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OUTLINE

e Background

® Underlying Algorithm
* [oad Imbalance

® Unstructured Scheduling

® Other Optimization Strategies

Conclusions
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MOTIVATION

* Parallel ELLPACK

Iterative Methods

/
\ Direct Methods

Solution Library

* Distributed memory machines
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PDE PROBLEM

® General coefficients

® General boundary condition types

® General geometric domains

Slide 5 _J
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DISCRETIZATION

® Various Discretizations and Grids

Finite differences

Standard
High order

Finite elements

Collocation
Galerkin

on triangles or rectangles

Hybrid schemes

® Distributed Over Processors

Slide 6 _J
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INDEXING

Incomplete Nested Dissection
(domain decomposition based)

ellef]ele

| 4 J121 5 1
elo||ele
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oHoellefe
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® within each subdomain (““circle’’)

nested dissection
(potentially any efficient indexing scheme)

* Iinterface (the set of ‘‘boxes’’)

nested dissection

Qlida 7




INDEXING (CONTINUED)

Elimination Tree

k Slide 8
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MATRIX PROBLEM

® Very large, sparse
* Nonsymmetric

® Block structured

* Distributed by row
® Numerically stable

* No symbolic factorization

Slide 9
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MATRIX PROBLEM (CONTINUED)

Sparse Matrix Structure

'
CRCRCRC R 4

The sparse matrix structure for p = 16 processors. For the first two
levels the solid boxes are where nonzero matrix elements might be (actually,
these blocks are sparse also). The lower right box R contains diagonal blocks
for the other 3 levels. Dots indicate sparse rows and columns. The relative
sizes are correct for n? = 100, the number of grid points in one subdomain.
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MATRIX PROBLEM (CONTINUED)

Sparse Matrix Structure

(b)

201

l | !
50 100 150 200

Figure 10: (a) Actual non-zero structure with p = 16, n = 8. The equation

numbers are listed on the left. (b) The lower right block (everything except
level 0) before the elimination starts.

Slide 10b
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(a)

(b)

129 —

257
321 —
385 —
449
513
577 —
641
705 —
769 —
833
897 —
961 —
1024

=l

oy,
1934 ™

~

129
193
257
321
385
449
513
577 -
641 -
705
769
833
897 -]
961 —

1024

132 166 201

(a) The non-zero structure of the upper right matrix I before the
elimination starts. Note that the display is distorted. B has 1024 rows and
201 columns. (b) The upper right matrix B after the level 0 elimination.
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MATRIX PROBLEM (CONTINUED)

Sparse Matrix Structure

192

50 100 150 200

(b)

50 100 150 200

Figure 11: (a) The effect of the level 0 eli

mination on the lower right block.
D is given by (5). (b) The lower right bloc

k at the end of the elimination.
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Do everything for an equation when you reach it.

® down-looking

Have the effects of elimination in an equation
propagated before going on to the next equation.

Slide 12 _J
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OMMUNICATION ORGANIZATIONS

Q = Source P = Destination

3 §

e fan-out

When processing an equation organize and pass

on everything to later equations that they will
need.

Slide 13a _J
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COMMUNICATION ORGANIZATIONS
(CONTINUED)

Q = Source P = Destination

e fan-in

When processing an equation get everything from
preceding equations that is needed.

O :ri= Y (aplag)*row;
keK

= Y (ayi/ag)*row; (if A is symmetric)
keK

P :row; =row; — r{

Computing About Physsuiaildoebjelcésb_)



OBSERVATIONS AND FACTS

* Up-looking is better than down-looking in sparse
data structure manipulation

e Fan-in has less communication overhead than
fan-out

* Fan-out is suitable for down-looking

* Fan-in is suitable for up-looking

Fan-in is not applicable to nonsymmetric matrices

(a) rows in the partial sum are in the source pro-

cessor while the corresponding multipliers are
in the destination processor:

(b) all multipliers of an equation in the destina-
tion processor have to be computed in a
strictly sequential order by using rows distri-
buted among various source processors

Possible way:

redistribute data and compute row i and column i
at the same time

Slide 14 _J
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OUR SITUATION

Problem and Choice:
e Nonsymmetric matrices
e Fan-out communication organization

* Down-looking computation organization

Difficulties: . |

e Heavier communication overhead
e Communication buffer limit

e Destination list

* Up-looking used with fan-out requires a big

storage buffer or repeated sending of same mes-
sage.

Slide 15
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OUR APPROACH

Adapt ideas from other PDE solving methods, such
as

® Domain Decomposition

® Substructuring

to direct sparse solvers

Slide 16~
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MATRIX FORMULATION

_ Tr 1 -
A B X1 f1
A B, ) f2

App Bp Xp Jp

C1 C2 Cl .. Cp DJ Xd fd

Schur Complement or Capacitance Matrix

p _
S=D-5S CiA7'B;

=1

Sxg = fd—zCA f,
=1

,x, f; B,-xd | = 1,...,p

Computing About§t11§(si€allolyects —)
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MAJOR STEPS
® factoring A;;
!
Aj = L;U;

* forming Schur Complement S

* factoring S |

Slide 18
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COMPUTING SCHUR COMPLEMENT

S=D - ¥ CUT'LB,
=1

® Ordinary Gauss elimination algorithm

p - -
S=D - 5 (C;UHYWL!B;)
i=l1

* Implicit block factorization does not modify C;
matrices

P - -
S=D -5 C;U !By
=1

Advantages:

* sparsity of C; matrices never lost

* reduced communication requirements similar to
fan-in (next slide)

® static destination information is available from C;
matrices

Computing About Physical Objects —)
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COMPUTING SCHUR COMPLEMENT
(CONTINUED)

Explicitly computing A -1B is t00 expensive!!!

CA~1B =3 col; (C) * row; (A™!B)
k

for (col; (C) = null) do:

o solve Uly, = ¢ (triangular system of order n -k +1
¢ row; (A™'B)=yi(L'B)
end k loop

only subdomain boundary layer unknowns have
colx(C) = null, each of which corresponds to one
communication with its partial sum (in the fan-in
terminology, the modification vector, but it is
much shorter here)

very moderate increase in the computation over-
head, which is compensated by the saving in the
data structure manipulation for C

flexible choices of ordering within the k-loop
independent of local indexing

Computing About Physical Objects —)
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DATA STRUCTURES USED
® Subdomain equations — sparse

¢ Schur Complement — dense

Slide 21 _J
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ALGORITHMS

e subdomains

up-looking with ““fan-in’’ type communication

¢ jinterface

down-looking with fan-out communication

Algorithm Outline

1. Apply up-looking Gauss elimination to sub-
domain equations |

——  fully parallel

2. Participate in computing Schur Complement with
““fan-in”’ type communication

——  parallel and synchronized

| 3. Participate in factoring Schur Complement
according to the elimination tree using down-
looking with fan-out

——  parallel and synchronized

Computing Mou&lilglis.?ca% %bjects —)



LOAD IMBALANCE
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ASSIGNMENT

Equations to Processors

SUBCUBE-SUBTREE (Standard)

Py
Py Pi3
Py Py, Py Ps P
P
Py2 Py
P
L Py Py P12 Pnp l [ Py Py P Py I
Py
P P
2 Py Ex)
P2 P P Py Py
Px)
P P
2 P 2

Pn Pu Py Pay Py Py Pyy Pay Py Py Pys Pay Pia Py Py Py —I

Py Py ) P33
Py P32 Pi P Py
Py Pi; P3
l Py Py Py Py j Py [ P Py P Pu j
Py Pa Py
Py
Py Pz Py Pay
Py
Py Pas Py

Standard subtree-subcube assignment for 16 proces-
sors. Within each box unknowns are assigned in
wrapping manner to processors shown in the box.

Slide 24
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ASSIGNMENT (CONTINUED)

GRID-SUBCUBE-SUBTREE (Grid)

Py Py Py3 _
Pn -p]. PlZ-P3 P12 P13-p2 P14-p0
P12 P13 P14
Py Py l Pz Pxn|ffu Pz Py Py Py
P ;m P
P21 -p9 Pn-pll Pg Pz; -plO P24 -p8
P2 P24 P24
——RE
Py Py P Py F’u Py Pip qu@ Py P3P 43| P 4Py Py P gy
P3; P 3, P33
Pj; =-pi3 Pz =pl15 P3| Payy=pl4 Py =pl12
P 3y P33 Py
———
P33 Py 2 Pa| % P33 Py Py Py
P 41 P 41 P 43
P 45
Py =p5 Pyp=p7 Py =p6 Py =p4
v P 43
P 45 P 44 P 44

Grid based subtree-subcube assignment for 16 processors.
Within the subdomain interfaces we show how the processors
are assigned to unknowns in parts of the separators.

Computing About Physical Objects —)
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A PERFORMANCE, 16 PROCESSORS

e on the NCUBE/2

Grid Sequential | Parallel Speedup
time time
21 x 21 0.578 0.118 4.90
25 x 25 1.05 0.173 6.07
29 x 29 1.77 0.244 7.25
33 x 33 2.73 0.340 8.03
37 x 37 4.03 0.489 8.24
41 x 41 5.69 0.659 3.63
45 x 45 1.73 0.843 9.17
49 x 49 10.23 1.07 9.56
53 X 53 13.21 1.397 9.46
57 x 57 16.78 1.75 9.59
61 x 61 20.87 2.09 9.98
65 X 65 25.67 2.46 10.43
¢ on the Intel i860
Grid Sequential | Parallel Speedup
time time
21 x 21 0.071 0.094 XXX
57x57 | 1.87 0673 |

2.9

Computing About Physical Objects - —)
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VISUALIZING PERFORMANCE

® subdomain
e A7lB

e CA7lB

® interface

®* sending message

® varying grid

Slide 27 _J
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almost load balanced
very unbalanced

a lot of idle time

a lot of synchronization
substantial overhead

on the Intel i860

similar performance behavior
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UNSTRUCTURED SCHEDULING
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REORGANIZE COMPUTATION AND
COMMUNICATION IN FORMING
SCHUR COMPLEMENT

To reduce synchronization time, compute rows of
| A7!'B in an order that sends work first to idle
processors using the following priorities.

® priority 1 — corner processors:

PO, P1, P4 and P5

* priority 2 — other border processors:

P2, P3, P6, P7, P8, P9, P12, P13
® priority 3 — center processors:

P10, P11, P14, P15

l Slide 29 _J
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REASSIGN THE DATA AND TASKS

* move tasks from busy processors to idle processors

® overlap computation and communication

Slide 30
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REASSIGNMENT

Py=p1 |p,| FP12=p3 Pl F1=p2 P s Py =p0

Py Py P

Pau=p9 Pyl Pp=pll Pyl P2 =p10 [Py Py=p8

Pz Py P31 Py r’lz Py P3y; Py}P13 Py3 P33P 4;| P 14P 24P 34P 44

P 31

P31 =pl13  |Payy| P3p=pl15 |Py| Pi3=pld Pyl Piy=pl2
P 33

P31 Pa P4y P34 Pz |[ Pss Pa
P 41
P 42

Py=pS [Pyl Pay=p7 Py3=p6 Psy| Py=pd
43
P 44

Computing About Physical Objects —)
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EFFECTS OF RESCHEDULING

* On the NCUBE/2

57 x 57 grid:

parallel time 1.75 = 1.54
speedup 9.59 — 10.89

61 x 61 grid:

parallel time 2.09 — 1.87
speedup 9.98 — 11.15

e On the i860

no improvement

(a) the effect of communication dominates that
of the load imbalance too much

(b) heavy overhead of sending message

Slide 32
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OPTIMAL SCHEDULINGS

* Very unstructured

* Mutual interactions of load balancing in
rescheduling and synchronization in computing S

* Coarse grid analysis

| Slide 33
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OTHER OPTIMIZATION STRATEGIES

Slide 34
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PACKING VS. PIPELINING

| e Pack messages when pipelining is not important

® Trade-off between packing and pipelining by
adjusting a grain_control parameter in reschedul-
ing

Slide 35 /
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OTHER STRATEGIES

* Replace multicast by broadcast when the remain-
ing matrix becomes much denser

e Use irregular grids

\ Slide 36
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CONCLUSIONS

* The parallel PDE sparse solver is load unbal-
anced with the standard scheduling

® The parallel PDE sparse solver can gain high

speedup by reorganizing and overlapping compu-
tation and communication using proper schedul-
ings

® The i860 machine is an unbalanced design for

many more scientific applications than the
NCUBE 2 or Intel iPSC/2
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