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ABSTRACT

This paper examines the potential of parallel computation methods for partial differential

equations (PDEs). We first observe that linear algebra does not give the best data structures for

exploiting parallelism in solving PDEs, the data structures should be based on the physical

geometry. There is a naturally high level of parallelism in the physical world to be exploited and

we show there is a namral level of granularity or degree of parallelism which depends on the

accuracy needed and the complexity of the POE problem. We discuss lhe inherent complexity of

parallel methods and parallel machines and conclude that dramatically increased software support

is needed for the general scientific and engineering community to exploit the power of highly

parallel machines.

This won: roppolUl:l in part by Air Fort:e Office or Scientific Resean:h grantAFOSR-34-0385.
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1. INTRODUCTION AND SUMMARY

This paper examines the potential for th.e use of parallelism in the solution of partial dif

ferential equations (PDEs). There are six principal points made as follows:

1. Linear algebra is DOt the right model for developing methods for PDEs and it is particularly

inappropriate for parallel methods.

2. The best darn structures for PDE methods are based on the physical geometry of the prob

lem.

3. Physical phenomena have large components that inherently parallel, local and asynchro

nous. Parallel methods can be found to reflect and exploit this fact

4. There is a natural granualarity associated with parallel methods for PDEs. The best number

of "pieces" and processors depends on the complexity of the physical problem, the accu~

racy desired and properties of the iteration used.

5. Parallel machines are very messy and it is essential for most users that one have very high

level PDE systems to hide this mess.

6. There is much to be gained to using regularity in parallel methods, but one should not carry

this to exoemes.

II. LINEAR ALGEBRA DOES NOT GIVE THE BEST DATA STRUCTURES

In recent years there have been numerous papers written about linear algebra on

parallel/vector machines (see [Hwang, 1984], [Sameh, 1983] and [Ortega and Voighl, 1985J for

surveys and further references). Many machines have been designed to provide very high perfor

mance for linear algebra computations (see [Hwang and Biggs, 1984] and [Hwang, 1984] for sur

veys and further references). Most of this work is motivated or justified in some pan by applica

tiODS to solving PDEs. Solving large linear problems is an inherent step in solving PDEs and it is
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usually the most expensive step, yet the thesis of this section is um most linear algebra

approaches can be misleading for exploiting parallelism in solving PDEs.

A case in point is nested dissection. TIlls was a breakthrough in solving PDEs, one that

many people (including myself) had searched for over a period of decades. The original presenta

tion [George, 196x] of nested dissection was inscrutable. If one starts (as everyone did) with the

linear algebra problem Ax = b, then to discover nested dissection, one had to see that the matrix

rearrangement such as shown in Figure 1 was the "right" way to eliminate the unknowns. How

ever, if one expresses the reordering in terms of the underlying geomeuy of the PDE, one sees

that nested discretion is a natural divide and conquer algorithm. It is then easy to understand why

the method works so well, to see how to extend it to nonrectangular domains or to 3 dimensions

or to finite element methods.

If one start<; with a conventional matrix/vector representation of a PDE computation it is

much harder to find efficient methods because the inherent structure of the PDE problem is so

disroned by conventional matrix/vector representations. This is further illustrated in Figure 3

which shows the conventional matrix srructure obtained by discretizing a second order PDE with .

derivative boundary conditions on the domain shown there. It is a computational tour-de-force to

recover from Figure 3 the information that is superficially apparent in the domain picture.

The shoncomming of the conventional linear algebra. approach is that the right data struc

ture is Dot used, instead one should base the data srrucrure on the underlying physical geometry.

Figure 4 shows a domain which has been "exploded" to group "like-kinds" of elements

mgether in a PDE problem. A method that is- really successful in exploiting parallelism in this

problem must "know" this srructure, the most practical way to know it is to have it given expli

citly in the data SbUCture. More complex problems have other SbUCture (interfaces, singular

points, etc.) that can be incorporated in a similar way. It is not just parallelism in the computa

tion that needs information such as seen in Figure 4, the control of numerical methods also need
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it. Numerical models need to be more accurate (e.g., grids need refining) near special locations.

The partitioning of the computations for rapid convergence in iterative methods is strongly

influenced by this infonnation.



- 5 -

x

x

x
x

x
x

x

x

x

x

x
x

x

x
x
x
x

x

x
x
x

XX

x
x
x
x

x

x

x
x
x
x

x
x

x

x

x

x
x

x

x

x

x

x

x
XX

x
x
x

x
x

x

x

x
x
xx

x
x

x

x
x

x

x

x x x
xx x

xxx x
xxx

xx x
xxx x

x x xx
x xxxx

x x xx
x x

xx
xxx

x x
xxx

xxx x
xxx
xxxx

xxx
xx

xxxx
xx

x x
xx

xxx
xxx
xx x

xxx x
x x xx

x xxxx
x x xx

x x
xx

xxx
x x
xxx

xxx x
xxx
xxxx

xxx
xx

xxxx
xx

xx
xxx
xxx

x xxx
xxx
xxx
xx

Figure 1. The pattern of nOD-zeros that occun; in solving Laplace's equation using the nested
dissection ordering of the conventional matrix fonnulation using finite differences. The order of
the unknOVlIlS eliminated is given below the pattern.
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Fi~re 2. A visua1iza.tio~ of the nested dissection ordering shown on a two dimension grid. The
hel~ht of the surface 1Ddi~tes the level at which an unknown lies. Unknowns on the same level
which are separated by a higher level may be eliminated independently of one another.
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Figure 3. The conventional manix strucmre (A) obtained from a g·point finite difference
discretization on the domain (B).



- 8 -
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Figure 4. An exploded view of a physical domain which shows the elements of a •'like" nanrre
grouped together. The groupings are the first step in deremrining an appropriate structure in the
problem of an efficient parallel method.
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III. PARALLELISM IS (ALMOST) UNLIMITED IN SOLVING PDEs

We claim that the physical phenomena that PDEs model are inherently local in space and

asynchronous. Locality means that the phenomena are inherently amenable to parallel methods,

the computation done at point A does not depend on anything being done at the physically distant

point B. There are logical limits to the potential parallelism, we do not foresee much parallelism

in rime (as opposed to space) except for very special situations. There is also some sequentiality

in local computations, one must compute values of coefficient functions in an equation before one

can use the equation. For specific applications one can often reduce the sequential work dramati

cally by preprocessing computations (Le.• computing everything possible as soon as possible).

The preceding observations are based on asymptotic considerations, Le., if the physical

domain is big enough and the accuracy required is high enough then any :fixed number N of pro

cessors can be used profitably. We argue, however, that there is natural optimal or appropriate

granularity and number N of processors associated with any particular PDE computations. We

measure granularity in terms the number N of elementS of the computation or model of the physi

cal object. For simplicity we ignore any cases where computational elements do not correspond

naturally with physical elements. The two extremes are:

(i) N = 1 processor gives 1 element which gives a sequential computation which

gives very limited speed.

(ii) N very large (one Cray 2 per atom in a river?) gives a huge number of elements

which gives very high parallelism which gives almost unlimited speed.

There are four considerations (at least) besides cost which lead to the existence of an

optimal granularity, they are

1. Every problem has an acceptoble solve rime beyond which solving it faster

does not matter.
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2. Every problem has an acceptable accuracy beyond which more accuracy does

Dot matter.

3. For a fixed physical problem, the number of interfaces between elements grows

with the number of elements, thereby increasing the complexity and communi

cation requirements of the computation. This growth might be very slow.

4. For a fixed problem and method, the total work might eventually grow faster

with N than parallelism reduces it because of slower convergence of iterative

methods, etc.

Having identified granularity with N. we see that the independent variables in an applica

tion design are N. the desired elapsed time T and the required accuracy E.. Assume now that E

behaves in a known way, that it is fixed and we only consider choosing N to achieve a specified

T value. Figure 5 shows an idealized plot of cost versus time to solve a particular problem using

a :fixed number N of processors. The key points are that there is a lower limit on time (because

processors can go only so fast) and that cost quickly reaches a plateau as the time increases. Fig

ure 6 shows a different view of the simation, cost versus N for a fixed time to solve a particular

problem. Again there is a lower limit because processors can go omy so fast, but there is also an

optimum. A5 N increases the cost starts to increase because of idle processors and/or increased

communication (overhead) costs.
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Cost

TDlD1IDum

I
•
I
•
I
•
I
•
I
•
I
•
I ~..;A~,.,-:::::-:::::.. _.. _._.. _. - -_. -.;. .. _. --_ .. _.. - .. _.. _.. _.
I
•
I
•

Lower
limit

N = Number
of processors

Figure 6. Cost versus the number of processors N used to solve a particular problem in a fixed
elapsed time. The point A gives the minimum cost using an optimal number of processors.
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We can replot the infonnation of Figures 5 and 6 in the (N, T) plane and show two curves:

the limiting curve of what is possible and the curve of optimal combinations of T and N. This is

shown in Figure 7. the shapes are purely conjectural, one does not know what they are. It is true

that cost decreases monotonically from point C to D .

D (low cost)

Q)

6.-
~

B

limit

Fastest possible time

.. optimal cost
curve

C (high cost)

A

._._._._._._._._.._._.-._~-._ .. - .._.._._._.-.- ..

I N = Number of processors

Figure 7. The (N. T) plane showing the limiting curve (A to B) of what is possible and the locus
(C to D) of optimal cost combinations ofN and T.

Thus we see that while in principle there might be no limit on the amount of parallelism

that can be used in solving PDEs, there is definitely such a limit for any fixed application. Very

little is known about aCbJaI values for real problems. I believe we are very far from the methods

that give optimal time or cost in solving PDEs. On the other hand, I find it very convincing to

argue that many real problems are very complex and that to achieve "engineering" accuracy and

"reasonable" elapsed time with even a low cost method (never mind optimal cost) will use
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thousands of processors.

IV. PARALLEL METHODS REQUIRE NEW SOFTWARE SYSTEMS

Parallel machines are already rather complex, much more so than previous computers.

They will become even more complex as it is discovered that a mixed set of capabilities provides

more efficient computing. There will be variety is everything: processors (imeger, :floating point,

graphics, vector, FFf, ...), memory Oocal, global, cache, archival, read only, ...), I/O (keyed, text,

graphics, movies, acoustical, analog, ...), communication (message passing, packers, buses,

synchronous/asynchronous, hypercubes. highllow speed,long haul, ...). The difficulty in manag

ing (programming) this complexity is easily an order of magnitude higher than for present

machines. The difficulty is compounded by the fact that changes in the capabilities available will

become much more frequent.

The current programming methodology for solving PDEs is that of Fortran. One has a

fairly intelligible language where one can exert fairly direct control of the machines resources.

Each Fortran statement is typically implemental by 5-10 machines instructions. There must, I

believe, always be such a language and I believe that Fortran wiD be expanded to handle the

greater complexity of the machines. It might also be replaced by another moderate level

language with such capabilities, e.g. Ada or C suitably enhanced. However, it will no longer be

reasonable to expect the end-user scientists and engineers, the people who solve PDEs, to learn

how to manage this complex computational environment They will generally not do a very good

job of it and, even if they did a good job, it would be a great waste of talent and duplication of

effort. The potential benefits of parallel computation will not be achieved if every user has to

master (even partially) how to manage such complex machines.

The solution to this problem is to substantially raise the level of the user's "programming"

language. He must be able to say in a naOlral and succinct way what is to be done. In the PDE
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comext they should be able to say things like:

1. Solve (1 +x 2)uX[ +~ - sin Cay)u = Force 2(x I Y)

on the Domain #12

with u = 1 on the boundary.

2. Use finite differences with a 40 by 40 grid

plus SOR iteration

3. Show me plots of u , U;r; and Uy

In fact, we must aim eventually for the situation where statement 2. is replaced by

2a. Obtain an accuracy of about 0.5 percem

Then, between such a program and the Farnan level is a layer of software which has two

components. The first is a set of problem solving modules written by people who are relatively

expert in solving the problems at hand and experienced in how parallelism (or other special capa

bilities available) can be exploited. There will be different methods (or, at least, different imple

mentations) in the modules suitable for important subclasses of machines.

The second component of this layer is a set of computation management facilities written

by people who are relatively expert in memory management, network scheduling, program

transformations, etc. They have spent the time to learn how to provide such facilities well and

have embedded much of their expertise into their software. These two components are then

integrated to provide a bridge between the high level user input and a Fortran-like program tar

geted for the particular machine (or machines) to be used to solve the problem.

The obvious advantage of this methodology is that, ifit works, there is a dramatic reduction

in programming effort. TIlis is, of course, the goal of introducing the methodology. Note that

this not being done just to reduce software costs, the "mass-market" viability of parallel compu

tation depends on introducing a methodology which hides the underlying complexity from most
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users.

The obvious disadvantage of this methodology is that the intermediate layer might inITe-

duce so much in efficiency that the power of parallelism is seriously weakened or even lost. It is

clear that no foreseeable software for managing a computation can be as clever, resourceful and

effective as clever, experienced people. This fact is a smokescreen that obscures a much more

relevant "fact": people, even clever and experienced ones, almost never get close to "optimal"

computations because they do DOt take the time to do it, it is inordinately expensive to do so. The

result is that a good software system, one with many flaws which does many obviously stupid

things, consistently can produce moderately good implementations which are significantly better

than the DOes people consistently produce. Scientific evidence to suppon this fact is scarce, but

there is one solid data point

Figure 8 shows a program written in DEQSOL, a high level PDE problem solving language

under development at Hitachi [Umetani, 198x]. No attempt is made here to explain DEQSOL.

Hitachi has two PDE application programs that were written in FORTRAN prior to their vector

supercomputer and DEQSOL effortS. These programs were brought into their vecrorizing Fortran

compiler environment and hand tuned to run well on their machines. The problems being solved

were later reprogrammed in DEQSOL which produces a Forman program which then use the vec-

torizing Fortran compiler but no hand tuning. The results of this experiment are shown below.

A B
FORTRAN:

lines of code 1361 1567
execution time (sec.) 2.3 5.8

DEQSOL:
lines of code 127 132
execution time 0.6 1.8
speed up factor 3.8 3.2

We see that not only was the programming effon reduced by the least an order of magnimde, but

there was also a very wonhwhile gain in execution speed. Keep in mind that a speedup of 3 or 4



- 16 -

is the typical total benefit achieved from using vector hardware on eray and Cyber 205 machines.

We illustrate the power that can be achieved using such high Jevellanguages by considering

the Plateau problem:

(1 + U. ')u= - 2u.Uyuxy + (1 + Uy ')"'" = 0

u ex, y) given on the boundary of a region R (I)

TIlls is classical difficult PDE problem, its solution is the swface that a soap film takes on for a

wire frame bent according to the value specified on the boundary of R _ We solve this problem

for the domain R and wire frame shape seen in the later figures (and explicitly defined in Figure

9). The high level language used is that of ELLPACK [Rice and Boisvert, 1985], one that pro-

vides modules and facilities for solving linear PDEs.

Figure 9 shows an ELLPACK program to implement Newton's method for (1). We do not

explain the ELLPACK language here. A simple initial guess is made and the convergence is

quite rapid in spite of the fact that the solution has a singularity (the wire has a sharp bend) along

one side. The maximum differences between irerates are: 1.24, .30, 9.6 x 10-3, 2.4 X 10-5 and

5 X 10-7. The round off level (on a VAX 11/780) is reached at five iterations.



- 17 -

j' 3D DIFFUSION PROBLEM 'jx= [0:1] ,
y= [0:1] ,
z = [0:2] ;

t = [0:5] ;
x= [0:1:0.1]
y =[0:1:0.1] ,
z = [0:2:0.1] •
t =[0:5:0.001]

T ; It/< Temperature */

dom

var
const

rho = 1 1* Density */
c = 1 I !* Constam */
k =1 I 1* Diffusion Constant ""/
u = 0 I /* x-axis Velocity */
v = 0 , !* y-axis Velocity */
w = 5*(1.o-x**2)*(1.D-y*"'2) • 1* z-axis Velocity */
S = exp(-x**2-x**2-(1.O-z)**2) ;

1* Source Distribution */

tdom
mesh

eved V = (u. v, w) ; 1* Velocity Vector */
region

1n=(•••• 0) , j' In'j
0=(*.*,2). 1* Our */
XO = (0, '.') , /* Left 'j
XI = (I, '.') , /* Right 'j
YO = (*, O. *) . 1* Bottom */
YI = (', I.') • /* Top *j
R = ([0:1]. [0:1]. [0:2]) ; /* Whole Region'j

equ rIJo·c·(dt(T)+V..grad(f)) = k'lapl(T)+S ;

bound T=O at In+Xl+YI
dz(f)=O at 0 •
dx(f) = 0 at XO ,
dy(f)=O at YO;

init T=O at R ;

ctr NT; r Iteration Counter */

scheme;
iter NT until NT gt 200;

T<+I> = T+d1t·(k*1ap1(f)+S)j(rho·c)-V..grad(f)) ;
print T at YO ;
disp T at YO every 100 times ;

end iter;
end scheme;
end;

Figure 8. A DEQSOL program for applying Newton's method to solve the Plateau problem.
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Our final point in the software and programming area concerns the role regularity in data

structures, in algorithms and in programs. Clever programmers and hardware designers can do a

lot of special things to exploit special situations. This exploitation is usually achieved at the COSt

of more complex software and hardware. Thus there must be a balance between the execution

time costs and the design cos[s of software and hardware. While it is hard to defend general

statements on the matter, we believe that the optimum lies nearer to regularity and its attendant

simplicity than it does to irregularity and its attendant complexity. However, we feel extreme

simplicity is Dor the best approach either.

TIlls view is illustrated by an example in discretizing a domain. Figure 12 shows a physical

domain that has been partitioned in six ways for a problem with difficulties near the right boun-

dary:

(A) A fine triangulation of a common type

(B) A fine, unifonD, rectangular overlay grid

(C) Mapping the domain to a rectangle and inducing a logically rectangular partition

(D) Triangulation adapted to the difficulty

(E) Rectangular overlay grid adapted to the difficulty

(F) Logically rectangular panion adapred to the difficulty

We believe that the irregular rriangulations do Dot provide any execution time advantage over the

more regular partitions (one can do a regular rriangulation if one wants). On the other hand. we

also believe that the uniformly spaced partitions are too simple and have too large an execution

time penalty. We believe the adaption will pay- off. The logically rectangular discretization is the

simplest to program but the relative execution efficiencies resulting from (E) and (F) are not

clear. Thus we believe that the search for the "best" method should be concem:rated on pani-

tions like (E) and (F') but there are still many undetennined degrees of freedom.
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F

Figure 10. Six ways to partition a domain showing ways to achieve regularity and to adapt to a
difficulty. The letters A through F refer to the discussion in the text
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