNNNNNN
--N--~NNS

- N N N S - N N N
NN- NNNN
-N- NN

N N -
SN~ -N-
S - N 

- s 
N N -

33 N's 5 S's ,62 ties
" = 1/20 R = 1.4

NNNNNNNN
- N N S

N N 
- N N -
- N N -

N 
- N -
- N -
- S -
- N -

23 N's 3 S's 74 ties
h = 1/20 R =4.0

NNNNNNNN
- N -

N - N N -
N - N N -

N 
N 
N 
N -

N -

20 N's 0 S's 80 ties
h=1/20 R=10.0

NNN-NNNNN
- - - N -

N-NNNNN
N- NNN-

-" N 
N 
N -

S 
N -

23 N's 1 S 76 ties
h = 1/100 R=10.0

The main observation to be made is that most of the time (at least 2/3's) it

does not make any difference which discretization is used. Il is probably more

"fair" to exclude the flrst row of the arrays where u = x 2 and the nonsymmetric

difference is exact. However, the general conclusion is unchanged if this done.
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In those cases where it does make a difference which discretization is used. the

nonsymmetric one is much more likely to be the best and often by a substantial

amount. The eight largest differences in discretization errors are tabulated

below for h = 1/ 20 (excluding the case u = Z2).

eN es u p eS/eN

.0052 3.7 ,,' 1.1+sinlODx 712

.00021 .69 e" 1.1 + sinlOOx 3286

.072 5.8 e 10:.:: 1.1 + sinlOOx 81

.013 1.9 1/ (1+10"') 1. 1 + sinlOOx 146

.076 16.0 sinlOx 1.1 +5in100x 211

.067 6.5 ,," 1.1 + sinlOOx 97

.00039 .011 e" ,,' 28

.00064 .023 sinx ,,' 36

These data give strong experimental support to the conclusion reached by

the analysis: Unless it is known that u varies much more rapidly than p. one

should use the nonsym..m.etric differences in order to expect the best accuracy

from the discretization.
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