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ABSTRACT

It is well known that improper scaling of linear equations can result in catastrophic loss
of accuracy from Gauss eliminatioD. The scaling process is not well understood and the com
monly used "scaling rules" can fail. We study the scaling problem for the linear equations
that arise from solving elliptic partial differential equations by collocation using Hermite bicu
bies. We present an a prior; scaling rule that is effective but not foolproof. We conclude that
one should use scaled partial pivoting for such equations. We also explore the relationship
between the ordering used during Gauss elimination and the underlying geometry of the ellip
tic problem; we conjecture that this ordering must maintain the geometric integrity of the
problem in order to avoid severe round-off problems.
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The Importance of ScaIing for tbe Hermite Bicubic
Collocation Equations

Wayne R. Dyksen
John R. Rice

1. Introduction

It is well known that improper scaling of linear equations often results in a catastrophic

loss of accuracy from Gauss elimination. Unfortunately, tbe scaling process is not well under-

stood and the most commonly used "scaling rules" can fail. Textbooks usually choose one of

three courses: 1) say tbat the linear equations should be ''properly scaled" and ignore tbe issue

[Dongarra, et. aI., 1979], 2) give some rules for scaling and then warn tbat they are not rnfaIli-

ble [Rice, 19811, or 3) present scaled partial pivoting as the proper version of Gauss elimina-

tioo [Coote and de Boor, 1980]. A few books combine tbese [Rice. 1983J.

We report here on an experimental study of the scaling problem for the linear systems

that arise from solving elliptic partial differential equations using Hermite bicubic collocation.

An attractive feature of collocation is that it applies easily to general partial differential equa-

tions with general boundary conditions. However. the system of linear equations obtained

from Hermite bicubic collocation does not possess any special properties such as being positive

definite and, as a result, it is most often solved using simple band Gauss elimination. This

study demonstrates that it is essential to scale the Hermite bicubic collocation equations; that

is. if some type of scaling is not used, then the accumulated effects of round-off dominate the

computations. We recommend using both a particular a priori scaling of the equations

together with scaled partial pivoting. However. since we cannot formulate a completely reli-

able a priori scaling rule for these equations whieh requires less computation than what
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scaling adds to scaled partial pivoting, we conclude that one should always use scaled partial

pivoting. We believe that this conclusion is applicable to other finite element methods. More-

over, we conjecture that the ordering used during Gauss elimination must preserve the under-

lying geometry of an elliptic problem.

2. Collocation with Hermite Blcubla

We consider a second order, linear eUiptie problem on a rectangular domain R in the

form

L[ul=au.u +buq +cu". +duz +ell:P +fu =g

M[u]=au +puz +'Yu,. =&

(z,y)E R

(z,y)EaR

where a. b. c • d • e ,f • g. «. P. 'Y and 8 arc given functions of x and y. We choose a positive

integer n and subdivide the domain R with a tensor product grid containing n2 rectangles.

We then approximate u (x ,y) by

N
U(z,y)~IH,(x.y) - u(x,y),-,

where N =4(n +1)2 and the H/(x,y) are the Hermite bicubic basis functions formed as the

tensor product of the standard one dimensional Hermite cubics with the grid lines being the

knots.

Thc N unknowns w, are determined by choosing N distinct points in R and collocating

the elliptic problem at these points. In particular, 4n2 collocation points are placed at the four

Gauss points of cach of the n2 grid rectangles since this gives a fourth order discretization

error for smooth problems [Houtis, 1978), [Percel and Wheeler. 1980]. The remaining

4(2n +1) collocation poinrs are the two Gauss points of each boundary grid segment plus one

at each of the four comers of R. Collocating at these points, we obtain the H~rmil~ bicubic

collocalion ~qualio1JS
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L[U)(z"y,)=g(z,.y,) k =1.. ··.4n'

M[U](z"y,)=S(z"y,) k =4o'+1.....4(n+1)'.

The structure of the coefficient matrill: of the resulting linear system is determined by

the ordering of the collocation points (the equations or rows) and the basis funclions (the

unknowns or columns). A common finite element ordering is to order the grid rectangles in

the natural way from bottom to top, left to right. The collocation points are then numbered

corresponding to their containing grid rectangles (See Figure 4). The Hermite bicubic basis

functions are ordered corresponding to their support in a Datural way from bottom [0 top. left

to right. The resulting coefficient matrix is somewhat block bi-diagonal [Dyksen. 1981], [Dyk-

sen and Rice. 1982].

3. Numerical E](perlment

We studied this problem using the ELLPACK system [Rice and Boisvert, 1984]. Its

discretization modules P3Cl COLLOCATION and HERMITE COLLOCATIONt generate

the Hermite bicubic collocation equations; HERMITE COLLOCATION scales the equations

associated with the boundary conditions (see Section 6) whereas P3Cl COLLOCATION does

not. The solution modules UNPACK BAND and BAND GE solve the resulting linear system

of equations. LINPACK BAND uses the UNPACK routines SGBFA and SGBSL which do

band Gauss elimination with partial pivoting [Dongarra, et. aI., 1979]. BAND GE does band

Gauss elimination with scaled partial pivoting using a direct modification of SGBFA and

SGBSL. The equations are solved in the order in which they are generated by the discretiza-

tion modules, namely, the finite element ordering described above.

We combine these modules to obtain four similar, yet distinct numerical methods. Note

that scaling is the only difference between P3Cl COLLOCATION and HERMITE COLLa.

tThe module which we Tefel 10 hele as HERMITE COLLOCATION has 5Ilbsequcotly beeo splil ioto two
scp.aratc ELLPACK modulClll, HERMITE COLLOCATION and JNrERIOR COLLOCATION. and P3Cl
COLLOCATION has been removed hOOl ELLPACK.
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CAnON and between UNPACK BAND and BAND GE. Letting Sand U stand for "scaled"

and "unsealed", we denote these four methods as follows:

Notation

UlU
UlS
SlU
SIS

Numerical Method
P3Cl COLLOCATION/LlNPACK BAND
P3Cl COLLOCATION/BAND GE
HERMITE COLLOCATION/LlNPACK BAND
HERMITE COLLOCATION/BAND GE

We use a subject population of twenty elliptic problems from the population of [Rice, ct. aI..

1981]; it consists of problems 2-1, 3-1, 5-1, ~1. 9-2, 10-2, 10-3, 12-3, 17-2, 20-2, 22-1, 23-6. 33-1,

35-3,38-1,40-1,50-1,53-3,54-2 and 59-1. These twenty problems represent a variety of partial

differential operators and boundary conditions. Fifteen problems have Dirichlet boundary

conditions. five of which are homogeneous. Fifteen of the domains are the unit square.

Each of the four numerical methods described above are applied to each of the subject

population problems using the performance evaluation system of [Boisvert, ct. aI., 1979]. We

use n =4. 8. 12, 20 and 29 which involves from 100 to 3364 unknowns Wj. The computations

are done on a VAX 11/780 computer with floatin3 point accelerator using the UNIX FOR.

TRAN compiler m. Note that this experiment involves computing 400 solutions of elliptic

problems.

4. Perform.ance Analysts

We now consider the following hypothesis: Scaling is uS~nlia/ for ~rically soJ",ing lhe

H~rmite bicubic colJocmion ~qualions. To establish this hypothesis, we compare these methods

pairwise using simple non-parametric analysis as follows:

Comparison
UIS vs U/U

SlU vs U/U
SIS vs SIU

SIS vs UIS

Interpretation
Solve the unsealed equations with scaled partial pivoting (BAND
GE) versus partial pivoting (UNPACK BAND)
The scaled versus unsealed equations solved with partial pivoting
Solve the sealed equations with scaled partial pivoting versus partial
pivoting
The sealed versus unsealed equations solved with scaled partial pivot
ing

The two methods of each pair are ranked on each problem using the maximum error at

the grid points. For example, Figure 1 shows performance graphs of log(n +1) versus the
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logarithm of the maximum error at the grid points for two problems. We see that method VIS

is dramatically more accurate than method U/U; in fact, method UIU gives results which are

so contaminated by round-off that they are totally unacceptable. By contrast, we see that

methods SIS. SlU and UlS each give similar. accurate results; that is, the effect of ei.ther seal-

iDg the collocation equations or using scaled partial pivoting to solve them appears to remedy

the problem present in method DIU. Note. however, in Figure 1 that for Problem 23-6 U/S

and SIS give significantly bettcr accuracy for one case. This means that our a priori scaling

method was not nearly as good in this case as using scaled partial pivoting. These graphs

typify the results obtained for the other problcou.

We rank each pair of methods on each problem and compute a....erage ranks for four

different groups of problems: the ten with nonhomogeneous Dirichlet boundary conditions,

the fi....e with homogeneous Dirichlet boundary conditions, the five with mixed boundary con-

ditions, and the entire subject population. An average rank of 1.00 means that the method is

always the best whereas 2.00 means that it is always the worst. We obtain confidence levels on

the observed differences using the Friedman, Kendall and Babington-Smith test [Hollander

and Wolfe, 1973}. We summarize the results in Tables 1 - 4.

Table 1: Average rank of UlS vs U/U.

Group
DirfNon
Dir/Hom
Mixed
Combined

(10)
(5)
(5)

(20)

Average Rank
VIS UfU
1.00 2.00
1.70 1.30
1.00 2.00
1.17 1.82

Significance
99%

<80%
99%
99%

Table 2.: Average rank. of SlU vs U/U.
Average Rank

Group VIS UfU Significance

DirfNon
Dir/Hom
Mixed
Combined

(10) 1.00
(5) 1.60
(5) 1.00

(20) 1.15

2.00
1.40
2.00
1.85

99%
<80%

97%
99%
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PROBLEM NUMBER 23 PROBLEM NUMBER 40

PARAMETER SET 6 PARAMETER SET 1
1.000 1.000

~ 0'" ~ 0,"

.000 • of' .aoo • of'
+ '''' • + ''''x 'I' • x 'I'

•
-1.000 -1.000•

•
-2.000 • -2.000

• •

+ • •UJ-3.ooo • cr.l-3.000 •w w
0 0
D D •Z Z, ,
DO + DO
DO DO
w....ll.OOO W..ll,OOO !
'" '"D D
-' -'

I
• •-5.000 -5.000

•
".000 ".000

-7.000 -1.000

-6.000 -8.000

-9.000 +---,---,-----,-----,
.000 .500 1.000 1.500 2.000

LOG NX
2.0001.500.500

".aoo+----.-----,,----,----,
.000

Figure 1: Graphs of the logarithm of NX =n + 1 versus the logarithm of the maxium error at
the grid points for Problem 23-6 which bas mixed boundary conditions and for Problem 40-1
which bas nonhomogeneous Dirichlet boundary conditions.
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Table 3: Average rank of SIS vs StU.
Average Rank

Group UlS UlU Significance
DirlNan
Dir/Hom
Mixed
Combined

(10)
(5)
(5)

(20)

1.40
1.70
150
1.47

1.60
130
150
152

<80%
<80%
<80%
<80%

Table 4: Average rank of SIS vs VIS.
Average Rank

Group UlS UlU Significance
DirlNan
Dir/Hom
Mixed
Combined

(to)
(5)
(5)

(20)

150
1.60
120
1.45

150
1.40
1.80
155

<80%
<80%

80%
<80%

For example, we see from Table 1 that comparing VIS versus U/U on tbe entire subject popu-

lation gives a rank of 1.17 for VIS and a rank of 1.82 for VIV. The difference in rank is

significant at the 99% level of confidence.

These experimental results strongly support our initial hypotbesis. namely. that sealing is

essential for numerically solving the Hermite bicubic collocation equations. We see from Fig-

ure 1 that tbe results obtained by scaling are significantly more accurate that those obtained

by not scaling. Moreover, the data in Tables 1·4 demonstrate that tbe observed similarities

or differences between methods are themselves statistically significant and not due merely to

chance.

Our initial hypothesis can be stated more specifically in terms of the four methods eon~

sidered here: method SIS is slightly more accurate than methods SID and DIS which are all

very much more accurate than method VIV. We believe that this data supports our

hypothesis with a high level of statislieal confidence.

Finally, we note from Tables 1 and 2 that problems with homogeneous Dirichlet boun·

dary conditions are a significant special case. In this ease. both HERMITE COLLOCAnON

and P3Cl COLLOCATION eliminate the boundary condition equations from the linear sys-

tern during the discretization and belore Gauss elimination. This suggests that the boundary
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equations might be the key to understanding the severe round-off problems resulting from

method U/U.

s. ScaIlng and lbe Boundary EquatioDi

To furtber study the effects of round-off, we constructed a parameterized elliptic prob-

lem, Problem 59, whose solution is a bicubic for which Hermite bicubie collocation gives the

exact solution except for round-off. Problem 59-1 is a Poisson problem with nonhomogeneous

Dirichlet boundary conditions on the unit square.

Figures 2 and 3 show contour plots of the error for Problem 59-1 using SlU and U/U

with n =8. Figure 2 shows that if we solve the scaled equations using partial pivoting. tbell

the error is rather randomly distributed and is of the order of machine precision, 10--6. By

contrast, we see from Figure 3 that if the unsealed equations are solved using merely partial

pivoting, then the error in the interior of the domain is still on the order of of 10-6 whereas

the error on the boundary is on the order of 10--5 and is as large as 10-4. Hence, essentially all

of the round-off error occun;; on the boundary; this is unexpected since the boundary condi-

tions are Dirichlct and hence should be interpolated exactly. This is further cvidence that the

boundary equations are the key to undeI5tanding the round-off problems.

The relationship between the boundary equati.ons and scaling is geometrical and can be

seen by considering the order in which the equations are eliminated during Gauss elimination.

Since the equations arc associated with the collocation points, we can view the reordering of

the equations produced by pivoting as a reordering of the collocation points themselves.

Figure 4 shows a typical example of the order of elimination resulting from solving Prob-

lem 59-1 using the unsealed collocati.on equations. We give the geometric ordering of the col-

location equations before Gauss elimination and after Gauss elimination with scaled partial

pivoting, partial pivoting and complcte pivoting.

Figure 4 shows that (he three pivoting strategies differ dramatically in the ordcr in

which they eliminate the interior and the boundary equations. Partial pivoting eliminates as
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error
contours

contoo..r .....,Iue
I -.66e-06
2 -.'lge..Q6
3 -.32c..()5
'1 -.16c-06
5 .66c-oe
6 .lh-06
7 .34c-06
e .50c..Q6
9 .670:-06

10 .&-06

•

Flgun 2:: Contour plot of the error obtained by solving Problem 59-1 using SlU with n =8.
The error is due to round-off and is of the order of 10-6 which is machine precision.
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error
contours

VI!Ilue

I
2
J,
5
6
7
B
9

10

-.86e-01
-.65e-04
-.'1'1e-01
_.2'1 .._01
-.27e-05
.1&:-01
.3%-01
.60e-0'1
.8Ie-01
.10,,-03

g '----+-~--4h~lU•.::P.:7"""L-+.=--LI""';_-____\_c:: ~OOO .167 .333 .500 .667 .833 1.000

•

Figure 3: Contour plot of the error obtained by solving Problem 59-1 using UlU with n =8.
The error in the interior of the domain is on the order of 10-6 whereas the error on the boun
dary is aD the order of 10-5 and is as large as 10.....
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many of the interior equations as possible before it must eliminate a boundary equation.

Complete pivoting eliminates all of the interior equations before eliminating any of the boun-

dary equations. Scaled partial pivoting weaves the elimination of the interior and boundary

equations together; in fact, the reordering produced by scaled partial pivoting is essentially

the Hermite Colloeder ordering discussed in [Dyksen and Rice, 1983].

The above phenomena result from the inherent differences in magnitudes of the boun-

dary and interior equations. [n a typical elliptic Dirichlet problem, the coefficients of the

boundary equations involve values of the basis functions and hence are 0 (1). The interior

equations. however, involve second derivatives of the basis functions and hence are O(n2).

Thus, during simple partial pivoting and complete pivoting, the interior equations are choren

before the boundary equations as often as possible. As a result, the boundary condition infor-

mation is not used until the last possible moment.

In practice, the lack of scaling using the original ordering results in the two dimensional

analogue of numerically solving an ordinary differential equation from the inside out.

6. Scallng the BooDdary EqoatioDI

There are two approaches to scaling the boundary equations. Since the scaling is

required only for choosing the pivots, it need not be carried out explicitly, although to do so

is a simple way to proceed. Thus, we can scale the boundary equations either upUcitly he[ore

elimination or ImpUcltly daring elimination.

In order to determine an a priori scaling factor, we consider the Hermite bicubic U in

the case in which all of the coefficients W, are 0 (1). If the domain is discretized with a uni-

form x and y spacing h~ and h" respectively, then a simple computation gives

(6.1)

and

Uu + U" - (I +b, )(1 + Ilh, )/h, + (1+ h,)(1+ lIb, )/b,
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FIgure 4: The geometric ordering of the collocation equations before Gauss eliminarion (upper
left) and after Gauss elimination using scaled partial pivoting (upper right), partial pivoting
(lower left) and complete pivoting (lower right).
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U -1+11,. +11..-: +h", h,.
Uz -1/hz +h,/hz +1+11,
U,-l/h, +1+hz /h, +hz

Thus, for the model problem the interior equations look like (6.1) and the boundary equations

look like (62).

With this in mind, we experimented extensively with many scaling factors. applying them

to Problems 2-1, 22·1 and 59-1. We varied n and computed the maximum error at the grid

points as well as the condition number of the cofficient matrix using the UNPACK routine

SGBCO. For example, Table 5 summarizes the results for Problem 59-1 using the scale factor

11k} + 11k}. We see that scaling the boundary equations produces significant changes in both

the error and the condition number.

Table 5: The effect of scaling on the condition number
and the maximum error for Problem 59-I.

Number of Condition Number Maximum Error
n Unknowns Scaled Unsealed Scaled Unsealed
4 100 1.4-10+4 5.1-10+.5 95-10 7 1.1-10.5
8 324 5.3-10+4 69-10+6 95-10-7 8.0-10-5

16 1156 1.8-1OH 1.0-10+8 1.9-1O-t'i 7.8-10-4
22 2116 32-10+.5 35-10+8 3.7-10-6 15-10-3

28 3364 4.8-10+.5 9.1-10+8 12-10-.5 2.9-10-3

Having experimented with these scaling factors, we propose the L 1 type scaling factor

given in (6.1) {Skeel, 1979, 1980 and 1981]. It has a simple and natural analytical basis. Since

from (62) U = 0 (I), we multiply a boundary condition equation involving only" by (6.1) to

make it the same size as the interior equations. Similarly, since from (62) U;~ = 0 (l/h... ) and

U:1 =O(I/h,.). we scale a boundary equation involving u~ or ":1 by the product of h... or 17.

respectively. and (6.1). This proposed scaling method i.s in fact used by HERMITE COLLo-

CATION.

Although the above scaling method works wen on a fairly large set of problems, we

believe that it is not always practical to scale a priori the boundary equations to make them

the same size as lhe interior equations. The scale factor in (6.1) is derived using a simple
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model of the coefficients in the elliptic: problem. The severe round-off phenomena observed

above may occur again for problems in which either tbe coefficients in the parti.al differenti.al

operator are large or the coefficients in the boundary conditi.ons are small at the collocation

points. In such a case one would need to compute either the extreme values of these

coefficient functions or perhaps the maximum L1 norm of the interior equations to scale the

boundary equations correctly. As a result, we conjecture that SIS is more reliable than S/U;

that is, BAND GE is more reliable that its ancestor LINPACK BAND.

For example, Figure 5 shows a pedormance graph for Problem 22-1 which involves an

operator with a large coefficienl function. In this case, our a priori scaling method is clearly

inferior to using scaled partial pivoting (with either the scaled or unsealed collocation equa-

tions).

As another example, consider the ''scaled'' Poisson problem

lO'(uu +u,,)~f (x,y)E R~[O,1Jx[O,1J

u~g (x,y)EaR

where f and g are chosen so that u = (xl +(xy t + 2zyl +1)/5. If we vary k and solve this prob-

lem using SIS and S/U with n = 21 (1764 unknowns), we obtain the results given in Table 6.

We again see that scaled partial pivoting is superior to our particular a priori scaling method.

Table 6: Maximum errors for the scaled Poisson problem.
Maximum Error

k SIS SlU
o 3.1'10"""'6 2.6'10"""'6
2 1.4'10-6 1.2'10-4
4 15'10-6 1.0'10-2

6 63'10-7 85'10-1

8 1.7'10-6 2.0'10+5

The data in Tables 1 . 4 do not provide any support for the conjecture that SIS is some-

times more reliable than SlU; the nature of those statistical tests masks this because the

advantage of SIS shows up infrequently, only if the discretization error is close to round-off.

In particular, there are 23 instances involving 11- problems in which the maximum relative
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PROBLEM NUMBER. 22

PARAMETER SET 1
1.000

m "N
•000 • ""+ 'N •

X ", •
-1.000 •

-2.000 •

W-3.ooo
w •'" +
D +Z,
"'"'w..lI.DOO + +

'"D •--'
x

•-5.000

••
X •

...000 X

-'Looo

".000

-9.000+----,---,------,-----,
.000 .500 1.000 1.500 2.000

LOG NX

Flgore 5: Graphs of the logarithm of NX = n +1 versus the logarithm of the maxium error at
the grid points for Problem 22-1 which involves an operator of the form (wu..I'l.: + (wUy), =1
where w is large.
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error for either SIS or stU is less than 10-5. rn twelve cases the errors differ by more than

10%. and SIS is more accurate in ten of these cascs. For these twelve obserYations. the Sign

rest [Hollander and Wolfe, 1973] assures that SIS is more accurate than stU with 98%

confidence (p-value of 0.02).

The comparative work of different scaling methods is easily computed. For a grid of '1 2

rectangles. there are 4n2 interior equations and 8n +4 boundary equations. The balf

bandwidth of the linear system is 4n +7 and there are at most 16 nonzero entries per interior

equation and 8 nonzero entries per boundary equation. The comparative work for three seal-

iog methods is given in Table 7. We see that each method requires much less work than

Gauss elimination which is o(4n +7f"4(n +1~) =0 (n 4
). Although scaling the boundary equa-

tions alone is the least amount of work, it is also probably the least reliable.

Table 7: Comparative work for three scaling methods.
Scaling Method Work

Only boundary equations during discretization

All equations during discretization

Scaled partial pivoting

0(8«8. +4»

0[16<4(. +1)')

0[(" +7)<4(. + 1)']

~O(.)

~O(.')

~O(nJ)

The work estimates in Table 7 lead to an important observation. At each stage in scaled

partial pivoting, the "scaled" entries below the diagonal are searched for a pivot. [n the case

of the collocation equations, this involves 411 +7 multiples even though there are at most 16

nonzero entries to examine. Clearly it is more efficient for the equalions to be scaled during

the discretization phase, before these relatively few nonzero entries are dispersed throughout

the band. The resulting savings is an order of magnitude in the work of scaling. It might be

lhat the overall best choice is to do the scaling of scaled partial pivoting during the discretiza-

lion and then to use simple partial pivoting during the elimination.

In view of all of the above, we recommend using botb the a priori scaling method

described here along with scaled partial pivoting. Although the a priori scaling method is not
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foolproof. it is simple to apply. Moreover. neither method of scaling requires any significant

extra computation. For example. SIS takes on the average only 5% longer than Sill to solve

the collocation equations with n = 28 (3364 unknowns).

Finally. we notc that it is Dot the case that the Hermite bicubic collocation equations

witb unsealed boundary equations are inberently ill-scaled. In fact, we have observed that

they can be solved accurately without scaling and without pivoting if one orders the equations

and unknowns using the Hermite CoUarder ordering given in [Dyksen and Rice, 1983].

7. Preservation of Geometric Integrity

The poor scaling of the collocation equations in their orignal form destroys the relation-

ship between the geometry of the problem and the order of elimination. One hopes that the

ellipticity of an elliptic problem should damp out errors, including round-off. However, des-

troying the geometry of the problem seems to ruin its ellipticity.

As a further example of this phenomenon, we consider the linear equations obtained

from Problem 59-1 by using the standard 5-point star discretization modified to include the

unsealed Dirichlet boundary equations. As in the case of Hermite bieubie collocation with the

Hermite Collorder ordering, these S-poiot star equations can be solved to machine precision

without scaling and wltbout pivoting. If the equations are solved with simple partial pivoting,

then round-off dominates the computations as the grid is refined. We see that it is not only

obviously inefficient to include the boundary equations haphazardly in the linear system, it is

also dangcrous. Notc that this is done routinely in may finite element programs in structural

engineering.

We also generated random row permutations and solved the equations using partial

pivoting to see what effect if any this might have on the solution. [n summary. we observed

that the more the underlying geometry is perturbed, the larger the error becomes. This again

suggests that the ordering used during Gauss elimination must maintain the geometric

integrity of the elliptic problem. We believe that this is not particular to S-point star or
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Hermite bicubic collocation. and we conjecture that it is true for other numerical methods for

elliplic problems.
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