View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University

Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

1999

PYTHIA-II: A Knowledge Discovery in Databases System for
Managing Performance Data and Recommending Scientific
Software

Elias N. Houstis
Purdue University, enh@cs.purdue.edu

Ann C. Catlin

John R. Rice
Purdue University, jrr@cs.purdue.edu

Vassilis S. Verykios

Naren Ramakrishnan

Report Number:
99-031

Houstis, Elias N.; Catlin, Ann C.; Rice, John R.; Verykios, Vassilis S.; and Ramakrishnan, Naren, "PYTHIA-II:
A Knowledge Discovery in Databases System for Managing Performance Data and Recommending
Scientific Software" (1999). Department of Computer Science Technical Reports. Paper 1461.
https://docs.lib.purdue.edu/cstech/1461

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972048?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

PYTHIA-II: A KNOWLEDGE!DATABASE_
SYSTEM FOR MANAGING PERFORMANCE DATA
AND RECOMMENDING SCIENTIFIC SOFTWARE

Elias N. Houstis
Anmn C, Catlin
John R. Rice

Vassilis 8. Verykios
Nearen Ramakrishnan
Catherine E. Houstis

CSD TR #99-031
October 1999
(Revised 3/2000)

PYTHIA-II: A Knowledge/Database System for
Managing Performance Data and Recommending

Scientific Software

Elias N. Houstis, Ann C. Catlin, and John R. Rice
Department of Computer Sciences

Purdue University
West Lafayette, IN 47906, USA.

Vassilis 5. Verykios

College of Information Science and Technology
Drexel University

Philadelphia, PA 19104, USA,

Naren Ramakrishnan
Department of Computer Science
Virginia Tech

Blacksburg, VA 24061, USA.

Catherine E. Houstis
Department of Computer Science
University of Crete

Heraklion, Greece.

Abstract

Very often scientists are faced with the task of locating appropriate solution soft-
ware for their problems and then selecting from among many alternatives. We
have previously proposed an approach for dealing with this task by processing per-
formance data of the targeted software. This approach has been tested using a
customized implementation referred to as PYTHIA. This experience made us real-
ize the high level of complexity involved in the algorithmic discovery of knowledge
from performance data and the management of these data together with the dis-
covered knowledge. To address this issue, we present in this paper PYTHIA-IT —
a modular framework and system which combines a general knowledge discovery
in datebases (KDD) methodology and recommender system technologies to provide

This work was supported in part by NSF grant CDA 91.23502, PRF G902851, DARPA grant
N66001-97-C-8533 (Navy), DOE LG-6982, DARPA under ARO grant DAAF04-94-G-0010, and
the Purdue Rescarch Foundation.

advice about scientific software/hardware artifacts. The functionality and effective-
ness of the system is demonstrated for two existing performance studies using scts
of software for solving partial differential equations. From the end-user perspective,
PYTHIA-II allows users to specify the problem to be solved and their computa-
tional objectives. In turn, the system (i) selects the software resources available for
the user's problem, (ii) suggests parameter values, and (iii) provides phenomeno-
logical assessment of the recommendation provided. PYTHIA-II provides all the
necessary facilities to set up database schemas for testing suites and associated
performance data in order to test sets of software. Moreover, it allows the easy in-
terfacing of alternative data mining and recommendation facilities. PYTHIA-II is
an open-ended system implemented on public domain software and can be applied
to any software domain.

1. INTRODUCTION

Complex problems, whether scientific, engineering or societal, are most often solved
today by utilizing libraries or some form of problem solving environments (PSEs).
Existing software modules are characterized by a significant number of parame-
ters affecting its efficiency and applicability that must be specified by the user.
This complexity is significantly increased by the number of parameters assoclated
with the execution environment. Furthermore, one can create many alternative
solutions of the same problem by selecting different software that implement the
various phases of the computation. Thus, the task of selecting the best software and
the associated algorithmic/hardware parameters for a particular problem or com-
putation is often difficult and sometimes even impossible. In {Houstis et al. 1991]
we proposed an approach for dealing with this task by processing performance data
obtained from testing software. "he testing of this approach is described in [Weer-
awarana et al. 1997] using the PYTHIA implementation for a specific performance
evaluation study. The approach has also been tested for numerical quadrature
sofware [Ramakrishnan and Rice 2000]. This experience macde us rcalize the high
level of complexity involved in the algorithmic discovery of knowledge from perfor-
mance data and the management of these data together with the discovered knowl-
edge. To address the complexity issue together with scalability and portability of
this approach, we present a krowledge discovery in datebases (KDD) methodology
[Fayyad et al. 1996) for testing and recommending scientific software. PYTHIA-II is
a system with an open software architecture implementing the KDD methodology,
which can be used to build a Recommender System (RS) for specific domains of
scientific software/hardware artifacts [Weerawarana et al. 1997; Ramakrishnan and
Rice 2000]. In this paper, we describe the PYTHIA-II architecture and an instance
of an RS for PDE software which utilizes the PYTHIA-II infrastructure.

Given a problem description from a known class of problems, along with some
performance criteria, PYTHIA-II provides a knowledge based technology for the
selection of the most efficient software/machine pair and estimates values for the as-
sociated parameters involved. It has the ability to make recommendations by com-
bining attribute-based clicitation of specified problems and matching them against
those of predefined dense population of similar types of problems. Dense here means
that there are enough data available so that it is reasonable to expect that a good
reccommendation can be made. The more dense the population is, the better the

PDE Form __ -/ Domain
Specilic

Recommendear

' operator: Laplace
domain: square
L7 right side: const \
be: homogeneous
error: 1.0E-05

™M) Recommendation

User snters

ro{em Time: <60s thia Il Web Serv Use FETS with
a.nﬁ requesls Pythia < 100 grid lines
advice PythiaIl Interface Est. Time: 0.83mins,
Est. Ace.: 1.003E-05
Access:

Fig. 1. The recommender companent of FYTHIA-II implemented as a web server providing advice
to users.

recommendation. We describe case studies for two sets of elliptic partial differential
equations software found in the problem solving environment PELLPACK [Houstis
et al. 1998]. PYTHIA-II is built as a foundational system that can evolve into
& software recommender service for the entire scientific community by making it
available as a network server.

We now describe a sample PYTHIA-II session (Figure 1). Suppose that a sci-
entist or engineer uses PYTHIA-II to find software that solves an elliptic partial
differential equation (PDE). The system uses this broad categorization {(and more
subdivisions such as linear, first order, if necessary) to direct the user to a form-
based interface that requests more specific information about features of the prob-
lem and the user's performance constraints. Figure 1 illustrates a portion of this
scenario where the user provides features about the operator, right side, domain,
and boundary conditions - integral parts of a PDE - and specifies an execution
time constraint (measured on a Sun SPARCstation 20, for instance) and an er-
ror requirement to be satisfied. Thus the user wants software that is fast and
accurate; it is possible that no such software exists. As shown, the recommender
interface contacts the PYTHIA-II {web) server on tle user’s behalf which, in turn,
interfaces with a domain specific RS. The RS uses the knowledge acquired by the
learning methodology presented in this paper to perform software selection. Having
determined a goed algorithm, the RS consults databases of performance data to
determine the solver parameters, such as grid lines to use with a PDE discretizer.
Estimates of the time and accuracy with the recommended algorithm are also pre-
scoted. Note that the recommender does not involve the larger databases used in
the KDD process, it only accesses special, smaller databases of knowledge distilled
from the KXDD process.

The paper is organized as follows. Section 2 describes a general methodology
for selecting and recommending scientific software implemented in the PYTHIA-II
system. A fundamental software architecture for an RS based on the PYTHIA-II
approach is presented in Section 3. For clarity of the presentation only, the func-
tionality of PYTHIA-II is sometimes described in terms of specific targeted PDE
software. Towards this end, we include in Section 4 a database schema appropriate
for building an RS for elliptic PDE software from the PELLPACK library. The

GAMS,
Netlib

u”hases | Description
Determine Identify the computational objectives for which the performance
evaluation evaluation of the selected scientific soltware is carried out.
abjectivex
Dinta preparation {1) Identify the evaluation benchmark, its problem [eatures, experiments
{1) selection {i.c., population of scientific problems for the generation of performance
data}.

{2) pre-processing | (2) Identify the performance indicators to be measured.

{3) Identify the actual software 10 be tested, along with the numerical
values of Ltheir paramelers.

{4) Generate perlormance data.

Data mining {1) Transform the data inte an analytic or summary form.

{2) Model Lhe dala to suit Lhe intended analysis and data format
required by the data mining algorithms.

{3) Mine the transformed data to identify patterns or it models to the
data; this is the heart of the process.

Analysis of resulis | Fhis is a post-pracessing phase done by knowledge engineers and
domain experts to ensure correctness of the results.

Assimilation of Create a user friendly interlace to utilize the knowledge and to
knowledge identify the scientific software (with parameters) lor user's
problems and computational objectives.

Table I: A methodology for building an RS. This laycred methodology is very similar to procedures
adopted in the performance evaluation of scientific software.

description of the data management subsystem of PYTHIA-II is presented in Sec-
tion 5. Section 6 outlines the knowledge discovery components of PYTHIA-IL. The
data Aow in PYTHIA-II is illustrated in Section 7. The results of a validation of
PYTHIA-II system for two case studies can be found in Sections 8 and 9.

2. A RECOMMENDER METHODOQLOGY FOR SCIENTIFIC SOFTWARE

An RS can be viewed as an intelligent system that uses stored information (user
preferences, performance data, artifact characteristics, cost, size, ...) of a given
class of artifacts (software, music, can openers, ...) to locate and suggest artifacts
that will be of interest [Ramakrishnan 1997; Ramakrishnan et al. 1998; Resnik and
Varian 1997]. We define an RS for software/hardware artifacts as a system that
uses stored artifact performance data on a population of previously encountered
problems and machines te locate and suggest efficient artifacts for the solution of
‘similar’ problems. Recommendation becomes necessary when user requests or ob-
jectives cannot be properly represented as ordinary database queries. In this paper
we present an RS, PYTHIA-II, that assists scientists in selecting suitable software
for the problem at hand, in the presence of practical constraints on accuracy, time
and cost. In this section, we describe the complexity of this problem, the research
issues that must be addressed, and a methodology for resolving them.

Awareness of the algorithm selection problem has its origins in an early paper by
Rice [Rice 1976]. Even for routine tasks in computational science, this problem is
ill-posed and quite complicated. The difficulty in algorithm selection is primarily
due to the following factors:

—~The space of applicable algorithms for specific problem subclasses is inherently
large, complex, ill-understood and often intractable to explore by brute-force

-— table no 1

create table FEATURE ¢

name text, -- record name (primary key)

nfeatures integer, -- no. of attributes identifying this feature
features text[], -- numeric/symbolic/tertual identification
forfile text -- file-based featurs information

bh

Fig. 2. Schema for the fealure record.

means. Approximating the problem space by a representation (feature) space
also introduces an intrinsic error in the modeling sense.

—Depending on the way the problem is (re)presented, the space of applicable algo-
rithms changes; some of the better algorithms sacrifice generality for performance
and have specially customized data structures and routines fine tuned for partic-
ular preblems or their reformulations.

—Both specific features of the given problem and algorithm performance infor-
mation need to be taken into account when deciding on the algorithm selection
strategy.

—A mapping from the problem space to the good software in the algorithm space
is not the only useful measure of success; one should also be able to obtain useful
indicators of domain complexity and behavior, such as high level qualitative
information about the relative efficacies of algorithms.

—There is an inherent uncertainty in interpreting and assessing the performance
measures of a particular algorithm for a particular problem. Miner differcnces
in algorithm implementations can produce large differences in performance mea-
sures that render relying on purely analytic estimates impractical.

—Distribution and evolution of the knowledge corpus for problem domains makes
it difficult to assimilate relevant information; techniques are required that allow
distributed recommender systems to coexist and cooperate together.

A methodology for building an RS for scientific artifacts which uses a knowledge
discovery in databases (KDD) process is defined in Table I. Its implementation,
PYTHIA-II, is discussed in Section 3. Assuming a cense population of bench-
mark problems from the targeted application domain, this methodology uses a
three-pronged strategy: feature determination of problem instances, performance
evaluation of scientific software, and the automatic generation relevant knowledge
for an RS from such data. Note that the dense population assumption can be quite
challenging for many application domains. We now address each of these aspects.

2.1 Problem Features

The applicability and efficiency of algorithms/software depends significantly on the
features of the targeted problem domain. Identifying and characterizing problem
features of the problem domain is a fundamental problem in software selection.
Even if problem features are known, difficulties arise because the overall factors
influencing the applicability (or lack) of an algorithm in a certain context are not

- table no 3

create table EQUATION_FEATURE {

name text, -- relation record name {primary key)

equation text, -- name of equation with these featuraes (foreign key)
feature text -- name of record ldentifying features (foraign key)

);

Fig. 3: Schema for an example [eature relation record; foreigu keys identify the relation between
an equation (PDE problem definition abject) and its features

Field | Yalua Field | Value

name | opLaplace name | opLaplaca pde #3
nfeatures| 1 equation | pde #3

features | {"Uex & Uyy (+lizz) = f"} featura | opLaplace

Fig. 4: Instances of a feature record (left) and a relation record (right} showing the correspondence
between Lhe equalion pde #3 and its feature opLaplace.

very well understood. The way problem features affect methods is complex, and al-
gorithm selection might depend in an unstable way on the features. Thus selections
and performance for solving %z + tyy = 1 and vz + (1 + zy/10,000)z,, = 1 can
be completely different. Even when a simple structure exists, the actual features
specified might not properly reflect the simplicity. For example, if a good struc-
ture is based on a simple linear combination of two features f1 and f2, the use
of features such as f1 = cos(f2) and f2 * cos(f1) might not reflect the underlying
mapping well. Furthermore, a good selection methodology might [ail because the
features are given an attribute-value meaning and assigned measures of cardinality
in a space where such interpretations are not appropriate. Many attribute-value
approaches (such as neural networks) routinely assign value-interpretations to nu-
meric features {such as 1 and 5), when such values can only be interpreted in an
ordinal/symbolic sense. In the current implementation of PYTHIA-IIL, this phase
is implemented by the knowledge engineer.

Figures 2 and 3 show the database schema for a feature and a feature relation,
respectively. The relation record shows how PYTHIA-II represents the connection
between problem definition entities (e.g., PDE equations) and their features. Some
instances of these records for the PDE case study are shown in Figure 4.

2.2 Performance Evaluation

The performance evaluation phase implemented in PYTHIA-II is based on well
established methodologies for scientific software |Rice 1969; Boisvert et al. 1979;
Casaletto et al. 1969; Dodson et al. 1968; Dyksen et al. 1984; Houstis et al. 1978,;
James and Rice 1967; KKonig and Ullrich 1990; Moore et al. 1990; Rice 1983; Rice
1990]. While there are many important factors that contribute to the quality of
numetical software, we illustrate our ideas using speed and accuracy. Even though
more important (and more difficult to characterize) attributes such as reliability,

7

portability, documentation, etc., are ignored in this discussion, our methodology can
handle such features as well by utilizing the data storage scheme used in PYTHIA-
IL.

Accuracy may be measured by several means; we chose either a function of the
nerm of the difference between the computed solution and the true solution or an
estimate of the error guaranteed by an approximation algorithm. Speed is normally
measured by the time required to execute the appropriate software/routines in some
execution environment. The PYTHIA-II problem evaluation environment ensures
that all performance evaluations are made in a consistent manner; their outputs
are automatically coded in the form of predicate logic forinulas. We deliberately
resort to attribute-value encodings when the situation demands it; for instance,
using straight line approximations to performance profiles {e.g., accuracy vs. grid
size) for solvers is useful to obtain interpolated values of grid parameters for PDE
problems.

2.3 Reasoning and Learning Techniques for Generating Software Recommendations

There are many approaches to generating recommendations for artifacts. For soft-
ware selection, we have adopted one that is based on a multi-modal learning ap-
proach. Multimodal reasoning methods integrate differont artificial intelligence
approaches to leverage their individual strengtlts. The PYTHIA-II system is a
general framework enabling the integration of a range of reasoning and learning
techniques. We have explored and implemented two such strategics: Case-Based
Reascning (CBR) [Joshi et al. 1996] and inductive logic programming (ILP} [Bratko
and Muggleton 1995; Dzeroski 1996; Muggleton and Raedt 1994]. In the remainder
of this section, we describe the CBR and ILP appreoaches and explain their use.
Such learning and reasoning systems can typically be characterized as either ‘lazy
learning’ or ‘eager learning’ paradigms.

CBR systems obey a lazy-learning paradigm in that learning consists solely of
recording data from past experiments to lelp in future problem solving sessions.
(This gain in simplicity of learning is offset by a more complicated process that
oceurs in the actual recommendation stage.) A wealth of evidence from psychology
suggests that people compare new problems to ones they have scen before, using
some metric of similarity to make judgements. They use the experience gained in
solving ‘similar’ problems to devise a strategy for solving the present one. This
strategy might invelve a simple retrieval of a strategy (that has worked well in
the past), tailoring a stored case to the situation at hand, and/or predictions of
the likely outcome if a certain selection is followed. In addition, CBR systems can
exploit a priori domain knowledge to perform more sophisticated analyses cven if
pertinent data is not present. The original PYTHIA system utilized a rudimentary
form of case-based reasoning using a characteristic-vector representation for the
problem population. Instance-based approaches such as statistical nearest neighbor
selection also form part of the CBR landscape.

ILP systems, on the other hand, are an eager mechanism in that they attempt
to construct a predicate logic formula so that all positive examples of good recom-
mendations provided can be logically derived from the background knowledge, and
no negative example can be logically derived. The advantages of this approach lie
in the generality of the representation of background knowledge. ILP techniques

are also useful in distinguishing between the various features of the problem do-
main as being suitable for representation vs. discrimination. Formally, the task in
algorithm selection is: given a set of positive exemplars and negative exemplars of
the selection mapping and a set of background knowledge, induce a definition of
the selection mapping so that every positive example can be derived and no nega-
tive example can be derived. While the strict use of this definition is impractical,
an approximate characterization, called the cover, is utilized which places greater
emphasis on not representing the negative exemplars as opposed to representing
the positive exemplars. Techniques suchh as relative least general generalization
and inverse resolution [Dzeroski 1996] can then be applied to induce clausal defini-
tions of the algorithm selection methodology. This forms the basis for building RS
procedures using banks of selection rules.

ILP is often prohibitively expensive and the standard practice is to restrict the hy-
pothesis space to a proper subset of first order predicate logic. A first restriction to
function free horn clauses [Dzeroski 1996] makes the prablem decidable. Most com-
mercial systems (like Golem and PROGOL [Muggleton 1995]} further require that
background knowledge be ground; meaning that only base facts can be provided as
opposed to intensional information. This still renders the overall complexity expo-
nential. In PYTHIA-II, we investigate the effect of domain specific restrictions on
the induction of hypotheses and analyze several strategies. First, we make use of
syntactic and semantic restrictions on the nature of the induced methodology. An
example of a syntactic restriction would be that a PDE solver should first activate
a discretizer before a linear system solver {a different order of PDE solver parts
does not make sense}. An example of a semantic restriction is consistency checks
between algorithms and their inputs. Second, we incorporate a generality ordering
to guide the induction of rules. This ordering is used to prune the search space for
generating plausible hypotheses and to aid in abduction. Finally, since the software
architecture of the domain specific RS is augmented with a natural database query
interface, we utilize this aspect to provide meta-level patterns for rule generation.

PYTHIA-II also employs more restricted forms of eager-learning paradigms, such
as the ID3 (Induction of Decision Trees) [Quinlan 1986} system. It is a supervised
learning system for top-down induction of decision trees from a set of examples.
Algorithms for inducing decision trees follow a greedy divide-and-conguer appreach
and are outlined as follows:

—Begin with a sct of examples called the training set, T. If all examples in T belong
to one class, then stop.

—Consider all tests that divide T into two or more subsets. Score each test ac-
cording to how well it splits up the examples (how big the biggest subset of T
is))

—Choose “greedily” the test that scores the highest.

—Divide the examples into subsets and run this procedure recursively on each
subset.

A decision tree is a tree-like knowledge representation structure where: (a) every
internal node is labeled with the name of one of the predicting attributes; (b)
the branches coming out from an internal node are labeled with values of the

recommendar
system Qaox
Intertaca Inkarfaca/
7 Recarcander
I
1 1 Inf
Englns
parem Inference Dak.
extraciion engnal lﬂn:nu
moduly nik basa
Datn
Ganeration
Aelnticnal
- Enginw
Datnbass
probilem i kaysr
data ard
Lation :
pop fealizes data !
O S <o uN-- S - ‘

Fig. & The system architecture of PYTHIA-II. The reecommender component consisls primarily
ol the recommender system interface and the inference engine subsystems. The KDD compoenent
consists of the remaining subsystems (knowledge engineer interface down 1o the database layer).

attribute in that node; (¢) every leaf node is labeled with a class (i.e., the value of
the goal attribute). The training examples are tuples, where the domain of each
attribute is limited to a small number of values, either symbolic or numerical. The

ID3 system uses a top-down irrevocable strategy that searches only part of the
search space, guaranteeing that a simple — but not necessarily the simplest — tree
is found. A simple tree can be generated by a suitable selection of attributes. In
ID3, an information-based heuristic is used to select these attributes. The lLeuristic

selects the attribute providing the highest information gain, i.c., the attribute whicl
minimizes the information needed in the resulting subtrees to classify the elements.

3. PYTHIA-Il: A RECOMMENDER SYSTEM FOR SCIENTIFIC SOFTWARE

In this section we detail the software architecture of a domain specific RS, PYTHIA-
II (sce Figure 5) based on the recommendation methodology and its components
discussed above. Its design objectives include (i} modeling domain specific data
into a structured representation as expressed by a database schema, (ii) providing
facilities for the generation of system specific performance data by using simulation
techniques, (iii) automatically collecting and storing this data, (iv) summarizing,
generalizing, and discovering hidden patterns/rules that capture the behavior of
the scientific software system by expressing them in a high-level logic-based repre-
sentation language, and finally (v) incorporating them into the selected inference

engine system.

The architecture of the system consists of four layers:

—user interface layer

—data generation, data mining, and inference engine layer

10

—relational engine layer, and
—database layer.

The database layer provides permanent storage for the problem population, the
performance data and problem features, and the computed statistical data. The
next layer is the relational engine which supports an extended version of the SQL
database query langunage and provides the required functionality for the stored data
to be accessible to the upper layers. The third layer consists of three subsystems:
the data generation system, the data mining system, and the Inference engine.
The data generation system accesses the records dcfining the problem population
and procesess them within the problem execution environment, invoking integrated
scientific software for solving the problem and generating performance data. The
statistical data analysis module and the pattern extraction module comprise the
data mining subsystem. The statistical analysis module uses a non-parametric sta-
tistical method applied to the generated performance data. PYTHIA-IT integrates
a variety of publicly available pattern extraction tools such as relational learning,
attribute value-based learning, and instance based learning techniques [Bratko and
Muggleton 1995; Kolavi 1996]). This design allows for pattern finding in diverse
domains of features like nominal, ordinal, numerical, atc.

In the highest layer, a graphical user interface allows the knowledge engineer to
exploit the capabilities of the system for generating knowledge as well as query the
system for facts stored in the database layer. The recommender is the end-user
interface, and includes the inference engine. This component of the RS uses the
knowledge generated by the lower layers, encoding it appropriately as a knowledge
base for an expert system. The facts generated by the knowledge discovery process
and stored in the database drive the inference process, allowing the rccommender to
answer domain specific questions posed by end users. The architecture of PYTHIA-
II is extensible, with well defined interfaces among the components of the various
layers.

4. EXAMPLE PYTHIA-II INSTANTIATION

For a better understanding of the functionality and implementation of PYTHIA-II
components and the data flow among them, we present an example database schema
specification for an RS for elliptic PDE software from the PELLPACK library. The
schema specification can be modified for other domains of scientific software, as the
PYTHIA-II database mechanisms are independent of the particular application do-
main, while the problem population, performance measures and features do depend
on the domain.

—Problem Population. The (atomic) entities which describe the PDE problems
include equation, domain, boundary_conditions and initial_conditions. Field at-
tributes for these entities must be defined in a manner consistent with the syntax
of the targeted scientific software. Solution algorithms are defined by calls to
library modules of the software; the modules are represented by entities which
include grid, mesh, decompose, discretizer, indexer, linear_system.solver, and
triple. In addition, the scquences entity contains an ordered listing of all modules
used in the solution process of a PDE problem. Miscellaneous entities required
for the benchmark include output, options and fortran_code. Figures 6 and 7

create table EQUATION ¢

name text, —-- record name {primary key)

system text, —— sofcware that solves equationa of this type
nequations integer, =-- number of equations

equations text(), -- text describing equations to solve

forfile text -- source code file (used in equation definition)
i

Fig. 6: The Equation table defines equations to be solved by ihe soliware; fields of the record are
specified using the syntox ol the soltware.

create table SEQUENCES {

name Lext, -- record name (primary key)

system cext, -- software that provides the solver modules

nmod integer, -- pumber of modules in the sclution schema

types toxt[]l, -- array of record tvypes (e.g., grid, discr, solver)
names text[]l, -- array of record names {(foreign kay)

parms text[] -- array of mcdule parameters {foreign key)

b

Fig. 7: The Sequence table lists the order of PDE solver modiles invoked to solve a PDI problem;
the sequence is translated to library calls from software assoctaled with the named PDE-salving
system.

Field | Value
nama | pde #39
system | pellpack

nequations] 1
equations | {"uxx + uyy + {(1.-h(x)**2Zaw(x, y)««2}/{&b})Ju = O"}
forfila | /p/pses/projacts/kbas/data-files/fortran/pded8.eq

Field | Value

name | uniform 950x950 proc 2 jacobi cg

system| pellpack

nmod | 6

types | {"grid","machine”,"dec","discr","indx","so0lver"}

names | {"950x950 rect”","machine_2","runtime grid 1x2",
"5-point star”,"red blaek", "ltpack-jacobi eg"}

parms | {"*, ", ", m0 onn o riemax 20000

I'ig. 8. Instances of equation and sequence records from the example PDIE benchmark study.

show the schema for the cquation and sequences records, respectively. Instances
of an equation and sequence record for the PDE population are shown in Figure
8. The equation field attribute in the equation record uses the syntax of the

12

PELLPACK PSE. The &b in the specification is for parameter replacement and
the forfile attribute provides for additional source cade to be attached to the
equation definition. The sequences record shows an ordered listing of the module
calls used to solve a particular PDE problem. For each module call in the list,
the sequence identifies the module type, name and parameters.

—Features. An explanation of the featwres and their database representation is
given in Section 2.1.

— Ezperiments. The experiment is a derived entity which identifies a specific PDE
problem and lists a collection of sequences to usc in solving it. Generally, the
experiment covers a range of solution algorithms with varied parameters; it is
translated to a collection of driver programs which are executed to produce per-
formance data corresponding to the solution algorithms and execution platform.
Sce Figure 9 for the schema definition.

—Rundate. The rundata schema specifies the targeted hardware platforms, their
characteristics (operating system, communication libraries, etc) and execution
parameters. The rundata and experiment record fully specify an instantiation of
performance data.

—Performance Data. The performance schema is a very general, extensible rep-
resentation of data generated by experiments. An instance of performance data
generated by the PDE benchmark is shown in Figure 10.

—Knowledge-related Date. Processing for the knowledge-related components of
PYTHIA-II is driven by the profile and predicate records. These schema rep-
resent the set of experiments, problems, methods and features which should be
considered for analysis. An instance of the predicate schema is given in Figure
11.

—Derived Data. Data resulting from the data mining of the performance database
is stored back into the profile and predicate records. This data is processed by
visualization and knowledge generation tools.

5. DATA MODELING AND MANAGEMENT COMPONENTS OF PYTHIA-IL

The quantity of information generated and manipulated by PYTHIA-II calls for a
powerful and adaptable database and database management system with an open
architecture. PYTHIA-II's operational strength relies on the data modeling that
supports the data generation, data analysis, automatic knowledge acquisition and
inference process. The design requirements of the two lower level layers of the
system’s architecture can be summarized as follows:

—-to provide storage for the problem population (input data to the execution envi-
ronment) in a structured way, and to keep track of the population parameters,
features and constraints,

—to support seainless data access by the user through a graphical interface or by
a scripting language,

—-to support fully extensible functionality for an environment that keeps changing
not only in the size of the data but also in the schema.

create table EXPERIMENT {

name text, -- record name {primary key)

system text, -- software identification used for program generation
nopt integer, -- number of options

options text[], -- array of option record names (foreign key)

noptparm integer, —- number of parameter specific options

optparm text[], -- array of option racord names

squaticn text, -- equation record which defines the equation
neqoparm integer, -- number of equation paramsters

eqnparm text[l, -- array of equation paramoter names

demain text, —- domain record on which the equaticn is defined
ndomparm integer, -- number of domain parameters

domparm text[], -- array of domain parameter namaes

beond text, -- boundary condition record

nbcparm integer, -- number of bcond parameters

beparm toxt[), -- array of bcond parameter names

nparm integer, -- number of parameters applied across a!l definitions
parm text[], -- array of problem-wide parameters {no. of programs)
sequences text[], -- names of the sequence records containing soln. schemes
nout integer, —- pumber of oukput records

output vext[], -- array of output record names

nfor integer, -- number of source code files to include

fortran text[] -- names of the files teo include

):

Fig. 9: The Experiment table specifies an experiment by lisling the components of a PDE problem
and sets of solvers (collection of Sequence records) to use in solving it.

The selected system, POSTGRES95 [Stonebraker and Rowe 1986], is an object-
oriented, relational DBMS which supports complex objects and which can easily be
extended to new application domains by providing new data types, new operators,
and new access methods to the user. It also provides facilities for active databases
(i-e., alerters can send a message to a user calling for attention to a problerm,
and triggers can propagate updates in the database to maintain consistency) and
inferencing capabilities including forward and backward chaining. It supports the
standard SQL language with a number of extensions, and programming interfaces
for C, Perl, Python, and Tel.

PYTHIA-IT's database is designed so its relational data model offers an abstrac-
tion of the structure of the problem population. This abstraction is (and must
be) domain dependent, since the relational model defines benchmark applications
from a selected domain which are executed to preduce performance data. The
abstraction of a standard PDE problem includes the PDE system, the boundary
conditions, the physical domain and its approximation in a grid or mesh format,
a possible decomposition of the discrete or continuous domain for parallel execu-
tion, various solution modules {e.g., a discretizer or linear system solver), output
modules, as well as parameter sets for any of these problem components. Each of
the PDE problem specification components constitutes a separate entily set. In
the relational model, each entity set is mapped into a separate teble or relotion.
Apart from these tables, a number of interesting static or dynamic interactions

14

Field i Yalue
name | pdeb4 domB2 fd-itpack-rscg S$P2-17
system | pellpack
comp_db | linearalgebra
composite_id | pde54 domain 02 fd-itpack-rscg
perfind_set | pellpack-atd-par-grd
pid | 1432
sequence no | 17
eqparma | pde #54 paramater set 5
sclvarseq | 950x950 proc 4 raduced system cg
rundata | IBM SP2 with 18 compute nodes
nfeature | &
featurenames | {"matrix symmetric”, “domain type”,
"boundary points", "boundary pieces",
"problem type"}
featurevals | {"no”, "non-rectaogulac”,"3B0G","8", "FD"}
nperf I 1
perfnames | {"number of iteratiens"}
perfvals I {"B30"}
nproc | &
nperfproc | @
nperfproc? | ¢
nmod | &
modnames | {"dozain processor”,"dacompoder”,
"discretizer™,"indexer”, "solver™}
ntimeslice | 2
timeslice | {"elapsed","communication"}
time | {{{"3.1600001","0"},{"2.3495999","0~},{"4.1900001","0"},
{"0.11","0"}, {"135.0400043","1.2499955"}},
{{"3.1300001","0"},{"2.46","0"},{"3.8900001" , 0"},
{"0.09","0"},{"135.4500024", "36.74049"}},
{{"3.1300001","0"},{"2.47",0"},{"3.9100001" ,"0"},
{"¢.08","0"},{"135.5499933", "37.1304893"}},
{{"3.1700001","0"},{"2.03", 0"}, {"4.1399995" ,"0"},
{"0.04", "0"},{"136.1499939", "86.7300339"} }}
ntotal ia
total { {~150.1600037","149.9700012","150.0200043","149,6300049"}
RmMemory 1 4
memorynames [{"number of equations", "x grid size","y grid size”,
"problem size"}
memeryvals | {“224576","950","950","902500"}
nerror | 3
arrornames | {"max aba error”,"L1 error","L2 arror"}
BrTOrVals | {"0.0022063255","¢.00011032778","0.00022261437"}

Fig. 10. An inslance of perlorimance data from the PDE henchmark.

among entities can also be modeled in the relational model by tables representing
relationships.

In a higher level of abstraction, we use an explicit hierarchy of Aat tables to cope
with batch execution of experiments and performance data collection, aggregate
statistical analysis, and data mining. The ezperimeni table is introduced as an

15

Field | ¥Yalue

name | PELLPACK Solution Methods Study

raference | pellpack

num_rankings | 1

max_num_blocks| 37

problems [{{"pde3a-1","pde3d-2","pde7", "pded-1","pdeB-2", "pdeB-4",
"pde9-1", "pde9-2", "pdef-3", "pdel0-2", "pdai0-3"}}

best ! method

nbast | 7

methodlist | {"ffr Spt order 2","fft 9pt order 4","fft 9pt order 6",

"Gpoint star & bandge", "herm coll & bandge".
"dyakanov-cg", "dyakanov-cg 4"}
featurelist | {"operator","right-hand-side","domain”,"bconds", "matrix"}
possiblevalues! {{"oplaplacae","cpPoissen","opHelmholtz","opGeneral™},
{"rhsEntire","rhsConstCoaff", "rhsSingular”, "rhsinalytie"}
.}

Fig. 11: Predicnte table from the PDE benchmark (only a portion of the possiblevaluse Ll iy
shown.}

intermediate virtual entity that represents a large number of problems in the form
of sequences of problem components to be processed at one time by the exccution
environment. for generating performance data. A profile table collects sets of perfor-
mance data records and profile specification information required by the analyzer.
A predicale table is another virtual entity that identifies a collection of profile and
feature records needed for data mining.

In case of the RS for elliptic PDE software considered in the previous section,
the current problem population is defined by 13 problem specification tables (equa-
tion, domain, bcond, grid, mesh, dec, discr, indx, solver, triple, output, param-
eter, option) and 21 relationship tables (including equation-diser, mesh-domain,
parameter-solver, etc). Additional tables define problem features and execution
related information {machine and rundata tables). In all, 44 table definitions arc
used to configure the database for PYTHIA-II. Sections 8 and 9 give some examples
of these tables definitions within the context of the two case studies considered.

6. KNOWLEDGE DISCOVERY COMPONENTS OF PYTHIA-II

This section describes the functionality of the components of PYT'HIA-IT contained
in the top two layers of Figure 5.

6.1 Data Generation

Information in the performance database drives PYTHIA-II's data analysis and rule
generation. The performance database may be a pre-existing store of performance
measures or the data may be produced by executing scientific software within the
problem execution environment. PYTHIA-II is independent of the characteristics
and functionality of the software, and it imposes no requirements or restrictions
on the internal operation of the software. In fact, it allows the scientific software
to operate entirely as a black box. There are, however, thrce 1/0 requirements

16

that must be met by software to be integrated into PYTHIA-II. This section de-
scribes these requirements and demonstrates how the PELLPACI(software satisfies
them. PELLPACK is currently the only scientific software available through the
execution environment; it has been used successfully to generate many thousands
of perforinance data records.

First, it must be possible to define the input to the scientific software, (i.c.,
the problem definition} using only the information contained in an experiment
record. The translation of an experiment into an executable program should be
handled by a front-end converter written specifically for the software. Its task is
to extract the necessary information from the experiment record, and generate the
files or drivers required by this software. In the case of PELLPACK, the experiment
record is translated to a .e file, which is the PELLPACK language definition of the
PDE problem, the solution scheme, and the ountput requirements. The converter is
written in Tel and consists of about 250 lines of code. After the .e file is generated,
the standard PELLPACI preprocessing programs convert the .e file to a Fortran
driver-and link the appropriate libraries to produce an executable program.

The second requirement is that the scientific software be able to operate in a
“bateh” mode when executing PDE programs. In the PELLPACIK case, Perl scripts
are used to exccute PELLPACK programs, both sequential and parallel, on any of
the supported platforms. Whatever the number of “programs” defined by a single
experiment, that number of programs must be processed and executed without
manual intervention.

Finally, the scientific soffware must produce output files containing values for
performance measures that can be uwsed by PYTHIA-II to evaluate the perfor-
mance of the program. PYTHIA-II does not require any special format since a
post-processing program must be written specifically for the software to handle the
conversion of the generated output into performance records. Each program execu-
tion should result in the insertion of one performance record into the performance
database. The PELLPACK data collection program is written in Tcl (350 lines
of code) and Perl (300 lines of code), and is responsible for creating performance
records that represent the data produced by PELLPACK program executions.

The execution environment is implemented in a modular and fAexible way, allow-
ing any or all of the data gencration phases (program generation, program execu-
tion, data collection) to take place inside or outside of PYTHIA-IL. This process
is domain dependent since it accesses the domain dependent problem definition
records, executes programs by invoking domain specific software and collects data
by processing domain specific output files.

6.2 Data Mining

Data mining is the key part of DD and encompasses the process of extracting
and filtering performance data for statistical analysis, generating solver profiles and
ranking them, selecting and filtering data for pattern extracticn, and generating the
knowledge base. The two components involved in this process are the statistical
analysis module {analyzer) and the pattern extraction module.

PYTHIA-II runs the analyzer as a separate process, sending it an input file
and a set of parameters for output specification. Since the call to the analyzer is
configurable, data analyzers can easily be integrated into the system. The statistical

17

[Algorithm 1 | Algorithm 2 | --- [Algorithm k |
Problem 1 X11 X1z = X
Problem 2 Ao Xaz o | Xk
Problem n Xn1 Xnz N
Rank R;L Rz e Rk
Average Rank a1 Rao s | Reg

Table II: Algorithm ranking table based on Friedman rank sums using the two-way layout. X;;
is the performance of algorithm 7 on problem i and R; and R,; are the rank measures.

analyzer is independent of the problem domain since it operates on the fixed schema
of the performance records. All the problem domain information is distilled to cne
number measuring the performance of an algorithm for a problem. The current
analyzer was developed in-house.

The task of the statistical analyzer is to assign a ranking to a set of algorithuns for
a selected problem population based on e priori determined performance criteria.
It assumes that the algorithms are exccuted on the selected problems, and that
the resulting performance measures for each execution are collected and inserted in
the database. The analyzer accesses the database to extract the performance data
based on the specification of a selected predicaic record.

A predicate record defines the complete set of analyzer runs which are to be
used as input for a single invocation of the rules generator. The predicate fields
of interest to the analyzer are (1) the list of algorithms to rank, and (2) a profile
matrix, where each row represents a single analyzer run and the columns identify
the profile records to be accessed for that run. Each profile record specifies how
the analyzer should gather and assess the performance measures produced by one
problem execution. Table IT shows how the analyzer interprets one row of the
predicate’s profile matrix. The table columns are the specified algorithms, and
the table rows are the problems represented by the profiles specified in a single
row of the predicate’ s profile matrix. The X;; are performance values (see below)
computed by the analyzer based on the profile record specification for problem ¢
and algorithm 7.

The process for ranking the algorithms uses an analysis for multiple comparisons
and contrast estimators based on Friedman rank sums [Hollander and Wolfe 1973}.
The two-way layout associated with distribution-free testing is shown in Table II,
which assumes nk data values from each of k algorithms for n problems. This
assumption is not strictly necessary; the analyzer can “fill in” missing values using
various methods, for example, averaging values in the algorithm column. The
Friedman ranking proceeds as follows:

—For each problem i rank the algorithms’ performances. Let r;; denote the rank
of Xj; in the joint rankings of X;1,...Xi; and compute E; = ZLl Tij-

—Let R,; = Eﬂ*— where R; is the sum over all problems of the ranks for algorithms
7, and then R,; is the average rank for algorithm j. Use the R.; to rank the
algorithms over all problems.

—Compute @ = g(e, &, 00) &92‘—"'11 wlhere g(a, k, co) is the critical value for &

18

select perfdata.nproc, ' *,
perfdata.timefl:perfdata.nproc] [4:4] [1:1] from perfdata, sequences
vhere

perfdata.solverseg = sequences.nama

and composite_id = *pde03’

and rundava = 'IBM S5F2’

and perfdata.memoryvals[2] = *950x950°

and sequences.names[6] = ‘itpack-jacobi cg';

Fig. 12. Example anolyzer query lor retrieving pecformance data identified by a profile,

independent algorithms for experimental error a.. | R, — R, | @ implies that
algorithms » and v differ significantly for the given a.

The R.; are the desired algorithm ranks.

It remains to discuss the methods used to compute the Xj;;. The assignment of
a single value to represent the performance of algorithm 7 for problem 1, which can
then be compared to other performance values in the framework of the two-way
layout, is not a simple matter. Even when comparing elapsed execution time, there
are many parameters which should be varied for a serious evaluation of algorithm
speed : problem size, execution platform, number of pracessors {for parallel cede),
etc. To accommaodate these variances in the algorithm execution, the analyzer uses
the method of least squares approximation for a collection of observed data over a
given variation of problem executions.

A profile is the set of all lines created by a least square approximation to the
raw performance data for a given problem over all methods. The analyzer accesses
the prafile records named by the predicate to identify exactly which performance
measures are to be uscd for a given problem. This record lists the choices for
the x and y axis, and defines which invariants to use in the selection process. In
addition, the record identifies where these values are stored in the performance
records generated by the execution of the problem. This information produces an
analyzer query such as the one in Figure 12 for problem pde03 executed using
algorithm jacobi cg on an IBM SP2 machine. The query retrieves observed data
for 'time vs num processors’ where the grid size is held invariant.

The goal of the pattern-extraction module is to support the automatic knowl-
edge acquisition process and to extract patterns/models from the data that will
be used by a recommender system to provide advice to end users. This process is
independent of the problem domain. PYTHIA-II extends the PYTHIA method-
ology to address the algorithm selection problem by applying various neurc-fuzzy,
instance-based learning and clustering techniques. The original PYTHIA method-
ology presented in [Weerawarana et al. 1997] used a feature vector of numerical
features for cach problem and some pre-defined classes of problems in order to find
a “closest” problem in the knowledge base or the “closest” class of problems to an
unseen problem. Having determined a ranking of solution methods for the match-
ing problem or class of problems, the system induced the best method for the new
problem. The main limitations of this methodology are that it is mostly a manual
process and that it does not scale to larger sets of performance data because of its

19

file-based appreach and the low level representation of the induced knowledge.

The relational model of PYTHIA-IIL, on the other hand, automatically handles
the book-keeping of the raw data and offers a unique opportunity for easily gen-
erating and storing any amount of raw performance data as well as manipulating
them. In order for us to test various learning methodologies, we chose to sup-
port a specific format for the data used by the pattern extraction process, and
then write filters that transform this format {on the fly) to the format required by
the various data mining tools integrated into PYTHIA-II. Since the idea behind
knowledge acquisition is to support an RS with as few changes to the automatically
gencrated knowledge as possible, we have integrated mostly systems that generate
comprehensible knowledge in the form of logic tules, if-then-else rules or decision
trees.

The first learning system we integrated (we present some results using it later on},
was GOLEM [Muggleton and Feng 1990], which is classified in [Dzeroski 1996] as
an empirical single predicate Inductive Logic Programming (IL.P) learning system.
It is a batch system with noise handling capabilities that implements the relative
least general generatization principle that can be considered as careful generalization
in the search space of possible concept descriptions. We have experimented with
other learning methods, e.g., fuzzy logic or neural networks, and have not found
large differences in their learning abilities. We chose ILP because it seemed to be the
easiest to use in PYTHIA-II; our selection of it is not the result of a systematic study
of the effectiveness of learning methods. PYTHIA-II is designed so the learning
component can be replaced if necessary.

GOLEM generates knowledge in the form of logical rules which one can model in
a langunage like first order predicate logic. These rules can then be easily utilized by
an expert system and constitute its rule base, as we will describe below, In addition
to GOLEM, we also integrated the following systems: PROGOL [Muggleton 1995],
CN2, PEBLS, OC1 (the latter three are available in the MLC++ library [[{ohavi
1996]).

6.3 Inference Engine

The recommender is the end-user component of PYTHIA-II. It answers the user’s
domain specific questions using an inference engine and facts generated by the
knowledge discovery process. The recommender is a form of a decision support
system, and is the only component in PYTHIA-II that is both domain dependent
and case study dependent. We describe how the recommender has been generated
as an interface to the knowledge generated by GOLEM.

GOLEM is a relationat learning system that uses positive examples for gener-
alization and negative examples for specialization. Each logical rule gencrated by
GOLEM is associated with an information compression factor f measuring the gen-
eralization accuracy of the rule. Its simple formula is f = p — (¢ + n + &) where
p and n arc the number of positive and negative examples respectively covered by
a specific rule, while ¢ and & are related to the form of the rule. The information
compression factor is used for ordering the rules in the rule base in a decreasing
order.

Each rule selected by GOLEM covers a number of positive and negative examples.
The rules and the set of positive examples covered for each rule are passed to the

20

recommender. The recommender then asks the user to specify the problem features.
It uses the CLIPS inference engine to check the rule base for rules that match the
specified features. Every rule that is found to match a problem features is selected
and is placed into the agenda. Rules are sorted in decreasing order based on the
number of examples they cover, so the very first rule covers the most examples
and will fire at the end of the inference process. This rule determines the best
algorithm for the problem the user specifies. Since each rule provided by GOLEM
to the recommender is associated with a set of positive examples that are covered
by the rule, the recommender goes through the list of positive examples associated
with the fired rule and retrieves the example that has the most common features
with the user specified problem.

After this example/problem is selected, the fact base of the recommender is
processed in order to provide the user with any required parameters for which the
user needs advice. The fact base consists of all the raw performance data stored
in the database. The recommender aceesses this information by submitting queries
generated on the Ay, based on the user’s objectives and selections. If the user
objectives cannot be met, then the system decides what “best” answer to give, using
weights specified by the user for each performance criterion. Valid performance
criteria are, among others, the accuracy, total or communication time, efficiency
and speedup. The sum of the weights applied to the criteria equals one. For the
case study prescnted in the next section, the final step is the recommendation of
the best numerical method to use, given the problem features specified by the user.
It also identifies the grid parameter which satisfies objective imposed by the user:
solution accuracy within the given time limitations.

6.4 User Interface

The modular implementation of PYTHIA-II makes it possible to aceomplish much
of the work involved in knowledge discovery without resorting to a graphical inter-
face, and in some cases this is the preferred way of completing a given task. For
example,

(1) Creating database records for the problem population and experiments: the
SQL commands can be given directly inside the POSTGRES95 environment.

(2) Generating executable programs frotn the experiments: the program generator
is & separate process called from the problem execution environment which is
specific to the scientific software. The process is invoked with an argument list
describing the I/ for the program generation, and it may be called outside of
PYTHIA-IL

(3} Executing programs: the execution process is controlled by scripts invoked
by PYTHIA-II. These scripts can also be called outside of PYTHIA-II since
they simply operate on the generated program files which reside in a particular
directory.

(4) Collecting data: the data coliector is called by PY'THIA-II as a separate process,
and it is specific to the scientific software. As in (2) above, this process is
invoked with an argument list describing its I/O.

With respect to the above items, the graphical interfaces that assist in those tasks
are most useful for knowledge engineers who are unfamiliar either with the structure

21

Pythiatl Mecommendae Xyl

Fig. 13. PYTHIA-II's top level window.

of PYTHIA-II or with the SQL language used by POSTGRES9S. In this casc, the
interfaces provided by PYTHIA-II's dbEdit and dataGEN are invaluable. The top
level window of the PYTHIA-II system is shown in Figure 13 and provides access
to these interfaces, besides others.

The graphical interface to the POSTGRESSS database is dbEdit. Each PYTHIA-
1T record has a corresponding form which is presented to the user when records of
that type are selected for editing. The felds are tagged for error checking, and
every attempt is made to facilitate data specification. For cxample, many fields
Tequire references to primary records, such as the experiment record which requires
the name of an equation, domain, boundary condition and asscciated parameter
records. In dbEdit, the specification of these fields is handled by selection boxcs
whose contents are determined by field typing. If the field typc is equation, a
selection box displaying the current list of available equation records is presented,
allowing the user to choose an equation by point and click. This method of edit-
ing ensures the correctness of the specification and eliminates costly errors during
prograin generation.

Similarly, dataGEN [acilitates the tasks involved in the data generation process,
and frees the user from worrying about details such as: where are the generated
programs stored, which scripts are available for the selected scientific software,
where is the raw output data generated by program execution located, what input
is Tequired for invoking the data collection process, and so on. Users familiar with
the implementation of the system may prefer to call these processes on their own,
but when many users are involved in the (lengthy) data gencration process, the
graphical interface is maost useful.

dataMINE encompasses the statistical analysis of data in selected performance
records and the pattern matching process. Even for the most experienced users,
it is not possible to attempt either of these tasks outside of PYTHIA-II. A tem-
plate query is used to extract the performance data of interest in order to gencrate
input for the statistical analyzer. This is accomplished within the graphical inter-
face by choosing the predicate records, and allowing dataMINE to build the query,
access perhaps hundreds of performance records to extract the identified felds,
and then build the required input file. The input specification for pattern match-
ing is equally difficult to build; it retrieves and matches scores of features across
hundreds of performance records, and filters ranking data from the statistical an-
alyzer output. In addition to carrying out essential data preparation tasks that
cannot be handled outside of the GUI, dataMINE presents a simple menu system
that walks the user through the process of selecting the predicate, calling the sta-

22

tistical analyzer, generating graphical profiles of the ranked methods, and calling
the knowledge generator. DataMINE is integrated with DataSplash [Olston et al.
1998] an easy-to-use integrated environment for navigating, creating, and querying
visual representations of data, which is built on top of POSTGRES95, therefore it
interacts with PYTHIA-II's database naturally.

7. DATA FLOW IN PYTHIA-II

The PYTHIA-II design supports two different user interfaces, one for the knowledge
engineer and the other for end users who seek advice about the specific problems
they want to solve. This section describes the data flow and I/O interfaces between
the main components of the PYTHIA-IT system from the perspective of these twao
interfaces.

7.1 Knowledge Engineer Perspective:

The data How in PYTHIA-II is shown graphically in Figure 14, where the boxes
represent stored entittes, the edges represent operations related to the underlying
databasc, and the self-edges represent operations related to various external pro-
prams such as statistical analysis, transformations and data fltering.

The knowlcdge engineer begins with populating the preblem specific database
tables., In PYTHIA-II, the underlying database schema is fixed, but extensible
and dynamic. The knowledge engineer has to specify his understanding of the
domain in terms of the relational data model to match PYTHIA-II's database
schema. Supporting an extensible and dynamic schema is possible because of some
unique features of the POSTGRESS5 system, i.e., POSTGRESY5 does not have
the restriction imposed by the traditional relational model that the attributes of a
relation be atomic!, since attributes are allowed to contain sub-values that can be
accessed from the guery language. In particular, POSTGRESY5 allows attributes
of an instance to be defined as fixed-length or variable-length multi-dimensional
arrays. The knowledge engineer specifies the demain in terms of the relational
data model to match PYTHIA-II's database schema. The front-end interface for
populating the database includes a full-fledged graphical environment with menus,
editors and database specific forms for presentation purposes, very much like those
supported by Oracle’s SQL*Forms.

An ezperiment combines problem records into groups, and a high level problem
specification is generated by a program-based transformation of the experiment
record into an input file for execution. These files are passed to the problem ex-
ecution environment which invokes the appropriate scientific software for preblem
execution. For the example instantiation of Section 4, PYTHIA-II's execution en-
vironment consists of the PELLPACK system which can solve a variety of PDE
problems by applying multiple methods for discretization, indexing, domain par-
titioning and solution, and executing on various sequential and parallel machines.
After executing eacl: one of the input files, a corresponding number of output files
is generated, each containing information related to the solution of the problem,
such as error, memory utilization, execution time per processor (in case of a parallel
execution), program traces, etc. Although the variability of the input specification

UThis is sometimes referred to as the First Normal Form {1NT) of database systems.

23

}.@Y{e\ Selest
Collect, Project
Sclest Droewte > Filter jom Trendom
Project Collect | D Rerds T Filtez
Comerrn &~ ™ Collex | DemRecar Mine | Discovered
Problem | Progrem | iy ol Profile Predicae | Rules
Records | Files "1 Records Retords Knowledge

Base
Problem _'_’/(

Feares Select
Projest

Fig. 14, Data flow and I/O for the knowledge engineer user inLerface,

is dealt with by the specific schema of the problem record, the variations in the
output format for the files generated during execution are handled by specifying
a systern specific and user selected file template. The template lists, among other
things, the full specification for the program to be called for the collection of the
important data contained in the output files. This data is automatically collected
by the program, and stored in the performance data records for further processing,
while all the output files are deleted. These records keep logical references to the
problem records in the form of foreign keys. In this manner, performance data can
be matched with problem features by executing n-way joins, which is necessary for
pattern extraction.

By combining data from a number of performance records, while maintaining
all but one of the experimental variables constant (discretizer, indexer, partitioner,
solver, problem size, machine size), we can generate a profile that characterizes the
behavior of a certain parameter with respect to other paramcters. The statistical
analyzer uses the instructions for extracting performance data contained in a profile
database table, which contains the number of experiments deemed necessary by the
knowledge engineer for the analyzer to produce rankings of the solver profiles with
the required statistical significance. The analyzer submits canned SQL queries
(Figure 12) to retrieve the data to use for further processing.

After the performance data has been retrieved and combined, it is given to the
statistical analyzer for ranking based on the parameter(s) selected by the user for
evaluation. The ranking produces an ordering of these parameters which is sta-
tistically significant (i.e., if the performance data shows no significant difference
between parameters, they are shown as tied in rank). This ranking can be used
in a number of different ways to drive the pattern extraction process. Before the
data is handed over to this process however, yet another abstraction level is used.
A predicate record defines the collection of profile records to be used in pattern
extraction. This means that the knowledge engineer can change the sct of input
profile records as easily as updating a database record. The predicate also con-
tains all the required information used by the program that creates input for the
algorithms used in pattern extraction.

A FRlter program is called for the selected predicate record to collect and transform
the information to the input format required by the pattern extraction programs.
For example, our system currently supports, among others, the input formats for
GOLEM/PROGOL and the MLC++ (Machine Learning Library in C--+) library.

24

After the input data is prepared, the programs generate output in the form of logic
rules, if-then rules or decision trees/graphs for categorization purposes. In this pro-
cess there is open-ended extensibility regarding the integration of tools like neural
networks, genetic algorithins, fuzzy logic tool-boxes, rough set systems, etc. It is
only the support for the Recommender that restricts the automatic transformation
of the knowledge structures provided by each one of these tcols, since building a
knowledge base for the Recommender requires that the knowledge induced by the
mining process be comprehensible and structured.

7.2 End User Perspective:

The front-end for the Recommender must be confipurable and adaptable for sat-
isfying a variety of user needs. It is well understood that end users of an RS for
scientific computing are most interested in questions regarding accuracy of a so-
lution method, performance of a hardware system, optimal number of processors
to be used in a parallel machine, how to achieve certain accuracy by keeping the
execution time under some limit, etc. The PYTHIA-II Recommender allows users
to specify the characteristics of the problems to solve, as well as the performance
objectives or constraints. The system that supports this functionality is CLIPS, an
expert system shell tool-box, which uses the induced knowledge, even background
knowledge, and facts from the problem, feature, performance, profile and predicate
tables to provide the user with the best inferred solution to the preblem presented.
It is also possible that the user's objective cannot be satisfied. In that case, the
user can specify weights for the various objectives, and then the system tries to
satisfy the objectives (e.g., accuracy first, then memory constraints) based on the
ordering implied by the weights.

8. CASE STUDY 1: EFFECT OF SINGULARITES ON THE PERFORMANCE OF
ELLIPTIC PDE SOLVERS

To validate the design and implementation of PYTHIA-II and the underlying KDD
process, we consider a performance evaluation database of software modules (PDE
solvers) from the PELLPACK [Houstis et al. 1998] library over a population of
2-dimensional, singular, steady state PDE problems defined in [Houstis and Rice
1982]. The algorithm selection problem for this domain can be formally stated as
follows:

Select an algorithm to solve
Lu=f on 0
Bu=g on a0}
so that relative error ¢, < ¢ and time ¢, < T

where L is a second order, linear elliptic operator, B is a differential operator
involving up to first order partial derivatives of u, £ is a bounded open region in
2—dimensional space, and #, T" are performance criteria constraints.

8.1 Performance Database Description

In this study, PYTHIA-II collects tables of execution times {in seconds) and errors
for each of the selected solvers with respect to various sizes of the grid /mesh over
the population of PDE problems. The error is measured as the maximum absolute

25

[Phascs Description I Implementntion]
Determine Evaluate the efficiency and accuracy of a set of Manual
evaluation solution methods and their associated parameters
objectives with respect to elapsed time, error and problem size.

Data preparation (1) problem population POSTGRES95
{1) selection (2) measures: elapsed solver time, discretization error, 5QL
(3) methads Tel/Tk
{2) pre-processing | {4) Generate performance data. PERL
Data Mining {1) Collect the data for error and time across all TCL/Tk
solvers, grid sizes PERL
(2} Use the method of least squares to develop linear In-house
approximations of time vs error across all grid sizes. statistical
Develop profiles of the methods for all problems, and software
rank the methods.
(3) Use the rankings and the problem features to PROGOL
ilentify patterns and generate rules.
Analysis of results | Domain experts ensure correctness of the results. Manual
Assimiloation of Create an intelligent interface to utilize the knowledge CLIPS
knowledpge to identify ihe "best method" with associated paramcters
for user’s problems anl computational objectives.
Table ITII. The PYTHIA-II instance as applicd to the PELLPACK singular PDE case study.

error on the computational grid/mesh divided by the maximum absolute valuc of
the PDE solution. The PDE software considered from PELLPACK library are
abbreviated as follows:

—6PT = 5-point star plus band Gauss elimination

—COLL = Hermite cubic collocation plus band Gauss elimination

—DCG2 = Dyakanov conjugate gradient for order 2

—DCG4 = Dyakanov conjugate gradient. for order 4

—FFT2 = FFT9 (order=2) Fast Fourier transform for 5-point star

~—FFT4 = FFT9Y {order=4)} Fast Fourier transform for 9-point star

—FFT6 = FFTY (order=6) Fast Fourier transform for 6th order 9-point star

The grids considered are bxb, 9x9, 17x17, 33x33, and 65x65. More information
about this experimental study can be found in [Houstis and Rice 1982).

Defining the PDE population and experiments required 21 equation records with
up to 10 parameter sets each, 3 rectangle domain records of differing dimensions,
5 sets of boundary conditions records, 10 grid records defining uniform grids from
coarse to fine, several discretizer, indexing, linear solver and triple records with
corresponding parameters, and a set of 40 solver sequence records defining the
solution schemes. Using these components, 37 experiments were specified, each
defining a collection of PDE programs involving up to 35 solver sequences for a
given PDE problem. Figures 6, 7, and 9 depict the structure of these records.
The 37 experiments were executed sequentially on a SPARCstation20 with 32MB
memory running Solaris 2.5.1 from within PYTHIA-II's execution environment (see
Table II1.) All 37 test cases executed successfully, resulting in the insertion of over
500 performance records into the database.

26

[Problem Componenl | Features

Equation first tier operator: Laplace, Poisson, Helmholtz, self-adjoint, general
sccond Her operator: analytic, entire, constant coefticients,
operalor smoolhness lier: constant, entire, analytic
right-hand-side tier ; entire, analytic, singular{infinite},
singular derivatives, conslant coeflicients, nearly singular,
peaked, oscillatory, homogeneous, computationally complex
right-hand-side smoolhness e constant, entire, analytic,
computationally complex, singular, oscillatory, peaked
Domain unit square,

la, 4] x {& + =,b + z|, where x can vary

(@, b] % fu + e, + €], where ¢ is o constant

Boundary Conditions | I = 0 on all boundaries

AU = f on all boundaries

Bl = f on some boundaries

Al 4 BU, = [on some houndaories

constant coefficients, non-constant coefficients

Table IV. Fentures for the problem population of the benchmark cose study.

8.2 Data Mining and Knowledge Discovery Process

After the experiment records were defined, dataGEN was used to retrieve them
from the database and execute them. Each experiment represented up to 35 PDE
program executions. When the executions finished, the raw performance output
was located In a spectfied directory, and the data collection facility was invoked to
extract data from the cutput and trace files and to insert them in the performance
database. The dataMINE interface was used to access the petformance data ac-
cording to the specification of the predicate and profile records created for the case
study. A portion of the predicate record used to generate profiles and rankings for
the seven PELLPACK solvers is shown in Figure 11.

Figure 15 lists the ranking produced by the analyzer for PDE problem pdel0-4,
and Figure 16 gives the percentage that each solver was best over all problems in
Case Study 1. The rankings over all PDE problems and their associated features
were then used by PROGOL to mine rules. The features considered in this ease
study are defined in Table I'V, and cxamples of rules mined by this process are shown
in Figure 17. The first rule, for instance, indicates that the method Dyakanov CG4
is best if the problem has a Laplace operator and the right-hand-sicde is not singular.

8.3 Knowledge Discovery Outcomes

The discovered rules confirm the assertion (established by statistical methods) in
(Houstis and Riece 1982] that higher order methods are better for elliptic PDEs
with singularities. They also confirm the general hypothesis that there is a strong
correlation between the order of a method and its efficiency. More importantly, the
rules impose an ordering of the various solvers for each of the problems considered
in this study. Interestingly, this ranking corresponds closely with the subjective
rankings published in [Houstis and Rice 1982|. This shows that these simple rules
capture much of the complexity of algorithm selection in this domain. Table V
summarizes these observations.

PDE | 5PT I COLL | DCG2

DCG4 l FFT2 | FFT4 I FFT6

31 (7D | 64 | 1B
32 |66 | 7(| 1)
-1 | 7(0) 6(3) | 2(8)
a2 | r(ny | sty | 1¢{a)
9-1 | 6(6) | 5¢() | 3(4)
92 [6(6) | 5(5 | 4
9-3 | 6¢6) | 4(5) | 5(3)
w-2 |6 | 7(1 | 55
-3 | s [7{(n | 5(5
10-4 1 7(s) | 5¢ | 6(4)
107 [66 | 5¢7) | a(5
1n2 | rm | s | 5
11-3 | 7(6) | 6(6) | 4(5)
114 | 66 | 7(r) | 5¢5)
115 | 66} | 7(| 5(4)
13-1 | 3@ | 40y | 2¢D)
151 | 2¢2) | 1¢0) -

15-2 | 2¢2) | 1)

304 | 1(1) | 2¢)
-8 | 202 | LQ)
-1 [a(y | 3@ | 202
35-1 | 4(4) | 3¢y | 2
362 | 2(1} { 1(1)
/-2 [1} { 22 -
39-4 | 2(2 | 1D -
442 (20 | 1) -
44-3 | 2(2) | 11} -
472 | 6(6) | a(6) | 3(5
-3 2@ | 1) -
51-1 | 1(1) | 2() -
sa-l [1{) | 2(2 .

-1 | 7 | 6(6) | 3(5)
17-2 | 6{6) | 7(1) | 4¢4)
13 |66y | 700 | 42
20-1 | 101y | 2 (@) -
202 | 1¢1) | 2¢2) -
282 [3(2) 1(1)

5 (5)
3(3)
2 {5)
5 {6)
2(3)
3 (2)
3 (3}
2 (4
3 (4)
3 (0
3 (3)
1{3)
2 {4)
3 {4)
3 (1)
1(1)

1 Es)
2 (5)
5 (5)

2 (2)

=
——

ba bt
LI I B T I N N I I T o S |

-
—

2 (2)
4 (4}
1 (1}
2 (2}
1(2)
2(2)
2 {2)
3 (3)
4(3)
4 (3)
7 (3)
2 (3}
5 (3}
4 (3}
1 (3}

2 Ed)
5 {3
3 {3)

-

N T I T T R T A A |
[%]
—

1 (d)
2 (2)
4{1)
4(3)
L(1)
Ln
1(1}
1(2)
2(2)
2 (2)
1(2)
3{2)
1{2)
242
2(2)

4(2)
1 (2)
2 (2)

L (2)

[~

[I T T |
—
—

27

Table V: A listing of the rankings generated by PYTHIA-II and, in parentheses, the subjective

rankings reported in [Houstis and Rice, 19832].

28

The rank analysis produces the following comparison
listed in crder from 'best’ to ’worst’:

The method ranka

fft 9 point order 6

fft 9 point order 4
dyakanov-cgd

fft 9 point order 2

hermite collocation and band ge
dyakanov-cg

S5-point star and band ge

=~ @b W Ry e

Fig. 15. DRankings of the PELLPACK solvers considered [or problem pdel(d-4,

Frequancy as bear for FFT4 : 27.03%
Frequency as beat for DCG4 : 13.51%
Frogquoacy a3 best for COLL : 21.62%
Fraguency s beat for 5PT : 18.92%
Fraquency as beat for FFIG : 10.81%
Froquoncy as beat for DOGZ : 5.41%
Fraquency as boat for FFIZ : 2.70%

Fig. 16. Percenlapes of problems in Case Study 1 where each method is best.

9. CASE STUDY 2: THE EFFECT OF MIXED BOUNDARY CONDITIONS ON THE
PERFORMANCE OF NUMERICAL METHQDS

In this secticn, we apply PYTHIA-II to the performance databasc obtained by
assigning different boundary condition types to a population of two-dimensional
clliptic partial differential equation problems from the study of [Dyksen et al. 1988).
The objective of this performance evaluation can be stated as follows:

Determine the effect of the presence of derivatives in the boundary conditions
on the performance of numerical methods, where the PDE problem is given by
Lu = attzz +ouyy +duz +evy, +fu=g on 0
Bu=ou+ fsu, =%t on 99
and «,F contrel the strength of the derivative term.

The coeflicients and right hand sides, a, ¢, d, ¢, f, g, s and 1, are functions of z and
1, and £ is a 2-dimensional domain with boundary 8€. The selected numerical
methods are the modules (5PT, COLL, DCGZ2, DCG4) listed in Section 8.1 plus
MG-00 (Multigrid mg00). The PDE problemns are restricted to rectangular domains
for this case study, and the boundary condition types are defined as follows

—-Dirichlet: z = ¢ on all stdes.
—Mixed : ot + su, =t where @ =0 or & = 2 on che or more sides

29

best_method(4,dyakanov-cgd) i~ opLaplaca_yes(A), rhsSingular_yes(A)
bast_method(A,fft_9_point_order_4) :- opHelmholtz_yas{i), pdePeaked_no(R)
best_method(A,fft_9_point_order_4) :- pdeSmoConst_yas(A), rhsSmoEntire_yes(A)
best_method(A,fft_9_point_order_4) :- solEntire_yes(i), solSmoBoundLayer_yea{a)
best_method(A,fft_9_point_order _4) :- solVarSmooth_yes{A), solSmoSingular_no{A)
best_method(A,fft_2 _point_order_4) :- opLaplace_yes(A), rhsAnalytic_no(a},
rhsSingheriv_no(A), rhsConstCoeff_no(A)
best_methed{A,fft_9_point_order_2) :- solSingular no(A), solSmoSingDeriv_yes(A)
best_methed{A,fft_9_point_order 6} :- oplLaplaca_yes(A), rhsSingular_no(4),
rhsConetCoeff_no{A), rhsNearlySingular_no(A)}. rhsPeaked_no(A)
best_method(A,fft_9_point_order_8) :- rhsSmolscillatory_yes(A).
best_mechod(A,fft_9 _point_order_6) :- pdeSmoConst_yes(A), rhsSmoDiscDeriv_yes{a)

best_method (A, dyakanov-eg4) i~ opSelfAdjoint_yes(A}, rhsConstCoeff_no{i)

bast_methed(4,dyakanov-cgd) :- oplaplace_yes(i), rhsEntira_no(A),
rhsSingular_ne{A}, rhsSingDeriv_no{A}, rhsOscillatory_no(A)

best_method{4,dyakanov-cg4) 1~ pdeJump_yes(A)

best_method(A,dyakanov-cg4a) ;= opLaplace_yas{A), rhsinalytic_no{A),
rhaSingDeriv_no{A}, rhsPeaked_no(A)

best_method (A,dyakanov-cgd) i= pdeSmoCenst_yes(A), rhsSmeConst_yes(A)

best_method (A,dyakanov-cgd) i~ pdeSmoDiscDeriv_yes(4), rhsSmoConst_no(A)

best_method (A,dyakanov-cg) :- oplaplace_yas(A), rhsSingDeriv_yaes{A)

bast_methad{A,dyakanov-cg) :- pdeSmoConst_yes(A), rhsSmoDiscDeriv_yes(A)

bast_method{A,hermite _collocation} :- opGeneral_yes{A)

best_method(A, hermite_collocatian) :- oplaplace_no{A), pdeConstCoeff_yes(a),
rhsEntire_no(A)

best_method(A,bhermite_collocation) pdePeaked_yes (A}
best_method (A, ,hermite_c¢ollocation) :~ pdeSmoConst_no(A), rhsSmoSingular_yes(A)

Fig. 17. Sample rules generated by PROGOL for the singular PDE study.

—Nearly Neumann : ax+ Gsu, ={ where eithera =1, §=1000ora =0, 8 = —1
on one or more sides.

Every PDE equation is paired with all three boundary condition types and is asso-
ciated with three experiments. Each cxperiment consists of a problem defined by
the PDE equation and boundary condition, which is solved by five selected numer-
ical methods using five uniform grids. There are 75 program executions for a given
PDE. Data for elapsed solver time and various error measures at the grid points
are collected for each problem execution.

9.1 Performance Data Generation, Collection and Analysis

The basic PYTHIA-II database records (equations, domains, boundary_conditions,
parameters, modules, solver_sequences and experiments) are defined using dbEdit,
and the PDE programs are built and executed with PYTHIA-II's dataGen using
the basic components and the defauli PELLPACK program execution environment.
All experiments were executed on a SPARCstation-20 Sun0OS 5.5.1 with 32 MB
memory. The standard PELLPACK raw output data was generated and collected,
and 600 records were successfully inserted into the performance database.

The statistical analysis and rules generation are handled by dataMINE, which
requires as input the predicate and its corresponding profile records. The predi-

30

[Record | Conirolling information | Field data
Predicate | How many invocations of the analyzer? 24
Profilis to be used lor ench invocation. pdebl, Dir-vs-Mix, pde0l Dir-vs-Neu,
pdedl Mix-vs-Neu, pde02_Dir-vs-Mix, ...
Items to rank. numerical methods :
DGC, DCGA4, MG-00,
5PT, COLL
Features to base rules on, Elapsed TimeEfect_Dir2Mix,
Elapsed TimeEffect, Dir2Neu, ...
Profile Experiments used in a single analyzer run? | pdeDl-dirichlet, pdedl-mixed, ...

Profile graph x-axis values?

grid sizes

Profile graph y-axis values?

relative increase in mixed

execution elapsed time vs Dirichlet
execution clapsed time @
(Trnl'z - le'r)deir

use perfdata record and match fields:
classparms = dir vs. mix
select on numerical methods

Matching record identifier for profile
graph building.

Name of SQL query template. dir.vs.mix

Table VI: Sample predicate and profile information for the relative clapsed times annlysis for
mixed vs. Dirichlet problem executions.

cate and profile records identify all important controlling paramcters for the tasks
involved in data analysis and mining.

The predicate is the highest level controlling agent, and the end result in this
case study is knowledge which answers the question stated at the beginning of
this section. The predicate names a matrix of profile records that identify the
number and type of analyzer invocations. Then it identifies the features of the basic
components that are used. In this case, these are boundary_condition features. The
analyzer rankings and the predicate feature specifications are handed over to the
rules generation process. If the predicate is correctly constructed, the generated
rules answer our questions about the effect of derivatives in the boundary conditions
on solving PDEs when solved using the selected methods. Table VI lists, in part,
the required predicate information.

Although the predicate controls the entire analysis and mining process, the de-
tails of the analysis are handled by the profile records. Each profile record identifies
which fields of performance data are extracted, how they are manipulated, and how
the experiment prefiles for the analyzer are built. The result of the analysis is a
ranking of method performance for the selected experiments according to the ex-
tracted data. In this case, the objective is to study the relative changes in elapsed
time as a function of derivative strength in the boundary conditions. Again, the
query posed to the database by the profile extracts exactly the information needed
by the analyzer to answer this question. Samples of the required retrieval infor-
mation are listed in Table VI. The complex query used for building the analyzer's
input data is determined by profile field entries for x-axis, y-axis and field matching.
In this case, the profile record builds sets of (z, ¥} points for each numerical method,
where the = values are grid points and the y values are relative elapsed time changes
for mixed boundary conditions with respect to Dirichlet conditions. Other pred-
icates/profiles were built to study relative changes in elapsed time for Neumann

31

Profiles for methods
log{perarl defta i)

he & oo S B 2 hd Band g

200 / dyalaov -y

B 50 - dnk 1!

10 7, Dutigtdagto -
150 !' L I—FlTﬂlhrnPﬂ_ms_U _______

100 7

500 o .
s L
1. - - _
30 AT
+00 =

350 A
300 o DS

200 et
‘i) l‘.-ﬁ-__‘—'—\—__

150 -
1o —e 7 s

050 -
ooo -
-0.50 —1r e

130
130 —t
200

Toy{prablemnize)
Lilee) 103 4.00

IMig. 18:. Profile graph depicting the relative change of execution times between Dirichlet and
Mixed problems ns a function of the grid size for the five PELLPACK solvers considered.

conditions with respect to Dirichlet conditions, and relative changes in error for
derivative conditions with respect to Dirichlet conditions. In all, 6 predicates ancd
more than a hundred profiles were used to generate the knowledge base.

8.2 Knowledge Discovery QOutcames

Here we summarize the results of PYTHIA-II analysis and the interpretation of
the rules derived for Case Study 2. They are consistent with the hypothesis and
conclusions stated in [Dyksen ct al. 1988). For the analysis, we use rankings based
on the relative elapsed time profiles described above.

(1) The performance of the numerical methods is degraded by the introduction of
derivatives in the boundary conditions. Profile graphs of the values for relative
elapsed time changes 6T for the mixed and Neumann problems with respect
to the Dirichlet problems, §Tniz = (Tmix — Tair)/Tair and §They = (Thew —
Tair}/Tuir were generated by the analyzer for all methods over all grid values.
It is observed that the values of 8T >> 0 for most methods over all problem
sizes. Thus, the presence of derivative terms slows the execution substantially.
One notable exception, however, was the COLL method, for which the deriva-
tive term did not introduce a significant increase in elapsed time, resulting in
a 8T that was very small and which, in some cases, decreased as the problem

32

The rank analysis produces the follewing comparison
lisced in order frem 'best' to ‘worst':

The Solver Raoks (avg rank in parenthesis}

multigrid mg00 21 (1)
dyakanov-cg : 48 (2.29)
dyakanov-cgd : 68 (3.29)
5-point star : 73 (3.48)
hermite collecation : 105 (5)

The rank differsnces and indicated sigmificance
based on the q value,
whore Ti-Tj represents the absolute difference
of the Solvers Ti and Tj.

Tl: S5-point star T2: hermite collocaticon T3: dyakanov-cg
T4: dyakanov-cgd TS: molrigrid mg00

Solvers Rank Diff Significant?
T2 - T1 32 yas
T3 - T1 25

T3 - T2 57 ¥es
T4 - T1 5

T4 - T2 a7 yes
T4 - T3 20

65 - T1 52 yes
T5 - T2 84 yas
TS - T3 27 yes
TS - T4 47 yes

Distribution of data for each Solver

Solver Average Minimum 1st fQuart Median 3rd Quart Maximum

1 2.394 3.094 2.888 2.676 1.669 1.516
2 3.224 3.506 3.238 3.171 3.101 3.072
3 1.52 2,293 1.797 1.682 0.8285 0.4857
4 1.965 2. 43 2.034 1.974 1.806 0.769
5 -0.3241 0.3039 -0.3208 -0.3241 -0.4056 -1.164

Fig. 19: Ranking results for the comparison of numerical methods using grid vs. lotal elapscd
time profiles.

size increased, as shown in Figure 18.

(2) The COLL module was least affected Specifically, the increase in elapsed time
when the derivative term was added was least for COLL. Thus, it was most
often ranked first by the analyzer using the relative time profiles. Note that
even though the relative elapsed time was least for COLL, the total elapsed
time was not. Summary statistics for two of the predicates are given below:

33

Rankings for the dir2mix predicate based on relative time:

Frequency as best for COLL : 57.14%
Frequency as best for DCG4 : 28.57%
Frequency as best for DCG2 : 14.29%
Frequency as best for 5PT : 0.00%

Frequency as best for MG-00 : 0.00%

Rankings for the dir2meu predicates based on relative time:
Frequency as best for COLL : 42.86%

Frequency as best for DCG4 : 21.43%

Frequency as best for 5PT : 14.29%

Frequency as best for DCG2 : 14.29%

Frequency as best for MG-00 : 7.14%

The final rules generated by PYTHIA-II for the elapsed time predicates are:
best_method(A,hermite_collocation) : dir2mix(A).
best _method (4, hermite_collocation) : dirZmeu(A).

(3) The fourth order modules COLL and DCG4 are less affected than second order
modules. The above statistics show that the fourth order modules were chosen
85% and 64% of the time, respectively (see Figure 18 for the method ranking
profile for pde(4 generated by dir2mix predicate based on relative time). The
rankings above also show that fourth order modules were less affected by mized
conditions than by Neumann conditions, and that MG-00 and 5PT methods
performed worst with the addition of a derivative term in the boundary condi-
tion.

Next, we consider ranking the methods for all PDE-boundary condition pairs
using profile graphs involving problem size vs. elapsed time. The analysis does not
consider relative increase in execution time for different boundary condition types,
it ranks all roethods over all PDE problems as in Case Study 1. The analysis ranks
MG-00 as best method. It was sclected 72% of the time as the faster method over
all PDE problems. The analysis also showed that all methods had the same best-
to-worst ranking for a fixed PDE equation and all possible boundary conditions. In
addition, these results show that some of the selected methods differ significantly
when ranking with respect to execution times across the collection of PDE problems.
With a computed @ value of 25 (see Section 6.2), DCG and COLL show a rank
difference of 57; MG-00 and COLL show a rank difference of 84. Methods DCG
and 5PT did not behave in a significantly different way. Some analysis results are
shown in Figure 19.

10. CONCLUSION

We have presented the architecture, implementation, and demonstation of the
PYTHIA-II softwarc system that facilitates a knowledge discovery in databases
(KDD) process for selecting scientific software. It also recommends parameters for
a targeted problem class assuming a priori defined features and computational ob-

34

jectives. Its architecture is open-ended (ie., allowing its application to a variety
of domain specific software and integration of alternative KDD phase implementa-
tions) and scalable (i.e., providing a variety of options to the knowledge engineer
for mining data, while storage and retrieval issues are handled by an integrated
database system). The modular approach used by PYTHIA-II maximizes the vi-
sualization of the entirc KDD process, cither in parts or as a whole. The high
extensibility of the system is facilitated by the large number of alternative paths
and tools available at every stage. The accuracy of the underlying KDD process
has been validated by comparison with two cases where PYTHIA-II generated rules
leading to the same conclusions as the pre-exsting case studies. This RS method-
ology has also been used successfully for numerical quadrature [Ramakrishnan and
Rice 2000], and other applications (itcrative linear equation solvers, performance
of parallel computational systems [Adve ct al. 2000}) are underway.

REFERENCES

ADVE, V. 5., Bacgropia, R., Bnown, J. C., DEeLMAN, E., DuBg, A., Housris, E. N., RICE,
1. R., SAKELLARIOU, R., SURDARAM-STUKEL, D., TELLER, P.)., AND VERNON, M. K. 2000.
POLMS: End-to-end perlormance of large parallel adaptive computational systems. JEEE
Trans. Soft. Bng., o appear.

BolsverT, R. F., RICE, 1. R., AND HoUsTIS, E. N. 1979. A syslem [or performance evaluation
of partial differential equations sofliware. [EEE Transactions on Softwere Engineering SE-
5, 4, 4154135,

Bratko, I. aND MuccLETON, S. 1995, Applications of inductive logic programming. Cemm.
ACM 38, 11, 65-70.

CasaLerTO, J., PIGKETT, M., AND RICE, J. 1969, A comparison of some numerical inlegration
programs. SIGNUM Newsletter 4, 3.

Dopson, D., MILLER, P., NYLiN, W., AND RICE, J. 1968. An evaluation of five polynomial zero
finders. Technical Report CSD-TR-24, Dept. Comp. Sci., Purdue University.

DrkseN, W., Houstis, E., Lynci, R., axp RICE, J. 1984, The perlormance of the collocation
and galerkin methods with hermite bicubics. STAM Journa! of Numerical Analysis 21,
695715,

DyxsEN, W., RiBBENS, C., AND RucE, J. 1988. The performance of numerical software methods
for elliptic problems with mixed boundary conditions. Numer. Meth. Partial Differentia!
Egs. 4, 347-361.

DzErOsKI, 5. 1996. Inductive logic programming and knowledge discovery in databases. In
U. Fayyal, G. PIATETSKY-SHAPING, P, SMyTIl, AND R, UTlunusamy (Eds.), Advances in
Knowledge Riscovery and Dala Mining, pp. 117-152, AAAT Press/MIT Press.

Fayvab, U., PIATETSKY-SHAPING, G., AND SayTH, P. 1996, From data mining to knowledge
discovery: an overview. In U. Favvap, G. PIATETSKY-SHAPINO, P. SMYTH, AND R. UTHU-
RUSAMY (Eds.), Advances in Knowledge Discovery and Data Mining, pp. 1-34. AAAT
Press/MIT Press.

HoLLanpeER, M. AND WOLFE, D. 1973. Non-parametric Statistical Methods. John Wiley and
Sans.

Houstis, C., HousTis, E., RICE, J., VARADAGLOU, P., AND PAPATHEODOROU, T. 1991. Athenn:
a knowledge based system lor //ELLPACK. Symbolic—Numeric Dala Analysts end Learn-
ing, 459-467.

HousTis, E., LyNCH, B.., AND RICE, J. 1978, Evaluation of numerical methods for elliptic partial
differential equations. Journal of Comp. Physics 27, 323-350.

Houstis, E., RiCE, J., WEERAwWARANA, S5., CaTLIN, A., GarTATZES, M., PapacHiou, P., aND
Wang, I. 1998. Parallel ELLPACK: a problem solving environment for PDE based appli-
cations on multicomputer platforms. ACM Trans. Math. Seft. 24, 1, 30-73.

35

HousTis, E. AND RICE, J. . 1982. High order methads for elliptic partial differential equations
with singularities. fnler. J. Numer. Meth, Engin. I8, Ta7-754.

Janmes, R. anp Rice, J. 1967. Experitnents an matrix attributes and SOR success. Technical
Report CSD-TR-9, Dept. Comp. Sci., Purdue Univerity.

Josui, A., WEERAWARANA, §., RaMAXRrIsHNAN, N., HousTis, 2., AND Ricg, J. 1996. Nevro—
Fuzzy support for PSEs: a step toward the automated solution of PDEs, Special Joint
Issue of IEEE Compuler & IEEE Computational Science and Engincering Vol. 3, 1, papes
44-56.

Konavi, R. 1995. MLC++ developments: data mining using MLC++-. In 8. E. A. KasiF (Ed.),
Working Notes of the AAAL56 Fall Symposia on ‘Learning Complex Behaviors in Adaptive
Intelligent Sysiemns’, pp. 112-123. AAAIl Press,

KoNIG, S, AND ULLricH, C. 1950. An expert system [lor the economical application of self-
validating metheds lor linear equations. In Intelligent Mathematical Software Systems,
North-Holland, pp. 195-220.

Moorg, P., OzTURAN, C., AND FLAHERTY, J. 1890. Towards the automalic numerical solution of
partial differential equations. [n Intelligent Mathematical Software Systems, North-Holland,
pp. 15-22,

MuGGLETON, 5. 1995. Inverse entailment and PROGOL. New Generniion Computing Vel. 13,
pages 245-286.

MuGGLETON, 8. AND FENG, C. 1990. LElficient induction of logic programs. In 8. Anikawa,
5. GoTto, 5. Onsuca, aNp T. Yoxoaorl (Eds.), Proceedings of the First Internationa!
Cenference on Algorithmic Learning Theory, pp. 368-381. Jopanese Society for Artificial
Intelligence, ‘Tokyo.

MuGGLETON, 5. AND RAEDT, L. D). 1994, Inductive logic programming: theory and methods.
Journal of Logic Programming 19, 20, 629-679.

CLsToNn, C., Woobnurr, A,, AIKEN, A., Ciu, M., ERCEGovAc, ¥., LIN, M., SPALDING, M.,
AND STONEBRAKER, M. 1998. Datasplash. In Proceedings of the ACM-SIGMOD conference
on management of data, Seailtle, Washington, pp. 550-552,

QuiNLAN, J. L. 1986. Induction of decision trees. Machine Lezrning f, 1, 81-106.

RAMAKRISHNAN, N. 1997. Recommender systems lor problem solving envircnments. Ph. D.
thesis, Dept. of Computer Sciences, Purdue University.

RAMAKRISHNAN, N., HousTis, E., AND RICE, J. 1998. Recommender Systems for Problem
Solving Environmeats. In H. KavuTz (Ed.), Working notes of the AAAI-98 workshop on
recommender systems. AAAT/MIT Press.

Ramakrisunan, N. anp Ricg, J. 2000, Gauss: An on-line recommender system for one-
dimensional numerical quadrature. ACA Trans. Math. Sofi., lo appear.

REsSHIK, P. AND VAWIAN, H. 1997, Recommender systems. Communications of the ACM Vol.
48, 3, pages 56-58.

Rice, J. 1983. Performance analysis ol 13 methods to solve the Galerkin method equations.
Lin. Alg. Appl. 53, 533-546.

RiIcE, J. 1990, Soltware performance evaluation papers in TOMS. Technical Report CSD-TR-
1026, Dept. Comp. Sei., Purdue University.

Rucg, J. R. 1969. A scL of 74 test functions for nenlinear equation solvers. ‘lechnical Report
CSD-TR-34, Dept. Comp. Sci., Purdue University.

Rice, R. 1976. The algorithm selection problem. Advances in Computers 15, 65-118.

STONEBRAKER, M, AND ROWE, L. A. 1986. The design of POSTGRES. In Proceedings of the
ACM-SIGMOD Conference on Management of Data, pp. 340-355.

WEERAWARANA, 8., HousTis, E. N., Ricg, J. R., JosHi, A., anp HousTis, C. 1997. PYTHIA:
a knowledge based system to select scientific alporithms. ACM Trans. Math. Seft. 23, 447-
468.

	PYTHIA-II: A Knowledge Discovery in Databases System for Managing Performance Data and Recommending Scientific Software
	Report Number:
	

	tmp.1307986960.pdf.tt8Gx

