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SUPERCOMPUTING ABOUT PHYSICAL OBJECTS
John R. Rice*

Computer Science Department
Purdue University
West Lafayette, IN 47907

CSD-TR-708
September 1987

Abstract

Scientific and technological advances in the next 5 to 10 years will make it feasible
to create an integrated, interactive system for the design, manipulation and analysis of
collections of physical objects. These advances will come in computing power through
the mechanism of parallel computation, in algorithms for geometry, in problem solving
systems to provide very high level user interfaces and in graphics to allow direct visuali-
zation of the behavior of the physical objects. In this paper we describe the project Com-
puting about Physical Objects which is to explore the associated technical problems and
to build prototypes of such systems. The focus here is upon the role of supercomputers
in this area and, especially, their application to solving the partial differential equations
that model many physical phenomena.

1. INTRODUCTION

Scientific and technological advances in the next 5 to 10 years will make it feasible
to create an integrated, interactive system for the design, manipulation and analysis of
collections of physical objects. These advances will come in computing power through
the mechanism of parallel computation, in algorithms for geometry computations and
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manipulations, in problem solving systems to provide very high level user interfaces and
in graphics to allow direct visualization of the behavior of the physical objects. In this
paper we describe the project Computing about Physical Objects at Purdue University
which is to explore the technical problems arising from creating these systems and to
build prototypes of them. The focus is upon the role of supercomputers in this area and,
especially, their application to solving the partial differential equations (PDEs) that
model many physical phenomena.

The capabilities that are required for these systems fall into four categories:

Physical phenomena models. One must have accurate models and reliable
methods to solve the resulting equations for things like heat flow, mechanics, combus-
Hon, structural analysis, fluid flow, etc.

Geometric designs and models. One must be create shapes easily and with great
versatility. Most details of the creation must be automated and the results must be
displayed in an informative, realistic fashion. Further, manipulation must be easy and
allow for dynamic shape changes, motions, interactions, etc.

Software systems. Very high level, applications oriented user interfaces must be
provided with the bulk of the problem solving automated. Large and diverse software
systems must be integrated at a high level,

Computing resources. The machines to support this system will require gigaflops
of power, many megawords of memory with many gigawords of auxiliary storage and
communication bandwidths of many megabytes/sec. to support 3D color movies.

2. COMPUTING ABOUT PHYSICAL OBJECTS

We are developing the tools for computing with models of physical objects. In the
course of this work, we face problems of how to represent objects by suitable models,
how to manipulate and edit these models, how to analyze and simulate the behavior of
modeled objects. To see the varied nature of the work, and to gain a first impression the
project consider designing a small water cooled piston engine diagramed in Figure 1.

Imagine we are at a point where the piston and its linkage to the crank shaft have
been designed. Now we wish to design the block such that the engine is kept cool,
strong, and light. So, the exterior geometry of the block must be designed, the shape and
location of the water cooling lines must be determined, and a suitable material for the
block must be selected.

Having chosen the shapes, assisted by a geometric modeling interface, the user must
solve a systemn of partial differential equations (PDEs) to analyze the heat flow and
stresses associated with this geometry and choice of block material. He may wish to
simulate running the engine at different speeds which changes the strength of the heat
source and the stresses on the moving parts. Systems of ordinary differential equations
(ODEs) describe the acceleration and constraint forces on the piston linkage. With
access to sufficient computing power, a user can quickly explore a wide range of shapes
and materials preliminary to a refined, optimized final design.



Figure 1. Cross section of a piston Engine. The source of heat and force is at H, the
coolant within the block is shown with bubbles. The housing of the linkage L
to the piston P is not shown.

What is involved in creating and simulating this scenario? First, complex object
models must be created and coordinated. The geometric modeling subproject provides
tools for this. The models are created through a user interface and require much
automatic design support from the system. For example, the geometric design of piston
and linkage requires a sophisticated solid modeling system. The ODEs describing the
dynamic behavior of the piston linkage can then be derived automatically by the system
for the geometry and material composition of the links. A subproject, called Project
Newton, builds such a system. PDEs model the physical behavior such as heat flow,
stresses and sirains, They are identified and numerical methods are selected that are well
suited to the problem’s nature and the desired accuracy. A subproject, called Mathemati-
cal Software Systems, does this. The user should be allowed to specify a sacrifice some
accuracy for the sake of speed or economy, the system can then allocate the computation
among the available resources to achieve this objective - without detailed intervention by
the user. The parallel processing subproject provides tools for this.

All aspects of this work require very high powered workstations and sophisticated
graphics backed up by supercomputer power. Because of the scope of the effort, all pro-
jects use a very high level approach to software development and integration that must be
backed up by powerful computing resources. The relationship of the principal subpro-
jects is shown in Figure 2. We summarize each here.

Project Newton. The goal of this research is to develop a highly modularized and exten-
sive system that duplicates the precise behavior of physical objects from their models.
The work is part of a consortium effort involving groups both at Cornell and Purdue

University.

Geometric Modeling. Geometric and solid modeling has reached a plateau that cannot
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Figure 2. The relationship of the subprojects of Computing about Physical Objects.

be elevated unless a number of basic computational problems in mathematics are solved
efficiently. This subproject focuses on these problems, Its results, as they mature, will
impact the other projects significantly.

Mathematical Software Systems. A high level mathematical software system targeted
toward elliptic partial differential equations is already operational. Its principal com-
ponents are an interactive, mathematically based, graphically oriented interface and a
broad range of problem solving modules. This 100,000+ lines of code system is built
using various software tools so that it can readily evolve and be enhanced. It is an ideal
vehicle to test approaches to future systems for computations about physical ob jects.

Parallel Processing. Computing with physical models requires enormous computing
power which will come mostly from massive parallelism. Our work concentrates on
three of the many aspects of this problem area. First, we will be heavily involved in the
algorithmic infrastructure both for numeric and geometric computation, Second, we will
study how to create an intelligent system for resource allocation without burdensome
user input or intervention. We will consider both tightly coupled computing
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environments where algorithm specific, synchronous approaches seem to be most
promising, and loosely coupled environments where we will concentrate on very general,
heuristic approaches to resource allocation. Finally, we will monitor performance issues
continually.

3. GEOMETRY BASED APPROACH

Our approach is based on the ELLPACK system described in [Rice and Borsvert,
1985] and [Rice, 1987]. The philosophy and many of the details of our approach is
given there so instead of describing ELLPACK, we present our approach to the organiza-
tion of mathematical software systems for partial differential equations. Two hierarchi-
cal views are given in Figures 3 and 4. Figure 3 shows five levels of software separating
the user from the computing facility, levels that we believe will be present in most large
scale scientific systems of the next decade.

Figure 4 shows the mathematical software system for this project. The workstation
environment and application oriented expert system of Figure 3 is shown as the user
interface here. It must communicate with the user in his own terms, thus if one is design-
ing engine cylinders, then this interface must have a relevant vocabulary (e.g., piston,
valve, block, ...) and operators (e.g., run engine, open valve, increase bore, ...). The
mathematical software infrastructure of Figure 3 is decomposed into four layers in Figure
4. The top is the physical objects system which is application independent but which pro-
vides all the facilities to create, manipulate, simulate and analyze collection of physical
objects.

The physical objects are self contained objects (in the sense of object oriented pro-
gramming) that represent a specific physical object in the computational model. A physi-
cal object is partioned into a collection of computational domains. Three reasons for
this are: a) to separate physical phenomena. For example, the stresses and heat flows in
a cylinder wall might be computed by unrelated software packages using completely dif-
ferent methods; b) iterative and time marching methods sometimes need two or three
““‘copies’’ of the physical object; c) to divide the work. For example, if 100 processors
were applied to computing the heat distribution in an engine block, then the block could
be partitioned into 100 subdomains.

The computational tools in Figure 4 are the nuts and bolts of the software infrastruc-
ture. These include libraries of numerical methods, packages to display functions and
shapes, procedures to move or modify basic geometric objects and so forth. There may
well be a time where the computing facility contains hardware implementations of some
of these tools. It will then be the task of the computational resources manager (see Fig-
ure 3) to access this hardware using the network operating system.

A key design concept in this project is to make the geomefry the basic data struc-
ture. Equations, arrays, grids, properties, etc., are then attached to this data structure to
create the full description (data structure) of the physical object. This is illustrated in
Figure 5 where a computational domain is shown along with types of associated informa-
tion. Note that object interfaces (faces) have separate and complete data structures of the
same nature as the domain’s. A hypothetical example of the information about the two
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Figure 3. Schematic of the future organization of scientific computing. The
mathematical software systems area is indicated by the dotted box.

objects in Figure 5 follows.
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Figure 4. Hierarchical view of the mathematical software system to be used in the
Computing about Physical Objects project.

. + G(x,y,0) * Uy, = COS (x*v)*u = L{x,y,1T)

C. Solid brass, heat flow
D. Subframe (4,7)

Faces: Top 1, Left 1, Left 2, Bot 2

Copy: Lefthub -v

Map: Lefthub -u.mp.1, MAP.Lefthub-u.1 (x, y)

E. A(627,83), A.low(627,83), A.up(627,83)

x.grid(32), y.grid(21), grid.pts(32,21)



2. Face: Topl -u
A. Parametrized, Ends (p, 2.2, 3.7)
B. B.u, + coeff 4* (u—w) = coef 5(v)
Ends: (0.7, 8.2), (1.2, 9.6)
Copy: Topl -v, Botleft -w
Domains: Lefthub -u
Map: Topl -u.mp.1, MAP.Lefthub -u.1 (x, y)

C. Ellipse, continuous convection

D. Subframe (3,7)

E. xvals(12), yvals(12), params(12), type(12)
coeff5.vals(12), W.vals(12), BC.array(12,3)

Figure 5. View of a computation domain with interior and faces. The types of
information in the associated data structures are listed.

4. ORGANIZATION OF THE COMPUTATIONAL SYSTEM

Figure 6 shows a high level block diagram of the computational system for Comput-
ing about Physical Objects. Note that the user appears twice, once at the top while the
problem is being formulated and analyzed and at the bottom while the problem is being
solved. The *‘expert’” access to the system (appear right) is where information about the
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performance of software modules and machine is entered into the system. Due to space
limitations, we do not discuss in detail most of this diagram, see the references for more
information. We do discuss the parts most relevant to supercomputing: machine selec-
tion and problem partition.

L3 1 < R EXPERT
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¥ \
INTERFACE | _ PERFORMANCE
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3
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OBJECT KNOWLEDGE
LANGUAGE BASE <
SYSTEM ]
. \
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\ A Remole Machine 4k ]
[ DISTRIBUTED
USER ™ PHYSICAL OBJECT
INTERFACE
PROBLEM SOLVING
MODULES

Figure 6. General high level block diagram of the computational system for the
Computing about Physical Objects project.

Figure 7 shows the structure of the machine selection component of the system. We
note at the top that a lot of information about the problem to be solved is collected by the
user interface system. The software modules are to be analyzed in advance to obtain for-
mulas to estimate computational requirements using this data. This allows concrete esti-
mates to be made for the machines available and predicted performances are produced
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(they may well be reviewed by the user) which are the basis for the machine selection.
At this point one can incorporate work load information about the available machines, we
already have an experimental system for this. The selections are made on the basis of
various values and these may be applied either statically (the computation is scheduled
once and for all) or dynamically. Note a large and complex computation may be
developed in this environment which has many different modules and phases. Thus we
will systematically explore techniques to distribute different parts of the computation
among different machines.

MODULE ID'S, PARAMETERS
GRID, DOMAIN INFORMATION
PDE INFORMATION

ABSTRACT ESTIMATES
OF MODULE’S
COMPUTATIONAL
REQUIREMENTS

MACHINES

CONCRETE ESTIMATES | AVAILABLE
__ PREDICTIONS OF MODULE'S
= COMPUTATION
REQUIREMENTS | KNOWLEDGE BASE:
MODULES VS. MACHINE
, PERFORMANCE
PERFORMANCE BECIDE

REQUIREMENTS _|  sTATIC/DYNAMIC
MACHINE SELECTION

stalic

\

APPLY RULES
- PREDICTIONS FOR dynamic

SELECTION

INSERT RULES
- PREDICTIONS FOR

SELECTION

i
PERFORMANCE
DATA MONITOR

- PERFORMANCE

Figure 7. Schematic of the machine selection subsystem.

The computing facility to be used at Purdue initially includes common worksta-
tions, an Alliant FX/1 as a workstation, LISP machines, a Cyber 205 (2 pipe, 2 mega-
words), a FLEX/32 (7 processors) and an NCUBE (128 processors). There are also
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Figure 8. Schematic of the problem partition subsystem. The dotted line separates the
advance software structure setup from the actual partition actions.

numerous mini-computers (VAX 11/780, 11/785, 8600) on the network.

If multiprocessors are available (as they will be for this project} then one must con-
sider partitioning computations assigned to them. We envisage using precompiled
libraries for problem solving so that any vectorization or parallelization is done indepen-
dently of the specific problem to be solved. However, many numerical algorithms can be
parametrized nicely in various ways and we plan to creat a partitioning environment
where we can vary the amount of partitioning. For example, a ‘‘small”’ computation
might be created by using 32 subdomains plus library modules with 32 as a parameter. A
larger computation might use 256 subdomains on 256 processors plus the same library
modules with 32 changed to 256. This approach is illustrated schematically in Figure 8
where the dotted line separates the advance software structure setup from the actual prob-
lem partition step.
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5. THE PRINCIPAL TECHNICAL PROBLEMS AREAS

We now list the seven principal technical problem areas along with references to
recent Purdue work in each area. One should also consult (Bajaj et. al., 1987] for an
overview of the project. We see that the group at Purdue has already invested a large
effort building up to this project, over 50 papers published in these seven areas and there
are many unpublished technical reports. Thus we have a good start on the project but
there is still an enormous amount of basic research, experimentation and development to
be done to create these systems.

AREA 1: PDE Solvers. These software modules must be general, robust, efficient and
parallelizable. The special emphasis at Purdue has been in collocation methods (using
splines or piecewise polynomials), high order finite difference methods and adaptive
methods. [Birkhoff and Lynch, 1985], [E. Houstis et. al., 1987], [E. Houstis et. al.,
1988], [Lynch and Rice, 1978], [Rice, 1986a], [Rice, 1987a], [Rice, 1987¢]

AREA 2: Partitioning of Parallel Computations. The partitioning (or program res-
tructuring) can occur at compile time, load time or run time. It must be automatic but
user controllable and be effective. [C. Houstis et. al., 1987a]

AREA 3: Actual Software System. It must be modular, hierarchically structured,
efficient and machine adaptable. The Purdue group has built one PDE solving system
with about 120,000 lines of Fortran code. [E. Houstis et. al., 1985a], [E. Houstis et. al.,
1985b], [E. Houstis et. al., 1985¢], [Rice, 1987b], [Rice and Boisvert, 1985], [Rice et. al.,
1986]

AREA 4: Performance Analysis and Control. One must be able to predict with rea-
sonable confidence both execution times and accuracy achieved. This involves bench-
marking both hardware and software speeds, parametrizing software modules appropri-
ately and, most difficult of all, assessing the actual accuracy of numerical methods.
Extensive evaluation of PDE software performance has been done at Purdue. [Boisvert
et. al,, 1979], [Dyksen et. al., 1984], [C. Houstis et. al., 1987b], [Ribbens and Rice,
1986], [Rice, 1986b], [Rice, 1986¢], [Rice et. al., 1981]

AREA 5: Computation Control. One must make reasonable resource use estimates in
a distributed computation, synchronize the computations plus estimate accuracies and
efficiencies being obtained. Purdue work is in the study of synchronous versus asynchro-
nous approaches. [C. Houstis et. al., 1987a)], [Marinescu and Rice, 1987a], [Marinescu
and Rice, 1987b]

AREA 6: Geometric Computation. One must be able to create, modify, move and
reshape collections of geometric domains. Multiple representations are probably
required as well as basically new techniques. Purdue work here is in the areas of alge-
braic geometry algorithms, general 2D and 3D domain processing, domain mapping
techniques and motion planning. [Ahbyankar, 1983], [Ahbyankar and Bajaj, 1987a],
[Ahbyankar and Bajaj, 1987b], [Ahbyankar and Bajaj, 1987c], [Atallah and Bajaj, 1987],
(Bajaj, 19851, [Bajaj, 1986], [Bajaj, 1987a), [Bajaj, 1987b], [Bajaj and Kim, 1987a],
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[Bajaj and Kim, 1987b], [Bajaj and Kim, 1987c], [Bajaj and Kim 1987d], [Bajaj and Kim
1987¢], [Bajaj and Kim 1987f], [Bajaj and Moh 1987], [Bajaj, Hoffmann and Hopcroft
1987], (Bajaj, Liu and Wu 1987], [Hoffmann and Hopcroft, 1985], [Hoffmann and Hop-
croft, 1986], [Hoffmann and Hopcroft, 1987a], [Hoffmann and Hopcroft, 1987b], [Hoff-
mann and Hopcroft, 1987], [Hoffmann et. al., 1986], [Ribbens, 1986], [Rice, 1984a],
Rice, 1984b].

AREA 7: User Interface. It must natural, easy to use and highly graphics oriented.
Purdue has built interactive, graphics, expert PDE systems interfaces. [Dyksen and Rib-
bens, 1987], [McFaddin and Rice, 1987], [Rice, 1985], [Rice, 1987d)
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