
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

Domain Oriented Analysis of PDE Splitting Algorithms Domain Oriented Analysis of PDE Splitting Algorithms

Dan C. Marinescu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
86-627

Marinescu, Dan C. and Rice, John R., "Domain Oriented Analysis of PDE Splitting Algorithms" (1986).
Department of Computer Science Technical Reports. Paper 545.
https://docs.lib.purdue.edu/cstech/545

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972119?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

DOMAIN ORIENTED ANALYSIS OF
PDE SPLITfING ALGORITHMS

Ono C. Mnrinescu
John R. Rice

Computer Sciences Depnrtment
Purdue University

West Lnfnyette, IN 47907

CSD·TR·627
September 1986

, .

DOMAIN ORIENTED ANALYSIS OF
PDE SPLIITING ALGORITHMS

Dan C. Marinescu*
lahoR Rice••

Computer Sciences
Purdue Unil1ersity

West lBfayene, Indiana 47906

CSD-TR627
September 22, 1986

Abstract

We consider the performance of Schwarz splitting algorithms for PDE problems on
the hypothetical Multi-H...EX machine. The particular Multi-H...EX considered con­
sists of eight clusters of PLEX/32 multiprocessolS. We introduce the concept of exe­
cution domains to model the three levels of memory on these machines: local, locally
shared and global. We apply the Stochastic High Level Petri Nets (SHLPN) method
to model the perfonnance of these PDE splitting algorithms on a Multi-FLEX
machine. For very large, but realistic. applications we project potential speedup of
100,000 for 2D problems and billions for 3D problems along with processor utiliza­
tion of over 99 percent. Real computations on real machines can fall far short of this
potential and still be very successful.

• Worle. supported in part by ARO grant DAAI..D3-86-K-oI06
•• Work: supported in part by AFOSR grant 84-0385

-2-

DOMAIN ORIENTED ANALYSIS OF PDE SPLITTING ALGORITHMS

I. OVERVIEW

Domain oriented multiprocessor performance analysis is based upon a simple modeling
technique which assumes that during the processing of a.c application., each processor of a mul­
tiprocessor system migrateS among a set of eucunon doma;ns. 1be processing speed in each
domain is different and each domain is associated with a different level of contention for com­
mon resowces. 1be transition from one domain to another can be subject to constraints deter­
mined by the maximum. population size of the target domain and by synchronization conditions
determined by me application.

The present paper uses the domain oriented performance analysis for partial differential
equations (PDE) applications rnnning on a Multi-FLEX system. The Multi-FLEX systems intro­
duced in [1] are shared memory multiprocessor systems in which each processor has access to a

. hierarchy of memories with different access times. 'These machines are basically clusters of mul­
tiprocessors organized in a particular way. We consider a tree organization here, providing a
machine with some of the characteristics of the Cedar machine being built at the University of
Illinois. The application is partitioned in such a way that each processor needs to access both the
local memory and different levels of shared memory in order to pass results of its own computa­
tions and use results produced by other processors.

In the followings, we consider a Multi-FLEX with two levels of shared memory: locally
shared and global. The basically shared memory is accessible to all processors of one multipro­
cessor system. and the global memory is accessible to all processors of all systems. During an
execution cycle, the computation on each processor P migrates between three execution domains,
local (L),locally shared (LS), and global (G), as shown in Figure 1.

Global

Locally
Shared

Local

Figure 1. The execution domains as viewed by the processorP.

The purpose of our sbJdy is to determine the expected level of performance of the system
depending upon:

- 3 -

(a) the hardware characteristics of the system,

(b) the characteristics of the application running on the system.

Our main concern is to determine the effect of coDtention for shared resources (busses and
shared memoI)') upon the processor utilization. The meth0'1 used is based upon the use of Sto­
chastic High Level Petri Nets. as presented in [2], [3].

We say that a processor executes in a given domain when it accesses (reads or writes)
storage located in that domain. The access time and consequently the execution speed differs in
different domains. The access time increases as we move from the center of Figure I, towards the
periphery, and the execution speed decreases accordingly. The "slow-down" factor for the
locally shared domain is defined as the ratio between the access time in locally shared memory
and the access time in local mern0I}'. A similar "slow down" factor is defined for the global
domain.

Two models will be considered. In the first model we assume that each processor's
behaviQr is independent of the others, as soon as it has finished execution in a given domain, it
migrates to the next domain. It should be pointed out that a low level of coordination exists since
only one processor of each multiprocessor system is allowed to execute in the shared memory
domain of the particular system at a given time. This condition is related to the assumption that
when a processor is granted the common bus. it does DOt release the bus until it has finished exe­
cution in the locally shared memory domain. Moreover only one processor can be in the global
domain at any given time.

In the second model, a certain level of synchronization is assumed. More precisely when a
processor finishes execution in a cenain domain it migrates to the next domain only when aU pro­
cessors in his "group" have completed the execution in the current domain. The "group" is
determined by lhe semantics of computations performed by the application. It consists usually of
processors which operates on data located in adjacent regions.

We have been able to carry out all the computations of the first model and to produce values
of processor utilization as a function of other model panuneters. These values show that the
Schwarz splitting approach to PDE computation is very attractive, utilizations of over 99 percent
are projected for broad classes of real applications. Fwther, the Schwarz splitting approach itself
can be very powerful so thaI combining it with the Multi-FLEX machines show potential speed­
ups of the order of 100,000 for 2D problems with a500,ooo...1 million unknowns and of the order
of bi1lions for 3D problems with 10-50 million unknowns. A real machine and computation can
fall far shon of this potential and stiU be dramatically successful.

2. THE ARCHITECTURE OF A MULTI-FLEX SYSTEM

The system being analyzed consists of interconnected multi-processor systems as shown in
Figure 2. This is one of several multi-FLEX configurations introduced in [1].

Though the multi-processor system can be fully connected we assume that we have only a
star configuration in which the seven systems MP I + MP, are all connected to the global system
MP o. The configuration of each of the systems MP I to MP, is identical and it is presented in
Figure 3.

Let us denote by Pi . MPj , i E [l,9], j E [1,7] any processor i ·of the j-th system
which perfonns a user task. LMj is the local memory of processor P j , and it is accessible through
a local bus. Each processor P j of system MPj can access its locally shared memory through a
common bus.

- 4 .

MP,

~
MP, MPo MP,

MP, MP, MP,

Figure 2. The Configuration ofofMulti-FLEX System.

Loca1ly Shared
Memory

•••

Figure3. TheconfigurationofMPj • j E [1,7].

We assume that processor Po of each MPj system, j E [1,7] as well as all P j of MPa per­
form control functions and their behavior does Dot affect the overall load placed upon the shared
resources (shared memory and common busses).

The communication speed, in particular the access time for the locally shared and global
memory, has a significant influence upon the performance of the system. Since a Multi-FLEX is
at this time a paper machine no actual measurements exists to determine the slow-down factor for
the global memory. Even the establishment of a slow-down factor for the locally shared memory
raises several problems. First of all the access times are different for different data types (integer,
floating point, double precision floating point). Moreover there are different types of processorn
available, with different access times. For these reasons we have performed our modeling for a
range of values for the slow-down factors rather than values measured on our system. The slow­
down factor for locally shared domain is assumed to be in the range 1.4 to 4 while the slow-down
factor for the global domain is in the S to 40 nmge. For the FLEX/32 we have measured the
slow-down factor for the locally shared domain and found it to be about 1.5.

- 5 -

3. THE CHARACTERIZAnON OF THE APPUCATION

Each processor running a user process manipulates data (reads and writes) located in three
distinct domains:

local memory

locally shared memory

global memory

The size of each domain is defined as the number of references executed by a processor in that
domain. Clearly, the domain size depends UJXlD the application. We consider as the class of
applications the solution of partial differential equations (FDEs) using the Schwarz splitting
method. We outline the structure of this method in a way intended to hide the technical details.
See [4], [5], [61 and [7] for detailed and technically precise descriptions. This method is quire
general. we tint consider the case here of 2D problems.

A large domain is subdivided into kyieces, pieces which. overlap to cover the domain.
Each piece is further subdivided into kJegions, regions Rij which overlap to cover the piece and
all its boundaries. Figure 4 shows one piece with kJegions ... 9. All regions except 5 extend out­
side the piece unless they are on the boundary of the entire problem domain.

We now describe the key idea of Schwarz splitting in terms of processing region 5 seen in
Figure 4. First, we guess at values of the solution on the boundary iJRij of region 5 (this is the
heavy black square). Second, we use these boundary values to solve the PDE on region 5. This
procedure is carried out simultaneously on the 8 neighboring regions. We obtain new boundary
values for region 5 by taking the solutions from neighboring regions evaluated along the boun­
dary of region 5. Where two or more regions overlap a part of the boundary, theo a particular
avemging technique is used. This process is iterated and it can be shown to converge quite fast
for large classes of model problems.

We now organize the method for the Multi-FLEX shown in Figure 2. We Lake k""pieces = 7
and the computational structure is:

ITERATE until Converged
DO PARALLEL (i _ Ito 7)

DO PARALLEL (j = I to kJegion)
Solve dIe PDE on regionRij

END PARALLEL
00 PARALLEL (j - I to kJegion)

Obtain new boundary values for Rij from values 00

iJR ij in neighboring regions of piece j.
END PARALLEL

END PARALLEL
DO PARALLEL (i _ Ito 7)

00 PARALLEL (j = I to kJegions)
IfRij overlaps the boundary of the i-th piece
then obtain new boundary values on that part of
iJRij in neighboring regions of neighboring pieces

END PARALLEL
END PARALLEL

END ITERAnON

- 6-

7 8 9

64

· .· .· .· .· .· .• •· .· ., .
;-"'-"'..or"'-"'- -1 (- --_.....;- ...

1------1----;'---1 ' , L_+-'-+------1· , , .
: \ \ :
0 •••••••••••+ .

, I, ', ,
, 5 ', I

! t, ', ,: , \ :
· ~ I •1------+-----;:'---, , " r-----:-:-+------1., .----r-+-1

'- f---+----

1 2 3

Figure 4. A piece showing nine overlapping regions.

- 7 -

A numerical method further subdivides each region Rjj into HZ elements or mesh points
(assuming the regions are square). 1'be work to solve the PDE depends on the method used and is
modeled by C (N2)l. Realistic values of k 2re from 1 (fer FF!' methods on "easy" problems) to 2
(for Gauss elimination type methods). 1be best &.'ld worst D.-ses for Schwarz splitting are k = 1
and 2, respectively and we study tht-~ ~o caws which :Ie called ~ssimi.stic and optimistic
later. There are numerical methods chat correspond to i!11ermediate values of k. We take C = 1
since this just reflects the machines speed (we are not trfiDg here to compare differeD1 numerical
methods). We consider values of N from 10 to 100 which are typical for common problems.

The amount ofinfonnatioD exchanged between iterations is clearly proportional to the per­
imeters of me regions (on the local piece level) or to the perimeters of the pieces {on the higher,
inter-piece level}. Different numerical methods and types of boundary values require different
amounts of information to be exchanged for one piece, however a model of the form 4 x N x K is
reasonable where K is a small integer, we consider the range 2 to 5 for K.

The problem data is organized so that locally shared. memory contains all the boundary
information for the regions in one piece and the global memory contains all the boundary infor­
mation for regions which overlap piece boundaries. Since we have 7 pieces, one can reasonably
estimate that the average amount of information in the global memory is about N x K for each
piece. TItis is quite accurate if the pieces are tong and thin., otherwise we have a uniform model
of a non-uniform simation. Thus the size of the local domain is defined to be equal to (N2)", the
size of the locally shared domain is 4xNxX and the size of the global domain is NxX. Since the
communication cost is higher as we migrate from the local to locally shared domain and to the
global one, we expect that the overall system performance, in particular the processor utilization,
increases when N increases and decreases when K is increased.

As similar analysis can be applied to the 3D case and Table 1 presents a summary of
domain sizes for the two and three dimentional cases. The values of k for the optimistic and pes­
simistic cases in 3D are 7/3 and I, respectively. Two approximations for the domain sizes are
considered for each case, an optimistic and a pessimistic one. The teno optimistic is used when
the life time in the local domains is larger. 'This corresponds to a larger computation but one
where this architecture is more suitable, hence the use of optimistic.

Domain Size

Local Locallv Shared Global

Optimistic N' 4NK NK
2D

Pessimistic N' 4NK NK
Optimistic N' 6N'K m'K

3D
Pessimistic N' 6N'K m'K

Table 1. Domain size functions of N and K.

[n order to model the system we define the average "life.time" in a given domain as the
product between the slow-down factor of the domain and the size of the domain. [n this way the
average life time provides a characterization of both the system and the application. Table 2
shows a summary of domain sizes, slow-down factors and average life-times for a two dimen­
sional (2D), pessimistic case.

- 8 -

Domain Domain Size Slaw-Down Factor Average Life Time
Local N' I N'

Locally
4NK "" (4NK)""Shared

Global NK 11 (NK)Il.

Table 2. Domain size -life time relationship for the pessimistic 2D case.

4. MODELING ASSUMPTIONS

We now explicitly state the assuming mode in OUT model of these computations on the
multi-FLEX.

(AO) A processor which executes only in its local domain achieves full utilization.

(AI) We model the •'computational behavior" of the system and consider that all the procesSOl'il

in me system have been loaded with the appropriate code prior to the beginning of our
experiment In an actual system we recognize thaI such a computational period is preceded
by a loading phase in which, depending upon the application and the scheduling policy
used, different user processes are assigned to the available processors and loaded for execu~
tion. MeasuremenlS pedormed recently indicate that for our FLEX system. in the con­
current C environment, the time between the execution of a "cobegin" statement and the
actual activation of the code in a processor is of the order of one second. Nevertheless we
can use our approximations to characterize the overall system behavior when the execution
time of the code loaded in all processors is much larger than the time to actually load the
cOOo.

(A2) All processors exhibit identical behavior, they execute identical process code loaded into
their local memory.

(A3) Each processor performs according to the following pattern:

(a) It executes in the local domain. The average lifetime in the local domain is denoted
by 'tl and it is determined by the size of the domain al (the number of references) and
the slow-down factor denoted by JlI. In case of local domain we have Jll = 1. The
domain size, a" is determined by the application, through two parameters Nand K
as shown in Table 1. We have

with

IJ.I = 1

The transition rate from the local domain is defined as:

(1)

(2)

- 9 -

I1., =-
tl

(3)

(b) After completing execution in the local domain each processor moves to the locally
shared domain. TIle average duration of this transition process is denoted by ott,ls and
it is assumed to be very short 88 compared to 't,_ 'The corresponding rate is

11.,p =-.
tIp

(e) The average life-time in the locally shared domain is:

TIle transition rate from~ locally shared domain is defined as:

14=-t.

(4)

(5)

(d) After completing execution in the locally shared domain. each processor moves into
the global domain. The transition period from the locally shared to the global domain
takes 'tz,." units of time. We have assumed this transition period to be considerably
shorter than the life-time in the locally shared domain. The conesponding rate is

I
4~=-.

t.~

(e) The average lifetime in the global domain is

(6)

To complete the cycle. the processor moves back to the local domain The values of
ai, CJl.J and or are presented in Table 1.

(A4) To execute in the locally shared domain, a processor acquires the common bus and it holds
the bus until it completes execution in the locally shared domain. Similarly, to execute in
the global domain, a processor acquires the common bus and the global bus and releases
them only after finishing execution in the global domain.

s. THE MODEL WITHOUT GROUP SYNCHRONIZATION

The model without group synchronization is presented in Figure 5. As mentioned earlier we
use Stochastic High Level Petri Nets (SIfi...PN) for the modeling of the Multi-FLEX system. In
the model without group synchropization it is assumed that only one processor Pi . MP

j
i E [l,9] can be active in the locally shared domain for each j E [1,7] and ooly one processor is
active in the global domain at a time. Clearly this conservative assumption makes our results
lower bounds for the actual system performance.

The places and the transitions present in our SIfi...PN model as well as their significance is
presented briefly in the followings:

PI is the "local domain" place. When this place holds tokens, the corresponding processo~
are active in the local memory.

p.
P,

T,

T,

T,

-10 -

is the "queuing for the locally shared domain" place. When this place holds tokens, the
corres~nding processors are queued for the locally shared domain.

is the "locally shared domain" place. When this place holds tokens, the corresponding pro­
cessors are active in the locally shared domain.

is the "common bus" place. When this place holds a token, a common bus is free.

is the "queuing for the global domain" place. When this place holds tokens. the
corresponding processors are Queued for the global domain.

is the "global memory" place. When this place holds a token, the corresponding processor
is active in the global domain.

is the "global bus" place. When this place holds a token, the global bus is free.

is the "end of local domain" transition. When it fires. a processor ends its activity in its
local domain. The transition rate is)..1 = At.
is the "moving to the locally shared domain" transition. This transition is enabled when the
common bus is free and there is at ieast one processor in the queue for the locally shared
domain. The transition rate is~ = I..,,b'
is the "end of locally shared domain" transition. When this transition fires, the processor
ends its execution in die locally shared domain. 1be transition rate is 1..3 = Au.
is the "moving to the global domain" transition. The transition is enabled when the com­
mon bus and the global bus are free and there is at least one processor in the global queue.
The transition nl1e is A.t = At,,,.

is the "end of global domain" transition. When it fires. a processor ends its activity in the
global domain. The ttansition rate is: ~ = 7 Ag •

- 11 -

P,
---.IE

P,

T,,_--l'--._

P,

T"--,.-1--.-

•

Figure S. The SHLPN model of a Multi-FLEX system without group synchronization.

The stale space is moderate in size, there are 145 states. To simplify the model we have
used the following observation: to model the contention for lhe global bus it is sufficient to con­
sider that the total transition rate of transition T4 of a Multi-FLEX system consisting of n identi­
cal systems is n times the transition rate of a Multi-FLEX system with a single system attached
to it. Without this observation the state space would have been prohibitively large (probably one
order of magnitude larger). Additionally, we have gained the flexibility ofm<Xleling Multi-FLEX
systems with a variable number ofsystems using the same conceptual model and the same system
of equations.

- 12-

The overall processor utilization for difference values of J11.r and J1, are presented in Figures
6.1 to 6.8. A summary of Ihe results is presented in Table 3. Qu and Q, are the average queue
length for the locally shared and the global domain respectively and TIp is the processor utiliza­
tion in percent

u, • u_ N K Q, Q 11 (nercent)
2-D 1.5 15.0 10 2 0.2083 1.3386 82.81

100 2 0.0009 0.0 99.99
optimistic 10 5 0.8204 15926 73.19

100 5 0.0009 0.0 99.99
2-D 10 2 0.9179 6.8440 13.77

100 2 2.2081 3.4054 37.62
pessimistic 0 5 0.6930 7.2118 12.17

100 5 1.6580 5.3882 21.70
2-D 4.0 40.0 10 2 0.8928 1.5697 72.63

100 2 0.0009 0.0 99.99
optimistic 10 5 2.1141 2.3660 50.22

100 5 0.0009 0.0002 99.99
2-D 10 2 0.6823 7.2284 12.10

100 2 1.6120 5.4941 21.40
pessimistic 10 5 05786 7.3857 11.50

100 5 1.0762 65667 15.07
3-D 1.5 15.0 10 3 0.0009 0.0029 99.95

100 3 0.0008 0,0 99.99
optimistic 10 7 0.0014 0.0154 99.81

100 7 0.0008 0.0 99.99
3-D 10 3 0.6759 7.2386 12.05

100 3 15533 55912 20.61
pessimistic 10 7 0.5811 7.3822 11.51

100 7 1.0788 6.5549 15.18
3-D 4.0 40.0 10 3 0.0016 0.0201 99.75

100 3 0.0008 0.0 99.99
optimistic 10 7 0.0009 0.001 99.98

100 7 0.008 0.0 99.99
3-D 10 3 0.5714 7.3965 11.46

100 3 1.0227 6.6568 14.67
pessimistic 10 7 05306 7.4557 11.26

100 7 0.7645 7.0982 12.63

Table 3. Processor utilization and average queue lengths Qu and Qg to enter the locally
shared/global domains as function ofhardware and application parameters.

Figures 6.1-6.4 show utilization for the optimistic and pessimistic 2D cases for two pair of
slowdown factors: (1.5 locally shared, 15 global) and (4 locally shared, 40 global). We expect
the (1.5, 15) case to be the more realistic. but the (4, 40) pair shows the effect of slowercommun­
ication. It is clear from these figures that the utilization is very good for the optimistic case even

- 13 -

for small problems (N S 25) while it is poor for the pessimistic case even for N = 100. Recall
that this Multi-FLEX has 7><9 = 63 processors so that N = 2S and 100 correspond to 2D prob.
lerns with 40,000 and 630,000 elements, respectively. It is not surprising that the Schwarz split­
ting approach to parallelization of an FFr method is oot very competitive for an 800x800 prob­
lem. FFT and similar fast methods are not applicable to most POE problems and it is here that
the power of Schwan splioing and parallelism comes imo play.

If we assume a 20 percent overlap in the splitting regioDS, then we can compute the opera­
tion counts for ordinary sequential Gauss elimination to be (.8Nx63)4 = 6,400,OOON4 and
Schwarz splitting to be 63pN4 where p is the number of iteration. Thus, 100,000 iterations
would be the break even point whereas we hope for 25 to 50 iteratiom in practice. We hope for a
speedup of perhaps 2000 in this particular case just due to using Schwarz splitting. Then there is
another speedup of 63 from using parallelisms for a total potential,speedup of about 100,000 once
N becomes of moderate size. While a real machine and computation might not reach this poten­
tial, it can fall far short and still be dramatically successful.

1-

0.98-

0.96-

0.94-

0.92-

0.9-

0.88-

Utilization 0.86-

(~p) 0.84-

0.82-

0.8-

0.78-

0.76-

0.74-

0.72

0.7

K.

K

K •

K.'
Slow Down Factors: l.S-locaJly shBred; IS.o-globaJ memory

, , IT I , , , , I
10 W 30 ~ ~ ro W 80 00 100

N

Figure 6.1. The utilization of a processor versus Nand K for the optimistic 2D case of
slowdown factors (1.5 locally shared, 15.0 global memory).

1

0.95

0.9

0.85

0.8

Utilization
0.75

(~,)

0.7
K_

0.65 K_

0.6
K

0.55

0.5 K_'

- 14-

Slow Dowo FactoB: 4.0-locally shared; 40.0-g1obal memory

10 20 30 40 50
N

60 70 80 90 100

Figure 6.2. The utilization of a processor versus Nand K for the optimistic 2D case of
slowdown factors (4.0 locally shared, 40.0 global memory).

0.38

036

0.34

0.32

0.3

0.28

Utilization 0.26

(~,) 0.24

0.22

0.2

0.18

0.16

0.14

0.12

- 15 -

K.'

Slow-Down FIICIoI'll: I5-locallY shared; 15.o-global memory

10 20 30 40 50
N

60 70 80 90 100

Figure 6.3. The utilization of a processor versus Nand K for lhe pessimistic 2D case of
slowdown factors (1.5 locally shared, 15.0 global memory).

- 16-

0.2

K.'
0.18

Utilization
(~,)

0.16

0.14

0.12-

0.1

K_.

Slow-Down Factors: 4-locally shaRd; 4O-global memory

10 20 30 40 50
N

60 70 80 90 100

Figure 6.4. The utilization of a processor versus N and K for the pessimistic 3D case of
slowdown factors (4locaUy shared, 40 global memory).

Figures 6.5 to 6.8 show the optimistic and pessimistic 3D cases for the same two pairs of
slowdown factors. We see extremely high levels of utilization (100 percent) in the optimistic
case even for small values of N (N ;;:: 10). The pessimistic case still shows poor utilization.
However, me balance is strongly shifted toward high utilization levels for the intennediate values
of k Dot shown here. These correspond to various iterative methods (SOR, SSOR or ADI) or
sparse matrix techniques being used on the individual regions.

We repeat the operations count analysis in the 3D case and find the ordinary Gauss elimina­
tion count to be about 800 billion N' while the Schwarz splitting count is 63pN'. It is obvious
that Schwan splitting is even more advantageous, especially in view of the fact that the number
p of iteration tends to be slightly less in 3D than in 2D. The sizes of the problems involv.ed here
are huge, for N = 25 and 100 we have, respectively, 1 million and 63 million unknowns.

- 17 -

1-

0.9996-

0.9992-

Utilization .l,
(~p)

0.9988-

•
0.9984-

K' Sklw Down PaclDl1l: l.5-locll1ly lIhared; 15.o-gklbal memory

0.998.,

I I I
10 20 30

I
40

I
50

N

I
60

I
70

I
80

I
90

I
100

Figure 6.5. The utilization of a processor versus Nand K for the optimistic 3D case of
slowdown factol'B (1.5 locally shared, 15.0 global memory).

- 18-

1-

0.9975-

0.995-

Utilization
(~,) xL,

0.9925

K

0.99-

O.9875~ K 7 Slow Down PscWl'lI: 4.o-local1y shmcd; 40.o-g1oblil memory

I
10

I
20

I , , , , I ,

30 40 SO 60 70 80 90
N

100

Figure 6.6. The utilization of a processor versus Nand K for the optimistic 3D case of
slowdown factors (4.0 locally shared. 40.0 global memory).

- 19 -

0.21

0.2

0.19·

K_'
O.le

0.'7j
0.16

I
0.15 1_

0.14

0.13

0.12-'1

K_'

K_'

K_7

0.11 Slow-Dow::l. Facton: IS-locallY shared; 15.0-global memory

I
10 20 30 40 50

N
60 70 80 90 100

Figure 6.7. The utilization of a processor versus N and K for the pessimistic 3D case of
slowdown factors (1.5 locally shared, 15.0 global memory).

Utilization
(~,)

0.147

0.145

0.143

0.141

0.139

0.137

0.135

0.133

0.131

0.129

0.127

0.125

0.123

0.121

0.119

0.117

0.115

0.113

0.111

- 20-

K.'

Slow·Down PaclorJ: 4-loc:ally shaml; 4O-gl0ballllCmJf)'

10 20 30 40 50
N

60 70 80 90 100

Figure 6.8. The utilization of a processor versus N and K for the pessimistic 2D case of
slowdown factors (4locally shared. 40 global memory).

- 21 -

6. THE MODEL WITH GROUP SYNCHRONIZATION

A model of a Multi-FLEX system with group synchronization is presented in Figure 7. The
group synchronization is necessary in order to model the semantics of cooperation among dif­
ferent processors which operate upon different segments of a large array of data and have to

exchange partial resuIlS. Two synchronization conditions are imposed. 'The first one requires that
a processor migrating to the locally shared domain must wait for all other processors in its group
to complete execution in the local domain. A group consists of three processors. The second syn­
chronization condition is related to the transition to the global domain. In this case all processors
of a system must complete their execution in tb: locally shared domain before any of them is
allowed to enter the global domain.

The introduction of these two synchronization conditions has increased the complexity of
the model. Two new places as well as two new transitions appear in the Sm...PN graph in Figure
7. The state space has increa&>..d from 145 to 1505 states. The methodology developed for SHLPN
modeling has proved its usefulness and we were able to construct the state transition table of this
system with 8 reasonable effon.

The places and the uansitions present in the Sm...PN graph in Figure 7 have the following
significance:

PI is the "local domain" place. 'Whee this place holds tokens, the corresponding processors
are active in their local domain.

Pz is the "group synchronization" place. When this place holds tokens, the corresponding pro­
cessors are waiting for synchronizaticn with their neighbors in the same multiprocessor
system.

P3 is the "locally shared. memory queuing" place. When this place holds tokens, the
corresponding processors are queued for the locally shared memory.

P4 is the "locally shared memory" place. When this place holds tokens, the corresponding
processors are accessing the locally shared memory.

Ps is the "common bus" place. When this place holds a token, the common bus is free.

P6 is the "system synchronization" place. When this place holds tokens, the corresponding
processors are waiting for synchronization with all others in the same system.

P7 is the "global queuing" place. When this place holds tokens, the corresponding processors
are queued for global memory.

Pa is the "global domaiil" place. When this place holds a token, the corresponding processors
are executing in the glcbal domain.

P9 is the "global bus" place. \Vhen this place holds a token, the global bus is free.

T) is the "end of local domain activity" transition. When it fires. a processor ends its activity
in the local memory.

Tz is the "group synchronization" transition. When all processors belonging lO a group finish
their execution in the local domain, the transition can fire.

T3 is the "getting common memory" transition. The transition is enabled when the common
bus is free and there is at least one processor waiting in the common queue.

T4 is the "end of execution in the shared domain" transition. When it fires, a processor ends its
activity in the shared domain.

Ts is the "system synchronization" transition. When all processors of a system finish their
execution in the locally shared domain, this transition can fire.

(p,X)
P,

(p,x) "Iv,

- 22-

PI•
(p,i) A,TI

(p,i)
p,

T
3.(Pj)..

3·(pj)
P,

(p,k
T, l.i

(p,k)
P, P,

•
(p,k)

l.,T,
(p,x)

(p,k
p.

T,
9.(p,'~

9·(p,')
P,

Figure 7. The Sm..PN model with group synchronization.

- 23-

T6 is the "getting global memory" transitioD. The transition is enabled when the common bus
and the global bus are free and there is at least one processor waiting in the global queue.

T7 is the "end of global domain" transition. When it fires, a processor ends its activity in the
global domain.

We are in the process of solving the equations of the model with group synchronization.

7. REFERENCES

[1] John R. Rice, "Multi-FLEX machines: Preliminary report", CSD-TR-612, Computer Sci­
ence, Purdue Uiversity, June 1986

[2] Chuang Lin and Dan Cristian Marinescu, "Stochastic high level Petti nets and applications",
esO-TR-613, Computer Science, Purdue University, July 1986.

[3] Dan C. Marinescu and Chuang Un. "PreliminaIy results on multiprocessor modeling and
analysis using stochastig, high level Petri nets". Twenty-Fourth Allenon Conference OD

Communication, Control and Computing, October 1986.

[4] G. Rodrique and J. Simon, "A generalization of the numerical Schwarz algorithm". In
Computing Methodr in Applied Science and Engineering (Glowinski and Lions. eds.)
North-Holland (1984), 273-283.

[5] K. Miller, "Numerical analogs to the Schwarz alternating procedure" Nwner. Math. 7
(1965),91-103.

[6] L.V. Kantorovich and V.I. Krylov, Approximate Methos in Higher Analysis. Noordhoff,
4th e<litioo (1958).

[4] W.P. Tang, Schwarz Splitting. A TIIDlk/ for parallel computations. Ph.D. thesis, Stanford
Ultiversity (1986).

	Domain Oriented Analysis of PDE Splitting Algorithms
	Report Number:
	

	tmp.1307986960.pdf.3yu1r

