View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1986

Parallelism in Solving PDEs

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
86-604

Rice, John R, "Parallelism in Solving PDEs" (1986). Department of Computer Science Technical Reports.
Paper 523.
https://docs.lib.purdue.edu/cstech/523

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972122?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PARALLELISM IN SOLVING PDLES
John R. Rice

Computer Sciences Department
Purdue University
West Lafayelite, IN 47907

CSD-TR-604
July 1986
(Revised July 1988)

PARAILLELISM IN SOLVING PDES

John R. Rice”
Department of Computer Science
Purdue University
CSD-TR 604

July 1, 1986

ABSTRACT
This paper examines the potential of parallel computation methods for partial differential

equatons (PDEs). We first observe that linear algebra does not give the best data structures for
exploiting p;rallelism in solving PDEs, the data structures should be based on the physical
geometry. There is a naturally high level of parallelism in the physical world to be exploited and
we show there is a namral level of granularity or degree of parallelism which depends on the
accuracy needed and the complexity of the PDE problem. We discuss the inherent complexity of
parallel methods and paralle]l machines and conclude that dramatically increased software support
is needed for the general scientific and engineering community to exploit the power of highly

parallel machines.

" This work supporied in part by Air Force Offiee of Scientific Research grant AFOSR-34-0385.

L INTRODUCTION AND SUMMARY

This paper examines the potential for the use of parallelism in the soludon of partial dif-

ferential equations (PDEs). There are six principal points made as foliows:

1.

Linear algebra is not the right model for developing methods for PDEs and it is particularly

inappropriate for paraile] methods.

The best data structures for PDE methods are based on the physical geometry of the prob-

lem.

Physical phenomena have large components that inherently paratlel, local and asynchro-

nous. Parallel methods can be found to reflect and exploit this fact.

There 1s 2 natural granualarity associated with parallel methods for PDEs. The best number
of “'pieces’’ and processors depends on the complexity of the physical problem, the accu-

racy desired and propertes of the iieration used.

Parallel machines are very messy and it is essential for most users that one have very high

level PDE systems to hide this mess.

There 1s much to be gained to using regularity in parallel methods, but one should not carry

this to extremes.

II. LINEAR ALGEBRA DOES NOT GIVE THE BEST DATA STRUCTURES

In recent years there have been numerous papers written about lipear algebra on

parallel/vector machines (see [Hwang, 1984], [Sameh, 1983] and [Ortega and Voight, 1985] for

surveys and further references). Many machines have been designed to provide very high perfor-

mance for linear algebra computations (see [Hivang and Biggs, 1984] and [Hwang, 1984] for sur-

veys and further references). Most of this work is motivated or justfied in some part by applica-

domns to solving PDEs. Solving large linear problems is an inherent step in solving PDEs and it is

-3-

usually the most expensive step, yet the thesis of this section is that most linear aigebra

approaches can be misleading for exploiting parallelism in solving PDEs.

A case in point is nested dissection, This was a breakthrough in solving PDEs, one that
many people (including myself) had searched for over z period of decades. The original presenta-
tion [George, 196x] of nested dissection was inscrutable. If one starts (as everyone did) with the
linear algebra problem Ax = b, then to discover nested dissection, one had to see that the matrix
rearrangement such as shown in Figure 1 was the “‘right’’ way to eliminate the unknowns. How-
ever, if one expresses the reordering in terms of the underlying geometry of the PDE, one sees
that nested discretion is a natural divide and conquer algorithm. It is then easy to understand why
the method works so well, to see how to extend it to nonrectangular domains or to 3 dimensions

or to finite element methods.

If one starts with a conventional marmix/vector representation of a PDE computadon it is
much harder to find efficient methods because the inherent structure of the PDE problem is so
distorted by conventional mairix/vector representations. This is further illustrated in Figure 3
which shows the conventional matrix structure obtained by discretizing a second order PDE with -
derivative boundary conditions on the domain shown there. It is a computational tour-de-foree to

recover from Figure 3 the information that is superficially apparent in the domain picture.

The shortcomming of the conventional linear algebra approach is that the right data struc-
wre is not used, instead one should base the data structure on the underlying physical geometry.
Figure 4 shows a domain which has been “‘exploded” to group ‘‘like-kinds™ of elements
together in a PDE problem. A method that is really successful in exploiting parallelism in this
problem must ‘‘’know™ this strucmre, the most practical way 1o know it is to have it given expli-
citly in the daw soucmre. More complex problems have other structure (interfaces, singular
points, etc.) that can be incorporated in a similar way. It is not just parallelism in the computa-

tion that needs informadon such as seen in Figure 4, the control of numerical methods also need

-4 -

it. Numencal models need to be more accurate (e.g., grids need refining) near special locations.
The partiioning of the computations for rapid convergence in iterative methods is strongly

influenced by this information.

XX X
X X b'd
XXX x
X X X
X X X X
XX X X
X X XX
XX
X X XX X
XX XX
X X
o X
XX X X X
XXX X
X X X
X X XX
X Xoo
X X = X
X X po'd
X X200
X X XX be
XX X X
= X X X
X X X
X XX
X X X
X X
X X xx
X XoX
X X xX X
X Xx X X X
X X X
bo.s SR ¢ X
XX XX
ot
X X
X X xx
X XX
X X Xxx
X X XX
X oot
X X > X
X x XX
x X DX
X X X
X X X
X X XX
X X b'o'e 4
X x hle'y

Figure 1. The pattern of non-zeros that occurs in solving Laplace’s equation using the nested
dissecton ordering of the conventional matrix formuladon using finite differences. The order of
the unknowns eliminated is given below the pattern.

ordering shown on a two dimension grid. The

of the nested dissection
height of the surface indicates the level at which an unknown lies. Unknowns on the same Ievel

which are separated by a higher leve] may be eliminated independently of one another.

Figure 2. A visualizaton

XX XXX
XXX XXX

XX XX

X *X
X X XX
KX XXX XX
XXX XXX XXX

= X XX
X XXX XX
X X XX

Figure 3. The conventional mamix strucmire (A) obtained from a 9-point finite difference
discretzation on the domain (B).

L~

N

_

Figure 4. An exploded view of a physical domain which shows the elements of 2 ““like” nature
grouped together. The groupings are the first step in determining an appropriate structure in the
problem of an efficient paralle]l method.

-9.

1. PARALLELISM IS (ALMOST) UNLIMITED IN SOLVING PDEs

We claim that the physical phenomena that PDEs model are inherently local in space and
asynchronous. Locality means that the phenomena are inherently amenable to parallel methods,
the computation done at point 4 does not depend on anything being done at the physically distant
point B. There are logical limits to the potential parallelism, we do not foresee much parallelism
in ime (as opposed to space) except for very special simations. There is also some sequentality
in local computations, one must compute vatues of coefficient functions in an equation before one
can use the equation. For specific applications one can ofien reduce the sequential work dramati-

cally by preprocessing computations (i.e., computing everything possible as soon as possible).

The preceding observations are based on asymptotic considerations, ie., if the physical
domain is big enough and the accuracy required is high enough then any fixed number N of pro-
cessors can be used profitably. We argue, however, that there is natural optimal or appropriate
granularity and number N of processors associated with any particular PDE computations. We
measure grannlarity in terms the number N of elemenzs of the computation or model of the physi-
cal object For simplicity we ignore any cases where computational elements do not correspond

naturally with physical elements. The two extremes are:

(i} N =1 processor gives 1 element which gives a sequential computation which
gives very limited speed.
(ii) N very large (one Cray 2 per aiom in a river?) gives a huge number of elements
which gives very high parallelism which gives almost unlimited speed.
There are four considerations (at least) besides cost which lead to the existence of an
optimal granularity, they are
1. Every problem has an acceptable solve time beyond which solving it faster

does not matter,

-10 -

I~

Every problem has an acceptable accuracy beyond which more accuracy does

Dot matter,

3. For a fixed physical problem, the number of interfaces between elements grows
with the number of elements, thereby increasing the complexity and communi-

cation requirements of the computation. This growth might be very slow.

4, For a fixed problem and method, the total work might eveniually grow faster
with N than parallelism reduces it because of slower convergence of iterative

methods, etc.

Having identified granularity with N, we see that the independent variables in an applica-
don design are N, the desired elapsed time T and the required accuracy &. Assume now that £
behaves in a2 known way, that it is fixed and we only consider choosing N to achieve a specified
T value. Figure 5 shows an idealized plot of cost versus time to solve a particular problem using
a fixed number N of processors. The key points are that there is a lower limit on time (because
processors can go only so fast} and that cost quickly reaches a plateau as the dme increases. Fig-
ure 6 shows a different view of the simation, cost versus N for a fixed time to solve a particular
problem. Again there is a lower limit because processors can go only so fast, but there is also an
opumum. As N increases the cost starts to increase because of idle processors and/or increased

communication {overhead) costs.

-11-

Cost

plateau f-=—-—

ot = et e [e e e — i — —

Lower El ’d)
Himit apsed time

Figure 5. Cost versus elapsed time to solve a particular problem using N processors.

A
Cost

MIMIMUM | ome e

—-—-—-I—q—n—u_‘u.—.-l—-—"-

_)
Lower N = Number
limit of processors

Figure 6. Cost versus the number of processors N used to solve a parricular problem in a fixed
elapsed ime. The point A gives the minimum cost using an optimal number of processors.

-12-
We can replot the information of Figures 5 and 6 in the (N, T') plane and show two curves:
the limiting curve of what is possible and the curve of optimal combinations of T and N. This is
shown in Figure 7, the shapes are purely conjectural, one does not know what they are. It is true

that cost decreases monotonically from point C to D.

A
D (low cost)
4% optimal cost
curve
i ¥}
=
o
%
= C (high cost)
M
I
- A
Limit
A
Fastest possible time o
* >

Tt

N = Number of processors

Figure 7. The (N, T') plane showing the limiting curve (4 to B) of what is possible and the locus
(C o D) of optimal cost combinations of N and T,

Thus we see that while in principle there might be no limir on the amount of parallelism
that can be used i solving PDEs, there is definitely such a limit for any fixed applicaton Very
little is known about actual values for real problems. I believe we are very far from the methods
that give optimal time or cost in solving PDEs. On the other hand, I find it very convincing to
argue that many real problems are very complex and that to achieve *‘engineering’® accnracy and

“‘reasonable’’ elapsed time with even a low cost method (never mind optimal cost) will use

-13-

thousands of processors.

IV. PARALLEL METHODS REQUIRE NEW SOFTWARE SYSTEMS

Parallel machines are already rather complex, much more so than previous compuiers.
They will become even more complex as it is discovered that a mixed set of capabilities provides
more efficient computing. There will be variety is everything: processors (inieger, floating point,
graphics, vector, FFT, ...), memory (local, global, cache, archival, read only, ...), /O (keyed, text,
graphics, movies, acoustical, analog, ...), communication (message passing, packets, buses,
synchronous/asynchronous, hypercubes, high/low speed, long haul, ...). The difficulty in manag-
ing (programming) this complexity is easily an order of magnitude higher than for present
machines. The difficulty is componnded by the fact that changes in the capabilities available will

become much more frequent.

The current programming methodology for solving PDEs is that of Fortrtan. One has a
fairly intelligible Janguage where one can exert fairly direct control of the machines resources.
Each Fortran statement is typically implemental by 5-10 machines instructions, There must, I
believe, always be such a language and I believe that Fortran will be expanded to handle the
greater complexity of the machines. It might also be replaced by amother moderate level
language with such capabilities, e.g. Ada or C suitably enhanced. However, it will no longer be
reasonable to expect the end-user scientists and engineers, the people who solve PDEs, 1o learn
how o manage this complex computational environment. They will generally not do a very good
job of it and, even if they did a good job, it would be a grear waste of talent and duplication of
effort The potential benefits of parallel computation will not be achieved if every user has 1o

master (even pardatly) how to manage such complex machines.

The solution to this problem is to substantially raise the level of the user’s ‘‘programming’

language. He must be able to say in a4 namral and succinet way what is to be done. In the PDE

-14 -
context they should be able to say things like:

1. Solve (1 + xuy + u, —sin(oy)u = Force 2(x, y)
on the Domain #12

with ¥ = 1 on the boundary.

2. Use finite differences with a 40 by 40 grid

plus SOR iteration
3. Showme plots of 1 , 1, and 7
In fact, we must aim eventually for the situation where statement 2. is replaced by

2a. Obtain an accuracy of about 0.5 percent

Then, between such a program and the Fortran Jevel is a layer of software which has two
components. The first is a set of problem solving modules written by people who are relatively
expert in solving the problems at hand and experienced in how parallelism (or other special capa-
biliies available) can be exploited. There will be different methods (or, at least, different imple-

mentatons) in the modules svitable for important subclasses of machines.

The second component of this layer is 2 set of computation management facilities written
by people who are relatively expert in memory management, network scheduling, program
transformations, etc. They have spent the fime to learn how to provide such faciliGes well and
have embedded much of their expertise into their software. These two components are then
integrated to provide a bridge between the high level user input and a Fortran-like program tar-

geted for the particular machine (or machines) to be used to solve the problem.

The obvious advantage of this methodology is that, if it works, there is a dramatic reduction
in programming effort. This is, of course, the goal of introducing the methodology. Note that
this not being done just to reduce software costs, the “‘mass-market’” viability of parallel compu-

tadon depends on introducing a methodology which hides the underlying complexity from most

-15-

SErs.

The obvious disadvantage of this methodology is that the intermediate layer might inmwo-
duce so much in efficiency that the power of parallelism is seriously weakened or even lost. It is
clear that no foreseeable software for managing a computation can be as clever, resourceful and
effecdve as clever, experienced people. This fact is a smokescreen that obscures a much more
relevant ‘‘fact’’: people, even clever and experienced ones, almost never get close to ‘‘opiimal’’
computatons because they do not take the time to do it, it is inordinately expensive to do so. The
result is thai a good software system, one with many flaws which does many obviously stupid
things, consistently can produce moderately good implementations which are significantly better
than the ones people consistently produce. Scientific evidence 1o support this fact is scarce, but

there is one solid data point.

Figure 8 shows a program writien in DEQSOL, a high Jevel PDE problem solving language
under development at Hitachi [Umetani, 198x]. No attempt is made here to explain DEQSOL.
Hitachi has two PDE application programs that were written in FORTRAN prior to their vector
supercomputer and DEQSOL efforts. These programs were brought into their vectorizing Fortran
compiler environment and hand tuned 1o mn well on their machines. The problems being solved
were later reprogrammed in DEQSOL which produces a Fortran program which then use the vec-

torizing Fortran compiler but no hand mning. The results of this experiment are shown below.

A B

FORTRAN:

lines of code 1361 1567

execution time (sec.) 23 5.8
DEQSOL:

lines of code 127 132

execution dme 0.6 1.8

speed up factor 3.8 32

We see that not only was the programming effort reduced by the least an order of magnimde, but

there was also a very worthwhile gain in execution speed. Keep in mind that a speedup of 3 or 4

-16 -
is the typical total benefit achieved from using vector hardware on Cray and Cyber 205 machines.
We illustrate the power that can be achieved using such high level languages by considering

the Plateau problem:

(1 + s ey = 2uziry gy + (1 4 2Py, = 0

u(x, y) given on the boundary of a region R (1)

This is classical difficult PDE problem, its solution is the surface that a soap film takes on for a
wire frame bent according to the value specified on the boundary of R. 'We solve this problem
for the domain R and wire frame shape seen in the later figures (and explicitly defined in Fi gure
9). The high level langnage used is that of ELLPACK [Rice and Boisvert, 1985], one that Pro-

vides modules and facilides for solving linear PDEs.

Figure 9 shows an ELLPACK program to implement Newton’s method for (1). We do not
explain the ELLPACK language here. A simple inidal pguess is made and the convergence is
quite rapid in spite of the fact that the solution has a singularity (the wire has a sharp bend) along
one side. The maximum differences between .iterates are: 1.24, .30, 9.6 x 10, 2.4 x 10~° and

5% 1077, The round off level (on a VAX 11/780) is reached at five iterations.

-17 -

dom x=[0:1], /* 3D DIFFUSION PROBLEM %/
y=[0:1] ,
z=[0:2] ;

tdom t=[0:5] ;

mesh x =[0:1:0.1] ,

y =[0:1:0.1] ,
z=[0:2:0.1] ,
t=[0:5:0.001] ;
var T : /¥ Temperamre */
const
tho=1, f* Density */
c=1, M Constant */
k=1, /* Diffusion Constant */
u=_0, /¥ x-axis Velocity */
v=0, f* y-axis Velocity */
w = 5%(1.0-x**2p¥(1.0-y**2) , /¥ z-axis Velocity */

S = exp(-x**2-x**2-(1.0-2)**2) ;
/% Source Distribution */

cvect V={uv,w); /* Velocity Vector */
region
1[]=(*,*,0) , /*Il'l*f
0=(**2), /* Out */
X0=00,*%%, M Left */
Xi={,*%, f* Right */
YO=(+0,%, f* Bottomn */
Yi=(1,%, * Top */

R = ([0:1], [0:1], [0:2]) ; /* Whole Region */
equ rho*c*(di(T)+V..grad(T)) = k*lapl(T)+S ;

bound T=0 at Im+X1+Y1 ,
dz(T)=0 at 0 ,
dx(T)=0 at X0,
dy(T)=0 at YO ;

init T=0atR;

cir NT ; /™ Iteraton Counter ¥/

scheme ;
iter NTuntii NT gt 200;
T<+1> = T+dit*((k*1apl(T)+S)/Fho*¢c)-V..grad(T))
print T a YO ;
disp T at YO every 100 times ;
end iter ;
end scheme ;
end ;

Figure 8. A DEQSOL program for applying Newton's method to solve the Plateau problem.

-18-

Our final point in the sofrware and programming area concerns the role regularity in data
structures, in algorithms and in programs. Clever programmers and hardware designers can do a
lot of special things to exploit special situal:ioﬁs. This expleitation is usually achieved at the cost
of more complex software and hardware. Thus there must be a balance between the execution
time costs and the design costs of software and hardware. While it is hard to defend general
statements on the matter, we believe that the optimum lies nearer 1o regularity and its arendant
simplicity than it does to irregularity and its attendant complexity, However, we feel extreme

simplicity is not the best approach either.

This view is illustrated by an example in discretizing a domain. Figure 12 shows a physical

domain that has been partitioned in six ways for a problem with difficulties near the right boun-

dary:
(A) A fine triangulation of a common type
(B) A fine, uniform, rectangular overlay grid
(C) Mapping the domain to a rectangle and inducing a logically rectangular partition
(D) Triangulation adapted to the difficulty
(E) Rectangular overlay grid adapted to the difficulty
(F) Logically rectangular partion adapted to the difficulty

We believe that the irregular riangulations do not provide any execution time advantage over the
more regular partitions (one can do a regular wiangulation if one wants). On the other hand, we
also believe that the uniformly spaced partitions are too simple and have too large an execution
time penalty. We believe the adaption will pay off. The logically rectangular discretization is the
simplest to program but the relative execution efficiencies resulting from (E) and (F) are not
clear. Thus we believe that the search for the “‘best” method should be concentraied on parti-

tions like (E) and (F) but there are still many undetermined degrees of freedom.

-16-

Figure 10. Six ways to parttion a domain showing ways to achieve regularity and to adapt to a
difficulty. The letters A through F refer to the discussion in the text.

-20-

V. REFERENCES

K. Hwang and F. Briggs, Computer Architecture and Parallel Processing, McGraw-Hill, New
York, 1984.

K. Hwang, Supercomputers: Design and Applicarions, IEEE EH0219-6, Silver Spring, 1984,

J. Ortega and R. Voight, Solution of Partial differential equations on vector and parallel comput-
ers, SIAM Review, 27 (1985), 149-240,

J. Rice and R. Boisvert, Solving Elliptic Problems Using ELLPACK, Springer-Verlog, New York,
1985.

A. Sameh, An overview of parallel aigorithms for numerical linear algebra, First Int. Colloguium
on Vector and Parallel Computing in Scientific Applications, Paris, 1983.

	Parallelism in Solving PDEs
	Report Number:
	

	tmp.1307986960.pdf.oZodP

