
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1999

The Design of Software Agents For a Network of PDE Solvers The Design of Software Agents For a Network of PDE Solvers

Panagiota Tsompanoupoulou

Ladislau Bölöni

Dan C. Marinescu

John R. Rice
Purdue University, jrr@cs.purdue.edu

Report Number:
99-013

Tsompanoupoulou, Panagiota; Bölöni, Ladislau; Marinescu, Dan C.; and Rice, John R., "The Design of
Software Agents For a Network of PDE Solvers" (1999). Department of Computer Science Technical
Reports. Paper 1444.
https://docs.lib.purdue.edu/cstech/1444

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972051?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

THE DESIGN OF SOFrWARE AGENTS FOR
A NETWORK OF PDE SOLVERS

Panagiota Tsompanopoulou
Ladislau Boloni

Dan C. Marinescu
John R. Rice

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

CSD-TR #99-013
April 1999

The Design of Software Agents for a Network of PDE Solvers

Panagiota Tsompanopoulou, Ladislau B616ni, Dan C. Marinescu, and John R. Rice
Computer Sciences Department

Purdue University, West Lafayette, In, 47907, USA
(giwtR, boloni, dem, jrr@cs.purdue.edu)

February 12, 1999

Abstract

The simulation of complex physical systems often involves solving a large system of
partial differential equations (PDEs). We discuss how solving such a system of PDEs
can be done by splitting a domain into several sub-domains and creating of a network of
PDE solvers. In such a network several agents are used to: (a) control the execution of
individual solvers on each sub-domain, (b) mediate between adjacent sub-domains, and
(e) coordinate the execution of the ensemble. This paper presents the advantages of agent
based PDE solving and describes the implementation of a network of Partial Differential
Equations, PDE, Solvers using Bond middleware for agent-based computing.

1 Overview

Consider the simulation of a complex physical device such as the engine shown in Figure 1. It
has several physical phenomena (combustion, waterflow, structure, ...) in a complex geometry.
One could attack the simulation as follows: (1) separate the device into parts that have the
same physical phenomena, (2) further separate each of these parts into pieces that have simple
geometry. Then the simulation requires that partial differential equations (PDEs) be solved
on each of the resulting pieces and that the solutions on the surfaces of the pieces agree (as
dictated by the physics) with those of the piece's neighbors. Thus one has a large set of
PDE problems along with interface conditions. One then assigns a PDE solver to each piece
and connects them together so they can collaborate in solving the overall simulation problem.
There is a mathematical method called interface relaxation which can be used to iteratively
solve the separate PDE problems and relax the interface conditions collaboratively to achieve
this overall solution.

Now visualize these PDE solvers made into software solver agents which collaborate in the
simulation. Next create a set of mediator agents, one for each interface between two pieces,
which carry out the interface relaxation process which is defined locally on each interface. We
assume that the network of agents then has the mathematical capability to solve the PDEs of
the simulations, I.e., these software agents have effective numerical methods which converge
for the global problem at hand. Whether this assumption is true or not is a numerical analysis
problem not discussed in this paper. These agents could compute the solution by a simple
minded, synchronized iteration with all the agents on one machine or with each agent running
on its own machine.

Once this network of collaborating agents is created, there are several other issues that
can be addressed which exploit the properties of agent-based computing.

1. Asynchronous Computing. The computations proceed locally until the changes fall below
a certain tolerance level. There is no need for all the agents to keep computing if only a

1

Figure 1: An automobile engine system consisting of many different parts.

few have failed to reach the target tolerance. Policies or goals can be given to the agents
to guide their behavior during the collaboration to achieve this tolerance.

2. Load Balancing. Normally there are several (many) processors used because the compu
tations are very large. However, there may be more agents than processors so decisions
have to be made in their assignments to processors. The agents can time themselves
for one PDE solution or one relaxation and their policies be established to associate
processors and agents. For example, a PDE solver agent usually takes hundreds or
thousands times as long for an iteration than a mediator agent and the difference in the
PDE solving time can easily be a factor of 5 to 20. The agents might be mobile so they
can truly migrate from machine to machine or load balancing might be accomplished by
distributing PDE sub-problems among PDE solving servers. In any case, policies and
goals can be given to the agents to guide their assignment to processors.

3. Software Selection. The PDE problem on a single piece can probably be solved by several,
even hundreds, of different methods; methods for which software exists in repositories
or which is used by network servers. Again, policies and goals can be given to agents to
guide their selection of software.

In this paper we provide a software design for agents to implement the above collaborating
PDE solvers network. This design is presented using the Bond middleware for the agents and
the PELLPACK pmblem solving envimnment for the PDE solver agents. We begin with an
example of a simple two-domain PDE problem as in Figure 2.

Here, the domain is split into two sub-domains and there is only one interface. Therefore
there are two PDESolver agents created from PELLPACK [7], whose solverid are 1 and 2
respectively. The mediatorid for the PDEMediator agent is 1. The boundary of each sub
domain consists of pieces, identified by pieceid. So for example, the interface corresponds to
the boundary piece with pieceid 4 for the PDESolver with solverid 1 and to the boundary
piece with pieceid 3 for the PDESolver with solverid 2. Each local problem, i.e. the PDE
problem in each sub-domain, is described in a PELLPACK file with a . e suffix. The prepro
cessing of this file, is done by Pentool, and gives the corresponding. f file (a Fortran file that
contains the main program of the local problem). Compiling the Fortran file one obtains an
executable and a . script file that is used by the ExecuteTool. The discretization points on
the local sub-domain are contained in a file, with .mesh or .grid suffix, when Finite Element
Methods (FEM) or Finite Difference Methods (FDM) are used correspondingly.

2

,
,

1 ,
1 '

,

1-2: SubdomaillS

1 : Interface
1-5: Boundllry Pieces

,

2

,

Figure 2: A simple PDE problem, whose domain is split into two sub-domains.

2 Bond Agents

Bond, is a Java-based, object-oriented middleware for network computing using KQML [4]
as a communication language. Network computing is a paradigm that emphasizes the use of
network resources, computing resources distributed across the network, over local resources.
Network resources are hosts, communication links, programs, services and data. Middleware
is a software layer that allows developers to mold systems tailored to specific needs from
components and develop new components based upon existing ones.

Bond (http://bond. cs. purdue. edu consists of a core package, providing the basic func
tionality of a distributed~object system and several frameworks for monitoring, security, [6],
[8] and for software agents, [5].

A Bond agent is an object with the following components [1], [2]:

• The model of the world is a container object which contains the information the agent
has about its environment. This information is stored in the form of dynamic propedies
of the model object. There is no restriction of the format of this information: it can
be a knowledge base or ontology composed of logical facts and predicates, a pre-trained
neural network, a collection of meta-objects or different forms of handles of external
objects (file handles, sockets, etc).

• The agenda of the agent, which defines the goal of the agent. The agenda is in itself an
object, which implements a boolean function on the model and a distance function on
the model. The boolean function shows if the agent accomplished its goal or not. The
agenda acts as a termination condition for the agents, except for the agents marked as
having a continuous agenda where their goal is to maintain the agenda as being satisfied.
The distance function may be used by the strategies to choose their actions.

• The finite state machine of the agent. Each state has an assigned strategy which de
fines the behavior of the agent in that state. An agent can change its state by performing
transitions. 'Iransitions are triggered by internal or external events. External events are
messages sent by other agents or programs. The set of external messages which trigger
transitions in the finite state machine of the agent defines the control subprotocol of the
agent.

• Each state of an agent has a strategy defining the behavior of the agent in that state.
Each strategy performs actions in an infinite cycle until the agenda is accomplished or

3

the state is changed. Actions are considered atomic from the agent's point of view,
external or internal events interrupt the agent only between actions. Each action is
defined exclusively by the agenda of the agent and the current model. A strategy can
terminate by triggering a transition by generating an internal event. After the transition
the agent moves in a new state where a different strategy defines the behavior.

The agent framework can be programmed at two levels. At the expert level, the developer
can define new strategies and agendas by programming them directly in Java. At the blueprint
level, the user can create new agents using the blueprint language of the Bond agent framework.
With the blueprint a user can:

• specify the finite state machine of the new agent

• assign strategies from a strategy database to the states

• assign the agenda of the agent from the strategy database

• assemble new strategies following an aspect oriented programming approach using the
strategy composition objects.

• assemble new agendas by applying boolean composition on predefined agendas

• create the control subprotocol of the agent

• initialize the variables of the model.

However a blueprint description cannot define new strategies or agendas which can not
described as boolean conditions on the model.

3 PDE Network Agents

The methodology to create an agent in Bond is: (a) write down a brief description of the actions
in each state, (b) create a state tra.nsition diagram, (c) search the databases for strategies
suitable for your agent, (d) write new strategies whenever necessary. A brief presentation of
the states and the strategies for the three types of agents, PDESolver, PDEMediator, and
PDECoordinator follows.

The states and the strategies for the PDESolver agent are shown in Figure 3 and a brief
description of the actions expected in each state follows.

• Agent Started. The agent is started by a message from the PDECoordinator. It replies ac
knowledging that is up and ready to work. By this time its model contains: (a) solverid,
(b) the local working directorYl (c) the location of the executables (Le. Pelltool.
ExecuteTool, OutputTool), (d) the location of the input files (the .e and .mesh or
.grid files) on a remote host, (e) the location for the files that will keep error/warning
messages, (f) the PDEMediators the PDESolver is connected with , and (g) mapping of
boundaries with PDEMediators.

• SetUp. In this state the PDESolver fills its model with needed information (e.g. using
paths already in model creates the full names of executables that will be executed in
later states).

• Start Pelltool. In this state the agent starts-up the Pelltool which has as input the
.e file. The Pelltool preprocess the .e file, creates the corresponding . f and then
compiles it to create an executable and a script file that the ExecuteTool will use.

4

• Supervise Pelltool. After starting the Pelltool, the PDEsolver supervises its execution.
When Pelltool finishes successfully it moves to next state.

• Extract Mesh Points. The agent prepares data files with the boundary points on each
interface. It reads the .e file to find the name of the .mesh or .grid file which con
tains, among other information, all the discretization points of that particular sub
domain. Processes the .mesh/.grid file to extract the mesh points and creates an
bpoints. mesh. solverid (or fd-points. solverid. fdp in the grid case) files. From the
last file it extracts the mesh/grid boundary points for each particular boundary piece and
creates separate files for each one of them named boundary.points. solverid. pieceid.
After a successful parsing of the files, it informs the PDEMediator agents, that the bound
ary points from this particular sub-domain are ready.

• Supervise Extraction. Supervise the execution of the task described above, done by an
independent program.

• Wait for Boundary Points. Expect a message from PDEMediator notifying that files
named interesting. points .mediatorid with boundary points are ready.

• Combine Boundary Points. Since all files with the interesting boundary points are
created, the agent parses them to combine boundary points and create a new file named
bpoints-in.solverid.bp.lfthe file parsing is successful, it moves to next state.

• Supervise CBP. Supervise the execution of the previous step and proceeds to next state
in case of success.

• Wait for Boundary Values. Message from the collaborating PDEMediator agents are
expected notifying that files boundary. values .mediatorid. solverid with boundary
values are ready.

• Combine Boundary Values. Read the files boundary. values. mediatorid.solverid with
the boundary values, prepared by the collaboratoring PDEMediator. Combine them and
create the file bvalues-insolverid. bp.

• Supervise CBV. Wait for the above execution to finish, then move to the next state.

• Start ExecuteTool. The ExecuteTool is started to solve the problem in the current
sub-domain. Use the executable, the script file, the combined boundary points, and
boundary values files obtained earlier. The id of the process is kept for the next state.

• Supervize Execution. Using the process id, the agent supervises the execution and waits
for the termination code of the running process. If the ExecuteTool finishes with success
the agent moves to next state. If the execution fails, the sends an error message and
exits.

• Iteration Terminated. The agent sends a message to the collaborating PDEMediator
agents that iteration is done and the output files are ready to be processed. If the
message is sent properly, then it moves to next state.

• Wait for Convergence. Wait for a message from the collaborating PDEMediator agents
signaling that they have finished the processing of the interface. The message contains
information about local convergence. If the message is no local convergence the agent
goes back to Wait for Boundary Values. If the message is local convergence then the
agent waits for a message from the PDECoordinator regarding the global convergence.

5

global .
converg!!llc8

~i/i

----~:.:

/i \\/\

,I nolocal \..
!convergence,

._-.._-,

transition caused
bya message

lransiUon dUB Ia
·success·

transition due 10
"failure"

Figure 3: The state transition diagram of the PDESolver Agent, PDESolver. State transitions
are caused by: (a) external messages, (b) the success/failure to attain the goal ofthe strategy
in a given state.

If the message is global convergence it moves to state Plot Solution. If the message is
noconvergence the PDESolver remains idle until new messages from mediators about
local convergence arrive.

• Plot. Since global convergence was achived, the OutputTODl is called to plot the local
solution.

• Supervise Plot. Supervise the execution of OutputToD!. When finished go to Exit.

• Error. The agent reaches this state in case of an error. It prints out a message describing
the error and then go to Exit.

• Exit. The agent is sent a termination message by thePDEGoordinator, the problem was
solved successfully.

The states of the PDEMediator agent are described below and shown in Figure 4.

• Agent started. The agent is stated by a message from the PDECoordinator. After that
it sends a message to PDECoordinator acknowledging that IS up and ready to work. By

6

this time the agent has in its model information like: (a) mediatorid number as defined
by PDE problem, (b) the local working directory, (c) the location of the input files
on a remote host, (d) the location for the files that will keep error/warning messages,
(e) the solverid of the two PDESolvers the particular PDEMediator is connected with,
(f) the relaxation formula and (g) the pieceid of the boundary pieces of the neighbor
PDESolvers, that work together with the PDEMediator. This information is written into
ythe model by the PDECoordinator, just before sending the start-up message.

• SetUp. The PDEMediator fills-in its model with needed information (e.g. using paths
already in model creates the full names of executables that will be executed in later
states).

• Wait for Boundary Points. The PDEMediator waits for the PDESolver agents working
with it to create several files files boundary. points. solverid.pieceid. Upon receiving
this message it moves to next state.

• Initialize Boundary Values. Collects the two boundary points files (from
the two collaborating PDESolvers) and combines them into one file named
interesting. points. mediatorid. Calculate the normal vector and initialize the
boundary conditions on the interesting points, and write the values in files named
boundary.values.mediatorid.solverid.

• Superoise Initialization.

• Notify Solvers. Since all files are ready, sends messages to the two collaborating
PDESolver agents to start solveing the problem locally.

• Wait for Solvers. Wait for the PDESolvers to finish the solution of the local problem.

• Relaxation. Since new solution is computed, the agent needs to read the output files
(named bvalues-outsolverid. bY) and calculate the difference between two successive
iterations on its interface. Also the new boundary conditions are calculated by assigning
the relaxation formula and are stored in the bvalues-insolverid. bp files.

• Superoise Relaxation. Here the agent supervises the above execution. When is done it
proceed to the next state.

• Send Convergence Results. If the difference calculated in Relaxation is small enough,
local convergence was obtained. Otherwise there is no local convergence. In each
case the agent sends the right message to the collaborating PDESolvers and to the
PDECoordinator. In case of local convergence it moves to state Wait for Coordinator,
while in case of no local convergence in moves to state Wait for Solvers.

• Wait for Coordinator. Wait for instruction from the PDECoordinator. If global con~

vergence is archived the agents moves to Exit, if no convergence it moves to Wait for
solvers.

• Error. Here the agent prints out a message concerning the error and moves to state Exit.

• Exit. The agent terminates following a message from the PDECoordinator.

The state transition diagram of the PDECoordinator agent is similar with those in Figures
3 and 4. A brief description of these states and the corresponding strategies follows:

• Agent started. The agent is started using a GUI.

7

-

_
···..~i

~-_.--- --------
.-- -',

Iransi~oncalISe<!
by a mllSSago

llllnsi~on duo to·w_
1I11nS~onduo to

"fallure"

Figure 4: The state transition diagram of the PDEMediator Agent, PDEMediator. State
transitions are caused by: (a) external messages, (b) the success/failure to attain the goal of
the strategy in a given state.

8

• Read Input Filename. The agent reads the name of the file that contains the input data
for the PDE problem and the agent configuration.

• Parse Input File The agent parses the input file and fills its model with the information
that later will share with other agents.

The input file of the coordinator agent contains the following information: (a) the num
ber of PDESolvers, and (b) the number of PDEMediators. Then for each PDEMediator
there is (c) a left PDESolver id, (d) the boundary pieceid in the left sub-domain, that
corresponds to the interface the particular PDEMediator handles, (e) the relaxation for
mula used to update the boundary conditions at each iteration, (f) the right PDESolver
id, (g) the boundary pieceid of the right sub-domain, that corresponds to the interface
that the particular PDEMediator handles, (h) the relaxation formula used to update the
boundary conditions at each iteration, (1) the tolerance for convergence, (j) x and y
coordinates of the upper point of the interface line, (k) an initial guess of the unknown
(and wanted) function on that point, (l)x and y coordinates of the lower point of the
interface line, (m) an initial guess of the unknown function on that point. (n) Machine
name for the user interface and the display of all the tools (I.e. PellTool, ExecuteToel
and OutputTeol, (0) Information about the machine for the PDEGoordinator agent, (p)
Information about the machines that will host the PDESolver agents and (q) information
about the machines that will be assigned the PDEMediator agents.

• Create Solver Agents. Send the blueprint for a PDESolver to the Bond residents on the
hosts assigned to run PDESolver agents.

• Create Mediator Agents. Send the blueprint for a PDEMediator to the Bond residents
on the hosts assigned to run PDEMediator agents.

• Solver's Configuration. Write into the model of the PDESolver agents information that
they need.

• Mediator's Configuration. Configure PDEMediators.

• Communication's Configuration. The coordinator uses the shadows of PDESolvers and
PDEMediators to inform each other about their addresses.

• Start Solver Agents. Send the "start" command to all PDESolver agents.

• Start Mediator agents. Send the "start" command to all PDEMediator agents.

• Wait for Messages. Wait for messages from mediator agents or from the user. If the
message comes from the user, then it refers to the change of the value of some parameters,
or it is a message that will force the coordinator to terminate the execution. In the first
case, the agent sends the proper messages to those agents that needs to know about
this change. In the second case, if the message is pause the agent moves to Exit, if it is
quit it moves to CleanUp. In both cases it lets every agent know that is time to stop its
processes and then moves to Exit.

If the message comes from a mediator agent we distinguish the following cases. First,
the mediator didn't get local convergence. This implies that no global convergence is
possible, so the mediator sends messages to all agents to work on the next iteration.
If the message is that the mediator got local convergence, then the coordinator waits
for the other mediators to report their convergence status, so it can decide if global
convergence or not. If global convergence occurs then the coordinator sends messages
to all agents to stop their computations and he moves to Exit.

9

• Glean Up. The Coordinator cleans the local directories from unwanted files. If successful
it moves to Exit.

• Error. The agent reaches this state only if an error occurred in any of the previous
states. It prints a message indicating the cause of the problem and moves to Exit.

• Exit. The coordinator sends termination messages to all agents.

4 Conclusions

Creating a network of PDE solvers requires the development of a group of software agents
with relatively low level of inference capabilities. The agents use well defined communication
patterns to interact with one another. Bond provides a convenient framework for construct
the agents as finite state machines. The effort to develop the agents described in this paper
was relatively modest and did not require a deep understanding of multi-threading and various
communication protocols. Several generic strategies available in strategy databases were used.
We have experienced performance problems when the agents run on slow, out of date Unix
systems.

Acknowledgments
The work reported in this paper was partially supported by a grant from the National

Science Foundation, MCB-952713I, by the Scalable I/O Initiative, by a contract from the
Department of Energy ASCI Academic Strategic Alliance Program, LG 6982, and by a grant
from the Intel Corporation.

References

[IJ L. Balam and D.C. Marinescu A Multi-Resolution Model for Software Agents Technical
Report, Department of Computer Science, Purdue University, 1999.

[2] L. Bolam and D.C. Marinescu An Object-Oriented Framework for Building Collaborative
Network Agents. Kluever Publishers, 1999 (to appear).

[3] J. M. Bradshaw An Introduction to Software Agents, in J. M. Bradshaw Ed. Software
Agents, MIT Press, pp. 3-46, 1997.

[4) T. Finn, Y. Labrou, and J. Mayfield KQML as an Agent Communication Language, in
J. M. Bradshaw Ed. Software Agents, MIT Press, pp. 291-316, 1997.

[5) M. R. Genesereth An Agent-Based Framework for Interoperability, in J. M. Bradshaw Ed.
Software Agents, MIT Press, pp. 317-345, 1997.

[6] R. Hoo, L. Boloni, K. Jun, and D.C. Marinescu An Aspect-Oriented Approach To Dis
tributed Object Suurity Technical Report, Department of Computer Science, Purdue
University, CSD-TR#98-038

[7] E.N. Houstis, J. R. Rice, S. Weerawarana, A. Catlin, M. Gaitatzes, P. Papachiou, and
K. Wang, PELLPACK: A Problem Solving Environment for PDE Based Applications on
Multicomputer Plat/oT7T1s, ACM Trans. Math. Software, 24, pp. 30-73, 1998.

[8] R. Hac, K. Jun, and D.C. Marinescu Bond System Security and Access Control Model
Proe. of Parallel and Distributed Computing and Networks Conference, Acta Press, pp.
520-524, 1998.

10

	The Design of Software Agents For a Network of PDE Solvers
	Report Number:
	

	tmp.1307986960.pdf.cf2O3

