
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1989

Composition of Libraries, Software Parts and Problem Solving Composition of Libraries, Software Parts and Problem Solving

Environments Environments

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
89-852

Rice, John R., "Composition of Libraries, Software Parts and Problem Solving Environments" (1989).
Department of Computer Science Technical Reports. Paper 726.
https://docs.lib.purdue.edu/cstech/726

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972101?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

COMPOSITION OF LIBRARIES,
SOFTWARE PARTS AND PROBLEM

SOLVING ENVIRONMENTS

John R. Rice
CSD TR-852
January 1989

COMPOSITION OF LIBRARIES, SOFTWARE PARTS
AND PROBLEM SOLVING ENVIRONMENTS

J. R. Rice*
Computer Sciences Department

Purdue University
CSD-TR-852
January 1989

Abstract

We consider the problem of creating very large software systems by composing
existing software. As components of this process we consider software library ele-
ments, software parts and problem solving systems. These items are briefly defined and
their principal characteristics given. We discuss the relationship of these items to
objects in object oriented programming. The mechanics of the composition are dis-
cussed, the key issues are identified and the trade offs discussed. The principal tradeoff
is, of course, programming effort versus execution time efficiency. We consider several
examples and conclude that building very large software systems as a set of cooperat-
ing, somewhat autonomous, pans is a promising direction for research.

* This work is supported in part by the Air Force Office of Scicntific Research under grant
88-0243, and the Strategic Defense Initiative under Aimy Research Office contract DAAL03-
86-K-01606.

COMPOSITION OF LIBRARIES, SOFTWARE PARTS AND
PROBLEM SOLVING ENVIRONMENTS

John R. Rice*
Computer Science Department

Purdue University
West Lafayette, Indiana 47907, U.S.A.

I. INTRODUCTION
We consider the problem of creating very large software systems by composing

existing software. As components of this process we consider software library ele-
ments, software pans and problem solving systems. These items are briefly defined and
their principal characteristics given. We discuss the relationship of these items to
objects in object oriented programming. The mechanics of the composidon are dis-
cussed, the key issues are identified and the trade offs discussed. The principal tradeoff
is, of course, programming effort versus execution time efficiency. We consider several
examples and conclude that building very large software systems as a set of cooperat-
ing, somewhat autonomous, pans is a promising direction for research.

H. SOFTWARE LIBRARIES
A software library is a collection procedures which are organized loosely to cover

an application area. In the ideal case, this is a well structured collection of independent
units which can be included into a particular programming language code to implement
all the important operations of an application area. There is little or no context implicit
in the library beyond that of the programming language with which the library is used.
The input, output and operation of each library procedure is described in separate docu-
mentation. The conceptual level of a library element is strongly influenced by the level
of the programming language. For example, in Fortran 77 one can pass functions to a

* This is work is supported in part by the Air Force Office of Scientific Research under grant
88-0243, and the Strategic Defense Initiative under Army Research Officc contract DAAL03-86-K-01606.

- 2 -

procedure only by adhering to conventions specific to each procedure, one must supply
"redundant" auxiliary information about arrays, and allowable data structures are sev-
erly limited. A library is static in the sense that the user is presented with library and
has no way to modify or add to the procedures in iL

The key issues in library design and use are:
Coverage: How complete is the set of procedures provided?

This determines the power of the library.
Retrieval: How does one find the appropriate procedure?

Individual libraries with 500-1000 procedures are becoming com-
mon. A user may have easy access to many thousand library pro-
cedures and find that dozens - or even hundreds - potentially
implement the operations he needs.

Documentation: How does one understand the procedures and their use?
Preparing easily understood documentation is very difficult.

Interfaces: How does one create an interface to a library procedure?
The user must write code in the target programming language
which creates the input and output data structures and which
invokes the procedures. This code is usually lengthy compared to
invocation of the library procedures.

The first three issues are under the control of the library builder. In the past 15 years
we have seen these issues addressed strongly by IMSL and NAG resulting in much
improved libraries being created. The interface is still the responsibility of the user and
is inherent in the library concept. We use the term procedure team to denote a library
that has been well structured with good coverage, retrieval and documentation.

HL SOFTWARE PARTS
Software parts are defined within a standard framework of a specific application

area, e.g., linear algebra, statistics, compressor design or compilers. This standard
framework provides a uniform environment for the data structures, procedures and ter-
minology used in the application area. Most technologies (e.g., plumbing construction,
electronics, mathematics) have created very rich frameworks, so much so that one has
to learn a jargon in order to communicate. That is the point, once the jargon is
mastered then one can communicate quickly with everyone about most things of impor-
tance. Software engineering has not yet created such frameworks of note, but we can

- 3 -

expect them as the field matures. The operation of a software parts technology is illus-
trated in Figure 1. A software parts technology greatly facilitates the warehousing,
cataloging, retrieval and composition of software components. See [Batz e t al., 1983]
and [Rice and Schwetman, 1983] for further discussion.

Standard
Framework

COMPUTATIONAL
NUCLEUS PROLOG COMPUTATIONAL
NUCLEUS EPILOG PROLOG COMPUTATIONAL
NUCLEUS EPILOG COMPUTATIONAL
NUCLEUS

Standard
Framework

Interface Interface

Figure 1. Simple model of a reusable software part. The prolog and epilog are respon-
sible for conversions between the standard framework and the computational
nucleus.

A software parts technology is the natural evolution from a library. The standard
framework provides the conceptual framework including a variety of standard data
types which all software pans can use and which are not constrained by a programming
language. As a library, it is still static (at least for the user) but it can be multi-level.
That is, there may be pans that operate at a very low level with much detailed
specification required while there may be others that are at a very high level. Thus one
part could define a piece of an engine valve using detailed measurements while another
could solve for the temperature on the whole engine block with one simple command.

The key issues for software parts include those for a library: coverage, search,
documentation and interfaces. It is more crucial that the coverage be good. The stan-
dard framework makes search and documentation much simpler. An additional key
issue is
Composition: How does one put the pans together?

A software pans technology can use an existing programming language
as a pans composition systems, but this is likely to be awkward and
inadequate. Some specialized facilities to assist pans composition is
almost surely required for an effective software parts technology.

- 4 -

Noce that a software parts technology cannot be created independently by a single
person or organization. It relies on the application community agreeing on the standard
framework.

IV. PROBLEM SOLVING ENVIRONMENTS
A problem solving environment (PSE) is the natural extension of a software parts

technology. It has the standard framework, all the application data structures (vari-
ables), declarations (problem definition statements), and operators (problem solving
statements) all wrapped up in a single, coherent system with its own language and
interface to the user. See [Ford and Chatelin, 1987] for more information and exam-
ples. A PSE is holistic in nature, it provides everything necessary within its application
area. Thus it is (normally) at a very high level with explicit context.

The previous, somewhat separate, key issues of coverage, research, documentation,
interfaces and composition are now combined into single one: how good is the PSE?
All these issues must be addressed well or the PSE is flawed There is another key
issue
World view: Does the PSE assume it is the only software?

Does it assume it interacts only with a human?
Many PSEs do not provide free access to external software systems.
Some are not easily suspended while another is running (when one
exits, the system dies and loses all its status information).

The world view is not so important for libraries and software parts because access to
the external environment is usually provided by the programming language or parts
composition system.

Figure 2 shows how these three software items are related.

Figure 2. The hierarchy of software components in the construction of large software
systems.

V. OBJECTS
Recently object oriented programming has been a popular vehicle for software

development The key idea is to make objects completely self-contained (as are
software pans) and more general than procedures. When an object receives a message
(is invoked with arguments) then certain actions result. An object diners from a pro-
cedure in three important ways. First, its actions are not limited to producing output
values, one might have output values or side effects (e.g., it starts a new page on the
printer with the current date and page number at the top). Second, it does not automati-
cally assume the thread of control in an exclusion manner. One object invoking another
might continue to take actions and the invoked object need not "return control" to the
invoking object. Finally, an object may respond to many different messages, it does not
have a unique "calling list of arguments" or even a single "entry point". Note that
objects are not static, it is possible for one object to create another immediately. See
[Cox, 1986] for further discussion.

- 6 -

Thus objects are generalizations of library procedures and software parts whose
principal properties are essentially orthogonal to those of objects. One can have object
libraries, object teams and a software parts technology based on objects. One can
modify Figure 2 by replacing the word "procedure" by "object" and it is still valid.
One can mix object oriented programming with conventional library mechanisms
because a procedure is a particularly simple object

VL EXAMPLES
We discuss some simple examples of software systems.

1. Directory system for UNIX

Is it a library?
Software parts?
PSE?

World view?
Object oriented?

No. There is no general processing capability.
No.
Yes. It has a standard framework of a tree and types
(directory, files, executable, ...). There are very simple
problem solving statements: move, remove, copy, list,
change access rights.
None.
Yes. The directory commands regard the contents as
objects.

Note that within the larger system, one can use editors to create or modify the directory
system variables in arbitrary ways. This is not possible within the directory system
itself.
2. MACSYMA

Is it a library?
Software pans?

PSE?
World view?
Object oriented?

No.
No. But MACSYMA could be implemented using
software pans.
Yes.
Assumes it is interacting with a human at a terminal.
No.

- 7 -

3. ELLPACK
Is it a library?
Software parts?

PSE?
World view?

Object oriented?

No. But there is one inside i t
No. But it is implemented this way, with its own narrow
standard context.
Yes.
Standard ELLPACK is batch oriented but not direcdy
invokable by other software. It may "exit" and "return"
using access to Fortran. Interactive ELLPACK assumes it
is interacting with a terminal.
No.

4. NASTRAN, SPSS and the IMSL Library
Is it a library?
Is it a team?
Software parts?
PSE?

World view?
Object oriented?

Yes.
Yes.
No. The standard framework is lacking.
No. But some PSEs have been built to interface these
libraries {Adam for NASTRAN, conversational SPSS, and
PROTEAN for IMSL)
None. Free access to procedures via Fortran.
No.

V1L TECHNICAL ISSUES IN COMPOSING SOFTWARE
Our goal is to study composing existing software elements in order to create very

large software systems. There are four general questions to consider:
1. How much effort is required?
2. What technical barriers are incountered?
3. What are the savings in software production costs?
4. What are the losses in execution efficiency?

Examples of barriers to software composition are listed.
A. Machine specificity of software. Much software is dependent on specific

machine features. Thus to compose one component written in Lisp running on a Sym-
bolics and another written in a vector Fortran running on a Cyber 205 requires either:

- 8 -

(i) Rewriting software, e.g., porting both components to a machine that runs
Lisp and Fortran well.

(ii) Creating a distributed composition system involving multiple machines.
B. Language specificity of software. Libraries are language specific, the IMSL

library is for Fortran use. Software pans are likely to be programming language
specific although they could be commands in an operating system. To compose these
procedures requires either the translation of whole libraries (which may be quite feasi-
ble) or the development of a set of language interface facilities (which also may be
quite feasible).

C. Single user design. Most problem solving environments are designed as the
"entire computing environment". Examples of this are MACSYMA, MATLAB,
Interactive ELLPACK, and the Symbolics system. Substantial modifications may be
necessary to make these PSEs into one of a collection of software components
cooperating in a larger system. Closely related to this barrier is that some systems
assume that they interact with a human. This assumption can be difficult to remove,
e.g., computations may depend on the slow response time of people or a system might
depend on a human's ability to recognize features in a graph or display.

D. Low level incompatibilities. Examples here are assumptions about word
lengths, memory sizes, character representations (ASCII or EBCDIC), array storage for-
mats or the number of open files possible. While these incompatibilities are mundane,
they can be major barriers to software composition.

We are actually more ambitious than just wanting to compose software, we want
to create systems that cooperate in solving complex problems. In many applications
one sees that combining a set of software systems results in solving the applications,
i.e., there is a direct sequence of steps from the problem to the solution. But suppose
we have a collection of software components that each solve one part of a complex
problem, can they be combined to solve the whole problem? The answer, of course,
depends on the particular problem, the particular collection of components and the
cooperation strategy used. In the next sections we present three examples of such
applications, but the additional technical issue raised is:

5. What framework is suitable to allowing software components to collaborate
in an application?

- 9 -

Vm. COLLABORATORY SOLUTION OF AN ODE PROBLEM
We present an artificial problem to illustrate the idea of collaborating software

components for solving a non-standard problem. The problem is compute two func-
tions u CO and v (x) which satisfy:

Differential Equations:
w" = (5 + x2) u + sin(xw + v) - w'v(l + x2) xe [.2,.6]
u /r _

-

= (4 + xv) u + e*» / (1 + xv) - ,2u'(l + v 2) [.6,1.0]
[.2, .75]

xg [.75,1.0]
= (3xz + u)v

v" = (10 + m / x)v - ,4(sin(;c + v) + 3.5i£)v'
Interface Conditions:

u (x) continuous at .6
u'(x) continuous at .6
v(.2) = «(.2)
v(x) continuous at .75

ii'(.75) = 1
v(.6) = l
«(1) = 2
v'(l) = 0

There are 12 equations here, 4 differential and 8 algebraic. It is unlikely that we find an
existing software item that solves this problem directly. Indeed, it is not clear that this
problem is well posed in general.

The tools we would use to solve this problem are ODE solvers, say, IVPRK and
BVPFD from the IMSL library. Suppose we take these and create four ODE solving
objects:

Object DI: Input. u(.2) and u(.6) and v(x) on [.2,.6]
or «(.2) and u'(.2) and vQc) on [.2,.6]
or «(.6) and «'(.6) and v(r) on [.2,.6]

Output. u (.2), u(.6), m'(.2),u'(.6),u(;0 on [.2,.6],
residual norm on [.2,.6]

ObjectD2: Input. k(.6) and u(l) and v(x) on [.6,1.0]
or u(.6) and u'(.6) and v(jc) on [.6,1.0]
or w(l) and m'(1) and v(x) on [.6,1.0]

Output. m(.6), «(1), U%6), u'(1), u(x) on [.6,1], u'(.75),
residual norm on [.6,1.0]

Object D3: Input,
or

v(.2) and v(.75) and u{x) on [.2,.75]
v (.2) and v'(.2) and u (x) on [.2,.75]

- 1 0 -

or v (.75) and v'(.75) and u (*) on [.2,.75]
OutpuL v U) , v(.75), v(.6), v(x) on [.2,.75],

residual norm on [.2,.75]

Object D4: Input v(.75) and v(l) and u{x) on [.75,1.0]
or v(.75) and v'(.75) and u (x) on [.75,1.0]
or v (1) and v'(l) and u (x) on [.75,1.0]

Output. v(.75), v(1.0) and v(jc) on [.75,1.0],
residual norm on [.75,1.0]

We also create simple objects that "solve" the eight interface conditions individu-
ally. Two of these we impose everywhere, once and for all, namely, u(l) =2, and
v'(l) = 0.0. The corresponding two objects simply reset these values whenever they are
invoked. There are four simple objects specified in the following table.

Associated
Condition Input Output = Action

11
12
13

u continuous at .6
u.' continuous at .6
v(.2) = K(.2)

14: v continuous at .75

m(.6) from D1 and D2
«'(.6) from D1 and D2
u(. 2) from D1
v (.2) from D3
v (.75) from D3 and D4

u (.6) = average of inputs
«'(.6) = average of inputs
v (.2) = u (.2) - average of inputs

v (.75) = average of inputs
It is not obvious how to "solve" the interface conditions u'(J5) = 1 and v'(l) = 0.
We create two objects which, intuitively, improve the solutions to these conditions.

Object75. Input. w'(.75), v(x) on [.6,1.0]
Output. h(.6), u(x) on [.6,1.0],

residual norm on [.6,1.0]
This object solves the ODE on [.6,1.0] to satisfy the conditions m'(.75) = and u{ 1) = 2.

Object 16. Input v(.2), v(.75), v(.6), on [.2,.75]
Output. v(.2), v(.75), v(x) on [.2,.75],

residual norm on [.2,.75]
This object modifies the values v (.2) and v (.75) by half the change detected by the
solutions (i) with v (.75) as given and v(.6) = 1 for the new v(.2), and (ii) with v(.2) as
given and v (.6) = 1 for the new v (.75).

- 1 1 -

The cooperation mechanism that we propose is as follows. First, make initial
guesses for u (x), v (x) and the quantities in the interface conditions and compute the
residuals for all 12 equations. Then sequentially apply the objects whose residuals are
the largest until the residuals become small enough. In a parallel computing environ-
ment, one can apply several objects concurrently. It is clear that one should explore
more sophisticated strategies in selecting which objects to invoke when. However, in
the background is the belief that many physical situations are naturally stable so that
good mathematical models of them should be stable also and many reasonable
cooperating strategies are effective.

IX. ADDITIONAL EXAMPLES
We briefly describe three applications where composition is or should be quite

effective.
1. COMPUTING ABOUT PHYSICAL OBJECTS

This project is to explore how to construct computer systems that accurately model
a broad range of behaviors that we observe in the physical world. Shapes change.
Some are smooth and beautiful, others are angular and functional. Unanticipated
interactions take place, billiard balls bounce off one another, a robot arm jerks and
breaks a lever, electric current boils water and a whistle blows. In exploring how to
focus the computer power needed to create such a system, we realize that a huge
heterogeneous software system must be created. Successes have already been achieved
by composing large, unrelated software systems running on different machines.
Effective techniques have been devised to access the IMSL libraiy from languages other
than Fortran. For further discussion see [Bajaj eL aL, 1988].
2. COOPERATING REPUCATED ELLPACKS

We have already developed Parallel ELLPACK where a domain is subdivided into
many parts and each is given to a single node of our 128 processor NCUBE machine.
Then the discretization is made and the resulting linear system solved using the paral-
lelism of the machine. See [Houstis and Rice, 1989] for further discussion. This
approach is quite effective for dividing a single partial differential equation problem
into many pieces to exploit parallelism. And the software system at each node is really
a specialized, but essentially complete, version of the ELLPACK problem solving
environment. However, this composition of PSEs is very uniform in nature. More
complex physical applications require something different.

- 1 2 -

We visualize a network of cooperating replicas of the ELLPACK system. Each
oue is able to solve a single PDE problem on a single, not too complicated domain.
The network is connected to reflect the underlying physical geometry which has been
decomposed into fairly simple shapes. On each piece we have a single equadon. There
may be multiple equations for a single geometric piece, in which case we replicate the
piece so as to retain one equation per piece. Then there are a large number of interface
objects similar to those defined in Section VHI. There is a high level control of the
cooperation between these software objects which direct the computation toward the
solution of the whole problem.
3. COMPOSING ENGINEERING SYSTEMS FOR DESIGN OPTIMIZATION

In [Tong, 1989] a project is described which involves large engineering Fortran
software codes for the design of jet engine components. Each code does a design
analysis for a small part of the engine. These codes are specified by law so one cannot
change even one line while composing them together. Tong's goal is to use systematic
and heuristic optimization techniques involving a number of codes (the designs interact
but the codes do not take this into account). He created a set of objects (in the techni-
cal sense), each with one of these codes as its computational nucleus. Tong then con-
structs a system using these objects which employs various "cooperating" optimization
strategies in order to produce better designs. He reports good success, designs have
been made which substantially improve on the best previous "human engineered"
ones. Further, the elapsed time to make the designs is greatly reduced.

X. CONCLUSIONS
We have reviewed the hierarchy of software elements and discussed the potential

to create very large software systems by composing large numbers of software ele-
ments. We conclude that this process can be very effective in many instances and we
conjecture that the gain in software productivity and power is more than offset by the
reduced execution time efficiency of systems built this way. We have introduced the
concept of a network of cooperating software systems and conjecture that it can be a
very effective approach to solving important scientific applications.

- 1 3 -

REFERENCES
C. Bajaj, W. Dyksen, C Hoffmann, E. Houstis, J. Korb and J. Rice [1988] Computing

about physical objects, Proc. 12th World Congress on Scientific Computing,
IMACS, 4, pp. 642-644.

J. Batz, P. Cohen, S. Redwine and J. Rice [1983], The application specific area, IEEE
Computer, 16, pp. 78-85.

B. Cox [1986], Object-Oriented Programming, An Evolutionary Approach, Addison-
Wesley.

B. Ford and F. Chatelin [1987], Problem Solving Environments for Scientific Comput-
ing, North-Holland.

E.N. Houstis and J.R. Rice [1989], Parallel ELLPACK, Math. Comp. Simulation, 31, to
appear. Reprinted in Fourth Generation Mathematical Software Systems
(Houstis, Rice, Vichnevetsky, eds.) North-Holland, to appear.

J.R. Rice and H.D. Schwetman [1983], Interface issues in a software parts technology,
in Reusability in Software (E. Biggerstaff, ed.), ITT Technology, pp. 129-137.
Reprinted in Software Reusability (P. Freeman, ed.), IEEE Tutorial, Computer
Society Press (1987), pp. 96-104.

S.S. Tong [1989], Coupling artificial intelligence and numerical computations for
engineering design, Math. Comp. Simulation, 31, to appear. Reprinted in Fourth
Generation Mathematical Software Systems (Houstis, Rice, Vichnevetsky, eds.)
North-Holland, to appear.

	Composition of Libraries, Software Parts and Problem Solving Environments
	Report Number:
	

	tmp.1307986960.pdf.QH_zt

