View metadata, citation and similar papers at core.ac.uk brought to you by fCORE

provided by Purdue E-Pubs

Purdue University
Purdue e-Pubs

Department of Computer Science Technical

Reports Department of Computer Science

2002

An Efficient Burst-Arrival and Batch- Departure Algoriths for
Round-Robin Service

Jorge R. Ramos

Janche Sang

Report Number:
02-030

Ramos, Jorge R. and Sang, Janche, "An Efficient Burst-Arrival and Batch- Departure Algoriths for Round-
Robin Service" (2002). Department of Computer Science Technical Reports. Paper 1548.
https://docs.lib.purdue.edu/cstech/1548

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

https://core.ac.uk/display/4972043?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

AN EFFICIENT BURST-ARRIVAL AND BATCH-
DEPARTURE ALGORITHM FOR ROUND-ROBIN SERVICE

Jorge R. Ramos
Vernon Rego

Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

CSD TR #02-030
December 2002

An Efficient Burst-Arrival and Batch-Departure
Algorithm for Round-Robin Service*

Jorge R. Ramos
Vernon Rego
Department of Computer Sciences
Purdue University
West Lafayette, IN 47907

Janche Sang
Department of Computer and Info. Science
Cleveland State University
Cleveland , OH 44139

Abstract

Simulations of CPU scheduling or waiting-line models that involve a server dispersing shared
service quanta across jobs can require significant processing time, especially when simulations
are supported by thread-based systems. To effect a reduction in simulation time we reduce the
number of scheduled events, without affecting simulation results. We present an algorithm for
such enhanced round-robin service in discrete-event simulation and implement and test it on a
threads-based simulator. The algorithm predicts potential job departures and schedules them
in advance, using cancellation and rescheduling when necessary. We generalize and improve
upon a previous approach in which a single arrival and a single departure event is handled at
a time. While the prior proposal offered a run-time complexity of O(n?), the new algorithmn
accomplishes this in time O(nlogn). Further, the generalization also accommodates burst
arrivals and batch departures with the reduced time complexity. Empirical results are presented
to compare performance with previously proposed algorithms.

Keywords: scheduling, event, threads, kernel, red-black, lookahead, batch arrivals, batch
departures

*Research supported in part by DoD DAAG55-98-1-0246 and PRF-6903235.

1 Introduction

Service disciplines such as first-in first-out, highest-priority first, round-robin etc. are basic parame-
ters in the design of computing and communication systems. They specify how a service mechanism
(server) attends to work (task execution, packet processing) in a queueing system. As such systems
become increasingly complicated in functionality, it is hard for analytical models to incorporate
and account for all the underlying and often interrelated factors. In most instances of practical
interest the best approach is to rely on good simulation models which answer questions related to
waiting-line phenomena[l]. Because such simulations are usually time consuming, techniques for
implementing faster algorithms are particularly useful.

The round-robin(RR) service discipline is a popular and widely used discipline in many real-
world time-sharing systems because of its fairness. In this discipline, a job or customer is serviced
for a single quantum g at a time in order to share the service resource with other jobs requiring
the same service. If the remaining service time required by a job exceeds the quantum size ¢, the
job’s processing is interrupted at the end of its quantum and it is returned to the rear of the queue,
awaiting the service quantum it will receive in the next round. A naive approach to implementing
the RR discipline in simulation is to physically dole out service quanta to the jobs in a round-robin
fashion. For a job with a large service request, this approach necessarily schedules many arrival
and departure events in the simulation calendar; this leads to very high event-handling overhead in
event-based [2] and process-oriented simulations [3]. Because of associated context-switching, costs
are particularly high in thread-based simulation systems.

The high cost of event-scheduling in the nalve RR approach can be greatly reduced through
a computational device that was introduced in [4]. The idea is to run an algorithm which first
predicts and then schedules the next departure from the system. A view illustrating the differences
between the naive and computational RR approaches is shown in Figure 1. This single-departure
computational algorithm improves upon the naive version by utilizing the notion of state. The
state of the pool is defined by the remaining service requirement of each resident job, the number
of jobs and the next job in line for service. Each arrival and each departure changes the state of
the pool, and necessitates a state update. The computational algorithm exploits a formula that
enables the determination of the identity of the next job to (potentially) leave the pool based on
pool state; this job’s departure is then scheduled. Upon the next arrival or departure, the state
of the pool is updated. If an arrival occurs before the scheduled departure, the departure event
is cancelled to preserve consistency of the pool. A similar idea has appeared in earlier studies
of interrupt processing [5] and hybrid modeling [6, 7]. Large simulation run-times — especially
in thread-based systems with context-switching overheads — warrant eflicient algorithms for the
simulation of service disciplines.

In the single-departure computational RR algorithm [4], a traversal of the pool is required
for each departure. A simple analysis shows that if a RR system has n jobs in service and no
more jobs enter the pool, the time complexity of the algorithm is O(n?). In this paper, we take a
different approach and develop a novel batch departure computation which determines the identity
of multiple departures using special index fields augmenting the state of the pool. With the aid of
such a computation, multiple departures can be scheduled without having to update the state of
the pool on each departure, causing a reduction in the number of scheduled events and hence, the
simulation time. The key, however, is to dynamically determine which events can be eliminated
from simulation-calendar processing. This yields a new algorithm which further reduces simulation

Naive RR view :
Repeated Arrival, Repeated Departure,
No predictions and cancellations.

jobs arrive ———»+— @ et

..

— —» jobs leave

..

Computational RR view :

Single Arrival / Burst Arrivals Single Departure / Batch Departures

Predictions and Cancellations of events.

Figure 1: A Comparison of naive and computational RR approaches

time complexity to O(nlogn).

To test variations of the algorithm, we implemented it on a thread-based process-oriented sim-
ulator that is much like CSIM [1]. The system is layered, so that a simulation-kernel is supported
by a thread-system in a modular way. Between the application layer — which is the level at which
the user develops applications — and the kernel layer, is the domain layer. While various domains
may be supported, our algorithm pertains to a queueing domain which offers the user primitives
that deal with customers (jobs) and servers (CPUs). Given a domain layer, both naive as well as
computational versions of RR can be implemented as functions in a highly portable way. Indeed,
the function is easy to develop given the algorithm, as long as there is a way to access pool state
and the simulation calendar. As a practical matter, our tests were done on a simulator which is
also highly portable: if the thread-system is portable then the entire system is portable because
the layers are developed in the C language.

The remainder of the paper is organized as follows. In Section 2, we examine the components of
the single-departure computational algorithm and illustrate improvements to be had by exploiting
an index field for each job in the pool. In Section 3, we develop a new batch departure formula which
can significantly reduce simulation time. The complete pseudo-code for departures, arrivals and the
expected run-time of the algorithm is also presented. We also analyze the problem of cancellations
in the batch departure formula and introduce the concept of “look ahead” as a desirable primitive
in a simulation kernel. In Section 4 we present an algorithm to handle the update of state and
insertion of new arrivals after a batch departure. In Section 5 we present the results of several
experiments, comparing performance with previously proposed algorithms. Finally, we present a
brief conclusion in Section 6.

1
Pid: B Pid: C
Remain: 6 Remain: 3
Pid: A] 4
Remain: 5
A
Pid: E Pid: D
HEAD
Remain: 8 Remain: 4

A

[

Figure 2: A circular queue for representing the Round-Robin service discipline

2 The Single-Departure Computational Algorithm and Improve-
ments

In order to do a simulation in which the random number of quanta a job receives is not geometrically ~
distributed, the service time of the job must be known. At the very latest, the scheduler must know
this by the time the job starts its first quantum, so that its departure can be scheduled. Of course,
we cannot know this time in a real system, but that is why we use various distributions in simulation.
This view is an advantage of modeling. The random time (or random number of quanta) is selected
before the job starts service.

When a number of jobs have already begun service, they reside in the pool. The scheduler knows
that the job that will be first to leave the pool/system will be the job with the smallest number of
remaining quanta that it needs served. This is not the same as a simple SJF (Shortest-Job-First)
algorithm, because the server moves through the pool in cyclic fashion, so there may be several jobs
with the minimum quanta requirement. The one to leave first will hold a unique position relative
to the cyclic moving server in the pool.

In the following paragraphs, the single-departure computational round-robin algorithm pre-
sented in [4] is explained. The presentation is deliberately concise to avoid repetition. The
interested reader is encouraged to consult the original paper for further explanations.

To determine the identity of the next potential departure from the pool, a computational
algorithm needs to maintain the state of each job (or process) in the service pool. An appropriate
representation of the job pool is a circular linked list, which the server traverses in a circular fashion.
As illustrated in Figure 2, the algorithm presented in [4] keeps three fields for each job record: a
process identifier (PID), remaining service-time , and a link to the next element in the circular list.
An additional pointer HEAD, which is associated with pools of jobs, is used to indicate the job
which is to receive the next quantum of service. For clarity, we will use the example in Figure 2 to
explain the main idea throughout the paper.

The computational algorithm consists of two basic functions:

¢ ADJUST _POOL: For an arrival or departure event, this function traverses the pool and
adjusts remaining service-times, updating the state of the pool according to the time that has
elapsed between two state updates (delta). Two adjustments are made. An amount of time
is uniformly subtracted for each job — the number of complete traversals of the queue that
occurred during the time delta. Next, for only those jobs stationed between the old head and
the new head, one additional tick of time is subtracted.

¢ SCHEDULE NEXT_TO_LEAVE: This function traverses the pool and determines the
next job to depart — the one with minimum remaining service time. It keeps track of this
time (minrem), and also counts the number of steps (steps) between the current head (i.e.,
the current job to be serviced) and the job to depart. Upon determining these two parameters,
the next departure is identified by using the size of the pool (pool_size) and service quanta
(¢) through a simple formula:

current_time + ((minrem — 1) x pool_size + steps) x q (1)

Using the circular list in Figure 2 as an example, it is easy to see that the next job to leave the
system is C, if no new arrivals occur prior to the departure, after (3 — 1) x 5+ 3 = 13 quanta .
When an arrival or departure event occurs, the algorithm first invokes the function ADJUST PGOL to
update state. Next, it either inserts the newly arriving job into the pool or removes the departing
job from the pool. The function SCHEDULE NEXT_TO_LEAVE is invoked in the last step to predict
the next departure from the pool. Observe that if an arrival event occurs before the scheduled
departure event, the scheduled departure event has to be cancelled.

2.1 Enhancements with Indexing

In the original computational algorithm, the functions ADJUST POOL and SCHEDULE NEXT .TO LEAVE
are each required to traverse the pool. A simple but effective improvement is to merge both
ADJUST_POOL and SCHEDULE NEXT_TO.LEAVE so that only one traversal of the pool will suffice. This
can be achieved by introducing an index field for each job in the pool, to indicate the service order.
It is possible to achieve the same effect without the use of an index but a counter instead. The
counter would keep track of the distance between the head and a particular job. The performance
of both methods is the same, but the latter has the advantage that there is no need for an index
field in each job record. We utilized the indexing technique because we will also require it in the
batch departure scheme presented in Section 3.

This technique proceeds by doing a queue traversal and munrem finding simultaneously; the
pseudo-code is shown in Figure 3. The number of steps from the last round (i.e., rem) is used along
with an index (i.e., i) to adjust the states of jobs stationed between the old header and the new
one. Clearly, jobs lying between index = 1 and index = rem require an extra tick subtracted. The

'These numbers may or may not be whole numbers. In a real system, a job may not actually require a whole
quantum, but nevertheless consumes a whole quantum because of the granularity of operation. The algorithm handles
this in the same way. If a job needs only the fractional part of a quantum, the system gives it the entire quantum.
Because of granularity at the OS scheduling level, systems find it easier to schedule in small, but uniform quantum
sizes. For convenience and clarity, we will use only whole numbers in this paper.

other use of the index is to determine the new value of steps, which must be equal to the index
of the next job to (potentially) depart. Index updates are done during queue traversal with the
help of a simple observation: the job immediately before the departing job must get an index =
pool_size — 1, and the job immediately after the departing job must get an index = 1. All other
jobs are numbered accordingly, depending on their position. The same idea is used for arrivals.
When an arrival occurs, if the pool is not empty, one job is being serviced, and the new job ends
up with an index = pool_size + 1, which is the new pool size. The job stationed immediately
after this point of insertion becomes the new head, with index = 1. When two jobs have the same
minimum remaining time, the job with a lower index departs first. The variable minindez is used
to guarantee this condition.

Note that this algorithm only predicts one departure event every time it is invoked, which is
when a new job arrives or when a job leaves the system. It is an improvement over the original
computational algorithm in the sense that it reduces the number of pool traversals by one-half.
This is practically faster, but not asymptotically faster[8], since theoretical run-time complexity
is still O(n?). In the case where two or more jobs depart from the system in quick succession,
repeatedly, this algorithm tends to becomes inefficient.

3 New Batch Departure Algorithm

As explained earlier, the original single-departure computational algorithm identifies one potential
departure event and handles one arrival event at a time. We propose a novel algorithm in which we
consider the possibility of processing burst arrivals and batch departures, to handle the simulation
of models with bursty traffic. Figure 4 illustrates the difference between the original algorithm and
the new batch algorithm in terms of the number of events. We now proceed to derive a formula
that enables the determination of a batch of n potential departures from a pool of m > n jobs,
based solely on the state of the pool. For simplicity, the formula will be derived assuming that
no new jobs arrive between the invocation of the algorithm and the scheduled n departures. That
is, departures can be identified because no new jobs arrive to change the state of the system and
possibly change the identities of the departing jobs. We will, however, address the issue of new
arrivals later.

The new formula is a generalization of the formula used in the single-departure algorithm,
though not an easy one. One idea is to store the position and values of remaining service-time ticks
in the pool while traversing the queue to determine the minimum. Then, Formula 1 — presented
in Section 2 — can be applied multiple times. This approach, however, causes some complications
which hinder its effective use:

e the position of the head changes,
e the size of the queue changes,

e some remaining-service time values are subjected to a decrement of one tick, while others
undergo no subtraction, depending on whether they correspond to jobs that are stationed
between the current head and the potential departure or not.

e the relative positions in the pool change, with respect to the head.

ADJUST POOL_AND_SCHEDULE NEXT DEPARTURE(event_type)

delta — sim_clock — prev_clock
ticks «— delta/q

sub « ticks/pool_size

rem «— ticks mod pool_size

first « pool_size — rem q for reindexing
minrem «— head.remain 4 for finding min remain
minindex — pool_size 4 1
steps «— 1
job «— head
for i — 1 to pool_size
do job.remain «— job.remain — sub < adjust remain
if 1 <rem < update indexes

then job.remain «— job.remain — 1
job.index «— first+1
else job.index «— i — rem
if job.remain =0
then remove job from pool
else if i = (rem + 1) < find new head
then newhead — job
if job.remain < minrem or
(job.remain = minrem and job.index < minindez)
then minrem «— job.remain < find min remain
steps «— job.index
minindexr «— steps
if event_type = arrival
then newjob's index « pool_size + 1
update minrem and steps if new job has a smaller remain
insert new job to the pool
else pool_size «— pool_size — 1 < departure event

next_departure «— current_time + ((minrem — 1) * pool _size + steps) * ¢

Figure 3: The Original Algorithm with Indexing

A: Job Arrival Event
D: Job Departual Event

I~

(a) The original computational algorithm
(single arrival / single departure)

A D

Simulated Time

arrival burst

Al A1ls A3o
A> A1 A3l
Az A2o Asz
. . *
. . .
. g ®
A17 batch departure A2s Ass

DiD:D; eee Di1Di12¥ DizDig eee Das Dis see

Simulated Time

(b) The burst arrival / batch departure
computational algorithm

Figure 4: A Comparison of Single Arrival/Departure and Batch Arrival/Departure

There is no simple way to keep track of the different remaining service quanta for jobs in
the pool and the position of the head as elements get removed, preventing an easy generalization
and application of the original formula. Further, because the pool size changes between updates,
computational terms have to be added that require special handling during updates.

To illustrate the idea clearly, consider the state of the pool after C and D are removed from
the original pool: this is shown in Figure 5. With each deletion, the head undergoes a change,
ultimately moving from A to D to E. The relative positions of entries with respect to the head
now all undergo change. That is, E is initially 5, but becomes 4 after C is removed, and 1 after
D is removed, while both A and B maintain their positions 2 and 3, respectively. During the first
round, 3 ticks are subtracted from each of A and B, while 2 ticks are subtracted from each of D
and E. But, during the second round, 1 tick is subtracted from each. Thus, as the example shows,
it can be quite a challenge to keep track of these differences efficiently as elements are deleted from
a large pool, because of the different number of subtractions for different jobs during each round
as their relative positions change.

Remove C:
Pid: A Pid: B Pid: D Pid: E
Remain: 2 Remain: 3 Remain:2 Remain: 6
1
| 44 ‘ ‘ HEAD
Remove D:
Pid: A Pid: B Pid: E
Remain: 1 Remain: 2 Remain: 5
‘ ‘ HEAD

A

Figure 5: State of the pool after two departures

3.1 Derivation of the Generalized Formula

Having made the case that serious complications arise in a natural generalization of the formula
from the old algorithm, primarily because of changes in head position, pool size, and relative
positions, we propose a method that exploits the following:

e a fixed head,

¢ a fixed pool size,

e complete traversals of the pool from head to tail.

The basic idea is to use this somewhat artificially simplified pool, where the head and pool size
are determined by the initial state, and used for all subsequent computations. With an approach
that greatly simplifies computational updates, we only need to subtract the extra quanta to get
an exact solution. As will be shown, the subtraction of quanta can be expressed mathematically,
and can thus be easily accounted for. Further, the scheduling of all departures from the pool can
be affected solely from initial state information. As was explained before, that the formula will be
derived assuming that no new arrival occur between the scheduled n departures.

Using the same example as before, where each job record has an index, and indexing is used to
indicate relative positions of jobs, we proceed to build a table T that contains the pool elements,
the remaining service times, the relative positions and the relative order of distinct departures. The
scheduled departure time of the next job from the pool is then given by:

current_time + [r; X pool_size — (terml) — (term?2)] X q (2)

where 7; = remaining time for job ¢, and (term 1) and (term 2) are explained in detail below.
Observe that the formula reflects three constraints imposed on the pool:

K

73 X pool_size a complete traversal (— complete traversal condition)

(term 1) extra steps (or ticks) due to counting elements that have already departed
(— fixed queue condition),

(term 2) extra steps due to traversal from a particular element to tail (— fixed
head condition).

We now examine these terms in detail, assuming a pool of n elements.

Term 1:
For a (potentially) departing job ¢ (i = 1,2,...,n), term 1 is given by:

1

i— i-1
(ri—r))=(G—-1) xr—Y m (3)

j=1 j=1

On the left side of the equation, we subtract the extra steps counted between the current job

i and all previously departing jobs 7. The expression on the right side of the equation is the one
i-1

useful for implementation of the algorithm. The term Zri can be stored in a single variable.
j=1

During each round, we would only need to add the last element, without needing to do the entire

summation repeatedly.

Term 2:

Term 2 is a little more difficult, as we will shortly see. For departing job ¢ (i =1,2,...,n), term 2
is given by:

10

(pool_size_at_round_i) — (position_of_job_i_relative_to_head) (4)

The pool size at a given round is obtained as (remembering that pool size is fixed at the instant
the algorithm is invoked):

pool_size_at_round_i = (pool_size — i + 1) (5)

For relative positions, we take into account that:

e relative positions of jobs change as jobs are removed and scheduled for departure,

e relative positions of jobs stationed between the head and a departing job don’t change, though
the positions of others must change.

Let p; be the position of job ¢ relative to the fixed head at the start of algorithm’s invocation
on the pool. Based on the above explanation, the new relative position is determined as:

relative position = p; — ¢(p;) (6)

where the function ¢(p;) defines the number of jobs with relative positions smaller than p; that
have already departed. A straightforward approach to computing ¢(p;) is to compare the currently
departing job’s p; with each of the relative positions of the jobs that just departed. Unfortunately,
this kind of one-by-one comparison will drive the time complexity of the algorithm up to O(n?).
Therefore, we have to resort to a more efficient but also more complicated data structure for the
calculation of ¢(p;).

Given a value p;, the work required to find numbers smaller than p; in a given set is almost
the same as the work required to find the rank of p; (i.e., its position) in the linear order of the
set. They only differ in that the latter also counts the element itself. These two computational
functions have the following relationship:

¢(p:) = rank(p:) — 1 (7)

A widely-used data structure, called augmented red-black tree or order-statistic tree[9], can support
fast rank operations. A red-black tree has the following properties: 1) Every node is colored red
or black. 2) The root is black. 3) A red node can only have black children. 4) Every path from
the root to a leaf contains the same number of black nodes. These properties guarantee that a
red-black tree with n nodes has a height of O(logn) and enables insertion or deletion in O(logn)
time. In addition to the usual fields key, color, parent, left, and right, an augmented red-black
tree has another field called size in each node. For a node z, the field size(x) contains the number
of nodes in the subtree rooted at £ — a sum including the size of its left child, its right child. and
1 (for itself):

size(x) = size(left(x)) + size(right(z)) + 1 (8)

11

30 | Key rank(x)

18 | Size U = size(left(x)) + 15
23 47 Y=x
10 7 while (y !=root of tree) {
o Iy — >% 3 e T 55]f(=:right(parent(y)))
= = A 5 r=r+size(left(parent(y)))+1;
A / | 7 y=parent(y);
14 22 25 29 | 32 | 36 50 leturn r;
1| [2 3 1 1 2 1 ’
: }
/ 7\ [oo

rank(36)=1+1+(1+1)+(10+1)=15

Figure 6: An augmented red-black tree and the rank operation

A detailed description of this data structure, relevant algorithms and time analysis can be found
in [9]. Figure 6 shows an augmented red-black tree along with a function to determine the rank of
an element. To find an element’s rank, the algorithm traverses the path from the given element to
the root, accumulating the size of any subtree appearing to the left of the path. For example, to
get the rank of the element 36, the path to the root is 36 — 33 — 47 — 30 and there are three
subtrees, rooted at nodes 34, 32, and 23, which appear to the left of the path. To get the final
result, we accumulate the sizes of these three subtrees (i.e. 1, 1, 10) and then add 3 because the
parents of these three subtrees (i.e. 36, 33, 30) are also smaller than 36. The rank operation can
be done in a time that is proportional to the height of the red-black tree, i.e. in O(logn) time.
Hence, computing ¢(p;) can also be done in O(logn).
Combining (5) and (6), we obtain a final form for term 2:

(pool_size — i+ 1) — p; + ¢(p;). 9)

With Term 1 and Term 2 thus defined, we are finally in a position to write a precise expression for
the departure time of job (i = 1,2, ...,n) for the batch-departure case:

1—1
current_time + [r; X pool_size — ((i — 1) X r; — Zri) — ((pool_size — 1+ 1) — p; + ¢(p;))] X ¢
j=1

This formula is computationally simple to implement. When invoked, it yields departure times
starting from departure i = 1 to departure i = n, based solely on the initial state of the pool.

3.2 Computational Algorithm with Look-ahead

In replacing single departures with batch departures, we encounter a new problem. A single de-
parture requires one departure-time computation and at most one event cancellation, thus causing
little overhead, if any. In the batch departure case, however, we may arrive at a situation (at an
extreme, decidedly) where we compute and schedule the departure times of a large number n of
jobs only to later find that nearly all such departures must be cancelled because of arrivals which

12

SCHEDULE_BATCH_DEPARTURE

job — head
for i «— 1 to pool_size < fill table
do Ti] « job
job «— job.next
quicksort 7'in ascending order by remaining service time
sum_remainder «— ()

for 1 < 1 to pool_size < schedule departures
do r — Tli].remain
p — T[i].index < relative position

terml — (i — 1) * r — sum_remainder

sum_remainder < sum_remainder + r

insert p into an augmented red-black tree

¢ — rank(p) -1 < jobs departed with smaller p

term2 « (pool_size —i+ 1) —p+ ¢

dep_time «— current_time + [r * pool_size — term1 — term2] * q;

if (dep_time < look_ahead(next_arrival)) < look ahead before scheduling
then schedule a departure event for T'[z].process at dep_time

Figure 7: The pseudo code of new batch departure algorithm

change the state of the pool and thus invalidate the already scheduled departures. This problem
can be solved by resorting to a special look-ahead primitive which looks ahead in the simulation
to determine the time of the next arrival. Since the simulation has access to processes or random
number streams generating arrivals, this is easily achieved. It is worth mentioning that the look-
ahead concept is not a new idea. It has been widely used in distributed simulation systems to avoid
deadlocks[10].

In process-oriented simulation, for example, a simulation kernel would have to provide the
application layer with a primitive that looks ahead and returns the time of the next arrival. The
batch-departure computation algorithm checks the time of the next arrival and terminates the loop
when the departure time is found to be greater than the arrival time. This makes for an efficient
computation that determines only what is needed through constant monitoring via look-ahead.
Because such a use of look-ahead does not alter a simulation’s trajectory, the resulting simulation
produces consistent results.

The algorithm has three major steps. Firstly, we traverse the queue and build a table T
containing relative positions and remaining service times. Secondly, we sort the table in increasing
order of remaining service times 7;, determine the relative departure order and put it in the table
T. After obtaining necessary information, we use the batch departure formula to schedule batch
departure events. The algorithi terminates when it completes the departure time computation for
each of the jobs in the table T or when the next arrival time (via look-ahead) is reached. Figure 7
depicts the algorithm in details.

Both the computational algorithm and the naive algorithin yield the same results, serving to
verify that the computational algorithm is indeed a correct and more efficient O(nlogn) algorithm
for the prescribed task.

13

3.3 A Detailed Example

Consider the following illustration of the use of the batch-departure formula, based on the pool
shown in Figure 2. The traversal is done from left to right to obtain a table T containing the
remaining service times 7;, the relative positions p; and the departure order i:

Job PID: A|B|C|D|E
Remaining time 7; 516|348
Departure order 7 314|125
Relative positionp; | 1 [2 [3|4 | 5
Sorting T by remaining service time r;, we further obtain:
| Job PID: C|D|A]|BJE
Remaining timer; | 3 |14 5 |6 |8
Departure order 4 112137415
Relative positionp; | 3 | 4 | 1|25

Now applying the batch departure formula applied for i = 1 through ¢ = 5, we get:

e Departure 1: Job C,i=1:

rixpooljize:3><5:15
terml = (i — 1) x r; — Zn—O 0=0

term2 = (poolsize =i+ 1) —p;+¢(p;) =(5-1+1)-3+0=2
departure = current_time + {15 — 0 — 2]g = current_time + 13 ¢

e Departure 2: Job D, i=2:

7‘i><pooljize:4><5:20
terml = (i — 1) x r; — Zrz_lxél 3=1

term2 = (pool_size —i + 1) —pit+ép)=B—-2+1)—-4+1=1
departure = current_time + [20 — 1 — 1]g= current_time + 18 g
e Departure 3: Job A, 1= 3:

7; X poolsize = b x5 =25
i—1
terml = (1 —~ 1) x r; — ZT1—2X5—7_3
j=1
term2 = (poolsize - i+ 1) —p; +(p;) =(5-34+1)—-1+0=2

departure = current_time + [25 — 3 — 2]g= current.time + 20 ¢

14

B C D E A B C D E

® ® (&) (2] <) ®

® © e 6 ®

® 25 ticks ® o ® e
® ® & ® © 30 ticks

Nolololn o 0 O o

30 ‘hzs
terml1=3 term2=2
term1=6 term2=1
(@ (b)

Figure 8: (a) Job A departs (b) Job B departs

e Departure 4: Job B, 1 = 4:

r; X poolsize = 6 x 5 = 30
i-1
terml :(i—])xri—Zn;:?)xG—lZ:ﬁ
j=1
term2 = (poolsize — i+ 1) —pi+o(p;)) =(65-44+1)—-2+1=1

departure = current_time + (30 — 6 — 1]g = current_time + 23 ¢

A graphical explanation of the computation is demonstrated in Figure 8. Consider the compu-
tation of the third departure, i.e. Job A departs. A total of 25 ticks are doled out to 5 jobs because
Job A requires 5 ticks service time. These 25 ticks include 3 extra ticks (i.e. termI), as shown
circled in Figure 8(a), given to C and D even after they have been marked as having departed.
Furthermore, because A’s relative position (i.e., p;=1) is smaller than C’s (i.e., 3) and D’s (i.e., 4),
the value of A’s ¢(p;) is 0. This results in term2 = 3—1—0 = 2. There are two extra ticks, marked
by rectangles in the last row of Figure 8(a), distributed to other in-pool jobs stationed after A (i.e.,
Jobs B and E). Thus, deducting these 5 extra ticks from the total of 25 ticks, we obtain the value
20. A similar calculation for Job B’s departure is depicted in Figure 8(b). Note that the value
of B’s ¢(p;) is 1 because, among jobs that have already departed, only A has a smaller relative
position (i.e., 1) than B (i.e., 2). Hence term2, which is 2 — 24+ 1 = 1, shows that one extra tick is
given to an in-pool job (i.e., Job E). Subtracting the extra quanta in terml and term2, we obtain
the value 23 for Job B.

4 Handling Changes of State

When a batch of n jobs has been scheduled for departure, there are two ways of handling the
change of pool state, i.e., of bringing the pool to a consistent state. This is true for n = 1 as well

15

ADJUST POOL BATCH_DEPARTURE

discount «— the nth departure job’s remain
position «— the nth departure job’s index
job «— head
for k — 1 to pool_size
do if job.index < position
then job.remain «— job.remain — discount
else job.remain — job.remain — (discount — 1)
if job.index = position
then newhead — job.next
tmp «— job
if job.remain <0
then delete job.process from pool
job «— tmp.next
pool _size «— pool_size — n
head «— newhead
job < head
for k < 1 to pool_size
do job.index — k < new index
job «— job.next

Figure 9: Update the state of the pool after n departures

as n > 1. The case of n = 1 is essentially the original single-departure computational algorithm.
Each job leaves the pool as soon as simulation time coincides with its departure time, i.e., when
the departure event is activated. Upon departing, the job updates the pool to the correct state at
the simulation time of the event. In the case of n > 1, the state of the pool must be updated to
reflect all n departures. Since each departure must have a corresponding departure-event, any one
of these n departure events may be used to update the state of the pool. For example, only the
last job to depart can affect the update, so that the others do not have to do any work.

For the batch departure case, we have to find a way of obtaining all necessary information in
a single traversal of the pool, just as in the case of the single-departure algorithm. As explained
earlier, different discounts have to be applied to different elements in the pool, depending on the
position of the head with respect to these elements, as the traversal is done. The algorithm is
detailed in Figure 9. Assume that there are n jobs to depart in a batch. The remaining service-
time of the nth job will be used as the discount quantity. Next, simply traverse the pool from
head to tail, subtracting discount for each job lying between head and the nth job and subtracting
discount — 1 for the rest. Those jobs that have remaining service-times less than or equal to zero
are deleted from the pool, i.e., they have been scheduled for (potential) departure. Once the update
is done, the pool is reindexed and the new head is defined. The pool is then ready for the next
invocation of the update algorithm.

Consider the batch departure of jobs C and D in our previously defined example. Note that
there is no need to update the pool state when C first departs. Since job D is the last to leave in
the batch departure, we use D’s remaining service time (i.e., 4) as the quantity discount. Next, for
each job in the pool, we subtract the quantity discount or discount — 1 from its remaining time,

16

depending on whether its relative position lies before or after D. The jobs A, B, C, and D get the
discount quantity 4, while job E gets the value 3. We can thus obtain updated values of remaining
service-time when D leaves the system.

Job PID A|B|C|D|E
Remaining time 7; 5|63 1|4]8
Relative position p; 11213415
discount (-) 4 1414143

‘ Updated remaining time r; ‘ 1 ‘ 2 ‘ -1 ‘ 0 ‘ 5 ‘

After deleting all jobs with zero or negative remaining service-times from the pool (i.e., C and
D), we obtain an up-to-date pool with consistent state at time = clock + 18¢q. The new head will
now point to job E.

Job PID A|B E{
' Remainr | 1|25

5 Performance Evaluation

We ran a number of experiments to evaluate the performance of the batch departure algorithms. A
single, unrestricted queue served in round-robin fashion was used to implement and test the algo-
rithms. Further, the algorithms were implemented within an application-layer residing above the
kernel of a thread-based process-oriented simulator based on the Purdue Ariadne threads library[11].
The input parameters used were:

e Quantum gq.
e Exponentially distributed job interarrival times with mean 1/A.
e Exponentially distributed job departure times with mean 1/pu.

e Discretized exponentially distributed batch sizes with mean 1+ 1/8.

The output parameter measured was the amount of CPU time required to do the simulations,
given specific values for the input parameters described above. Several variations of the proposed
algorithms were implemented within the application-layer on the simulator kernel, to evaluate the
performance of the different ideas presented in the paper. To help identify the different runs, we
use the following notatijon:

naRR - the nalve round-robin algorithm.

orCA - the original single-departure computational algorithm.

inCA - the original computational algorithm, using indexing.

nuBD -~ the batch departure algorithm with one-departure at a time.
buBD ~- the batch departure algorithm with batch departures.

BD - nuBD or buBD

17

Each experiment was repeated 20 times with different random number seeds for each run, and
the results then averaged. The use of averages does not represent the absolute performance of the
algorithms but rather their relative performance given a particular parameter configuration.

In all our experiments we obtained a 95% confidence interval based on a Student-t, using n =
20. We routinely computed the standard errors in this process and found that with n = 20, the
standard error was small. For example, with a mean of approximately 12 seconds, the variance
was close to one. Variance stability was verified over several runs for all the algorithin versions.
Two sample curves showing the 95% confidence intervals are shown in Figure 16. For clarity and
to avoid clutter, all other figures don’t include the confidence interval.

5.1 Benchmark 1: Single arrivals

These experiments were designed to evaluate the behavior of the different variations of the algo-
rithms subjects to arrivals that occur one at a time.

Experiment 1 (Sensitivity to quantum)

The purpose of this experiment was to measure the performance of the algorithms as quantum size
q is changed, since each algorithm uses different data structures to yield the same results. The
parameters used were 1/A = 50 and 1/p = 40, with N = 20000 jobs. All six variations of the
algorithms indicated earlier were tested. The results are shown in Figure 10.

Experiment 2 (Sensitivity to traffic intensity p)

The purpose of this experiment was to measure the performance of the algorithms as the ratio
p = A/u (traffic intensity) is varied. Here, u and N were fixed at the values defined above, while
A was varied. As before, all variations of the algorithms were tested, except for naRR. The results
are shown in Figure 11. The same data was used to generate Figure 12, where naRR is omited, to
show a closer view of the other algorithms.

Interpretation of Results

The difference in performance between algorithms naRR and orCA was explained in [4]. In essence,
the néive algorithm requires more time for small ¢ because a larger number of events (and thus,
context-switches) needs to be handled. Clearly, all the other computational algorithms offer much
better behavior than naRR. As far as the variations of the computational algorithms and batch
departure formula-based algorithms are concerned, we observe that all exhibit a near constant-time
performance. This happens because the amount of computation required is independent of ¢q. In
particular, orCA and inCA exhibit almost the same performance behavior; they tend to offer better
performance than nuBD and buBD, which again seem to be similar to one another in behavior.

In regard to traffic intensity effects, we observe that simulation runtime increases as p approaches
1; it’s clear that more work is required to maintain the data structures when load increases. The
same observations as before apply, i.e., orCA and inCA exhibit almost the same performance, and
are better than nuBD and buBD. All five algorithms offer much better performance than naRR,
and the performance difference decreases as p increases towards 1.

18

140 |

120 -

100

80 I

60 -

Simulation Time (seconds)

40

20 |

ofCA ——

nuBD --->---
buBD ------
inCA 8-
naRR --®—

A N oo ©
o O O O
T I I I

Simulation Time (seconds)
N W A O
o O O O
I 1 T T

—
o
T

(@)

Figure 11:

Quanta
Figure 10: Simulation time vs. Quanta
T i] I
ofCA —+— -
nuBD ---x--- -
buBD ---* e g
iNnCA -8 -
naRR --=.- '/'./
/'/'./
,/.-/-
/'/../>
.
0.2 04 0.6 0.8
Traffic intensity
Simulation time vs. Traflic

19

intensity (Single arrivals)

30 T T T T

25

20

10

Simulation Time (seconds)
o
[

0 1 | | 1
0 0.2 0.4 0.6 0.8 1

Traffic intensity

Figure 12: Simulation time vs. Traffic intensity (Single arrivals)

From our experiments we conclude that indexing and look-ahead do little to improve the per-
formance of orCA in any significant way. In the case of indexing, a traversal of the pool is not
required; in the case of look-ahead, cancellations can be avoided. It turns out, however, that the
cost of the original implementation and the new implementation works out to be almost the same.
Algorithm nuBD also appears to exhibit almost the same cost as algorithm buBD. This is because
both algorithms affect the same number of computations, and the cost of handling departures
one-at-a~time is roughly the same as the cost of processing departures in a batch.

5.2 Benchmark 2: Burst arrivals

These experiments were designed to evaluate the behavior of the different variations of the algo-
rithms for arrivals that occur in distinct batches. For each arrival event, where interarrival mean
is 1/X, a (discretized exponential) batch size BA with mean 1+ 1/3 was defined, and BA arrival
events were generated. The service time ST, with mean 1/u, was divided by BA to obtain the
service time for each job in an arriving batch to ensure stability in the system.

Experiment 3 (Sensitivity to batch size)

The purpose of this experiment was to measure the performance of the algorithms as batch size BA
is varied. The systems evaluated include orCA, nuBD and buBD. The parameters used were fixed
1/, 1/ = 200 with N = 10000 jobs, while 1+ 1/3 was varied. The experiment was repeated for
different values of p, by varying 1/A, with results for 1/A = 160,320 and 533 (p = 0.8,0.5 and 0.3)
shown in Figures 13, 14 and 15, respectively. The 95% confidence interval for the orCA and buBD
curves, with p = 0.5 are shown in Figure 16.

20

Experiment 4 (Sensitivity to traffic)

The purpose of this experiment was to measure the performance of the algorithms with the batch
size BA fixed, while p is varied. The systems evaluated include orCA, nuBD and buBD. The
parameters used were (1 + 1/5) = 30, 1/ = 160 with N = 10000 jobs. and 1/X was varied. The
results are shown in Figure 17.

Interpretation of Results

When comparing the original single-departure computational algorithm with the batch departure
formula-based algorithm, it helps to consider the work each algorithm actually does. The single-
departure computational algorithm: (1) traverses the pool to find the next-job to depart; (2)
schedules that job for departure; (3) cancels the previously scheduled event., if necessary; (4) repeats
the traversal for each distinct departure. In contrast, the batch departure formula-based algorithm:
(1) traverses the pool to build a table: (2) sorts the table: (3) schedules as many consecutive
departures as necessary before the next scheduled arrival; (4) repeats the process for the next
batch of departures.

Seen in the context of the above explanation, no significant difference is observed between
nuBD and buBD, so that both may be considered to be of equal performance, henceforth to be
designated as BD. The following discussion regarding the batch departure formula refers to both
these algorithims.

Since the algorithms were run on the same simulation testbed, observed differences in their
performance can be attributed to the differences in the underlying algorithms. The orCA and BD
implementations share most of their routines, with the exception of the algorithms for scheduling
departures and updating the pool. Discarding all processing costs which can be assumed to be
equal in both algorithms, it can be shown that the main cost incurred by the orCA algorithm is
due to repeated traversals of the pool and cancellations (of many departures), while the main cost
incurred by the batch departure algorithm is due to sorting. The results indicate the relative cost
of these two algorithms, and how the costs change with the pool size. Experimentally, the size of
the pool is controlled by two variables — the traffic intensity and the size of arriving batches. The
size of the pool grows with both large batch arrival size and high traffic intensity.

Our experiments enable us to identify three different performance regions:

e The first region involves a single arrival at a time, or very few arrivals. This behavior is
witnessed in Experiments 1 and 2. In this region, the pool sizes are relatively small, and it
is cheaper to traverse the pool many times instead of performing sorting operations. Traffic
intensity affects the size of the pool, but the effect is not enough to change the relative
performance of the algorithms. So orCA performs better than BD.

e The second region involves low to medium traffic intensity. According to the figures, this is
caused by two variations: (1) p = 0 to 0.5 and batch arrivals of any size: (2) batch arrivals,
with batch-size below a critical size (in the case of the experiments, this is mean batch-size <
20). This is the behavior witnessed in Experiments 3 and 4. In this region, we have pools of
moderate size, and the cost of sorting is roughly the same as the cost of traversing the pool
repeatedly. Here, orCA and BD perform equally well.

21

Simulation Time (seconds)

Simulation Time (seconds)

40 T T T | [
ofCA —+—

35 |

30 -

20 -

15

10 +

5 | L 1 ! L
0 10 20 30 40 50

Batch Size Mean

Figure 13: Simulation time vs. Batch Size (p = 0.8)

40 T T T I T
ofCA —+—
nuBD ---x---
35 I buBD ---%--
30
25
20
15
10 -
5 | 1 1 S]
0 10 20 30 40 50

Batch Size Mean

Figure 14: Simulation time vs. Batch Size (p = 0.5)

22

Simulation Time (seconds)

40

35

30

25

20

15

10

Simulation Time (seconds)

40

35

30

25

20

15

10

orCA I—!—
nuBD ------
buBD ------

20 30
Batch Size Mean

40 50

Figure 15: Simulation time vs. Batch Size (p = 0.3)

L — 40

- 35
30
25

ZOF

Simulation Time (seconds)

10

20

30 40

Batch Size Mean

(a)

50

0 10 20

Batch Size Mean

(b)

Figure 16: 95% Confidence Intervals for p = 0.5

23

30

w
)]
I

W
(@]
i

N
)]
T

Simulation Time (seconds)

N
o
I

0 0.2 0.4 0.6 0.8 1
Traffic Intensity

Figure 17: Simulation time vs. Traffic intensity (Burst arrivals)

e The third region involves medium to high traffic intensity (according to the figures, this
corresponds to the experiments with p = 0.5 to 1) and a batch size over a certain threshold
(here, mean batch-size > 20 for the experiments). In this region it costs significantly more
to traverse a large pool repeatedly than to perforn a sort operation. Thus, BD offers better
performarce.

The reason why the performance-behavior of the different algorithms reverse when going from region
I to region 111 is that the repeated traversal of a large pool exhibits a theoretical asymptotic growth
rate of O(n?), whereas a sort operation with n red-black tree insert/rank operations can be done
both in time O(nlogn). Thus, for large pool sizes, the sorting and red-black tree algorithms tend
to offer better performance. The regions are clearly demarcated in the following table:

Traffic intensity
Service discipline 0-0.5 |05 -1

Single arrivals Region I: orCA has better performance

Batch arrivals, with mean size | 1- 20 | Region II: equal performance for orCA and BD
> 20 {Region III: BD performs better

Through our experiments, we have determined that the batch departure formula-based algo-
rithm works better than the original single-departure computational algorithm for traffic intensities
a > 0.5 and batch sizes BA > 20, which includes situations of burstiness and high traffic. Examin-
ing region III, we see that here traffic intensity approaches 1. In this region, another characteristic
of orCA is apparent, i.e., more cancellations tend to occur when the traffic intensity is high, as
more (potential) departures are scheduled, and these must be cancelled if an arrival occurs before
the departures. Also, the difference between BA and orCA increases with increasing batch size,
because of the effect of increasing pool size.

24

6 Conclusion

The underlying idea behind the new algorithms is that a reduction in the number of scheduled
events will effect a corresponding reduction in simulation time. We built upon a previously pro-
posed computational algorithm — based on a formula which predicts the next (potential) job
departure — which schedules only one departure for each event and traversal of the pool. By
generalizing this idea to batches, at the expense of some complexity, we conclude that it is possible
to run efficient simulations that accommodate bursty traffic; multiple departures may be simulta-
neously scheduled during each traversal of the pool. Our experience with event reduction leads us
to conclude that there may be a variety of scheduling algorithms where pre-computed schedules
efficiently replace multiple scheduled events. Further, efficient algorithms effecting these schedules
may be implemented within the domain layer (e.g., queueing domain versus particle-physics do-
main) in a portable way. The only requirement for this portability is the existence of primitives
which allow access to pool-state and to the simulation calendar. The idea of infrequent pool-state
updates reduces the time complexity from O(n?) to O(nlogn), and our experiments show the idea
to be effective. Based on empirical results, we conclude that the new burst arrival/batch departure
algorithms perform better than the original single-departure computational algorithm when traffic
intensity is high and batch sizes are large.

References

[1] H. D. Schwetman. Using CSIM to model complex systems. In Proceedings of the Winter
Simulation Conference, pages 246-253, 1988. .

[2] Roger McHaney. Computer Simulation: A Practical Perspective. Academic Press, San Diego,
California, 1991.

[3] W. R. Franta. The Process View of Simulation. North-Holland, Amsterdam, 1977.

[4] J. Sang, K. Chung, and V. Rego. Efficient algorithms for simulating service disciplines. Sim-
ulation Practice & Theory, 1:223-244, 1994.

[5] M. H. MacDougall. Computer system simulation: An introduction. Computing Surveys,
2:191-210, Sep. 1970.

[6] M. H. MacDougall. Simulating Computer Systems: Techniques and Tools. The MIT Press,
Cambridge, Massachusetts, 1987.

[7] H. D. Schwetman. Hybrid simulation models of computer systems. Comm. ACM, 21:718-723,
Sep. 1978.

[8] A.V.Aho, J. E. Hopcroft, and J. D. Ullman. The Design and Analysis of Computer Algorithms.
Addison-Wesley, Reading, Mass., 1974.

9] T. Cormen, C. Leiserson, R. Rivest, and C. Stein. Introduction to Algorithms. Chapter 14:
Augmenting Data Structures. McGraw Hill, Boston, Mass., second edition, 2001.

[10] J. Sang, E. Mascarenhas, and V. Rego. Mobile-Process Based Parallel Simulation. Journal of
Parallel and Distributed Computing, February 1996.

25

[11] E. Mascarenhas and V. Rego. Ariadne: Architecture of a Portable Threads system supporting
Thread Migration. Software - Practice and Ezperience, 26(3):327-357, March 1996.

26

	An Efficient Burst-Arrival and Batch- Departure Algoriths for Round-Robin Service
	Report Number:
	

	tmp.1307986960.pdf.QMVxL

