
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1996

Agent Based Network Systems for Multi- Physics Problems Agent Based Network Systems for Multi- Physics Problems

Tzvetan Drashansky

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
96-068

Drashansky, Tzvetan and Rice, John R., "Agent Based Network Systems for Multi- Physics Problems"
(1996). Department of Computer Science Technical Reports. Paper 1322.
https://docs.lib.purdue.edu/cstech/1322

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

Agent Based Network Systems for Multi-Physics Problems

Tzvetan Drashansky and J .R. Rice
Computer Sciences Department

Purdue University
and

Anupam Joshi
University of Missouri

CSD·TR·96·068
November 1996

Agent Based Network Systems for Multi-Physics
Problems

Tzvetan Drashansky and John Rice
Purdue University

and
Anupam Joshi

University of Missouri

November 18, 1996

We consider a new approach to solving complex physical simulation problems, called multi.
physics problems, which is naturally suited to agent based computing over a network of machines.
Multi-physics problems are best visualized as one physical system with many components involving
a variety of physical phenomena. e.g., heat flows, stresses and strains, fluid flows, mechanical
motion, and gas flows. A lawn mower motor or an air conditioner involves all these phenomena.
Each of these phenomena is modeled by differential equations or Newton's laws of motion. For
simplicity we omit modeling mechanical motion and focus on the other phenomena. A simple
example of a multi-physics problem is shown in Figure la where the objective is to compute the
temperature distribution everywhere plus the air and water circulation flows. The internet, with
every increasing capacity, opens up the possibility of combining software and hardware resources
spread across it into a single system to solve very complex multi·physics problems. This approach
can permit the heavy reuse of legacy software, allow heterogeneous distributed resources to be
harnessed. and provide a dramatic reduction in software development time. This is the vision that
guides this work.

The approach used for solving this problem is the collaborating solvers method (described in [9]
for the case of partial differential equations - PDEs) which can be described in non-mathematical
terms as follows. Assume that we have a collection of solvers that can accurately simulate anyone
of the physical phenomena on a component with a simple geometric shape given values around the
boundary of the component with

• only one phenomenon per component

• a simple shape

An additional requirement, needed to achieve a satisfactory solution time for the problem, is that
the amount of work to simulate the physics on each component not be too large. The multi·physics
problem is solved when one has all the equations satisfied on the individual components and these

1

T-60
I

II

2

12
l..!Q.-

9

183

13 7I 4
I 5

I 6

T~ 100

wood

~

" au n-~

T~80
<..>
<=
0
<..>

LJ
water

I conner concrete
I iron

~ 1801T

T,~O

Ty~O

(no heat flow)

(a) The multi~physics problem. (b) The computational problem.

Figure 1: (a) The physical problem with seven components and three physical phenomena. The
objective is to compute the temperature T everywhere. (b) The computational problem with 13
components. The concrete components were subdivided to simplify the geometry and to reduce
the work for the simulation on some pieces.

solutions "match properly" on the interfaces between the components. The term match properly
is defined by the physics if the interface is where the physics changes. For heat flow, for example,
this means that temperature is the same on both sirles of the interface and that the amount of heat
flowing into one component is the same as the amount flowing out of the other. If the interface is
artificial (introduced to make the geometry simple or the work smaller) then "match properly" is
defined mathematically and means that the solutions join smoothly (have continuous values and
derivatives) .

This approach replaces the multi-physics problem by a set simulation problems which must
be satisfied simultaneously along with a set of interface conditions. We have a set of solvers
that can solve simple simulation problems defined on individual components and it is natural to
define collaborative methods to solve the total problem. A number of methods based on relaxation
formulas or relaxers for the interface conditions have been proposed for matching the interface
conditions. The underlying mathematical problem can be analyzed only in extremely simple cases,
but there is substantial experimental evidence that these relaxers are broadly applicable and can
provide rapid convergence, see [1] and the references therein for further information. Figure Ib
shows the computational problem that might result from the multi-physics problem of Figure 180.

We have developed the SciAgents [2] system which implements this approach. We note two
things first. Multi-physics problems can require enormous processing power, giving the component

2

calculations to different machines provides this naturally. Further, the computations on different
components can be made by autonomous and loosely coupled software systems so an agent based
approach is natural. The iterations on components are loosely synchronized (even the number of
iterations made on each can - and does - vary somewhat). Other factors influencing the design of
SciAgents are given below.

The Distributed Problem Solving Process. Each of the simple components is associated
with a solver agent which includes a software module to simulate the physics on this component.
Each of the interlaces between two components is associated with a mediator agent which includes
a software module to implement the relaxers used. There are usually more mediators than solvers
(there are 13 solvers and 21 mediators for the situation in Figure Ib). There is also a global control
agent which sets goals for the agents (e.g., obtain three significant digits of accuracy in the solvers).
The computation is described roughly as follows:

• Compute an initial estimate of the solution on all interfaces.

• Start all the solver agents.

• For the solvers

While goals not met, solve local simulation problem else wait for input from mediators.

• For the mediators

Wait for new interface values from both solvers then use relaxer to compute new interface
values. If goals not met send interface values to solvers

The global control terminates the computation when all agents become idle. In practice, the global
control sets more intricate goals and policies and it can accept input from a user to modify the
policies dynamically. Note that a solver agent is much bigger than a mediator, perhaps by a factor
of 100 to 1000 in lines of code. Solvers also typically take much longer to execute by a factor of 1000
to 100,000; a single component solution time can range from seconds for toy problems to minutes
for realistic two-dimensional problems to several hours for three-dimensional problems.

Technical Networking Issues

The SciAgents system makes all of the usual demands on networks concerning bandwidth, reliability,
response time, etc., and we do not discuss any of these here; we assume the network has adequate
performance. The more interesting network questions involve resource acquisition; SciAgents needs
machines, software, and knowledge. We are careful to distinguish between what SciAgents does
today and what future implementations should do. Today SciAgents requires the user to obtain
permission to use particular machines, to assign agents to them, and to provide pointers to the
j jELLPACK software [3, 4J and knowledge base. In the future it will be standard for agent based
systems like SdAgents to search for machines available on the network. Also, there will be software
servers on the network that provide problem solving power, with or without accompanying machine

3

power. This will substantially increase the power of SciAgents as it will obtain access to solvers for
models of physical phenomena that the Purdue group's solvers cannot handle. Further, network
servers will appear that handle parts of the solver tasks, e.g., geometric modeling, visualization,
symbolic analysis, or large linear algebra problems. The SciAgents system will then evolve toward
dynamically creating specialized distributed solvers as well as using its own or other monolithic
solvers. It will also exploit specialized hardware resources that make their compute power accessible
over the network.

So far no mention has been made of the fact ultra high level problem solvers like SciAgents
must have a wide range of knowledge and expert assistance (often hidden) for users. Recall that
these solvers may involve millions of lines of code and involve many sophisticated algorithms and
methods which most users neither can nor want to understand. SciAgents now uses the PYTHIA
expert system [14] which provides some of this assistance. We envisage that knowledge about the
performance and use of solvers will be distributed widely over the network and thus SciAgents will
invoke sub-agents that gather the knowledge required for a particular application.

Technical Problem Solving Issues

The principal technical problems associated with the problem solving process are discussed in four
areas. All these directly involve the network structure of SciAgents.

Multi-Physics Applications. To specify the the computation for the 13 solvers in Figure 1b
one must specify the geometry, equations, conditions, etc. The solver jjELLPACK of SciAgents
has elaborate facilities to do this that use a number of interactive windows for each component.
Thus defining the problem might involve 50-100 windows for the solvers plus another 21 for the
mediators. Window management is a problem here but it is tractable because they are normally
used in a rather sequential manner. As the size of applications grows, this aspect of SciAgents will
require a more elaborate management facility.

During the solution process and the postprocessing stage one wants to be able to see the solutions
and examine the behavior along the interfaces. For Figure Ib this requires 34 windows and 13 of
these are to display complex graphics about the component solutions, displays that are changing
with every solution made during the iteration. It is clearly easy to overload a single workstation's
communication and display capacity with even modest size application. The current SciAgents
system only displays simple numerical summary values (e.g., maximum change of a component
solution from one iteration to the next, maximum error in satisfying interface constraints) during
the iterations. Graphics for final solutions can be displayed during the postprocessing phase.

The most sensitive part of the problem solving process is the choice of relaxers. The mediators
provide a library of standard relaxers for the user to select. During the solution process the user
can open a mediator's window and modify this selection or change the parameter of a particular
relaxer. The current modest level understanding and experience with this problem solving process
requires that the knowledge base system of SciAgents needs substantial enhancement for this task.

Resource Location. \Ve envisage heterogeneous solvers running as "agents" or "servers" on
networked, heterogeneous computing platforms. Discovering what resources are available in the

4

network, what kind of performance (and price) commitments we are getting from them, are all
important tasks for SciAgents. Presently, we employ a simple solution using Agent Name Servers
(ANS). An ANS runs as an HTTP server, and allows queries about specific server names. Though
not currently fully implemented in our system, ANSs can talk to one another, much like the DNS
system for IP name to IP address binding. However, this is a simple first step, and will not scale
up to real networks. This is in part due to the fact that ANS does not "understand" the semantics
of the service needed. The required service can be called different names, and reliance solely on
name matches (be it for servers or services) is not likely to succeed in the scientific computing
domain. Clearly, there must be some format for agents to advertise their capabilities, and for
other agents to reason about these capabilities. We hope to develop a language and ontology to
enable this. PDESpec [13) is an primitive version of such a language for PDE based systems.
This problem has analogs in the world of distributed 00 systems which usually use well defined
interfaces to couple components. To achieve language independence, there are a variety of interface
description languages associated with systems such as OMG CORBA, Matchmaker, IBM SOM, and
Microsofts COM. These allow clients to express operations on remote objects and they enforce type
conformance. Loosely speaking, this corresponds to invoking the appropriate method from a server.
For most systems, this is done via a class based mechanism. In other words, the client specifies
its requirements (interface) as a class (say POESolver class, which can solve any PDE). Servers
which are instances of this class, or its subclasses (say 2 class, which has special methods to solve
2D POEs more efficiently) will conform to the requirements. However, this technique has several
disadvantages and leads to the creation of a complicated class hierarchy even in simple systems.
A recent approach based on signatures has been proposed [10] which is a cleaner implementation
of conformance, and is also more suited for large scale networked systems that we envisage for
scientific computing. The basic idea here is for each object to export its signature, composed of the
operations it can perform. For example, an object could say that it is of File class, and has signature
(Read, Write). However, even in this method, there is no obvious way to clarify the semantics of
the operation. For example, in the context of scientific computing, the signature (solve) would not
make sense unless one could identify what kind of a system the object claimed to solve.

Several other issues of interest in networked scientific computing are also not addressed by
distributed 00 models. For example, take the issue of format translation. Say object A expects
a matrix represented as an array, but object B produces the matrix as a linked list. Another
issue is one of performance commitments. For example, the agent coordlnator would need to
know not only that a particular linear system solver can solve linea.r systems. but how much
time it would take and how much cost would be incurred, whether there was a tradeoff which
could be achieved, etc. We are attempting to address these problems using the ontology we de
velop in conjunction with KQML. Very recently, there has been some work done by Fox et. al.
(http://1iI'1l1iI'.npac.syr.edu/tachreports/) to use Java and the Web as a means of networked
resource location. This work is related to our initial efforts with systems like Web j jELLPACK,
but relies on RPC like mechanisms such as JAVA RMI.

Distributed Load Balancing. The SciAgents approach needs to have the loads balanced
on the various machines as the iteration proceeds roughly at the speed of the slowest component
processor. Currently SciAgents depends on the user to partition the application to balance the

5

loads. The j jELLPACK system has several tools to subdivide a given component into pieces with
nearly equal computational work. These can be used to help with the load balancing but they are
not integrated with SciAgents in any way.

We believe that the best strategy for the future is decouple load balancing (and component
partitioning) from the assignment of solvers to machines. This can be done with a threads of control
approach: Define 100 different computational domains and solver agents, then estimate roughly
their computing needs, and then allocate the 100 solvers to, say, 11 actual machines to nearly
equalize the work per machine. This approach easily accommodates heterogeneous collections
of machines and the allocation process is a very simple calculation. The disadvantages of this
approach are that more large software systems are launched, more components and windows must
be managed by the user, and network resource use is higher. These disadvantages suggest that
the threads of control approach should be used in moderation, experiments are needed to evaluate
better the trade-offs between the two approaches.

Distributed Knowledge Acquisition. Jill important task of SciAgents is to select the ap
propriate software components and hardware platforms given a problem. We refer to this process
as the algorithm selection problem [12], and implement it in the form of consuUing agents. The
basic idea is to use prior experience in solving similar problems to find the right hardware and
software to solve a new one. The selection process is constructed in a modular fashion so that dif
ferent or even multiple selection schemes can be used, e.g., neural nets or fuzzy logic. The success
of these selectors depends on having a "knowledge base" about how various solvers perform on
various problems. Such knowledge bases are being systematically generated using batteries of test
problems at Purdue. These knowledge bases will be further augmented by SciAgents by allowing
performance data to be dynamically captured. This data will be added to the knowledge base and,
in the long run, the consulting agents will become better in selecting algorithms because of the
experience they gain. In an actual setting, the knowledge bases will be distributed across users on
the network, and each consulting agent will have only some of the information needed to correctly
determine the hardware and software choices.

Our approach to selection searches the data base for previously seen problems close to the new
one by classifying problems into meaningful classes. This would imply that finding the closest
problem would be a two stage process, where one would first find the appropriate class for a new
problem, and then look for close problems amongst the members of that class. The classification
of problems into subsets and determining which subset a particular problem belongs to can be
implemented in several ways. While there are some problem classes where there is a completely
deterministic (and simple) way to determine class membership, for other classes such a priori
determination is not possible. We have to determine the class structure based on samples seen thus
far. In other words, the class structure has to be learned given the examples. We have developed
architectures for addressing the learning issue using a variety of "intelligent" approaches, and
experimented with a variety of connectionist, fuzzy and hybrid approaches to learning. It has
been our experience [6, 8J, that specialized selection techniques developed for particular application
domains tend to outperform more general, conventional techniques.

With the selection mechanism outlined above, the quality of the answer obtained depends on
the quality of the database - i.e., on how many and what kind of problems it has. This can be

6

a significant problem if the database contains few problems overall, or few (or no) problems of
a specific type. This deficiency can be alleviated by using a cooperative agent based approach.
Thus different users, possibly on different machines across the network, have different consulting
agents. Due to the difference in the kind of problems addressed by different users, each agent can
be expected to have seen different problems. Whenever a selection problem is posed to a consulting
agent, it tries to answer it using its own database. If it finds that it cannot find an answer, or
that it has a low confidence in its answer, it queries other agents. Each agent then replies with
an answer, and encloses information about "how much confidence it has in the answer" and "how
much does it know about the kind of problem". The agent receives all these answers and then
uses them to make a selection. Clearly, this technique is inefficient, since it requires a broadcast
of the query to all other agents. We have developed and experimented with new techniques which
learn the capabilities of consulting agents from these initial broadcasts, and then direct queries
appropriately. The learning uses a variety of single pass neuro-fuzzy techniques that we have
recently developed [8, 6, 11, 7]. Preliminary results show that these techniques do as well as the
best known algorithms on a variety of data sets, and yet promote fast, single pass learning. Our
approach is be unsupervised, and includes techniques based on epistemic utility theory that we
have explored to automatically generate exemplars. In [5], we describe this approach applied to a
collection of PYTHIA [14] agents.

SciAgents as a Network of Computing Agents

Recall that SciAgents employ two major types of computing agents - solvers and mediators. The
solver is considered a "black box" by the other agents and it interacts with them only using an inter
agent language for the specific problem. This feature allows all computational decisions for solving
the individual subproblem to be taken independently from the decisions in any other subproblem
- a major difference from the traditional approaches to multi-physics simulations. Each mediator
agent is responsible for adjusting an interface between two neighboring subdomains. Since the in
terface between any two subdomains may be complex itself, there may be more than one mediator
assigned to adjust it, each of them operating on separate piece of the whole interface. Thus the
mediators control the data exchange between the solvers working on neighboring subproblems by
applying mediating formulas and algorithms to the data coming from and going to the solvers. Dif
ferent mediators may apply different mediating formulas and algorithms depending on the physical
nature of their interfaces. The mediators are also responsible for enforcing global solution strategies
and for recognizing (locally) that some goal (like "end of computations") has been achieved. The
solvers and mediators form a network of agents that solves the given global problem. A schematic
view of the functional architecture of SciAgents is given in Figure 2.

We now describe how the user builds ("programs") this network for the problem in Figure 1.
We see that SciAgents provides a natural abstraction to the user in the problem domain and hides
the details of the actual algorithms and software involved. The user first breaks down the geometry
of the composite domain into simple subdomains with simple models to define the problems for
each subdomain. Then the physical interface conditions between the subdomains are identified. All
that can be done in the terms of the user's problem domain. Then the user constructs the proper

7

,': -- --,-;-,,"

Figure 2: Functional architecture of SciAgents. The computations (and the major data exchange)
are concentrated in the network of solver and mediator agents. The computing agents communicate
with the consulting ones through queries to obtain "advice" on computation parameters. The user
interacts with the system through the global and local user interfaces which send queries and
receive replies from the various agents. The intelligent controller and the problem constructor are
integrated into a single "agent" which controls the global state of the computations and instantiates,
queries, and manages the other agents.

8

network of computing agents by simply instantiating various agents. The user is provided with an
problem constructor (agent instantiator) - a process which displays templates for defining solvers
(e.g., giving geometry, equations) and for defining mediators (e.g., giving connections, relaxers).
Tills creates active agents of both kinds, capable of computing. Initially, only templates of agents
structures that contain information about solver and mediator agents and how to instantiate them,
are available. The user selects solvers that are capable of solving the corresponding component
problems and mediators that are capable of mediating the physical conditions along the specific
interfaces, and provides appropriate information to them. The user interacts with the system
using a visual programming like approach, these have proved useful in allowing the non-experts to
"program" by manipulating images and objects from their problem domain. In our case, a visual
environment is useful for the constructor, or when the user wants to request some action or data.

Once an agent has been instantiated, it takes over the communication with the user and with
its environment (the other agents) and tries to acquire all necessary information for its task. Each
agent retains its own interface and can interact with the user. It is convenient to think of the user
as another agent in these interactionS. The user defines each component problem independently,
using the solver agent user interface. then interacts similarly with the mediators to specify the
physical conditions holding along the various interfaces.

The agents actively exchange partial solutions and data with other agents without outside con
trol and management. Thus, each solver agent can request the necessary domain and problem
related data from the user and decide what to do with it (should it, for instance, start the com
putations or should it wait for other agents to contact it'!). After each mediator agent has been
supplied with the connectivity and mediating data by the user, it contacts the corresponding solver
agents and requests the information it needs. By instantiating the individual agents (defining in
dividual components and interlaces) the user builds the highly interconnected and interoperable
network that solves the problem, by cooperation between individual agents.

The user's high-level view of the SciAgents architecture is shown in Figure 3. The global
communication medium used by all entities in the SciAgents is called a software bus [13J. The
constructor (user builder interface) uses the software bus to communicate with the templates in
order to instantiate various agents. The order of instantiating the agents is not important. IT
a solver agent is instantiated and it does not have all data it needs to compute a local solution
(i.e., a mediator agent is missing), then it suspends the computations and waits for some relaxer
agent to contact it and to provide the missing values (this is also a way to "naturally" control the
solution process). The mediator agents act similarly. This built in synchronization is, we believe,
an important advantage of the SciAgents architecture.

Since agent instantiation happens one agent at a time, the data which the user has to provide
(domain, interface, problem definition, etc.) is strictly local, and the agents collaborate in building
the computing network. The user actually does not even need to know the global model. We can
easily imagine a situation when the global problem is very large. Different specialists might only
model parts of it. In such a sitnation, a user may instantiate a few agents and leave the instantiating
of the rest of the cooperating agents to colleagues. Naturally, some care has to be taken in order
to instantiate all necessary agents for the global solution and not to define contradictory interlace
conditions or mediation schemes along the "borders" between different users.

9

Catalog
of Modules

Relaxer
Template

Solver
Template

~ r.x;al Interfaces

~~, ~,_.........._--, :
User Builder Global I

Interface Executio:- ~
" ,~:::::::::\Interface y,,,

-----r------,~

Instance
R38

Figure 3: User's abstraction of the SciAgents software architecture. The user initially interacts
with the User Interface Builder to define the global composite problem. Later the interaction is
with the Global Execution Interface to monitor and control the solution of the problem. Direct
interaction with individual solvers and mediators is also possible. The agents communicate with
each other using the software bus.

The collection of agent interfaces that a user interacts with is the only software the user actually
needs to run locally in order to solve the problem. Everything else can be done over the network.

This user view of the SciAgents architecture is too abstract for an actual implementation. For
this one has to specify the internal architecture of each agent and the detailed communication
among the agents, see [2] for these important details. The implementation utilizes the locality
of the communication patterns and the fact that whenever a mediator is active (computing), the
corresponding solvers are idle and vice versa. Also, the asynchronicity of the communication and
the need of implementing the "pro-active" feature of the agents prompts us to employ many active
threads in a single agent (multithreading).

Coordination of the Solution Process. There are well-defined global mathematical con
ditions for terminating the computations, for example, reaching a specified accuracy, or failing to
converge. In most cases, these global conditions can be "localized" either explicitly or implicitly.
For instance, the user may require different accuracy for different subdomains and the computations
may be suspended locally if local convergence is achieved.

The local computations are governed by the mediators (the solvers simply solve the mathemat
ical problems). The mediator agents collect the errors after each iteration and, when the desired
accuracy is obtained, locally suspend the computations and report the fact to the global controller.
The solvers continue to report the required data to the mediators and they check whether the
local interface conditions continue to be satisfied with the required accuracy. If a solver receives
information that convergence has been achieved for all its interfaces, then it stops the iterations.

10

They may be restarted if the interface conditions relaxed by a given mediator agent are no longer
satisfied (even though they once were). The only global control exercised by the controller is to
terminate all agents in case all mediators report local convergence or one of them reports a fail
ure. The global solution "emerges" from the local computations as a result of intelligent decision
making done locally and independently by the mediator agents. The agents may change their goals
dynamically according to the local status of the solution process - switching between observing
results and computing new data.

Other global control policies can be imposed by the user if desired - the system architecture
allows this to be done easily by distributing the control policy to all agents involved. Such global
policies include continuing the iterations until the all interface conditions are satisfied, and recom
puting the solutions for all subdomains if the user changes something (conditions, method, etc.)
for any domain.

Software Reuse and Evolution. One of the major goals of the SciAgents concept is to
design a system that allows for low-cost and less time-consuming methods of building the software
to simulate a complex mathematical model of physical processes. This goal cannot be accomplished
if the eXlsting rich variety of problem solving software for scientific computing is not used. More
precisely, there are a number of well-tested, powerful, and popular solvers for use after breaking
the global model into "simple" subproblems defined on a single subdomain. These can easily and
accurately solve such a "simplp." submodel and it is natural to use them. However, our architecture
requires the solvers to behave like agents (e.g., understand agent languages, communicate data
to other agents), something no solvers in scientific computing are able to do to the best of our
knowledge.

Thus we provide an agent wrapper for solvers and associated software to take care of the inter
action with the other agents and with the other aspects of emulating agent behavior. The wrapper
encapsulates the original functionality and is responsible for running it and for the necessary in
terpretation of parameters and results. This is not simply a "preprocessor" that prepares input
and a "postprocessor" that interprets the results, since mediation between subproblems requires
communicating to the mediators some intermediate results and/or accepting some additional data
from them. Designing the wrapper is sometimes complicated by the "closed" nature of the solvers
- their original design is not flexible or "open:' enough to allow access to various parts of the code
and the processed data. However, we believe that the solver developers can design and build such a
wrapper for a very small fraction of the time and the cost of designing and building the entire solver.
The wrapper, once written, will enable the software's reuse as a solver agent in different MPSEs,
thus amortizing the cost further. An additional task is to evaluate the solver's user interface
since the user defines the local problems through it, it is important that the interface facilitates the
problem definition in user's terms well.

References

[1] Drashansky, T., M. Mu, J. Rice, and M. Vavalis, Collaborating PDE solvers,
http://www.cs.purdue.edu/people/jrr/slides/Collaborating/index.html.

11

[2] Drashansky, T., An Agent·Based Approach to Building MPSEs, Ph.D. Thesis, Department of
Computer Sciences, Purdue University, 1996.

[3] Houstis, E.N. and J.R. Rice, Parallel ELLPACK: A development and problem solving environ
ment for high performance computing machines, in Programming Environments for High-Level
Scientific Problem Solving, (P. Gaffney and E. Houstis, eds.), North Holland, Amsterdam,
(1992),229-241.

[4] Houstis, E.N., J.R. Rice, S. Weerawarana, A.C. Catlin, P. Papachiou, K.-Y. Wang, and M.
Gaitatzes, Parallel (!!)ELLPACK: A problem solving environment for PDE based applications
on multicomputer platforms, submitted for publication, (1996).

[5] Joshi, A., To Learn or Not to Learn ... , Adaptation and Learning in Multiagent Systems, (Weiss,
G. and Sen,S.), Springer Verlag, Lecture Notes in Artificial Intelligence, 1042, (1996).

[6] Joshi, A., S. Weerawarana. E.N. Houstis, J.R. Rlce, and N. Ramakrishnan, Neuro-fuzzy sup
port for problem solving environments, IEEE Computational Science and Engineering, 3,
(1996),44-56.

[7] Joshi, A. N. Ramakrishnan. J .R. Rice, and E.N. Houstis, A nemo-fuzzy approach to agglom
erative clustering, in Proc. IEEE Inti. Conf. on Neural Networks, IEEE Press, 2, (1996),
1028-1033.

[8] Joshi, A., N. Ramakrishnan, J.R. Rlce, and Houstis, E., On neurobiological, neuro-fuzzy,
machine learning and statistical pattern recognition techniques, IEEE Trans. Neural Networks,
8, (1997), (to appear).

(9] Mu, M., and J .R. Rlce, Modeling with collaborating PDE solvers - Theory and practice, Camp.
Syst. En9'., 6, (1995), 87-95.

[10] Muckelbauer, A., and V.F. Russo, The Rennaisance Distributed Object System,
ht~p://~~.cs.purdue.edu/Rennaisance/overviev,p8

[11] Ramakrishnan, N., A. Joshi, S. Weerawarana, E.N. Houstis, and J.R. Rlce, Neuro-fuzzy sys
tems for intelligent scientific computing, in Pmc. Artificial Neural Networks in Engineering
ANNIE '95, (1995), 279-284,

[12] Rice, J.R., Methodology for the algorithm selection problem, Performance Evaluation of Nu
merical Software, (L. Fosdick,ed.), North Holland, (1979), 301-307.

[13] Weerawarana, S., Problem Solving Environments for Partial Differential Equation Based Ap
plications, Department Computer Sciences, Purdue University, (1994).

[14] Weerawarana, 5., E.N. Houstis, J.R. Rice, A. Joshi, and C.E. Houstis, PYTHIA: A knowledge
based system to select scientific algorithms, ACM Trans. Math. Software, 23, (1997), to appear.

12

	Agent Based Network Systems for Multi- Physics Problems
	Report Number:
	

	tmp.1307986960.pdf.MzpB8

