#### **Purdue University**

#### Purdue e-Pubs

Department of Computer Science Technical Reports

**Department of Computer Science** 

1991

# Unstructured Scheduling in Parallel PDE Sparse Solvers on Distributed Memory Machines

Mo Mu

John R. Rice Purdue University, jrr@cs.purdue.edu

Report Number:

91-077

Mu, Mo and Rice, John R., "Unstructured Scheduling in Parallel PDE Sparse Solvers on Distributed Memory Machines" (1991). *Department of Computer Science Technical Reports*. Paper 916. https://docs.lib.purdue.edu/cstech/916

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries. Please contact epubs@purdue.edu for additional information.

#### UNSTRUCTURED SCHEDULING IN PARALLEL PDE SPARSE SOLVERS ON DISTRIBUTED MEMORY MACHINES

Mo Mu John R. Rice

CSD-TR-91-077 November 1991



# UNSTRUCTURED SCHEDULING IN PARALLEL PDE SPARSE SOLVERS ON DISTRIBUTED MEMORY MACHINES

Mo Mu\*
and
John R. Rice\*\*

Computer Science Department Purdue University West Lafayette, IN 47907

> October 25, 1991 Oak Ridge, TN

<sup>\*</sup> Supported by NSF grant CCR-86-19817.

<sup>\*\*</sup> Supported in part by AFOSR grant 88-0243 and the Strategic Defense Initiative through ARO contract DAAG03-90-0107.



#### **OUTLINE**

- Background
- Underlying Algorithm
- Load Imbalance
- Unstructured Scheduling
- Other Optimization Strategies
- Conclusions

Slide 2
Computing About Physical Objects



#### **BACKGROUND**



#### **MOTIVATION**

Parallel ELLPACK



Distributed memory machines



#### PDE PROBLEM

- General coefficients
- General boundary condition types
- General geometric domains



#### **DISCRETIZATION**

Various Discretizations and Grids

Finite differences

Standard

High order

Finite elements

Collocation

Galerkin

on triangles or rectangles

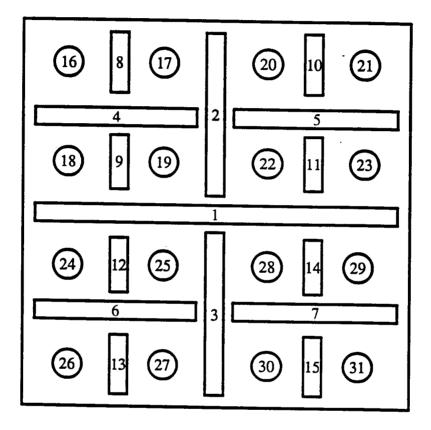
Hybrid schemes

Distributed Over Processors



#### **INDEXING**

Incomplete Nested Dissection (domain decomposition based)



• within each subdomain ("circle")

nested dissection (potentially any efficient indexing scheme)

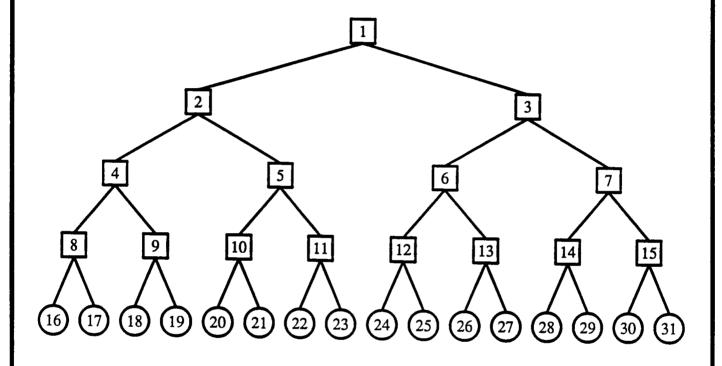
• interface (the set of "boxes")

nested dissection



#### **INDEXING (CONTINUED)**

Elimination Tree



Slide 8
Computing About Physical Objects



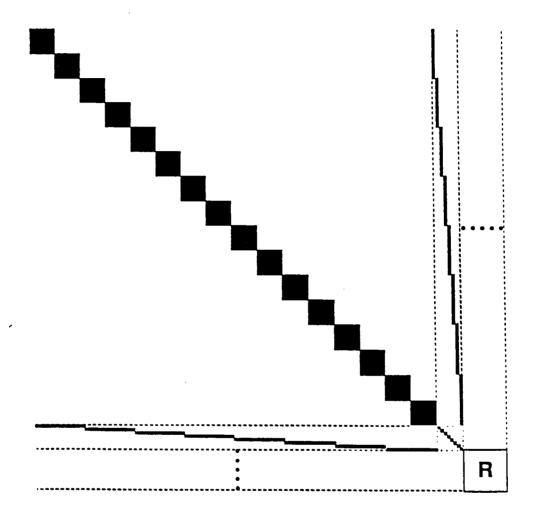
#### **MATRIX PROBLEM**

- Very large, sparse
- Nonsymmetric
- Block structured
- Distributed by row
- Numerically stable
- No symbolic factorization

Slide 9
Computing About Physical Objects



#### Sparse Matrix Structure



The sparse matrix structure for p=16 processors. For the first two levels the solid boxes are where nonzero matrix elements might be (actually, these blocks are sparse also). The lower right box R contains diagonal blocks for the other 3 levels. Dots indicate sparse rows and columns. The relative sizes are correct for  $n^2=100$ , the number of grid points in one subdomain.



#### Sparse Matrix Structure

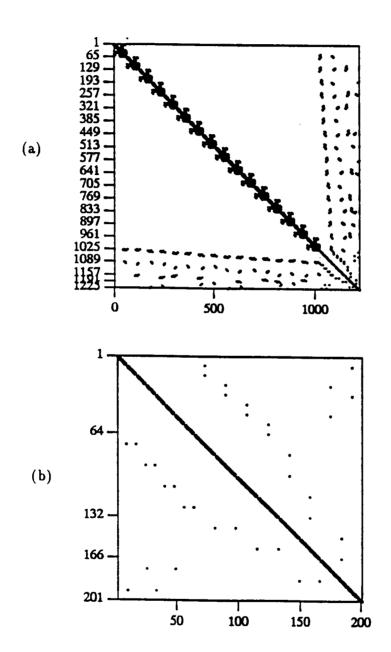
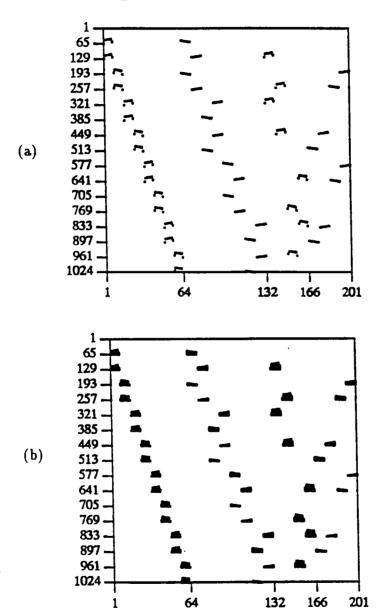


Figure 10: (a) Actual non-zero structure with p = 16, n = 8. The equation numbers are listed on the left. (b) The lower right block (everything except level 0) before the elimination starts.



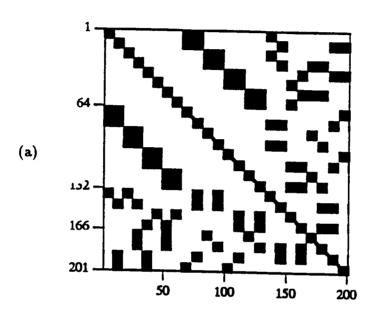
#### Sparse Matrix Structure



(a) The non-zero structure of the upper right matrix B before the elimination starts. Note that the display is distorted. B has 1024 rows and 201 columns. (b) The upper right matrix  $\bar{B}$  after the level 0 elimination.



#### Sparse Matrix Structure



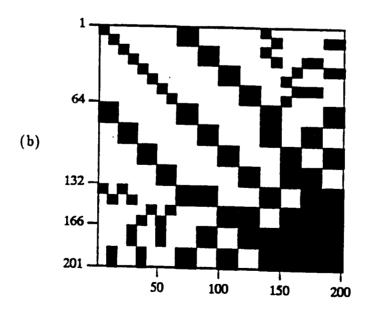


Figure 11: (a) The effect of the level 0 elimination on the lower right block.  $\tilde{D}$  is given by (5). (b) The lower right block at the end of the elimination.

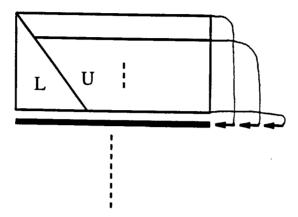


# UNDERLYING ALGORITHM



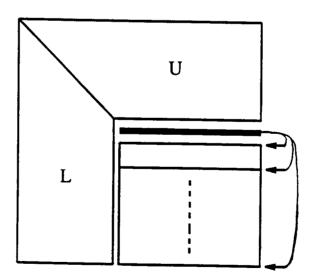
#### **COMPUTATION ORGANIZATIONS**

up-looking



Do everything for an equation when you reach it.

down-looking



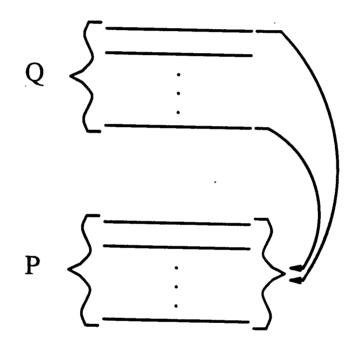
Have the effects of elimination in an equation propagated before going on to the next equation.

## COMMUNICATION ORGANIZATIONS

Q = Source

P = Destination

#### • fan-out



When processing an equation organize and pass on everything to later equations that they will need.

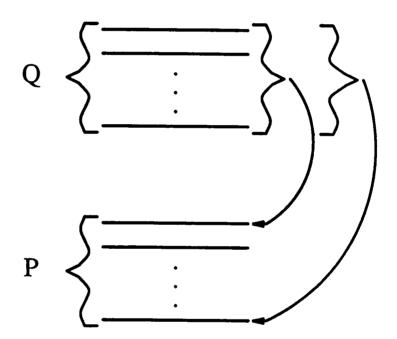


# COMMUNICATION ORGANIZATIONS (CONTINUED)

$$Q = Source$$

P = Destination

#### • fan-in



When processing an equation get everything from preceding equations that is needed.

$$Q: \mathbf{r}_{i}^{q} = \sum_{k \in K} (a_{ik}/a_{kk}) * \text{row}_{k}$$
$$= \sum_{k \in K} (a_{ki}/a_{kk}) * \text{row}_{k} \quad (\text{if A is symmetric})$$

 $P: row_i = row_i - \mathbf{r}_i^q$ 



#### **OBSERVATIONS AND FACTS**

- Up-looking is better than down-looking in sparse data structure manipulation
- Fan-in has less communication overhead than fan-out
- Fan-out is suitable for down-looking
- Fan-in is suitable for up-looking
- Fan-in is not applicable to nonsymmetric matrices
  - (a) rows in the partial sum are in the source processor while the corresponding multipliers are in the destination processor;
  - (b) all multipliers of an equation in the destination processor have to be computed in a strictly sequential order by using rows distributed among various source processors

#### Possible way:

redistribute data and compute row i and column i at the same time



#### **OUR SITUATION**

#### **Problem and Choice:**

- Nonsymmetric matrices
- Fan-out communication organization
- Down-looking computation organization

#### **Difficulties:**

- Heavier communication overhead
- Communication buffer limit
- Destination list
- Up-looking used with fan-out requires a big storage buffer or repeated sending of same message.



#### **OUR APPROACH**

Adapt ideas from other PDE solving methods, such as

- Domain Decomposition
- Substructuring

to direct sparse solvers

Slide 16
Computing About Physical Objects



#### MATRIX FORMULATION

| $A_{11}$                                  |       |   |          | $B_1$ | $\begin{bmatrix} x_1 \\ x_2 \end{bmatrix}$ |   | $\begin{bmatrix} f_1 \\ f_2 \end{bmatrix}$ |
|-------------------------------------------|-------|---|----------|-------|--------------------------------------------|---|--------------------------------------------|
| $A_{22}$                                  |       |   |          | $B_2$ | $x_2$                                      |   | $f_2$                                      |
|                                           | •     |   |          |       | •                                          |   | ٠                                          |
|                                           |       | • |          |       | •                                          | = | ٠                                          |
|                                           |       | • |          |       | •                                          |   |                                            |
|                                           | ·     |   | $A_{pp}$ | $B_p$ | $x_p$                                      |   | $f_p$                                      |
| $\begin{bmatrix} C_1 & C_2 \end{bmatrix}$ | $C_1$ |   | $C_p$    | D     | $\begin{bmatrix} x_d \end{bmatrix}$        |   | $f_p$                                      |

Schur Complement or Capacitance Matrix

$$S = D - \sum_{i=1}^{p} C_i A_{ii}^{-1} B_i$$

$$S x_d = f_d - \sum_{i=1}^{p} C_i A_{ii}^{-1} f_i$$

$$A_{ii}x_i = f_i - B_ix_d \qquad i = 1,...,p$$



#### **MAJOR STEPS**

• factoring  $A_{ii}$ 

$$A_{ii} = L_i U_i$$

- forming Schur Complement S
- factoring S

Slide 18
Computing About Physical Objects



### **COMPUTING SCHUR COMPLEMENT**

$$S = D - \sum_{i=1}^{p} C_i U_i^{-1} L_i^{-1} B_i$$

Ordinary Gauss elimination algorithm

$$S = D - \sum_{i=1}^{p} (C_i U_i^{-1})(L_i^{-1} B_i)$$

• Implicit block factorization does not modify  $C_i$  matrices

$$S = D - \sum_{i=1}^{p} C_i(U_i^{-1}(L_i^{-1}B_i))$$

#### Advantages:

- sparsity of  $C_i$  matrices never lost
- reduced communication requirements similar to fan-in (next slide)
- static destination information is available from  $C_i$  matrices

Computing About Physical Objects



# COMPUTING SCHUR COMPLEMENT (CONTINUED)

Explicitly computing  $A^{-1}B$  is too expensive!!!

$$CA^{-1}B = \sum_{k} \operatorname{col}_{k} (C) * \operatorname{row}_{k} (A^{-1}B)$$

for  $(\operatorname{col}_k(C) \neq \operatorname{null})$  do:

- solve  $U^T y_k = e_k$  (triangular system of order n-k+1)
- $\operatorname{row}_k (A^{-1}B) = y_k^T (L^{-1}B)$

end k loop

- only subdomain boundary layer unknowns have  $col_k(C) \neq null$ , each of which corresponds to one communication with its partial sum (in the fan-in terminology, the modification vector, but it is much shorter here)
- very moderate increase in the computation overhead, which is compensated by the saving in the data structure manipulation for C
- flexible choices of ordering within the k-loop
- independent of local indexing



#### DATA STRUCTURES USED

- Subdomain equations sparse
- Schur Complement dense

Slide 21

Computing About Physical Objects



#### **ALGORITHMS**

| _ |     | T T |    | •    |   |
|---|-----|-----|----|------|---|
|   | SII | na  | om | ains | 3 |

up-looking with "fan-in" type communication

#### interface

down-looking with fan-out communication

#### **Algorithm Outline**

1. Apply up-looking Gauss elimination to subdomain equations

—— fully parallel

2. Participate in computing Schur Complement with "fan-in" type communication

—— parallel and synchronized

3. Participate in factoring Schur Complement according to the elimination tree using downlooking with fan-out

— parallel and synchronized



#### LOAD IMBALANCE

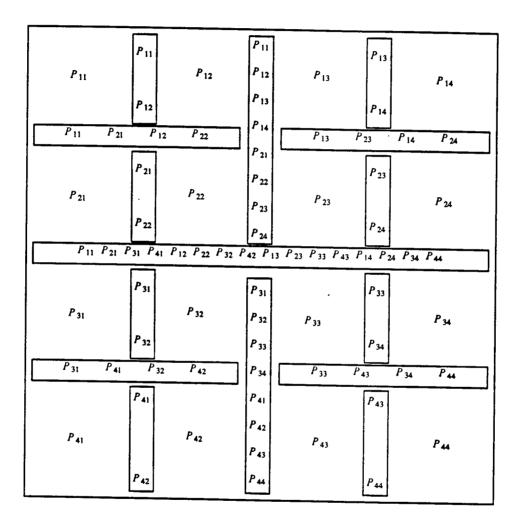
Slide 23 — Computing About Physical Objects =



#### **ASSIGNMENT**

#### **Equations to Processors**

#### SUBCUBE-SUBTREE (Standard)

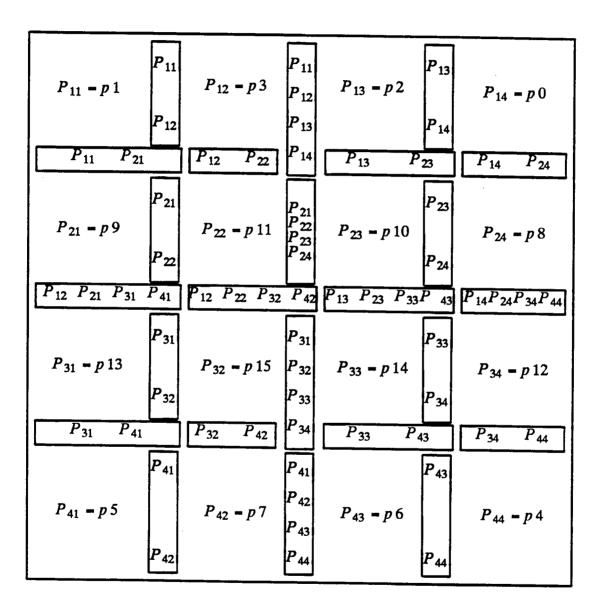


Standard subtree-subcube assignment for 16 processors. Within each box unknowns are assigned in wrapping manner to processors shown in the box.



#### **ASSIGNMENT (CONTINUED)**

#### GRID-SUBCUBE-SUBTREE (Grid)



Grid based subtree-subcube assignment for 16 processors. Within the subdomain interfaces we show how the processors are assigned to unknowns in parts of the separators.



# PERFORMANCE, 16 PROCESSORS

#### • on the NCUBE/2

| Grid           | Sequential time | Parallel<br>time | Speedup |  |
|----------------|-----------------|------------------|---------|--|
| $21 \times 21$ | 0.578           | 0.118            | 4.90    |  |
| $25 \times 25$ | 1.05            | 0.173            | 6.07    |  |
| $29 \times 29$ | 1.77            | 0.244            | 7.25    |  |
| $33 \times 33$ | 2.73            | 0.340            | 8.03    |  |
| $37 \times 37$ | 4.03            | 0.489            | 8.24    |  |
| $41 \times 41$ | 5.69            | 0.659            | 8.63    |  |
| $45 \times 45$ | 7.73            | 0.843            | 9.17    |  |
| $49 \times 49$ | 10.23           | 1.07             | 9.56    |  |
| $53 \times 53$ | 13.21           | 1.397            | 9.46    |  |
| $57 \times 57$ | 16.78           | 1.75             | 9.59    |  |
| $61 \times 61$ | 20.87           | 2.09             | 9.98    |  |
| $65 \times 65$ | 25.67           | 2.46             | 10.43   |  |

#### • on the Intel i860

| Grid                          | Sequential time | Parallel<br>time | Speedup |
|-------------------------------|-----------------|------------------|---------|
| $21 \times 21$ $57 \times 57$ | 0.071           | 0.094            | XXX     |
|                               | 1.87            | 0.6 <b>/</b> 3   | 2.78    |

2.91



#### VISUALIZING PERFORMANCE

subdomain — almost load balanced

•  $A^{-1}B$  — very unbalanced

•  $CA^{-1}B$  — a lot of idle time

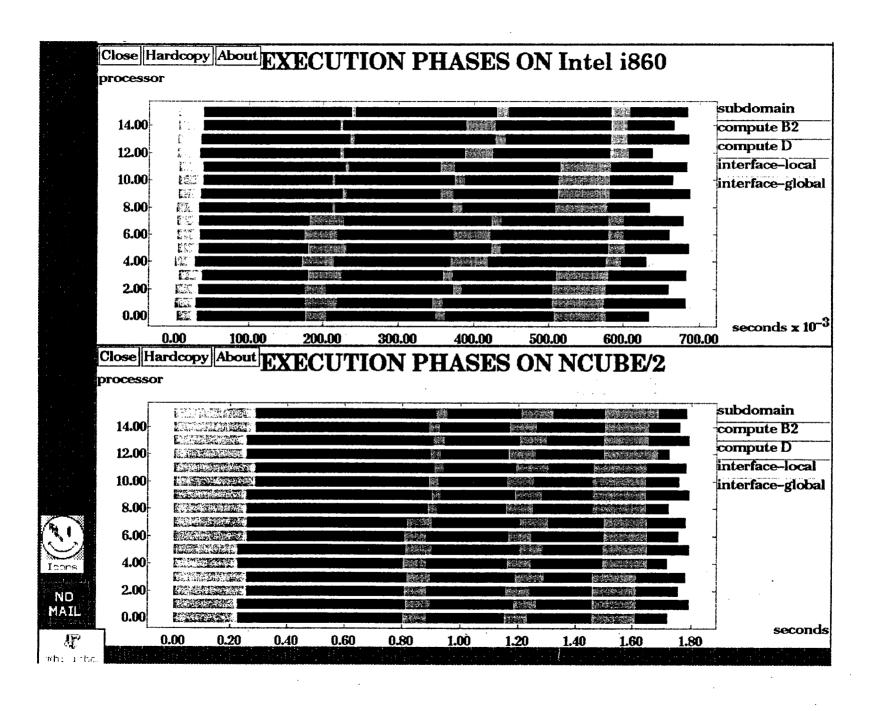
• interface — a lot of synchronization

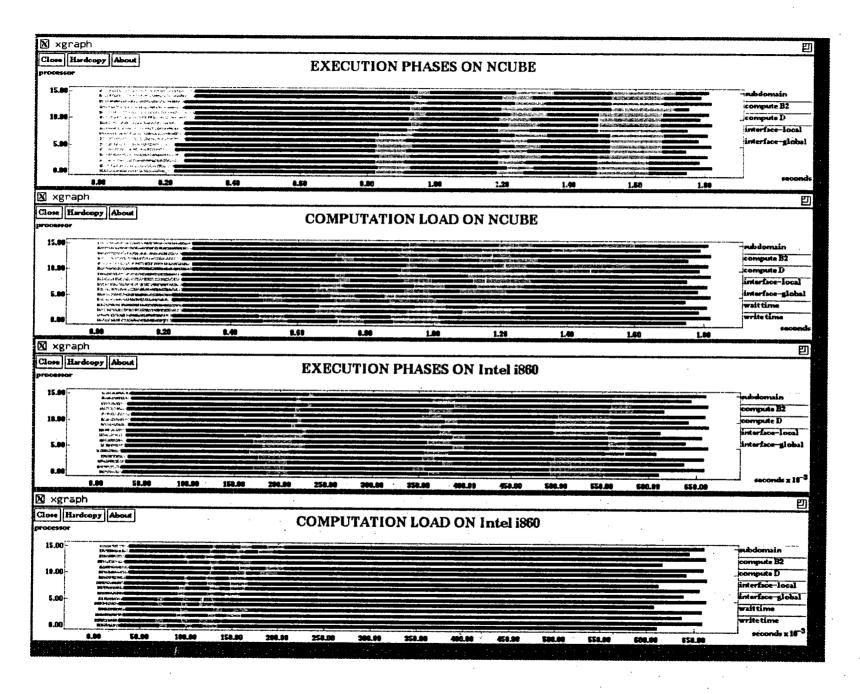
• sending message — substantial overhead

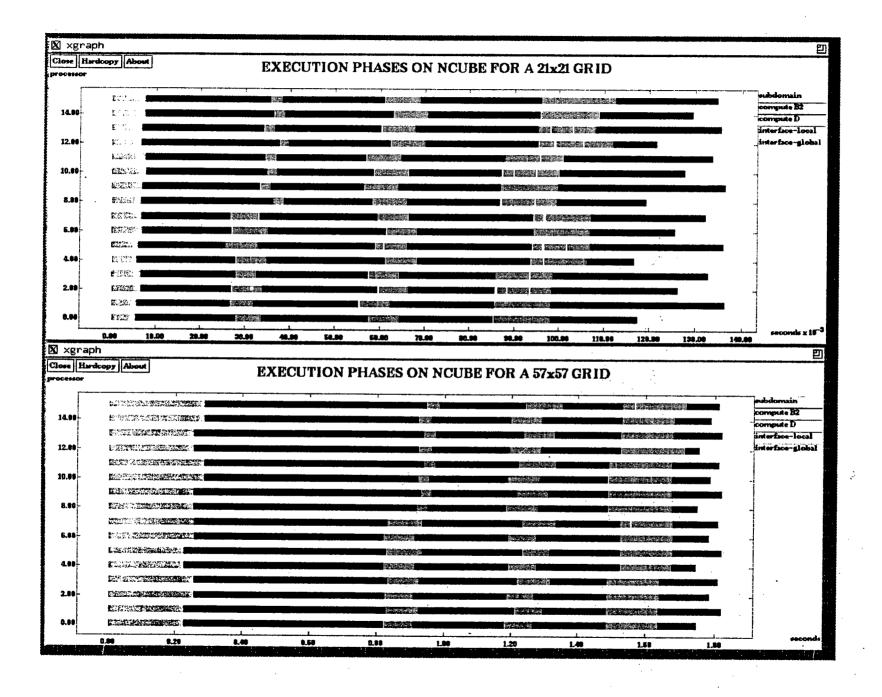
on the Intel i860

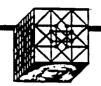
• varying grid — similar performance behavior

Slide 27
Computing About Physical Objects









## **UNSTRUCTURED SCHEDULING**

Slide 28

Computing About Physical Objects

# REORGANIZE COMPUTATION AND COMMUNICATION IN FORMING SCHUR COMPLEMENT

To reduce synchronization time, compute rows of  $A^{-1}B$  in an order that sends work first to idle processors using the following priorities.

• priority 1 — corner processors:

P0, P1, P4 and P5

• priority 2 — other border processors:

P2, P3, P6, P7, P8, P9, P12, P13

• priority 3 — center processors:

P10, P11, P14, P15



## **REASSIGN THE DATA AND TASKS**

- move tasks from busy processors to idle processors
- overlap computation and communication

Slide 30
Computing About Physical Objects



### REASSIGNMENT

| $P_{11} = p 1 \qquad P_{11}$    | $P_{12} = p3$ $P_{11}$ $P_{12}$ $P_{13}$                                     | $P_{13} = p 2$ $P_{14}$ $P_{14} = p 0$                                            |
|---------------------------------|------------------------------------------------------------------------------|-----------------------------------------------------------------------------------|
| P <sub>11</sub> P <sub>21</sub> | $P_{12}$ $P_{14}$                                                            | $\begin{array}{ c c c c c }\hline P_{13} & P_{14} & P_{24} \\ \hline \end{array}$ |
| $P_{21} = p9$ $P_{11}$          | $P_{22} = p  11$ $P_{21}$ $P_{22}$ $P_{23}$ $P_{24}$                         | $P_{23} = p  10$ $P_{14}$ $P_{24} = p  8$                                         |
| $P_{12} P_{21} P_{31} P_{41}$   | $P_{12} P_{22} P_{32} P_{42}$                                                | $P_{13} P_{23} P_{33} P_{43} P_{14} P_{24} P_{34} P_{44}$                         |
| $P_{31} = p  13$ $P_{41}$       | $P_{32} = p  15$ $P_{31}$ $P_{32}$ $P_{33}$                                  | $P_{33} = p  14$ $P_{44}$ $P_{34} = p  12$                                        |
| P <sub>31</sub> P <sub>41</sub> | $P_{42}$                                                                     | $\begin{array}{ c c c c c c }\hline P_{43} & P_{44} \\ \hline \end{array}$        |
| $P_{41} = p 5 \qquad P_{41}$    | $P_{42} = p7 \begin{cases} P_{41} \\ P_{42} \\ P_{43} \\ P_{44} \end{cases}$ | $P_{43} = p 6$ $P_{44} = p 4$                                                     |



#### EFFECTS OF RESCHEDULING

• On the NCUBE/2

 $57 \times 57$  grid:

parallel time  $1.75 \rightarrow 1.54$ speedup  $9.59 \rightarrow 10.89$ 

 $61 \times 61$  grid:

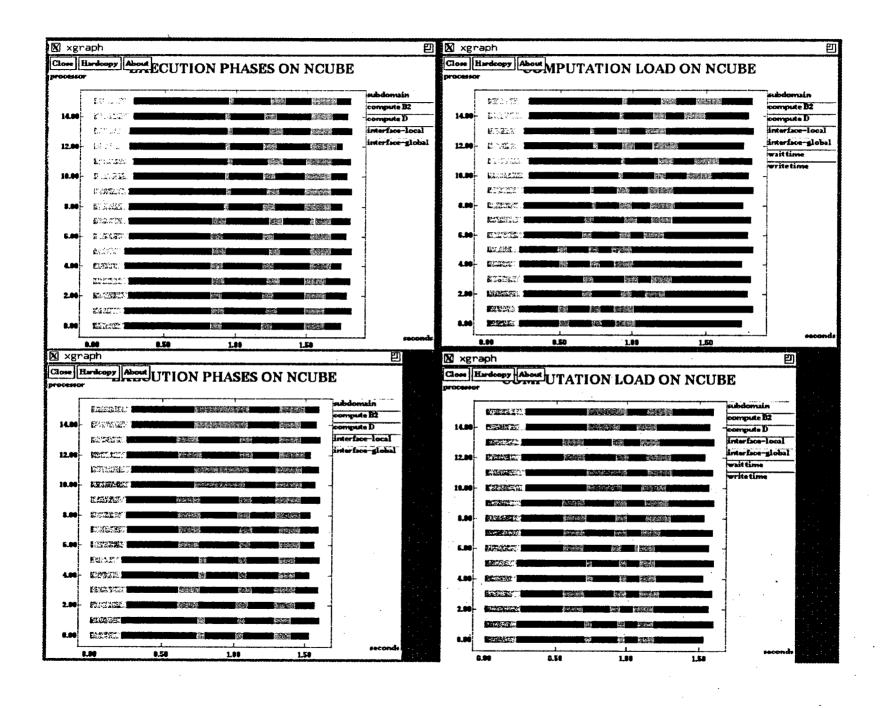
parallel time  $2.09 \rightarrow 1.87$ speedup  $9.98 \rightarrow 11.15$ 

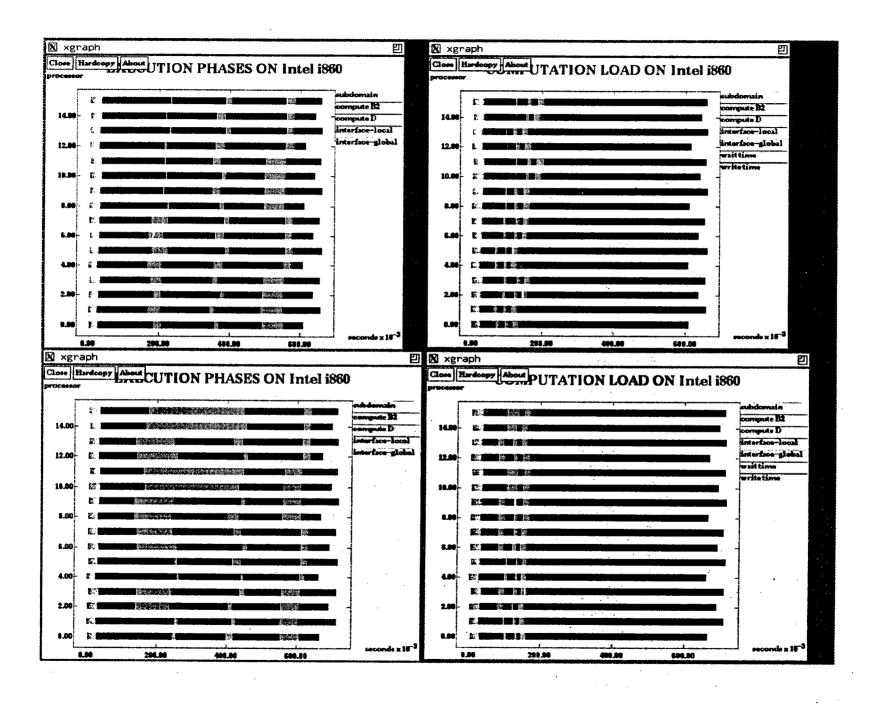
• On the i860

no improvement

- (a) the effect of communication dominates that of the load imbalance too much
- (b) heavy overhead of sending message

Since 32 Computing About Physical Objects



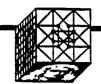




## **OPTIMAL SCHEDULINGS**

- Very unstructured
- Mutual interactions of load balancing in rescheduling and synchronization in computing S
- Coarse grid analysis

Slide 33
Computing About Physical Objects



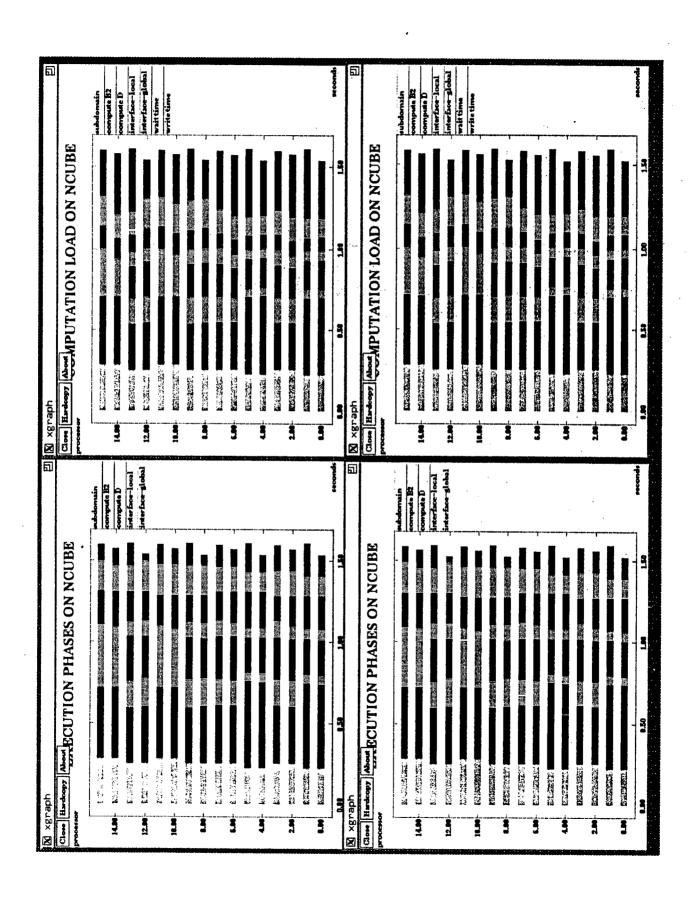
## OTHER OPTIMIZATION STRATEGIES

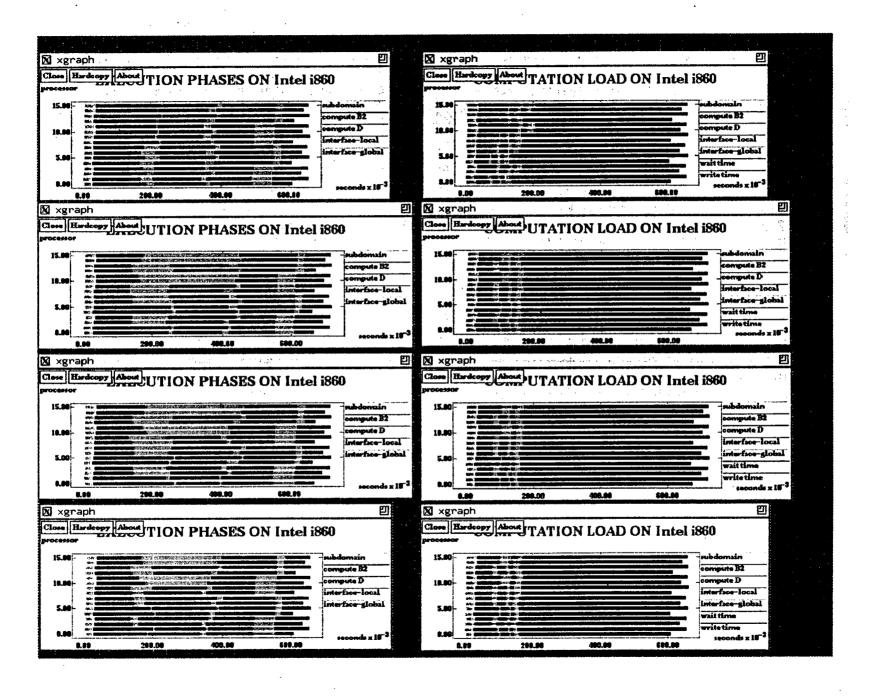


### PACKING VS. PIPELINING

- Pack messages when pipelining is not important
- Trade-off between packing and pipelining by adjusting a grain\_control parameter in rescheduling

Slide 35
Computing About Physical Objects







### **OTHER STRATEGIES**

- Replace multicast by broadcast when the remaining matrix becomes much denser
- Use irregular grids

Slide 36
Computing About Physical Objects



#### **CONCLUSIONS**

- The parallel PDE sparse solver is load unbalanced with the standard scheduling
- The parallel PDE sparse solver can gain high speedup by reorganizing and overlapping computation and communication using proper schedulings
- The i860 machine is an unbalanced design for many more scientific applications than the NCUBE 2 or Intel iPSC/2

Slide 37
Computing About Physical Objects