
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1992

Speedup, Communication Complexity and Blocking - A La Speedup, Communication Complexity and Blocking - A La

Recherche du Temps Perdu Recherche du Temps Perdu

Dan C. Marinescu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
92-057

Marinescu, Dan C. and Rice, John R., "Speedup, Communication Complexity and Blocking - A La
Recherche du Temps Perdu" (1992). Department of Computer Science Technical Reports. Paper 978.
https://docs.lib.purdue.edu/cstech/978

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972082?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

SPEEDUP, COMMUNICATION COMPLEXITY AND
BLOCKING·A IA RECHERCHE DU TEMPS PERDU

Dan C. Marinescu
John R. Rice

CSD·TR·92·057
August 1992

Speedup, Communication Complexity and
Blocking - A La Recherche du Temps

Perdu*

Dan C. Marinescu and John R. Rice
Computer Sciences Department

Purdue University
West Lafayette, IN 47907

September 8, 1992

Abstract

The paper investigates the time lost in a parallel computation due to sequential
and duplicated work, communication and control, and blocking. It introduces the
concept of relative speedup and proposes characterizations of parallel algorithms based
upon the communication complexity and the blocking model. The paper discusses the
impact of the processor's architecture upon the measured speedup. It shows that a
large speedup may be due to an inefficient sequential computation, e.g., due to the
cache management, rather than to an efficient parallel computation.

A model of parallel computations which takes into account sequential and dupli
cated work, communication and control and blocking is presented. The paper shows
that the scalability of a parallel computation is determined by the communication com
plexity. The model is used to predict the asymptotic behavior, the maximum speedup
and the optimal number of processors. An incore 3-D FFT algorithm for distributed
memory MIMD systems and a Chebychev iterative algorithm for solving a linear system
of equations are used to illustrate the concepts introduced in this paper.

·Work supported in part by a grant from the National Science Foundation, CCR-9119388

1

1 Introduction

This paper investigates the time lost in a parallel computation due to different sources of
inefficiency. Sequential and duplicated work, communication and control, and blocking are
the major factors limiting the performance of a parallel computation. This paper is primarily
concerned with control parallel algorithms and programs for MIMD systems. The computa
tional model discussed considers P threads of control running concurrently and communicat
ing with one another through abstractions called communication channels. Any interruption
of the flow of control of any thread for communication and/or control is called an event.

The model is mapped to a particular MIMD architecture by associating threads of con
trol with processing elements, PEs, and communication channels with communication hard
ware/software. Events correspond to sending/receiving of messages for the message passing
model suitable for distributed memory MIMD systems, or to access to shared data in a
shared memory model for a shared memory MIMD system.

Once the computational model is mapped to a MIMD architectures, one can make state
ments concerning the computing time, the work required to carry out the computation, the
work intensity or the instruction execution rate, and about the performance of the ensemble
consisting of the parallel algorithms, its implementation and the parallel architecture.

This paper discusses several experimental and theoretical questions pertinent to the per
formance characterization and analysis of parallel computations on MIMD systems. First it
addresses the problem from the point of view of a practitioner and shows that measuring
the speedup is often a difficult, if not impossible task, due to time and space limitations
of the sequential computation. Furthermore, the results of a speedup measurement can be
misleading. Instead of reflecting an efficient parallel computation, a large speedup may be
due to an inefficient sequential computation.

The concept of relative speedup introduced in §2 reflects the fact that space and time
requirements impose a minimum number of PEs, Pmin > 1 for massively parallel computa
tions, and that it only makes sense to compare the execution times of a parallel computation
over a range of PEs, (Pmin ~ P ~ Pmax). Communication complexity, the blocking model
and the lifetime of intermediate results are suggested as means to provide an architecture
independent characterization of a parallel algorithm [8]. A model of parallel execution which
takes into account the effects of sequential and duplicated work, communication complexity
and blocking is presented in §3. An incore 3-D FFT algorithm for a hypercube is discussed
in §4 and an experiment in monitoring a Chebychev iterative algorithm for solving a linear
system of equations is presented in §5.

2

2 The Speedup and Other Measures of Performance

The speedup of a parallel computation on a multiprocessor with P identical processing ele
ments is the ratio

S(P) = T(I)
T(P)

with T(I) the execution time of a serial implementation and T(P) the one of a parallel
implementation using P processing elements. The speedup curve S = S(P) is the graph of
the speedup as a function of P, the number of PEs.

The speedup is considered a simple and expressive way to measure the overall performance
of a parallel algorithm and of its implementation on a parallel architecture. The speedup
appeals to the practitioner interested in a simple way to measure the performance of a
parallel application and to those interested in more theoretical aspects of parallel algorithm
design, parallel architectures, and performance. The speedup provides an elegant way to
reason about the asymptotic behavior of a parallel computation, and upper bounds for the
speedup can be derived in the framework of a theoretical model [1], [8]. In the same time, it
seems relatively easy to measure accurately the speedup of any application.

Yet the virtues of the speedup concept must be reexamined as our understanding of
parallel computing and our experience in using massively parallel computers grow. The
question whether the problem size should be allowed to grow when the number of PEs
increases or if fixed-size problems should be considered, has lead to the introduction of the
concept of the scaled speedup [2]. Allowing the size for a problem to grow subject to an upper
bound on the execution time, produces different results than considering space (memory)
constraints as pointed out in [11].

The scaled speedup addresses the concern that the parallel execution time, the efficiency,
and the speedup for a small, fixed size problem, can only be very small when the number
of PEs allocated to the problem exceeds a certain range. But the converse is also true.
Given large, fixed size problems suitable for a configuration with a large number of PEs,
the execution time of the corresponding sequential computation can only be very large.
Therefore, for massively parallel computations, it seems reasonable to define a range of Pmin

to Pmax processing elements and compare the execution time over that range only.
From a practical standpoint, it is very difficult and often impossible to measure the

speedup of very large problems running on existing MIMD systems. MIMD systems with
hundreds of PEs are in use today and promising results for different applications running on
such systems are reported. For example, applications requiring 104 - 105 seconds on a 520
node Touchstone Delta are described [12]. The performance of such computation is given in

3

terms of the Mflops rate rather than in terms of the speedup, simply because the execution
time of a sequential implementation is prohibitively large and cannot be measured.

Even for small problems, it is often impossible to measure the execution time of the
sequential implementation due to storage constraints. One of the main attractions of dis
tributed memory MIMD systems is the large amount of storage available. It is very unlikely
that an application which needs all the 8 Gbytes of storage available on 520 PEs of the
Touchstone Delta (or 32 Gbytes on a 1000 PE CM5), is able to run in the 16 Mbytes avail
able on a single node of the Delta (or 32 Mbytes on a node of CM5). In Section 4, we discuss
the performance of a 3-D FFT computation on an INTEL iPSC/860 with 16 Mbytes/node.
The measurements show that, even for relatively modest sizes of a 3-D mesh, the compu
tation cannot be carried out in one node only, due to storage limitations. The dimension
of the mesh considered were in the 16 to 8192 range. In about 30% of the cases (70 out of
210 different mesh sizes), the speedup could not be determined because the problem was too
large to run in a single node.

A further complication is due to the fact that the instruction execution rate (the Mflops
rate) of modern RISC processors like the i860 used to build massively parallel systems, is
very sensitive to the cache management. Experiments reported in [3] show that, depending
upon the cache usage, the BLAS routines run at rates ranging from 10 Mflops to the peak
rate of 60 Mflops. Experiments with the 3-D FFT computation, discussed in Section 4, show
that the Mflops rates for a problem of constant size, but with different mesh shapes differ by
a factor of as much as 2.5. Yet the speedup is based upon the implicit assumption that the
sequential and the parallel implementation used to measure the speedup run on a computing
engine with a fixed instruction execution rate. If the instruction rate is not constant, the
speedup may appear artificially high, even though the aggregate Mflops rate is low, simply
because the sequential implementation is inefficient. In Section 4, it is shown that a 3-D
FFT computation of constant size (262144 nodes), runs at only 75 Mflops and exhibits a
speedup of about 10 on a 16 node iPSC/860 when the mesh shape is 16 X 16 x 1024, but runs
at about 125 Mflops with a speedup of only 7 for a 64 x 64 x 64 mesh. To account for this
effect, the speedup inflation rate, infl(P) = ~((~}, is introduced and it is suggested that the

effective speedup seJ(p) = i:j~~) be used instead of the speedup. In this expression 1(P)

represents the instruction execution rate with P processing elements and 1(1) the rate when
only one PE is used.

To provide a practical measure of performance for problems of growing size, the concept
of relative speedup is introduced. Let Q be the smallest number of PEs that can be used to

4

run a problem of fixed size. The relative speedup SP,Q is defined as

T(Q)
SP,Q = T(Q +P)·

Clearly SP,Q = S~~f). The relative speedup curve is then the function

While the relative speedup provides a practical measure of performance useful for a
practitioner interested in performance analysis, we propose to investigate other measures
of performance for the parallel algorithms, the implementation and their suitability to a
particular parallel architecture.

The communication complexity relates the total number of events, E, to the number of
threads of control, Pj it provides an architecture independent measure of performance of
a parallel algorithm. There are embarrassingly parallel algorithms with E = O(P) used in
image processing and other applications like the electron density averaging for computations
of macromolecular structures [10]. The effects of the communication complexity upon the
asymptotic behavior of the speedup are discussed in §3.2.

Another characterization of a parallel algorithm reveals the type of blocking experienced.
An asynchronous algorithm has the potential of keeping all the threads of control running
at all times, therefore the blocking time, nlk (the time one PE spends waiting on results
from another PE) is zero. Algorithms which require global synchronization can be modeled
as having nlk = O(P). For example, iterative methods typically require algorithms in this
class [9]. Even though the communication complexity required by global synchronization
could be reduced to E = O(P) such computations can be rather inefficient if the blocking
times are large. When global synchronization is achieved through broadcasting, as in the
example discussed in §5, then E = O(P2

).

Yet another characterization of a parallel algorithm important for implementation on
distributed memory MIMD systems, is the lifetime of intermediate results. The message
passing programming model is where a thread of control produces intermediate data, per
forms an explicit action to send these data to other thread(s) which consume the data. To
avoid blocking phenomena, namely consumer threads waiting for the data to be produced, an
algorithm may attempt to produce the intermediate results as soon as possible. But in this
case, the intermediate data must be buffered either at the sender's site, at the consumer's
site, or within the system communication network. In case of massively parallel computa
tions, intermediate results are produced at a high rate, due to the large number of threads

5

of control, and, if their lifetime is significant, then all the storage space is exhausted and the
computation deadlocks.

The 3-D FFT computation discussed in §4, avoids this type of problem and ensures that
data is consumed as soon as it is produced. The strategy is to group the threads of control
into pairs, to have both PEs allocated to threads in the same pair first act as consumers by
issuing an asynchronous receive, then synchronize and finally send the data. In this case, the
number of outstanding messages is zero. At the other end of the spectrum are algorithms
with P threads of control broadcasting data, potentially at the same time, so that each PE
may have (P - 1) outstanding messages at some time and the total number of outstanding
messages may be PcP - 1). We propose to measure the lifetime of intermediate results by
the maximum number of outstanding messages at anyone time.

3 A Model of Parallel Execution and Upper Bounds
of the Speedup

A model of parallel computation is discussed in this section which is able to predict the
asymptotic behavior, the maximum value for the speedup, and the optimum number of PEs.
The model takes into account different sources of inefficiency in parallel computing. The
effects of strictly sequential and duplicated work, the effect of the communication complexity
and of blocking are discussed.

3.1 Sequential and Duplicated Work

Amdahl has shown that only rarely the entire work required by a computation can be carried
out in parallel. If s denotes the fraction of the strictly sequential computation, Amdahl's
law [1] shows that an upper bound for the asymptotic speedup is S :5 1/(1 + s) and that
only a relatively few PEs are needed to achieve the maximum speedup.

In addition to the strictly sequential work, there is an additional obstacle in reaching a
large speedup when parallelizing a computation, namely some work needs to be duplicated
by several or all threads of control in order to reduce the amount of communication and/or
blocking. Computation of the trigonometric functions for a Fourier expansion is a good
example of work duplicated in parallel FFT algorithms.

In the model presented in this paper, f denotes the fraction of the strictly sequential
work, plus the fraction of the work duplicated by all the threads, and Wsd(P) the total
amount of additional work due to duplication and strictly sequential computation. Then
Wsd(P) reflects the fact that each of the (P - 1) threads wastes f x W(1) cycles, either

6

by being idle when only one thread carries out the strictly sequential computation or by
replicating the work of one thread. W(I) denotes the work carried out when only one thread
of control is running. Then we have

Wad(P) = (P - 1) x 1 x W(I).

It follows that when only duplicated and sequential work is taken into account the total work
with P threads is

W(P) = W(I) +Wad(P) = W(I) x (1 +1 x (P - 1)).

We assume that the relationship between the execution time, T(P), the total amount of
work or computing cycles, W(P), and the work intensity or instruction execution rate I is

W(P) = P x I x T(P) when P ~ 1

and it follows immediately that

T(I) 1
S(P) = T(P) = P 1 + (P - 1)1

This is precisely the Amdhal's law, but here 1 represents the fraction of both sequential and
duplicated work. To reach a fraction q of the asymptotic speedup, Soo = 1/1, (0 ~ q ~ 1)
then Pq processing elements are necessary with

q 1-1
Pq =-- ---.

l-q 1

For example when 1 = 0.01, the asymptotic speedup is Soo = 100. A speedup of 80 (q =
0.8) can be reached with po.s = 400 processing elements.

3.2 Communication complexity and the asymptotic speedup

Consider a parallel computation with P threads of control which need to communicate with
one another. Call any interruption of a thread of control for communication and control
an event, and denote the total number of events by E, and the average amount of work
associated with an event by B. The additional work for communication and control, Wcc(P)
is then given by Wcc(P) = BE. If there is no sequential or duplicated work, and if no thread
is idle during the entire computation, then

W(P) = W(I) +Wcc(P).

7

with

Following the same arguments concerning the time-work relationship, it follows that

p
S(P) = 1+ a'E

I iJ
a = W(l)'

When E = kP, then the asymptotic speedup is

S 1 . h kiJ
00 = a WIt a = W (1) .

Two more cases are considered now, namely E = kPlogP and E = kp2
• In both cases,

the speedup reaches a maximum Sma:/; = S(Popt) and then goes to zero asymptotically. The
maximum speedups are, respectively,

S(P log P) = (1) for Popt = .!.
ma:/; a 1 - log a a

and
(p2) __1_ _ _1_

Sma:/; - 2~ for Popt - ~ .

The speedup S(P) with P processing elements and the efficiency, 'f/(P), are related by

S(P) = 'f/(P) x P.

It follows that in the two cases examined above, the efficiencies are, respectively,

(PlogP) _ 1 (P2) 1
'f/opt - 1 I and 'f/opt =-2- oga

The effect of the communication complexity upon the speedup curve is shown in Figure 1.

3.3 The instruction execution rate and the speedup

Whenever the speedup of a particular computation is determined experimentally, it is im
plicitly assumed that the instruction execution rate is the same when T(l) and T(P) are
measured. The model presented so far in this paper is based on the same reasonable as
sumption, namely that

W(l) = I x T(l) and W(P) = P x I x T(P) for P > 1.

8

S(P)

P

E = d(p)

11

fJ:

1
a t------fr-=::======-

1

ex(1 - log ex)

1

2ft

F" 1 Th d S(P) Sp(PlogP) and S«pp)2) Eor the three cases EIgure: e spee ups (P) , l'

O(Plog P) and E = O(P2).

O(P), E

It makes little sense to talk about the speedup of an 8 processor CRAY Y-MP versus a 1
processor RS 6000 workstation. Yet this assumption may prove to be false and measurements
reporting spectacular speedups may be misleading.

A first indication that this assumption may be false comes from an experiment involving
a 3-D FFT on a mesh with N = n:,c x ny x nz grid points. This computation is described in
some detail in Section 4.

To illustrate this effect a very simple experiment and its results are outlined below. The
experiment consists of running a problem of fixed size on a variable number of PEs. The
problem is to transform a vector of fixed length and use the saxpy BLAS routine available
from the iPSCj860 math library. Table 1 presents the results.

9

Execution Mflops
Vector # of time rate per PE
length iterations 1 PE 8 PEs 1 PE 8 PEs Speedup

(seconds) (seconds)
200,000 1,000 19.80 2.44 10.10 10.24 8.11
40,000 5,000 19.70 1.68 10.15 15.60 12.31
5,000 40,000 12.77 1.68 15.63 14.02 7.17

Table 1: Execution time, Mflops rate and speedup for a linear algebra computation.

Cases 1 and 2 which correspond to vector length of 200,000 and 40,000 respectively show
a superlinear speedup. The higher speedup, 12.31 occurs when each of the 8 PEs processes
vectors of length 5,000 and has a very high cache hit ratio. When the problem runs in 8
nodes a peak rate of 15.60 Mflops is achieved while the one PE case runs at about 10.15
Mflops.

The third case allows both the single PE and the 8 PE configurations to keep the data in
cache, therefore the Mflops rate is essentially the same and the speedup is as expected less
than the number of PEs.

It follows that a model of parallel execution should assume that the instruction execution
rate, I, is also a function of P and that

W(P) = P x I(P) x T(P).

3.4 The effects of blocking and idle threads of control

Blocking occurs when a thread of control wastes its cycles waiting for data produced by
another thread. If nlk(p) denotes the blocking time and Tca1c(P) the computing time with
P processing elements, then

T(P) = Tca1c(P) +Tb1k(P)

and
W(P) = P x I(P) x Tca1c(P).

Empirical evidence for several problems examined in [9] suggests that the blocking time
can often be modeled as linear in the number of processors. That is, there is a constant d
(problem dependent) so that nlk(p) = d x P.

10

3.5 The model

We present a parallel computation model which takes into account all the factors described
in the previous sections. The model assumes that Pmin ::::; P ::::; Pmax and that the instruction
execution rate 1(P) is constant over that range. The total work required by a computation
with P threads of control is

W(P) = W(l) +Wsd(P) +Wee(P)

and

S(P) = ..llil!ill (() DE)pnlkW(l) + I(P) 1 + f X P - 1 + W(l)

W(P) = Teale X 1(P) X P

with T(P) = Tcale(P) + nlk(p) and P > 1. Then

P

Two cases are now considered.

Case 1: E = kP. We have

P 1
S(P) = aP +band 'Tl(P) = aP +b

with
1(1) [11 1(P) f] b= 1(1) (1 _ f) and Ok

a = 1(P) blk W (l) + + a '1(P) a = W(l) .

The asymptotic speedup is easily calculated to be

1
Soo =-.

a

Case 2: E = kp2. We have

S(P) - P d (P) 1
- aP2 +bP +c an 'Tl = aP2 +bP +c

with
1(1) (1(P))

b = 1(P) nlk W (l) + f
1(1)

c = 1(P) (1 - I).

11

A calculation shows that the maximum speedup is obtained with Popt processing elements

Popt =~ = /1 :f.

The maximum speedup is

1 1

Sma~ = S(P
opt

) = b+2vac - N~~ [2Ja(1 - I) + f +nlk#ft))] .

The shape of the speedup curves when all the causes of inefficiency in a parallel computation
are considered, are similar with the corresponding speedup curves in Figure 1.

Consider now the case when the blocking time is a linear function of the number of PEs,
we have

nlk(p) = d x P for P> 1

and
P

S(P) = B!L.!ill. [9E].
p2dW(I) + I(P) 1 + f x (P - 1) + W(l)

If E = kP, then we have

S(P) - P for P > 1
- aP2 + bP + c

with

a dB!L
W(l)

b .!ill. (f k9)
I(P) + W(l)

c - N~~(1 - I).

The maximum speedup is now

1

Sma~ = i8J>[f +kOjW(I) +2JdI(P)(1 - I)]

with

Popt =
W(I)(1 - I)

dI(Popt)

12

When E = kp2 we have

S(P) - P for P> 1
- aP2 +bP+c'

with

a ..!ill. k9 d-!ill..
I(P) W(l) + W(l)

b ..!ill.f
I(P)

c N~~(l - J).

Thus when E = kp2 and nlk = d x P the optimum number of processors is

Popt =

which gives a maximum speedup of

W(l)(l - J)
Ok +d1(Popt)

1
Smax = -----;:=======

-.fl!L 1!::ll -
I(Popt} [f +2 W(l) kO +d1(Popt)]

Note that in both these cases that, in order to know Popt , one must solve a nonlinear equation
ofthe form P2(C1 +1(P)) = C2 with the known constants C1 and C2. When the effect of the
communication complexity and the blocking are ignored, (when k = 0 and d = 0) and when
1(P) = 1(1), then the previous expression gives the upper bound predicted by Amdahl's
law.

The ratio infl = ~\;} is called the speedup inflation rate and the value se!(p)
Sj(P)infl is called the effective speedup. When E = O(P2) and nlk = O(P) we have

set = 1
max f +2 (1-J) (kO +d1)

W(l)

This upper bound of the effective speedup exhibits the behavior intuitively expected, namely

- it increases when the problem size increases (when W(l) increases),

- it decreases when there is a significant amount of blocking (for example, when the com-
putation is heavily imbalanced), and the instruction execution rate increases.

13

If the amount of duplicated and sequential work is insignificant (f « 1), then

S
el 1
max ~ 2'

W(l)
(kO +dI)"

In such cases the speedup is considerably lower than the upper bound predicted by Amdahl's
law, as one would expect. Assuming that infl(P) = W:l = constant for P 2:: Q, it follows
that when E = kp2 and nlk = dP, the relative speedup is

S(P +Q) (P) 1
SP,Q = S(Q) = 1 + Q 1 +p aP+b+2aQ

aQ2+bQ+c

with a, band c previously defined.

4 An In-Core 3-D FFT Algorithm for a Hypercube

4.1 The Algorithm

3-D FFTs are used in a variety of applications in science and engineering. For example,
processing of seismic data, material sciences, and processing of X-ray diffraction data [10].

One approach for a 3-D FFT computation with N = nx X ny X nz data is to perform
2-D FFTs for, say, the ny(x X z) planes and then to perform an additional 1-D FFT along
the y axis. Clearly the other two orientations for the planes are possible. In turn, each 2-D
FFT in the (x X z) plane could be performed as a sequence of, say, nz 1-D FFTs along the
x axis. With this view of a 3-D FFT, the obvious data partitioning strategy of an in-core
computation is to assign to each PE one or more planes for the 2-D FFT transformation.
Such a group of planes is called a slab. A slab orthogonal to the y axis is called an y-slab
and one orthogonal to the z axis is called a z-slab. Figure 2 illustrates this data partitioning
and shows that each PE needs to gather the slices of a slab assigned to all other PEs for the
second step of the algorithm.

4.2 The Implementation

The kernel of a program [6] which implements these ideas, is presented in Figure 3. The
node program uses two system calls, numnodes and mynode to get the size of the partition
and the id of the current PE. Then the number and the orientation of planes in a slab,
the slab width, dy and dz , and size, sbz for y-slabs and z-slabs, and the slice size, sly are

14

z

slice (1, nproc)

~-slice (1,1)

slab (nproc)

Figure 2: The slabs and slices for a data mapping with slabs orthogonal to the y axis.

determined. The PE performs a 2-D FFT on the dy planes of the y-slab assigned to it. The
second for-loop distributes slices of the y-slab processed by the PE to all other PEs, and
gathers the slices of the z-slab to be processed by the PE.

To reduce the communication costs, forced type messages are used on the Intel iPSe/860.
Such messages bypass the standard flow control mechanism and are stored directly into the
user's buffer. But such messages are lost if a receive is not posted by the time the message
arrives. For this reason, each node posts an asynchronous receive and then chooses a
partner with whom it first synchronizes and to which it then sends the corresponding slice.
The two csend statements seen in Figure 3 with zero length allow the current node me and
its partner my_partner to synchronize. At each iteration of the second for loop, a pair (me,
my_partner) is selected by both nodes. Indeed given a set of p integers from 0 to p - 1 for
any 3 integers i, j, k in this set, the following property holds

if j = xor (i, k) then i = xor (j, k)

The communication complexity of this algorithm is E = O(P2). Interestingly enough,

15

the communication is done in parallel by pairs of nodes and the communication pattern
avoids link contention on a hypercube.

4.3 An Algorithm with E = O(P)

An algorithm with E = O(P) is now outlined. Consider a minimum spanning tree like the
one used for the broadcast/collapse mechanism in [5]. In the first phase of the algorithm,
each node receives the y-slab(s) processed by its children, creates a super-slab and sends it
to its parent. This phase terminates when the root node receives the entire 3-D mesh. Then
the root performs the transposition of the mesh, creates super-z-slabs and sends them to its
children. In turn the children distribute super-z-slabs and the process terminates when the
leaves receive their z-slabs. It is very likely that the blocking time of the O(P) algorithm
will be larger than the one for the O(P2) algorithm.

4.4 Measurements

An experiment performed on an INTEL iPSC/860 consists of running a problem of fixed
size (N given), but with different shapes of the mesh. The results of running the problem
on a single node are reported in Table 2 and show that even though the amount of work,
W(1) = k' x N x log N is the same, the i860 processor runs at different rates ranging from
7.5 to 17 Mflops. A plausible explanation in tune with results reported elsewhere [3], is
that the i860 processor is very sensitive to the cache management. When the mesh is highly
asymmetric (16 x 16 x 1024), the cache management is poor and the processor runs at a low
rate, only 7.5 Mflops, but in the symmetric case (64 x 64 x 64 mesh), the cache management
works well and the Mflops rate increases by a factor of almost 2.5.

Therefore, it is very plausible for many computations that each PE will run at one
rate (probably higher) when the problem is solved with P processing elements and data is
distributed across P processors, and at a different rate, possibly a lower one, when using only
one processing element and all data is stored in one node only so that the cache management
is likely to be poor. If this is true, then a problem which exhibits a low Mflops rate running in
one node only will show an artificially high speedup with P processing elements. Conversely
a problem which runs well (at a high Mflops rate) in one node will exhibit a smaller speedup
with P processing elements, simply because it does not benefit from an increase in the Mflops
rate per processor.

The results shown in Table 3 confirm this suspicion. Indeed, when running on a 16 node
iPSC/860, the highest speedup is observed for the problem running at the lowest Mflops rate

16

1* Find number of nodes in the machine partition *1
nproc = numnodes ()

1* Get id of the current node *1
me = mynode ()

1* Compute slab width, slab size, and slice size *1
d_y = slab_width (ny, nproc)
d_z = slab_width (nz, nproc)
sb_y = slab_size (nx,nz,d_y)
sb_z = slab_size (nx,ny,d_z)
sl_y = slice_size (nx.d_y.d_z)

1* Get the (me)-th y-slab and do a 2-D FFT *1
my_slab = get_slab (me. slab_size)
for i=l to d_y

call fft2d(my_slab)
end_for

1* Transposition loop. Node (me) has the (me)-th y-slab and needs
(nproc-l) slices for the (me)-th z-slab from all other nodes. *1

for other = 1 to nproc -1
my_partner = xor (me. other)
this_slice = mod (my_partner. nproc)
msg_type = force_msg + other

1* Post asynch receive for a slice expected from my_partner *1
iget = irecv (msg_type. buffer, sl)

1* Send a message of zero length to my_partner and receives one
from him to synchronize *1

call csend (other. dummy. O. my_partner, procid)
call crecv (other. dummy. 0)
1* Send the slice my_partner needs *1
call csend (msg_type. this_slice. sl. my_partner. procid)
1* Wait to get the slice I need from my_partner *1
call msgwait (iget)
1* Save the data into node z-slab *1
copy (buf, my_slab(my_partner»

end_for
for i=l to d

call fftid (my_slab)
end_for

Figure 3: A program for 3-D FFT.
17

Mesh dimensions Instruction execution rate
nx x ny X nz (Mflops)
16 x 16 x 1024 7.5
16 x 32 x 512 10.1
32 x 32 x 256 16.4
64 x 64 x 64 17.0

Table 2: The instruction execution rate of one node ofthe iPSC/860 running the 3-D FFT
computation for a mesh of constant size, but with different shapes.

Mesh dimensions Instruction rate Speedup Instructions rate
nx x ny X nz (Mflops) per processor
16 X 16 x 1024 74.29 9.90 4.64
16 x 32 x 512 93.49 9.25 5.84
32 x 32 x 256 121.55 7.41 7.59
64 x 64 x 64 124.21 7.30 7.76

Table 3: The instruction execution rate and the speedup for a 16 node iPSC/860 running
the 3-D FFT computations for a mesh of constant size, but with different shapes. The
instruction rate per processor is given, compare with Table 1.

on 16 nodes and on one node.

5 A Chebychev Iterative Algorithm for Solving a Lin
ear System of Equations

Iterative methods are frequently used in different areas of scientific computing. For example,
the phase refinement used in X-ray crystallography [10] is based upon an iterative scheme.
Such methods are used in linear algebra for solving systems of linear equations. To guar
antee numerical convergence iterative methods often require global synchronization after
each iteration. Excessive communication and blocking are limiting the performance of such

18

methods on distributed memory MIMD systems [9]. Schemes which require less frequent
synchronization are discussed in [7].

An experiment is described in this section which monitors the execution of the code
implementing a Chebychev iterative algorithm for solving a linear system of equations, an
important component of a parallel PDE solver. To ensure a load balanced execution, the
domain decomposer, part of the / /ELLPACK environment [4], attempts to assign to every
PE an equal amount of computation. A careful selection of the interface points of the
neighboring domains is also necessary in order to minimize and balance the communication
cost. The experiment was conducted by taking two problems of a fixed size and repeating
the execution with a number of PEs ranging from 2 to 128 for a rectangular domain and a
50 x 50 grid, and 4 to 64 PEs for an irregular domain and a 33 x 33 grid. An Ncube 1 was
used.

The detailed behavior of all threads of control was captured by recording all the events,
marking changes of state for every thread. For every event the TRIPLEX [5] tool creates a
trace record, which contains the pertinent information about the event, type, time stamp,
PE, amount of data transferred, etc. All the measurements reported are based upon a clock
with resolution of 0.1 msec. To minimize the volume of trace data, only 5 iteration steps
of the JACOBI SI method were performed and only events related to communication and
control were recorded. Even so, the trace data collected during a single experiment with 128
PEs amounted to about 25 Mbytes.

For each case, the PDE solver executes using a variable number of PEs, ranging from 2 to
128 for the first case and 4 to 64 for the second case. The actual decomposition corresponding
to the 64 PE case use 33 x 33 and 50 x 50 grid respectively. In the second case, the size of each
subdomain and consequently the amount of computations performed by each PE is larger
than for the first case. The number of interface points of each subdomain and consequently
the amount of communication is also larger in the second case. For all the graphs in this
section, the data associated with the first problem is presented with solid lines and +, while
for the second one dashed lines and "x" are used. The two cases examined here show results
in almost perfect qualitative agreement with one another.

Figure 4 presents the number of events per thread of control as a function of the number
of threads on a logarithmic scale. This function provides a signature of the algorithm and
its implementation. The algorithm requires global synchronization and at the end of each
iteration each subdomain assigned to a PE needs to exchange boundary values with its
neighboring subdomains. Communication was implemented by broadcasting and thus E =
O(P2).

The implementation uses broadcasting rather than multicasting for two reasons. First,
the particular machine the experiment was carried on does not support efficient multicasting.

19

220

190

Events 160
per

Thread 130

100

70

+
+
x o •• :'+-
....... x

*

1 2 345 6 7
Number of Threads of Controllog2(P)

Figure 4: The expected number of events per thread of control and a 95% confidence interval
for it.

Second, to multicast, each subdomain needs to know the ids of the PE where its neighboring
subdomains are assigned. An algorithm which statically assigns subdomains to PEs so as
to preserve geometric proximity was not available, due to the complexity of the subdomain
shapes. Thus, efficient multicasting was not possible even if it were available. Any algo
rithm to map dynamically logical subdomain ids to physical processors requires additional
communication.

Some events lead to blocking phenomena. This is the case of the synchronous read
operations when the PE executing the thread of control blocks waiting for data to become
available.

The blocking time as a fraction of the read time is shown in Figure 5, it increases from
about 70% in the case of four threads to more than 90% in the case of 64 threads.

Since blocking is an important source of low processor utilization and consequently of low
speedup, the blocking phenomena deserves to be further scrutinized. In Figure 6, a possible
scenario involving communication between two PEs, PEi and PEj is shown. At time t l ,

PEi issues a READ requesting data from PEj . At time t2, PEj has the data available
and issues a WRITE to PEi . The interval 7"1 = t2 - t l is called algorithmic blocking time.
Figure 6 shows that the communication time 7" = t 4 - t l has three components, algorithmic

20

blocking, propagation (T2), and data transmission time (T3), so we have T = Tl + T2 + T3.
The algorithmic blocking occurs when the need for data at the consumer's site precedes the
actual generation of data at the producer's site. The propagation delay measures the time it
takes for one bit of information to travel from the source to the destination. It depends upon
the interconnection network and upon the routing method used, it may include some time
needed to establish the connection. The data transmission time measures the time to send
the data and it depends upon the amount of data being transmitted and upon the hardware
speed.

Table 4 shows the expected algorithmic blocking time per read operation. From Table
4 and Figure 5, it follows that most of the blocking is in fact algorithmic blocking, there
fore increasing the communication speed is not likely to have a significant effect upon this
computation.

Numer of threads of control
(10g2P) 1 2 3 4 5 6 7
Average Duration of a Read (ticks) 36 91 111 121 162 195 226
Average Blocking time per Read (ticks) 11 46.8 63 86 118 158 188
Algorithmic blocking as
fraction of the read time (%) 30 51 56 71 72 86 83

Table 4. Read time (ticks) and algorithmic blocking time.

21

95

90
85

Blocking as 80
Fraction of 75
Read Time 70

% 65

60
55

1 2 3 4 5 6 7

Number of Threads of Controllog2(P)

Figure 5: The expected blocking time during a read operation as fraction of the total read
time during a read operation.

PE·I PE·1

Figure 6: Communication involving blocking.

22

6 Conclusions

This paper discusses the use of the speedup as a measure of performance of a parallel com
puter. It points out that execution time and the space requirements of some of the appli
cations running on distributed memory MIMD systems like the Touchstone Delta system
are so large that speedup cannot be determined simply because the sequential computation
requires a prohibitively large amount of time. It also shows that the processor architecture,
in particular the amount of cache available can distort the results of simple minded mea
surements. Superlinear and/or very large speedups may be due to an inefficient sequential
computation rather than a very efficient parallel one. One of several causes of inefficiency of
the sequential computation is poor cache management due to a large data space.

To preserve the virtues of a dimensionless measure of performance we propose the relative
speedup which compares the execution time over a range of processing elements. This range
should be determined so that the execution is carried out in comparable terms, e.g., similar
instruction execution rates, measurable execution time and so on.

A model of a parallel execution which takes into account the major causes of inefficiency
in a parallel computation, the sequential and duplicated work, communication and control as
well as blocking is presented. This model allows the characterization of a parallel algorithm
independent of the architecture. For example, an algorithm with communication complexity
E = O(P) is more scalable than one with E = O(P2) on any architecture. This means
that the maximum speedup attainable is higher and can be obtained with a larger number
of PEs as shown in §3.2. Yet even this high level characterization can be misleading. For
example the 3D FFT algorithm discussed in §4 has a communication complexity E = O(P2)
but allows parallel communication. The set of PEs is partitioned into groups of size 2, all
groups communicate in parallel and there is no contention for communication channels. Such
an algorithm may run more efficiently than an O(P) algorithm in which communication is
strictly sequential.

The blocking model of a parallel algorithm is very important. An asynchronous algorithm
is more efficient than one which requires global synchronization. An algorithm in which the
blocking time nlk = O(P) is less efficient than one with nlk = O(1og P).

Last but not least the life time of intermediate results has a significant impact upon the
performance of the parallel algorithm.

The design of a parallel algorithm is considerably more complex than that of a sequential
one. Data partitioning, mapping, control and load balancing mechanisms are an integral
part of any control parallel algorithm.

Multiple tradeoffs are involved. Communication, space, time, and control complexities
have to be balanced in an optimal way to achieve the best performance on a given architec-

23

ture. For example, the communication complexity can be reduced by increasing the space
requirements as shown in §4.3. The communication complexity can be reduced by increasing
the amount of the duplicated work. The life time of intermediate results can be reduced by
increasing the blocking time as the scheme discussed in §4.2 shows. The scalability of an
algorithm can be traded off for schemes which allow parallel and contention free communi
cation.

Acknowledgments

The authors express their thanks to Dr. Robert Lynch for suggesting some of the experiments
concerning the 3-D FFT, to Dr. E. Vavalis for his contribution to the measurements reported
in §5, to M. Cornea-Hasegan for carrying out the measurements reported in §3.3.

24

Literature

1. Amdahl, G., "The validity of a single processor approach to achieving large scale
computing capabilities" , in AFIPS Proc., 30 (1967), pp. 483-485.

2. Gustafson, J.L., Montry, G.R., and Benner, R.E., "Development of parallel methods for
a 1024-processor hypercube", SIAM J. Sci. Statist. Comput., 9 (1988), pp. 609-638.

3. Heath, M.T., Geist, G.A., and Drake, J.B., "Early experience with the Intel iPSC/860
at the Oak Ridge National Laboratory", ORNL/TM-11655 (1990).

4. Houstis, KN., Papatheodorou, T.S., and Rice, J.R., "Parallel ELLPACK: An expert
system for parallel processing of partial differential equations", Math. Compo Simula
tion, 5 (1990), pp. 63-73.

5. Krumme, D.W., Couch, A.L., and House, B.L., "The TRIPLEX tool set for the
NCUBE multiprocessors", Technical Report, Tufts University, (1989).

6. Kushner, E., In core 3-D FFT program for iPSC/860, Private communication. Also
Intel, iPSC/860 Basic Math Library User's Guide (1991).

7. Marinescu, D.C., and Rice, J.R., "Synchronization and load imbalance effects in dis
tributed memory multiprocessor systems", Concurrency: Practice and Experience, 3,
(1991), pp. 593-625.

8. Marinescu, D.C., and Rice, J.R., "On high level characterization of parallelism", Jour
nal of Parallel and Distributed Computing, (1992), to appear.

9. Marinescu, D.C., Rice, J.R., and Vavalis, E., "Performance of iterative methods on
distributed memory processors", Applied Numerical Methods, (1993), to appear.

10. Marinescu, D.C., Rice, J.R., Cornea-Hasegan, M., Lynch, R.K, and Rossmann, M.G.,
"Macromolecular electron density averaging on distributed memory MIMD systems",
CSD-TR 92-019, (1992).

11. Worley, P.H., "The effect of time constraints on scaled speedup", SIAM J. Sci. Stat.
Comp., 11 (1990), pp. 838-858.

12. Proc. First Intel Delta Workshop, Messina P. and Mihaly T., Eds. (1992).

25

	Speedup, Communication Complexity and Blocking - A La Recherche du Temps Perdu
	Report Number:
	

	tmp.1307986960.pdf.SEzb8

