
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Performance of Iterative Methods for Distributed Memory Performance of Iterative Methods for Distributed Memory

Processors Processors

Dan C. Marintescu

John R. Rice
Purdue University, jrr@cs.purdue.edu

E. Vavallis

Report Number:
90-979

Marintescu, Dan C.; Rice, John R.; and Vavallis, E., "Performance of Iterative Methods for Distributed
Memory Processors" (1992). Department of Computer Science Technical Reports. Paper 832.
https://docs.lib.purdue.edu/cstech/832

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

CORE Metadata, citation and similar papers at core.ac.uk

Provided by Purdue E-Pubs

https://core.ac.uk/display/4972096?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PERFORMANCE OF ITERATIVE METHODS
FOR DISTRmUTEO MEMORY PROCESSORS

Dan C. Marinescu
John R. Rice

E. Vavalis

CSD·TR·979
May 1990

PERFORMANCE OF ITERATIVE METHODS
FOR DISTRIBUTED MEMORY MACHINES

D.C. Marinescu, J.R. Rice and E.A. Vavalis

Purdue University
Computer Science Department

West Lafayette, IN 47907

CSD·TR 979

December 16, 1992

Abstract

We consider iterative methods for the large linear systems arising from partial
differential equation problems. These are somewhat banded but otherwise of no
special structure beyond being sparse. We study the implementations and perfor­

mance of several iterative methods on hypercube machines. We examine in detail
the effects of communication and synchronization delays. Models are presented [or
these computations and projections made about performance for massively parallel

machines. These models use the Events per Thread of Code (E/T) methodology of
Marinescu and Rice and the performance is interpreted within this framework.

1 Introduction

Communication and control latency can strongly influence the perfor­
mance of parallel computations on distributed memory multiprocessors. We
have proposed a model ofparallel computations, the E/T, Events per Thread
of Control model, which defines a measure of the communication complex­
ity. In this work we attempt to provide empirical evidence to support our
model.

1

The EfT model describes a parallel computation C as a collection of P
threads of control and E events. Informally a thread of control is an agent
capable to perform some work in behalf of C, and an event is an explicit
action performed by a thread of control, in order to coordinate its activity
with other threads of control. In a wider sense, an event is a change of state
of a thread of control.

In the E/T model, a parallel computation C with P threads of control and
E events, is described by its characteristic function g defined by E = g(P).
The model is based upon two assumptions:

(a) Conservation of work. Any work required by a computation C(l) with
one thread of control, has to be performed by one of the threads of
control of C(P), the parallel computation with P threads of control.

(b) W(P), the work required by a parallel computation is an increasing
function of the number of threads of control, P.

The first assumption needs little justification. It is an immediate can·
sequence of the view that a thread of control is an agent performing some
work in behalf of C. To carry out a computation with P threads of con­
trol, simply means to redistribute in some fashion the work with otherwise
would be carried out by only one thread. Call this constant amount of work
reflecting the work conservation principle Wcon~.

The second assumption is supported by the following arguments. An
event is associated with every communication and control act. Any thread
of control needs to communicate with other threads, at least at the instance
when it is initiated when some work is assigned to it, and at the termination
time, when it has to communicate its results. It follows that g(P) is an
increasing function of P. Moreover, any event requires a small amount of
additional work, say (J, to be carried out by the thread of control when an
event occurs. Let Wcc(P) denote the additional amount of work required
by C(P) for communication and control. The previous arguments show that
Wcc(P) given by

Wre(P) ~ 8 X E = 8 X g(P)

is an increasing function of P. Thus, while Wcc(P) might not increase
monotonically, it is plausible to assume that the variations from the trend
are small and that Wcc(P) is increasing. But W(P), the work carried by
C(P) consists of at least two components, the :first one Wcon~, independent

2

of P and the second one Wcc(P), an increasing function of P

W(P) = Wron• +W~(P).

It should be pointed out that in practice, one cannot expect Wcon, to be
constant, but an increasing function of P, due to increasing algorithms over­
head.

In this particular experiment, we investigate a particular algorithm we
expect to have, a quadratic characteristic function E = O(P2), because
each thread of control has to communicate with all other threads once every
iteration. A fiTst objective is to show that the characteristic function is
invariant to problem size.

2 Parallel Iterative Methods

In the framework of the / /ELLPACK project [1], we are developing
[1]' [1J a portable general purpose library of parallel iterative methods for
the solution of large PDE discretization systems of arbitrary PDE domain
geometry. This library is mostly baEed on the sequential ITPACK [1], and
is driven by the / /ELLPACK interface tool [1]. In an effort to preserve all
the robustness and all the convergence properties of the original sequential
iteration schemes only rather minor modifications/additions where made on
the original code.

Initially, using the / /ELLPACK Domain Decomposer the PDE domain is
partitioned, and each subdomain is assigned to a processor. The coefficients
of the discretization equations local to each subdornain are reside on the
associated processor which calculates the successive iterations of the local
unknowns. Clearly, appropriate values of the unknowns on the interfaces of
neighbor subdomains need to be communicated. It is important to point
out that we aEsume that we do not have any specific information for the
subdomains/processors mapping and thus we use all-to-all communication
for appropriate values of the unknown vector.

In this study we will consider only the Chebychev iteration method with
the Jacobi matrix aE per conditioner, and for the rest of the paper we will
refer to it as the JACOBI SI method. The JACOBI SI iteration scheme
on each processor/subdomain can be described by

initializations;
Bcale_matrix_rhs;

3

bcast(interf)i * everybody should have the initial *\
colaps(interf); * solution of the interface unknO&DS *\
for (iter=1. iter<itmax. iter++) {

if (not convergence) call jacobi_si;
}
unscale_matrix_rhs;
send_data_to_host;
quit;

We start by initializing various parameters, estimating the initial solution
and scaling the matrix and the right hand side. A broadcast/colaps pair is
used then for communicating the initial values of the interface unknowns.
Then, a fast barrier synchronization mechanism is used to ensure that all
processors enter synchronized the iteration loop.

The value of the logical parameter convergence is determined inside ja­
cobi_si and is based on global convergence tests while the maximum number
of iterations allowed itmax is set at the ELLPACK code level [1].

The pseudocode describing the computations performed by the routine
jacobi-si follows:

compute_pseudo_residual;($.') * for stop/adaptivity tests *\
stop_adaptive_testsi(S.')
change_parameters; (S.')
compute_new_solution;(')
bcast(interf)i($) * everybody should have the updated
colaps(interf);($) solution of the unknowns *\

The procedures marked with # involve computation while the ones
marked with $ communication. The message sizes are either four bytes when
calculating global inner products (change_parameters, stop-adaptive_tests
and compute_pseudoresiduals) or are functions of either the local number of
interface unknowns for symmetric matrices or the number of all local un­
knowns for non-symmetric ones. One can skip the change_parameters pro­
cedure by turning off the adaptivity at the ellpack code level. Notice that
all communications are all-to-all using either a broadcast/collapse pair or
bidirectional exchanges [1], and as such they almost synchronize all proces·
sors.

4

3 Performance Monitoring

This section describes the experiment to study the performance of iter­
ation methods on a. distributed memory system. The experiment uses the
parallel ELLPACK (f jELLPACK) system developed at Purdue [1], running
on a. 128 processor NCUBE. The TRIPLEX tool set [1] is used to monitor
the execution and to collect trace data.

The purpose of the experiment was to collect detailed information con­
cerning the execution of a particular Single Program Multiple Da.ta. (SPMD)
application, to study how this data relates to the high level characterization
of parallelism in the framework of the EfT model [1], and to investigate
how similar or dissimilar the behavior of the threads of control of an SPMD
computation are.

The experiment monitors the execution of the code implementing a
Chebychev iterative algorithm for solving a linear system of equations, an
important component of a parallel PDE solver. To ensure a load balanced
execution, the domain decomposer, part of the / /ELLPACK environment,
attempts to assign to every P E an equal amount of computation. A careful
selection of the interface points of the neighboring domains is also necessary
in order to minimize and balance the communication cost. The experiment
was conducted by taking a problem of a fixed size and repeating the execu­
tion with a number of P E's ranging from 2 to 128 for a rectangular domain
and a 50x50 grid, and 4 to 64 PEs for the irregular domain and a 33x33
grid.

The detailed behavior of all threads of control was captured by recording
all the events, marking changes of state for every thread. For every event the
TRIPLEX tool creates a trace record, which contains the pertinent infor­
mation about the event, type, time stamp, PE, amount of data transferred,
etc. All the measurements reported are based upon a clock with resolution
of 0.1 msec. To minimize the volume of trace data, only 5 iteration steps of
the JACOBI SI method were performed and only events related to commu­
nication and control were recorded. Even so, the trace data collected during
a single experiment with 128 PE's amounted to about 25 Mbytes.

The raw data were processed in several stages. First, the events outside
the scope of Chebychev iterations were filtered out. Then a preprocessing to
gather the data required by the E/T model was performed. The active time
between events, the duration of an event (read/write) and the length of a
blocking period, were obtained by correlating local events, events occurring
in the same thread (on the same PE). The time for communication and

5

control was computed as the difference between the duration of an event
and the length of its blocking period. To compute the algorithmic blocking
(defined as the interval from the instance a read is issued until the corre­
sponding write takes place) it was necessary to correlate non-local events,
events involving more than one thread. Finally, a statistical processing was
performed in order to obtain data as described in Section 4.

4 Measurements

Two experiments were performed. The first one uses a rectangular do­
main and a 50x50 grid, and the second one an irregular domain and a33x33
grid.

220

190

Events 160
per

Thread 130

100

70

++
+ ++

• x:t

"•

1 234 5 6 7
Number of Threads of Controllog2(P)

Figure 1: The expected number g(P)fP of events per thread of control and
a 95% confidence interval for it.

For each experiment, the PDE solver executes using a variable number
of PEs, ranging from 2 to 128 for the first case and 4 to 64 for the second
one. The actual decompositions corresponding to the 64 P E case are shown
in Figures 2 and 3 for the 33x33 and 50x50 grid respectively. In the second
case, the size of each subdomain and consequently the amount of computa­
tions performed by each PE is larger than the ones for the first case. The

6

Figure 2: The rectangular PDE domain and the decomposition obtained.

7

Figure 3: The non-rectangular POE domain and the decomposition ob­
tained.

8

number of interface points of each subdomain and consequently the amount
of communication is also larger in the second case than in the first one.
For all the graphs in this section we present data associated with the first
problem with solid lines and + while for the second one we use dashed lines
and x. The purpose of the experiments described in this paper is to obtain
qualitative, rather than quantitative results. The two cases examined here
show results in excellent agreement with one another.

Figure 1 presents the characteristic function E = g(P), the number of
units per thread of control function of the number of threads, on a logarith­
mic scale. As pointed out in I?], the characteristic fllnction provides a signa­
ture of the algorithm and of its implementation. In this case E = O(p2) as
expected, since communication is done by broadcasting. Note that the algo­
rithm itself requires that a subdomain communicates only with its neighbors,
but there are two reasons why the implementation uses broadcasting rather
than multicasting. First, the particular machine the experiment was carried
on does not support efficient multicasting. Second, in order to multicast,
each subdomain needs to know the ids of the PE to which its neighboring
subdomains are assigned. But any algorithm to map dynamically logical
subdomain ids to physical processors requires broadcasting, therefore it is
unlikely that domain decomposition methods could be implemented with
characteristic functions better than E = O(P2). A common trend for all
the measurements reported here is that the larger the number of threads
of control, the smaller is the confidence interval for the quantities being
measured.

In Figure 4, we show the timing of communication between two PEs,
PEi and PEj. At time t l , PEj initiates a READ by calling a routine which
starts to search for the desired data in the system buffer. If the data is not
found then, at time t2, PEj becomes blocked waiting for the data. Later at
t3, processor P Ej initiates the WRITE which supplies the data requested
by PEj. At time t4, the data begins to arrive at PEi and at ts the WRITE
operation terminates on PEj. Finally, at time t6, the READ terminates on
processor P Ei when the data values are moved from the system buffer to the
program and the computation proceeds. Note that time ts not measured,
that is

PEj measurestl ,t2 andt6,
P Ej measures t3 and ts.

Further, the times on PEj and PEj are measured by different clocks, so
there might be some discrepancy in calculating the algorithmic blocking
and the sum of propagation and data. transmission times. The terminology

9

PEj PEj

Read
t, READ-IIEGIN

initiation --
Algorithmic t,
blocking --

t3
WRITE-IIEGIN

at t3

Propagation ---.. t. WRITE-END

ts
at ts

Data
transmission ---.. READ_END

t6

Figure 4: Communication involving blocking, the total blocked tlme for
processor P Ej is the sum of the algorithmic blocking, the propagation delay,
and data transmission time.

for times in this report is as follows (from Figure 4).

Active time:
Read initiation:
Algorithmic blocking:
Propagation (not mea.sured):
Data Transmission (not mea.sured):
Non-blocked = Computing:
Read:
Write:

Time between events
t2 - t1
t3 - t, (= 0 ift3 < t,)
t. - t3 (= 0 ifts < t,)
t 6 - t 4

Active + Read initiation
t 6 - t1

t s - i3

Figures 5 and 6 show the expected active period per event and per thread
respectively for the two cases. The active period is defined to be the time
from the termination of an event to the beginning of the next event. An
active period corresponds to the time a thread of control performs work
assigned to it by virtue of conservation law. These figures confirm that the

10

50x50 grid assigns more work to each thread, for example, in case of a 16­
way decomposition the expected active period per event is of about 45 ticks
for a 50x50 grid as compared with less than 20 for the 33x33 grid.

Figures 7 and 8 present the expected time for a single read operation per
event and the total read time per thread respectively, while Figures 9 and 10
present the same data for a write operation. A first observation is that the
read time per event increases as p2 in each of the two cases, while the write
time per event is essentially constant. The average time for a write operation
is of about 36 ticks for the first case a.nd 12 ticks for the second one. As
pointed out ea.rlier (see Figures 2 and 3). the first case corresponds to large
subdomains and a large number of interface points and the measurements
confirm this.

x

Active
Time

per Event

95

85

75

65

55

45
35

25

15

5

x··.

\x

x

+

....~
i·...

'le".

1 2 3 4 5 6 7
Number of Threads of Controllog2{P)

Figure 5: The expected active time between two consecutive events and a
95% confidence interval for it.

11

x

12000 x

10000
Active

...
Time 8000 x

per Thread x
6000 - X"'.

x

4000-
+ + 'x

+ r----!
2000- + + + + T

I I I I I I I

1 2 3 4 5 6 7
Number of Threads of Controllog2(P)

Figure 6: The expected active time for a. thread of control and a 95% confi­
dence interval for it.

12

It should also be pointed out that as the number of threads of control in­
creases the number of write and read events increases logarithmically.

Here is important to notice that all figures associated with read and
write events exhibit a rather strange behavior for 16 processors and that is
more apparent when the size of the problem increases. Let us first consider
the case associated with the write events since it is easier to analyze. Since
the write operation is non-blocking, aPE simply copies the message into
the system buffer, initiates the transmission and returns. Based on this, the
expected write time is determined only by the size of the data being trans­
mitted, which in turn depends upon the number of interface points of each
subdomain. For simplicity let us assume a rectangular domain, a uniform
global domain discretization and a chess-board uniform decomposition of it.
In the case of two subdomains the total number of interface points for each
subdomain equals to the global grid discretization lines in one direction.
This number remains the same as the number of subdomains increases, in
powers of two, up to 8 and is divided by two for 16 and there after. Based on
the above observation the time for a write event is expected to be constant
for up to 8 processors and then gradually drop while a similar behavior is
expected for the read events. Nevertheless, the measured data indicate that
other factors prevent the performance lines from dropping down. Commu­
nication interrupts, which have a high priority in NCUBE 1, slow down the
write process. It has been observed [1], that as the message size decreases,
the interrupt rate increases and the slowdown is more apparent. We believe
this is the reason for the increase seen in Figure 7. The above obviously
holds for the case of read events but here other more crucial factors (dis­
tance between communicating nodes and buffer managing) cause further
performance degradation.

Let us now examine the 54-way decomposition. In the first case the ex­
pected read time is about 475 ticks, while in the second case it is of about
200 ticks. The measurements indicate that the number of read operations
per thread equals the number of write operations. It follows that the ex­
pected duration of an I/O operation (read or write) is 475{36 ~ 255 ticks
for the first case and 200t12 = 106 ticks for the second case. Consider now
the experiment where 64 PEs are used. The expected active period for the
two types of domain are 20 and 10 ticks respectively. It follows that the
expected processor utilizations are

20
~l = 20 +255" 7.2%

10
and '12 = ~1-;;:0~+C:1'"'0C:6 " 8.6%.

13

x
x

Read
Time

per Event

460

400

340

280

220

160

100

40

x

x

+

x

x

+

x ... x

x

+
+

x

1 2 3 4 5 6 7
Number of Threads of Controllo92(P)

FigtlIe 7: The expected time for a single read operation and a 95% confidence
interval for it.

x

....·x

~.""
:' X

41000

31000
Read

Time 21000
per Tluead

11000

1000

x

x

+

x

x

+
+

x.:
"

1234567
Number of Threads of Controllo92(P)

Figure 8: The expected time for all read operations of a thread of control
and a 95% confidence interval for it.

14

x

x x x
""" x........ -".- ..

x x
x x x

40-

35-

Write 30-
Time

per Event 25-

20-

15-

10-
-l-
;-

-l-

+
-l-

+ ;-

I I I I I
I 2 3 4 5 6 7
Number of Threads of Controllo92(P)

Figure 9: The expected time for a single write operation and a 95% confi­
dence interval for it.

x
4000

x x

3500 x
"
.........

" " x"

3000
Write x x

Time 2500 x

per Thread 2000 x
x +

1500 + + +
+ + +1000 + +
+ +

500 +
I 2 3 4 5 6 7
Number of Threads of Controllog2(P)

Figure 10: The expected time for all write operations of a thread of control
and a 95% confidence interval for it.

15

Figures 11 and 12 show the expected blocking time per read operation and
per thread of control respectively, for the two cases. Figures 13 and 14 show
the blocking time as percentage of the total read time. They indicate that
the blocking time increases as the number of threads of control increases,
from about 70% in case of four threads to more than 90% in case of 64
threads. The blocking time is defined as the time from the moment a thread
requests data and the moment the data becomes available (see Figure 10).

Since blocking is an important source of low processor utilization a.nd
consequently of low speedup, the blocking phenomena deserves to be scruti·
nized further. Figures 13 and 14 present the total blocked time as a fraction
of the total read time and the total computing time. These percentages
are very high, consistent with what we expect from the above discussions
and data. These computations spend most of their time waiting for data,
primarily because the communication is so slow compared to the arithmetic
speeds. The principal cause of the waiting is the algorithmic blocking time.
Figures 15 and 16 show that the total and individual lengths of these times
grows rapidly with the number P of threads of control. Figures 17 and 18
show the fraction of the total blocked time that is algorithmic blocking. It is
quite high and, comparing with Figures 13 and 14, one sees that the bulk of
the time of a thread of control is spent in algorithmic blocking. This point
is emphasized by Figures 19 and 20, which show the non-blocked or com­
puting time behavior as the number of thIeads of control increases. Figure
19 shows the overall fraction of computing time, while Figure 20 shows that
the expected fraction of computing time is equally low.

Figure 21 shows the minimum, average and maximum times for read
operations per thread of control. The fact that the average is close to the
maximum and far from the minimum indicates that there are a substan­
tial number of long read operations compared to the number of short ones.
Figure 22 shows the growth of the non-blocked time with the number P of
threads of control. Since the active time is not growing (see Figure 23) and
the number of events per thread is growing slowly with P, time for a trans­
mission grows rapidly with P. This confirms the earlier discussion. Finally,
Figure 23 shows that the active time per thread of control is decreasing as
P increases, this is as one expects.

Further information about performance is obtained from Figures 1, 22,
and 23. The active time per thread would decrease by a factor 64 as P goes
from 2 to 128, if there were no additional "algorithmic overhead". Starting
at 5000 (Figure 23), it actually drops only to 2000 instead of the expected
value of 80 or so. Thus this computation has substantial overhead in the

16

active computation beyond that due to the communication. We may also
estimate the average transmission time per event, since it is the non-blocked
time (Figure 22), less the action time (Figure 23), divided by the number
of events (Figure 1). For P = 2, we see the average transmission time is
(10,000-5,000)/70 = 70 and for P = 128 it is (1,600,000-2,000)/220 = 7,300.
Thus the transmission time ha.s increased by a factor of 100 (more than P)
due to, we believe, the increa.sed size of the cube (this should account for
an increase of a factor of at least 6) and congestion on the communication
paths.

Finally we note that the apparently erra.tic behavior that occurs for P
= 2,3, and 4 in many ofthe plots (e.g., Figures 6-9, 11-14, 17,21, and 23),
can be explained in terms of the underlying geometry of the PDE problems
and it does not indicate random effects in the measurements.

5 Potential Program Improvements

The EfT performance analysis methodology has identified an important
efficiency problem in this iteration algorithm. Since this is a typical example
of a broad class of iterations that arise in many computations, it is appro­
priate to consider steps to alleviate this difficulty. We present observation
of four types.

A. Use Better or Less Synchronization. We can look for less costly
synchronization schemes. Since the simple one used is the best possible
for true synchronization, we must sacrifice something. For example:

A·I. Synchronize only every 5 or 10 iterations. This has an un­
known effect on the numerical properties of the iteration, but it
is certainly something to try.

A-2. Use adaptive synchronization. Have every processor continue
computing while the synchronization messages and analysis is
taking place. Processor 0 initiates a true synchronization only
when the timing of the messages indicates that the iterations
have gotten too far from synchronized.

A-3. Local group synchronization. Have small subgroups, changing
over time, synchronize themselves. The numerical effects are un­
known, but this is probably pretty safe.

17

440

380

320
Blocked

260
Time

per Read 200

140

80

20

x
x ..

. x

x x
x

x
+

x + +
x '" ++
+ + +

1 2 3 4 5 6 7
Number of Threads of Controllog2(P)

Figure 11: The expected time a thread is blocked during a. read operation
and a 95% confidence interval for it.

x

x/
"'x35700

30700

Blocked 25700

Time 20700
in Read

per Thread 15700

10700

5700

700

x

x ... · x
.'

+

x ..

x

+

.: x

1 234 567
Number of Threads of Controllog2(P)

Figure 12: The expected time a thread is blocked during a read operation
and a 95% confidence interval for it.

18

76543

95
90

85

Blocking as 80 ---... - ---
Fraction of 75 -
Read Time 70

%
65
60
55

Number of Threads of Controllo9](P)

Figure 13: The expected blocked time during a. read operation as fraction of
the total read time.

--
....... - ..

Blocking
Fraction of
Read Time
per Thread

%

95

90

85

80

75

70

65

60

55

3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 14: The expected blocked during read per thread as fraction of the
total computing time per thread.

19

x

.··X

x

x ...

,,··x

+
+

x

x

5500

500

25500
AJgorithmic

Blocking 20500

Time 15500
in Read

per Thread 10500

1 2 3 4 5 6 7
Number of Threads of Controllo92(P)

Figure 15: The expected algorithmic blocking time per thread and a 95%
confidence interval for it.

340

Algorithmic 260
Blocking

Time 180
per Read

100

20

x

x

+

x

.
x x
.

x
x

x + +
+

123 4 567
Number of Threads of Controllo92{P)

Figure 16: The expected algorithmic blocking time during a read operation
and a 95% confidence interval for it.

20

B. Special Load Balancing. It is easy to see that processors that are
on the first levels of the spanning tree, used for the broadcast/collapse
pair, spend a long time waiting for the processors on the previous
levels to finish. This fact could be taken into account when the equa­
tions are distributed to processors and thus the utilization could be
improved. This probably would have a useful but not large effect on
overall efficiency.

One could take another approach to detect an unbalanced load, that we
might call the local waiting time balance test. Each processor mea..mres
how long it is blocked compared to its computation time. When it is
blocked for too long it signals that the load balancing is bad and
someone takes remedial action.

C. Use Faster Communication Hardware. The synchronization prob­
lem identified here is algorithmic in nature, the convergence theory of
the iteration only applies if the iteration is synchronized. However,one
can reasonably hope that exact synchronization is not really required
for good convergence. If we had a perfectly balanced computation, it
would be synchronized without explicit action. On the other hand, if
the communication hardware were fast enough, we could synchronize
without undue cost.

It is unclear whether communication hardware will keep up with speed
improvements in arithmetic processors. The current use of network­
like protocols for communication seems to make it impossible to have
communication speeds comparable to arithmetic speeds. But then,
such difficulties motivate people to devise better ways. As an indio
cation of how things are going, one can compare the speeds of the
NCUBE 1 and NCUBE 2 as below (the values given are approximate,
all in microseconds).

CPU cycle time
Add time
Send 1 word to neighbor
Send 1 word across 128 cube
Send 1000 words to neighbor
Send 1000 words across 128 cube

21

NCUBE 1
.14
3.0
450

25000
9000

6 X 105

NCUBE 2
.05
.35
140
152

5000
5000

D. Increase Memory Per Node. Existing hypercube machines tend to
have too little memory per mode. Even iterative methods, which tend
to have low memory requirements, are limited by the lack of memory.
Consider an NCUBE 1 with 128 processors running this program..
The NCUBE 1 has 512 Kbytes of memory per node, or 128 Kwords.
It is optimistic to expect that 60 Kwords are available for the linear
system. In a reasonably compact sparse form one could hope to have
about 5,000 equations per node (650,000 total). One iteration on 5,000
equations requires about 30,000 floating point operations. With 0.3
megaflops processors, the NCUBE 1 takes about 100 msecs (or 600
ticks) to do the iteration. Then it takes 1200 ticks to synchronize!
The best utilization one could hope for is about 33%.

For the NCUBE 2 the speeds are increased by 10 for megaflops, 5 for
communication and the memory is increased by 8 (but user memory
probably increases by 12 or 50). Thus we can have 60,000 equations
in one processor's memory and an iteration takes about 160 Dlsecs (or
1000 ticks). The communication time is decreased by a factor of 5
to give about 240 ticks for synchronization. Then the best computa­
tion/communication ratio changes from 600/1200 = 0.5 to 1000/240
= 4, a large but not overwhelming improvement. The best utilization
one could hope for is thus about 80%. For computations which do
not use all of a processor's memory, the ratios are smaller and the
performance worse.

22

95

90 : ".
.

85
Algorithmic

..
Blocking 80

as Fraction 75
of Blocking

...... -- ..

%
70

65

60

55

1 2 3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 17: The expected algorithmic blocking time during a read operation
as a fraction of the total blocking time during a read operation.

23

85

80

95

90

Algorithmic
Blocking

Fraction of
75

Blocking Time
per Thread 70

% 65

60

55

.........

..... --- ..

1 2 3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 18: The expected algorithmic blocking time per thread fraction of the
total blocking time during a read operation.

70

60

Active 50
Fraction of

NonJUocked 40

Time 30
per Thread

% 20

10

0

1 2 3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 19: The expected active time as fraction of the computing time per
thread.

24

35

30

25
Active

Fraction of 20

Non..Blocked 15
%

10

5

0

1 2 3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 20: The expected active time fraction of the computing time between
two consecutive events.

41500 ..

..
33500

Max, Min
and Mean 25500

Read Time
per Thread 17500

9500

1500

............. ,"

."

...................

1 2 345 6 7
Number of Threads of Controllo92(P)

Figure 21: The minimum, the average and the maximum time for all read
operations for a thread of control.

25

1.61e+06

1.41e+06

1.21e+06
Max, Min
and Mean 1.01e+06

non-Blocked Tirr&10000
per Thread 610000

410000

210000

10000

'.' .

...///i:'
..

· .· .· ... ' ,:. :>:~:,
- ." ­.-." ..,,,:~':::-""'.. " .. -....

1 2 3 4 5 6 7
Number of Threads of Controllo92{P)

Figure 22: The minimum, the average and the maximum expected non­
blocked time for a thread of control.

Max, Min
and Mean

Active Time
per Thread

5300

4300

3300

2300

1300

1 2 3 4 5 6 7
Number of Threads of Controllo92(P)

Figure 23: The minimum, the average and the maximum expected active
time for a thread of control.

26

	Performance of Iterative Methods for Distributed Memory Processors
	Report Number:
	

	tmp.1307986960.pdf.L4MYZ

