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The TCP Outcast Problem: Exposing Unfairness in Data Center Networks
Pawan Prakash, Advait Dixit, Y. Charlie Hu, Ramana Kompella

Purdue University

Abstract
In this paper, we observe that bandwidth sharing via

TCP in commodity data center networks organized in
multi-rooted tree topologies can lead to severe unfair-
ness under common traffic patterns, which we term as
the TCP Outcast problem. When many flows and a few
flows arrive at two ports of a switch destined to one
common output port, the small set of flows lose out on
their throughput share significantly (almost by an order
of magnitude sometimes). The Outcast problem occurs
mainly in droptail queues that commodity switches use.
Using careful analysis, we discover that droptail queues
exhibit a phenomenon known as port blackout, where a
series of packets from one port are dropped. Port black-
out affects the fewer flows more significantly, as they
lose more consecutive packets leading to TCP timeouts.
In this paper, we show the existence of this TCP Out-
cast problem using a data center network testbed using
real hardware under different scenarios. We then evalu-
ate different solutions such as RED, SFQ, TCP pacing,
and a new solution called equal-length routing to miti-
gate the Outcast problem.

1 Introduction
In recent years, data centers have emerged as the cor-
nerstones of modern communication and computing in-
frastructure. Large-scale online services are routinely
hosted in several large corporate data centers comprising
upwards of 100s of thousands of machines. Similarly,
with cloud computing paradigm gaining more traction,
many enterprises have begun moving some of their appli-
cations to the public cloud platforms (e.g., Amazon EC2)
hosted in large data centers. In order to take advantage
of the economies of scale, these data centers typically
host many different classes of applications that are inde-
pendently owned and operated by completely different
entities—either different customers or different divisions
within the same organization.

While resources such as CPU and memory are strictly
sliced across these different tenants, network resources
are still largely shared in a laisezz-faire manner, with
TCP flows competing against each other for their fair
share of the bandwidth. Ideally, TCP should achieve
true fairness (also known as RTT fairness in literature),
where each flow obtains equal share of the bottleneck
link bandwidth. However, given TCP was designed to
achieve long-term throughput fairness in the Internet, to-
day’s data center networks inherit TCP’s RTT bias, i.e.,

when different flows with different RTTs share a given
bottleneck link, TCP’s throughput is inversely propor-
tional to the RTT [20]. Hence, low-RTT flows will get
a higher share of the bandwidth than high-RTT flows.

In this paper, we observe that in many traffic scenar-
ios common in today’s data centers, even the conserva-
tive notion of fairness with the RTT bias does not hold
true. In particular, we make the surprising observation
that in a multi-rooted tree topology, when a large num-
ber of flows and and a small set of flows arrive at differ-
ent input ports of a switch and destined to a common
output port, the small set of flows obtain significantly
lower throughput than the the large set. This observa-
tion, we term as the TCP Outcast problem, is surprising
since when it happens in data center networks, the small
set of flows typically have lower RTTs than the large set
of flows and hence, according to conventional wisdom,
should achieve higher throughput. Instead, we observe
an inverse RTT bias, where low-RTT flows receive much
lower throughput and become ‘outcast’ed from the high-
RTT ones.

The TCP Outcast problem occurs when two condi-
tions are met: First, the network comprises of commod-
ity switches that employ the simple droptail queuing dis-
cipline and contain shallow buffers. This condition is
easily met as today’s data center networks typically use
low- to mid-end commodity switches employing droptail
queue at lower levels of the network hierarchy. Second,
a large set of flows and a small set of flows arriving at
two different input ports compete for a bottleneck output
port at a switch. Interestingly, this condition also hap-
pens often in data center networks due to the nature of
multi-rooted tree topologies and typical traffic patterns in
popular data center applications such as MapReduce [8]
and Partition/Aggregate [3] with the map tasks spread
around the network and the reduce task aggregating par-
tial results from each of these nodes simultaneously.

In a nut shell, from any receiver node’s perspective, the
number of sender nodes that are 2n routing hops away
grows exponentially, (e.g., in a simple binary tree, the
number grows as 2n − 2n−1). This easily results in dis-
proportionate numbers of incoming flows to different in-
put ports of switches near the receiver node. When the
above two conditions are met, we observe that the flows
in the smaller set end up receiving much lower per-flow
throughput than the flows in the other set—almost an or-
der of magnitude smaller in many cases. We observed
this effect in both real testbeds comprising commodity
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hardware switches, as well as in ns-2 simulations.
The reason for the existence of the TCP Outcast prob-

lem can be attributed mainly to a phenomenon we call
port blackout that occurs in droptail queues. Typically,
when a burst of packets arrive at two ports that are both
draining to an output port, the droptail queuing discipline
leads to a short-term blackout where one of the ports
loses a series of incoming packets compared to the other.
This behavior can affect either of the ports; there is no
significant bias against any of them. Now, if one of the
ports consists of a few flows, while the other has many
flows (see Section 2), the series of packet drops affect
the set of few flows since each of them can potentially
lose the tail of an entire congestion window resulting in
a timeout. TCP timeouts are quite catastrophic since the
TCP sender will start the window back from one and it
takes a long time to grow the congestion window back.

It is hard not to observe parallels with the other well-
documented problem with TCP in data center networks,
known as the TCP Incast problem [22]. The Incast prob-
lem was observed first in the context of storage networks
where a request to a disk block led to several storage
servers connected to the same top-of-rack (ToR) switch
send a synchronized burst of packets, overflowing the
limited buffer typically found in commodity data center
switches causing packet loss and TCP timeouts. But the
key problem there was under-utilization of the capacity
since it took a long time for a given TCP connection to
recover as the default retransmission timeout was rather
large. In contrast, the TCP Outcast problem exposes un-
fairness that occurs when a few flows arriving at one port
compete with many flows arriving at the other for a com-
mon output port. Unlike the Incast problem, it requires
neither competing flows to be synchronized, nor the bot-
tleneck to be at the ToR switch.

One key question that remains is why one needs to
worry about the unfairness across flows within the data
center. There are several reasons for this: (1) In a
multi-tenant cloud environment with no per-entity slic-
ing of network resources (e.g., using Seawall [21] or
Oktopus [4]), some customers may gain unfair advan-
tage while other customers may get poor performance
even though both pay the same price to access the net-
work. (2) Even within a customer’s slice, unfairness can
affect the customer’s applications significantly. For ex-
ample, in the reduce phase of map-reduce applications
(e.g., sort), a reduce node fetches data from many map
tasks and combines the partial results (e.g., using merge
sort). If some connections are slower than the others, the
progress of the reduce task is stalled resulting in signifi-
cantly increased memory requirement by that reduce task
as well as slowing down the overall application progress.
(3) TCP is still the most basic light-weight solution that
provides some form of fairness in a shared network fab-

ric. If this solution itself is broken, almost all existing
assumptions about any level of fairness in the network
are in serious jeopardy.

Our main contribution in this paper is to show the ex-
istence of the TCP Outcast problem under many differ-
ent traffic patterns, with different numbers of senders and
bottleneck locations. We carefully isolate the main rea-
son for the existence of the TCP Outcast problem using
simulations as well as with traces collected at an inter-
mediate switch of a testbed. We further investigate a set
of practical solutions that can deal with the Outcast prob-
lem. First, we evaluate two router-based approaches, one
based on stochastic fair queuing (SFQ) that solves this
problem to a large extent, and the other based on RED,
which still provides only conservative notion of TCP fair-
ness, i.e., with RTT bias. Second, we evaluate an end-
host based approach, TCP pacing, and show that pacing
can help reduce, but does not eliminate the inverse RTT
bias due to the Outcast problem completely.

The congestion control of TCP was originally de-
signed for the “wild” Internet environment where flows
exhibiting a diverse range of RTTs may compete at con-
gested links. As such, the RTT bias in TCP is considered
a reasonable compromise between the level of fairness
and design complexity and stability. In contrast, data
centers present a tightly maintained and easily regulated
environment which makes it feasible to expect a stricter
notion of fairness, i.e., true fairness. First, the various
network topologies (e.g., multi-rooted trees, VL2 [13])
exhibit certain symmetry, which limits the flows to a
small number of possible distances. Second, newly pro-
posed topologies such as fat-trees that achieve full bisec-
tion bandwidth make shortest-path routing a less strin-
gent requirement.

Motivated by the above reasoning, we propose and
evaluate a simple new routing technique called equal-
length routing that essentially side-steps shortest-path
routing and makes all paths equal length. This sim-
ple counter-intuitive approach promotes better mixing
of traffic reducing the impact of port blackouts. The
technique effectively achieves true fairness, i.e., equal
throughput for competing flows sharing a congested link
anywhere in the network since the flow RTTs are also
balanced. The obvious downside to this approach is that
it results in wasting resources near the core of the net-
work. For certain topologies such as the fat-tree that al-
ready provide full bisection bandwidth, this may be al-
right since capacity is anyway provisioned. For data cen-
ter networks with over-subscription, this approach will
not be suitable, and it may be better to employ techniques
such as SFQ queuing if true fairness is desired.
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Table 1: List of some 48-port COTS switches
48-port Switches Congestion Avoidance

HP/3Com E5500G Taildrop
Juniper EX4200 Taildrop

Brocade FastIron GS series Taildrop
Cisco Catalyst 3750-E Weighted Taildrop

Cisco Nexus 5000 taildrop

2 Unfairness in Data Center Networks
In this section, we discuss our main observation in to-
day’s commodity data center networks, namely the TCP
Outcast problem which relates to unfair sharing of avail-
able link capacity across different TCP flows. We first
provide a brief overview of today’s data center networks.

2.1 Data Center Network Design
The key goal of any data center network is to provide rich
connectivity between servers so that networked applica-
tions can run efficiently. For full flexibility, it is desir-
able to build a data center network that can achieve full
bisection bandwidth, so that any server can talk to any
server at the full line rate. A lot of recent research (e.g.,
fat-tree [2], VL2 [13]) has focused on building such full
bi-section bandwidth data center networks out of com-
modity switches. Most practical data center topologies
are largely in the form of multi-rooted multi-level trees,
where servers form the leaves of the tree are connected
through switches at various levels—top-of-rack (ToR)
switches at level 1, aggregation switches at level 2 and
finally, core switches at level 3. Such topologies pro-
vide the necessary rich connectivity by providing several
paths with plenty of bandwidth between server pairs.

Data center networks today are largely built out of
commodity off-the-shelf (COTS) switches, primarily to
keep the costs low. While these switches offer full
line-rate switching capabilities, several features found in
high-end routers are often missing. In particular, they
typically have shallow packet buffers and contain small
forwarding tables among other such deficiencies. In ad-
dition, they also typically implement simple queueing
disciplines such as taildrop. In Table 1, we can see that
almost all the commodity switches that are produced by
popular vendors employ the taildrop (or variants of tail-
drop) queue management policy.

The choice transport protocol in most data centers to-
day is TCP, mainly because it is a three-decade old ma-
ture protocol that is generally well-understood by sys-
tems practitioners and developers. Two aspects of TCP
are generally taken for granted: First, TCP utilizes the
network as effectively as possible, and hence is work-
conserving; if there is spare bandwidth in the network,
TCP will try to utilize it. Second, TCP is a fair proto-
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Figure 1: Data Center Topology

col; if there are multiple flows traversing a bottleneck
link, they share the available bottleneck capacity in a fair
manner. These two aspects of TCP typically hold true in
both wide-area as well as local-area networks.

Unfortunately, certain data center applications create
pathological conditions for TCP causing these seem-
ingly taken-for-granted aspects of TCP fail. In clus-
ter file systems [5, 24], for instance, clients send par-
allel reads to dozens of nodes, and all replies need to
arrive before the client can proceed further—exhibiting
a barrier-synchronized many-to-one communication pat-
tern. When synchronized senders send data in paral-
lel in a high-bandwidth low-latency network, the switch
buffers can overflow quickly leading to a series of packet
drops causing TCP senders to go into the timeout phase.
Even when capacity opens up, still some senders are
stuck for a long time in the timeout phase causing severe
underutilization of the link capacity. This observation is
famously termed as the TCP Incast problem first coined
by Nagle et al. in [18]. The Incast problem has ever since
generated a lot of interest from researchers—to study and
understand the problem in greater depth [7, 26] as well
as propose solutions to alleviate it [22, 25].

In this paper, we focus on a different problem that
relates to the second aspect sasof TCP that is taken for
granted, namely, TCP fairness.

2.2 The TCP Outcast Problem
Consider a data center network that is organized in the
form of an example (k=4) fat-tree topology as shown in
Figure 1 proposed in literature [2]. (While we use the
fat-tree topology here for illustration, this problem is not
specific to fat-trees and is found in other topologies as
well.) Recall that in fat-tree topologies, all links are of
the same capacity (assume 1Gbps in this case). Now sup-
pose there are 15 TCP flows, fi (i = 1...15) from sender
Si to Dest. In this case, the bottleneck link is the last-
hop link from ToR0 to Dest. All these flows need not
start simultaneously, but we mainly consider the portion
of time when all the 15 flows are active.

We built a prototype data center network using
NetFPGA-based 4-port switches (discussed in more de-
tail in Section 3.1) and experimented with the traffic pat-
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Figure 2: TCP Outcast problem

tern discussed above. Figure 2 shows that the per-flow
aggregate throughput obtained by these 15 flows ex-
hibit a form of somewhat surprising unfairness: Flow f1
which has the shortest RTT achieves significantly lesser
aggregate throughput than any of f4-f15—almost 7-8×
lower. Flows f3 and f4 also achieve lesser throughput
(about 2×) than f4-f15. We observe this general trend
under very many different traffic patterns, and at differ-
ent locations of the bottleneck link (discussed in detail
in Section 3.2), although the degree of unfairness varies
across scenarios. (Note that we also found evidence of
unfairness by conducting a limited number of experi-
ments with another institution’s data center testbed con-
sisting of commodity HP-ProCurve switches organized
in a k = 4 fat-tree topology.)

We call this gross unfairness in the throughput
achieved by different flows that share a given bottle-
neck link in data center networks employing commod-
ity switches with the droptail policy as the TCP Outcast
problem. Here, flow f1, and to some extent f2 and f3,
are ‘outcast’ed by the swarm of other flows f4 − f15.
Although f1 − f3 differ in their distances (in terms of
number of hops between sender and receiver) compared
to the flows f4 − f15, this does not alone explain the
Outcast problem. If any, since f1 has a short distance
of only 2 links, its RTT should be much smaller than
f4 − f15 which traverses 6 links. This is confirmed in
Figure 2(b), which shows the average RTT over time
along with the max/min values. According to TCP analy-

sis [20], throughput is inversely proportional to the RTT,
which suggests f1 should obtain higher throughput than
any of f4 − f15. However, the Outcast problem exhibits
exactly the opposite behavior.

The reason for this counter-intuitive result is two fold:
First, taildrop queuing leads to an occasional “port black-
out” where a series of back-to-back incoming packets
to one port are dropped. Note that we deliberately use
the term blackout to differentiate from a different phe-
nomenon called ‘lockout’ that researchers have associ-
ated with taildrop queues in the past [9, 6]. The well-
known lockout problem results from global synchroniza-
tion of many TCP senders, where several senders trans-
mit synchronized bursts, and flows that manage to trans-
mit ever so slightly ahead of the rest manage to get their
packets through but not the others leading to unfairness.
In contrast, the blackout problem we allude to in this pa-
per occurs when two input ports drain into one output
port, with both input ports containing a burst of back-to-
back packets. In this case, one of the ports may get lucky
while the other may incur a series of packet drops lead-
ing to a temporary blackout for that port. Second, if one
of the input ports contains fewer flows than the other, the
temporary port blackout has catastrophic impact on that
flow, since an entire tail of the congestion window could
be lost, leading to TCP timeouts. We conduct a detailed
analysis of the queueing behavior to elaborate on these
reasons in Section 4.

2.3 Conditions for TCP Outcast
To summarize, the two conditions for the Outcast prob-
lem to occur are as follows:

• (C1) The network consist of COTS switches that use
the taildrop queue management discipline.

• (C2) A large set of flows and a small set of flows ar-
riving at two different input ports compete for a bot-
tleneck output port at a switch.

When these two conditions are met, the few flows arriv-
ing at one port are very likely to get completely squeezed
out at the bottleneck link compared to the others.

Unfortunately, today’s data centers create a perfect
storm for the Outcast problem to happen. First, as we
mentioned before, for cost reasons, most data center net-
works use COTS switches (Table 1) which use the tail-
drop queue management discipline, which exhibits the
port blackout behavior.

Second, it is not at all uncommon to have a large set
of flows and a small set of flows arriving at different in-
put ports of a switch and compete for a common out-
put port, due to the nature of multi-rooted tree topolo-
gies commonly seen in data center networks and typical
traffic patterns in popular data center applications such
as MapReduce [8] and Partition/Aggregate [3]. For in-
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stance, in large MapReduce applications, the many map
and reduce tasks are assigned to workers that span a
large portion of the data center network. When a reduce
task initiates multiple TCP connections to different map
tasks, the sources of the flows are likely to reside in dif-
ferent portions of the network. As a result, in any tree-
like topology, it is very likely that these flow sources re-
sult in disproportionate numbers of flows arriving at dif-
ferent input ports of a switch near the receiver. This is
because from any leaf node’s perspective, the number of
nodes that are 2n hops away grows exponentially. For
example, in a simple binary tree, the number grows as
2n − 2n−1.

In the next section, we show the existence of the TCP
Outcast problem under many different scenarios. In
Section 4, we discuss the reason for this Outcast prob-
lem in more detail followed by solutions to fix this in
Section 5.

3 Characterizing Unfairness
In this section, we present experimental results that
demonstrate the throughput unfairness symptom of the
TCP Outcast problem. We extensively vary all the rel-
evant parameters such as traffic pattern, queuing model,
switch buffer size, and TCP parameters to characterize
the conditions for the TCP Outcast problem and their im-
pact on the degree of resulting throughput unfairness.

3.1 Experimental Setup
Our data center testbed is configured in a k = 4 fat-tree
as shown in Figure 1, with 16 servers at the leaf-level and
20 servers acting as the switches. The servers are run-
ning CentOS 5.5 with Linux kernel 2.6.18. Each switch
server is equipped with NetFPGA boards acting as a 4-
port Gigabit switch and running OpenFlow for control-
ling the routing. Each NetFPGA card has a packet buffer
of 16KB per port, and all the queues in the NetFPGA
switches use droptail queuing.

Packets are routed in the fat-tree by statically config-
uring the shortest route to every destination. When there
are multiple shortest paths to a destination, the static
route at each switch is configured based on the trailing
bits of the destination address. For example, at ToR
switches, a packet destined to a server connected to a
different ToR switch is forwarded to one of the aggre-
gate switches as decided by the last bit of the destination
address: the right aggregate switch if the bit is 0, and
the left if 1. Similarly, at the aggregate switch, packets
coming from ToR that are destined to a different pod are
forwarded to one of the core switches. The aggregate
switch selects the core switch based on the second last
bit of the destination address. Our routing scheme is in
principle similar to the Portland architecture [19].

To emulate condition C2 in Section 2.3, we used a sim-
ple many-to-one traffic pattern, mainly for convenience,
for most of our experiments. We also used a more gen-
eral pattern (Section 3.2.4) to show many-to-one pattern
is not a necessity.

The many-to-one traffic pattern naturally leads to
sources placed at different distances. For instance, con-
sider the fat-tree topology in Figure 1 (same is true with
other multi-rooted tree topologies such as VL2). From
the perspective of any receiver, the senders belong to 3
classes—senders under the same ToR (2-hop), senders
in the same pod (4-hop), and senders in different pods
(6-hop). The senders belonging to a particular class are
at the same distance from the receiver. We conducted
experiments under different scenarios with 15 senders
(S1-S15) as depicted in Figure 1, each of which initi-
ates one of more TCP flows to a single receiver (labeled
Dest), and measured the TCP throughput share achieved
by different flows. Note that in all experiments, unless
otherwise noted, we only consider the throughput share
obtained by individual flows when all flows are active.

We used the default values for all TCP parameters
except the minimum round-trip timeout (minRTO). The
TCP minRTO value is set to 2 milliseconds to overcome
the adverse effects of TCP incast congestion [22]. We
disabled TCP segmentation offload since that would have
further increased the burstiness of TCP traffic and proba-
bly increased unfairness. We experimented with different
TCP variants (Reno, NewReno, Bic, Cubic) and obtained
similar results. Due to page limit, we present results un-
der TCP Bic for experiments conducted on our testbed
and under NewReno for ns-2 simulations.

3.2 Throughput Unfairness Results
We start with the simplest base case where one flow from
each sender is initiated to the destination, and show that
it results in the TCP Outcast problem. We then show
that the problem exists even if (1) there is disparity in
the number of competing flows arriving at different input
ports; (2) flows do not start simultaneously, unlike the in-
cast [25] problem; (3) the bottleneck link is in the core of
the network; and (4) there is background traffic sharing
the bottleneck link.

3.2.1 Case I – Multiple Flows
In this case, multiple long-distance flows, one from each
sender node six hops away, arriving at port p2 of ToR0,
and one flow from sender S1 (flow 1), arriving at port p1
of ToR0, compete for output port p0. Figure 3 shows the
instantaneous throughput achieved by individual flows
within the first 0.5 seconds when there are two, six, and
twelve 6-hop flows, respectively. The y-axis for each
flow is offset by 500, 300, and 150 Mbps respectively
so that the instantaneous throughput per flow is clearly
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Figure 3: Instantaneous throughput in case of one 2-hop flow and multiple 6-hop flows
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Figure 4: Average throughput in case of one 2-hop flow and multiple 6-hop flows

visible. Figure 4 shows the corresponding aggregate
throughput of flow 1 and the average aggregated through-
put of all the 6-hop flows within the first 0.1, 0.2, and 0.5
seconds.

Figure 3(a) shows that with 2 6-hop flows, flow 1 gets
higher than average share in the beginning, but is occa-
sionally starved by other flows after 0.1 seconds (due to
reasons explained in Section 4). Figures 3(a)-3(b) show
that as we increase the number of long-distance flows
to six and twelve, flow 1’s throughput becomes increas-
ingly worse and practically starves compared to the rest.
Overall, the aggregate throughput of flow 1 is 2× and 7×
worse than the average throughput of the six and twelve
6-hop flows, respectively.

3.2.2 Case II – Different Flow Proportions
Figure 4(c) shows the throughput unfairness when one
2-hop flow at one input port competes with twelve 6-hop
flows at the other input port for access to the output port
at switch ToR0. To explore whether the problem per-
sists even with different numbers of flows competing, we
experiment with different proportion of flows arriving at
the two input ports p1 and p2 of switch ToR0. For all
these experiments, we fix the total number of flows to be
twelve.

Figure 5 shows when 2 flows arrive at port p1 and 10
flows arrive at port p2, the average throughput of the 2-

hop flows is 4× worse than that of the 10 6-hop flows.
The difference further improves to 2× and 1.3× when
the proportion of two classes of flows is evened out to
4:8 and 6:6 2-hop and 6-hop flows. In summary, as the
number of 2-hop flows that compete with 6-hop flows
increases, the inverse RTT bias decreases somewhat but
does not diminish completely.

3.2.3 Case III – Unsynchronized Flows
One could perhaps conjecture that that throughput unfair-
ness observed so far may be because all flows are starting
at the same time, similar to the TCP Incast problem. In
order to verify whether this is a requirement, we experi-
ment with staggered flow arrivals. We again consider the
same thirteen flows (one 2-hop and twelve 6-hop flows)
as in Figure 4(c), but instead of starting all flows at the
same time, we stagger the start time of the 2-hop flow
to be 100ms before, 100ms after, and 200ms after the
6-hop flows. In Figure 6, we can observe that the 2-
hop flow obtains significantly lower throughput even if
it starts 100ms before the 6-hop flows, which allows it
sufficient time to ramp up to a larger window. It appears
that once the 6-hop flows begin, the 2-hop flows expe-
rience starvation as in Figure 4(c). In Figure 6(a), we
can clearly observe the throughput disparity between the
2-hop flow and 6-hop flows increases with time as the
impact of the initial gains due to initial higher window
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Figure 5: Average throughput in case of fixed total number of flows with different proportion of 2-hop and 6-hop flows
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Figure 6: Average throughput in case of different start times for the 2-hop flow

reduces over time.

3.2.4 Case IV – Distinct Flow End-points
So far, we have mainly experimented with the many-to-
one traffic pattern. In order to show that this is not fun-
damental to TCP Outcast, we use a different traffic pat-
tern where the 2-hop and 6-hop flows have different end-
hosts, as show in 7(a). Here, the bottleneck link lies be-
tween the aggregate switch and the ToR switch, which
is again different from TCP Incast. Figure 7(b) shows
that unfairness persists, confirming that TCP Outcast can
happen in aggregate switches and does not rely on many-
to-one communication. Further, as shown in the previous
section, these flows need not be synchronized. Together,
these non-requirements significantly increase the likeli-
hood of observing the TCP Outcast problem in produc-
tion data center environments.

3.2.5 Case V – Background Traffic
Since many different applications may share the net-
work fabric in data centers, in this experiment, we study
if background traffic sharing the bottleneck switch can
eliminate or at least mitigate the Outcast problem. We
generated background traffic at each node similar to the
experiments in [13], by injecting flows between random
pairs of servers that follow a probability distribution of
flow sizes (inferred from [13]). The network bandwidth
consumed by the background traffic is controlled by the
flow inter-arrival time. Specifically, if we want B back-
ground traffic, given a mean flow size F , the mean flow
inter-arrival time is set as F/B, and we create an ex-

ponential distribution of flow inter-arrival time with the
calculated mean. In this experiment, we also generated
two 4-hop flows to confirm that there is nothing specific
about 2-hop and 6-hop flows contending.

Figure 8 depicts the resulting average throughput for
one 2-hop flow, two 4-hop flows, and twelve 6-hop flows
under different amounts of background traffic. Clearly
the presence of background traffic affects the average
throughput of every flow. But the extent of unfairness
is not mitigated by the background traffic completely. In
particular, the gap between the throughput of 2-hop flows
and 6-hop flows remain 4× and 2.5× under background
traffic of 10%, 20% of the bottleneck link capacity (1
Gbps) respectively. Only when the background traffic
reaches 50% of the bottleneck link capacity, the unfair-
ness seems to taper off, that too after 0.2 seconds.

3.2.6 Case V – Other Experiment Scenarios
In addition to the abovementioned scenarios, we also
vary other parameters such as buffer sizes and RTT on
the TCP Outcast problem.

Buffer size. We found that changing the buffer size
does not have a significant effect on the TCP Outcast
problem. A bigger buffer size means that the it would
take longer for the queue to fill up and overflow but it
eventually happens. In our testbed, we have tried with
two sets of buffer sizes of 16KB and 512KB and found
that the unfairness still persists. Using ns-2 simulations,
we simulated different buffer sizes of 32, 64, 128KB, and
found similar results.
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Figure 8: Average throughput of 2-hop, 4-hop, and 6-hop flows under background traffic
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Figure 7: Two applications sharing a network bottleneck

RTT. We simulate twelve flows from one 4-hop server
and one flow from the other 4-hop sender (all flows have
the same RTTs). We observed that the TCP Outcast prob-
lem still exists and the single flow is starved for through-
put. Thus, it appears the number of flows on the ports, as
opposed to the RTT differential, impacts the unfairness.
Multiple ports contending. In the test bed, we mod-
ified routing so that we have flows coming on 3 input
ports and going to one output port. Even in this case, the
TCP Outcast problem is present. In ns-2, we have exper-
imented with even more input ports (e.g., 6-pod, 8-pod
fat-tree, VL2 [13] topology) and found that the outcast
porblem exists.

4 Explaining Unfairness
Routers and switches with droptail queues have been
known to suffer from the lockout problem, in which a
set of flows experience regular packet drops while other

flows do not. Floyd et al. [9] have demonstrated that
TCP phase effects can lead to these lockouts where pack-
ets arriving at a router after certain RTTs find the queue
to be full and hence are dropped. TCP phase effect was
studied in the context of the Internet and RTT was the pri-
mary factor in determining which flows will suffer from
droptail lockout.

In this section, we demonstrate the existence of a dif-
ferent phenomenon called port blackout in the context
of data center networks. Port blackout is defined as the
phenomenon where a stream of back-to-back packets ar-
riving on multiple input ports of a switch compete for
the same output port, and packets arriving on one of the
input ports are dropped while packets arriving on the
other input ports are queued successfully in the output
port queue. Port blackouts occurs when the switch uses
droptail queue management policy.

In the following, we explain how port blackouts can
occur in data center networks. We also corroborate our
observation with ns-2 simulations with configurations
identical to our testbed. We then introduce a drop model
using ns-2 simulation to demonstrate the effects of port
blackout on TCP throughput. We end with insights into
how port blackout can be prevented in data center net-
works.

4.1 Port Blackout in Data Center Testbed
Figure 9 schematically depicts the timeline of events oc-
curring at a switch amidst a port blackout episode. A
stream of packets A1, A2 and A3 arriving at port A and
B1, B2 and B3 arriving at port B are competing for out-
put port C which is full. Since most of the competing
flows are long flows, their packets are of the same size,
which means the time spent by each of the frames is the
same on the wire. Now, since these packets arrive on
two different ports, they are unlikely arriving at exactly
the same time (the ports are clocked separately). How-
ever, the inter-frame spacing on the wire is the same for
both ports, since there are back-to-back packets (assum-
ing the senders are transmitting many packets) and no
contention from any other source on the Ethernet cable
(given switched Ethernet). Now, due to the asynchronous
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Figure 9: Timeline of port blackout

nature of these packet arrivals, one port may have pack-
ets slightly ahead of the others, e.g. in Figure 9, port B’s
packets arrive just slightly ahead of port A’s packets.

After de-queuing a packet C1, the output port queue
size drops to Q − 1. Now, assuming packets from B ar-
rive slightly ahead of A, packet B1 arrives at port B next
(denoted by an arrow on the time line), finds queue size
to be Q − 1, and is successfully enqueued in the output
queue making it full. Next, packet A1 arrives at port A,
finds the queue to be full, and hence gets dropped. The
above pattern of consecutive events then repeats, and A2
as well as A3 end up with the same fate as its predecessor
A1. This synchronized chain of events among the three
ports can persist for some time resulting in a sequence of
packet losses from one input port, i.e., that port suffers
a blackout. Once the timing is distorted, either because
there is a momentary gap in the sending pattern or due
to some other randomness in timing, this blackout may
stop. But, every so often, one of the ports may enter
into this blackout phase losing a bunch of consecutive
packets. We note that either of the input ports can ex-
perience this blackout phenomenon; there is no intrinsic
bias against any one port.

To investigate the existence of port blackout in our
data center testbed, we collected the traffic traces close
to output port p0 and input ports p1 and p2 of switch
ToR0 during the experiment in Figure 4(c). The trace at
port p1 consists of a stream of back-to-back packets from
server S1 which is under the same ToR0. The trace at
port p2 consists of packets from servers that are located
outside ToR0. Both these streams of packets are meant
to be forwarded toward output port p0 and hence, com-
pete with each other. Correlating these two traces with
the traffic trace at output port p0, we can infer the set of
packets that were successfully forwarded and the set that
were dropped.

Figure 10(c) shows the timeline of packets success-
fully sent and dropped at port p2 (for 6-hop flows) and
port p1 (for 2-hop flows) of switch ToR0 during the
experiment. When port blackouts happen, we can ob-
serve clusters of packet drops. To see the detailed timing
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Figure 11: Distribution of consecutive packet drops
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of packet events during blackouts, we zoom into small
time intervals. Figure 10(a) depicts a small time in-
terval (about 500 microseconds) when port p2 carrying
the flows from servers outside ToR0 experiences a port
blackout, during which packets from port p1 are success-
fully sent while consecutive packets from port p2 are
dropped. Figure 10(b) depicts a similar blackout event
for port p1. While we highlight a single incident of
port blackout here, Figure 11 shows the distribution of
episodes with k consecutive packet losses. As we can
see, the 2-hop flow experiences many more episodes of
3 and 4 consecutive packet drops than the 6-hop flows.

4.2 Port Blackout Demonstration in ns-2
While the traces above give us some insight that black-
outs may be happening, due to inaccuracies in timing we
only get rough insights from the above trace. In order to
understand this even more closely, we resort to simula-
tions in ns-2. In simulations, we can easily observe the
changing value of the dynamic output port queue size and
the exact timing of how it correlates with packet enqueue
and dequeue events. We simulate the same experiment,
i.e., same fat-tree configuration and same traffic pattern,
in ns-2. Figure 12 depicts the exact timeline of different
packet events, enqueue, dequeue, and drop, correspond-
ing to the three ports.

For each port (right y-axis), packet enqueue events,
packet drop events, and packet dequeue events are
marked. The left y-axis shows the queue size at any given
instant of time. The queue dynamics is shown for one of
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Figure 10: Blackout behavior observed in droptail queues

the intervals during which in-port1 is suffering from an
port blackout episode. Consider the interval between 68
and 69 (*10 microsecond). First, a packet arrives at in-
port1. But the queue was full (Q-size 30) at that instant
as denoted by the square point. As a result this packet
at in-port1 is dropped by the droptail policy. Soon after
that, a packet is dequeued from the output queue and now
the queue size drops to 29. Next, a new packet arrives at
in-port2, and is accepted in the queue making the queue
full again. This pattern repeats and in-port1 suffers from
consecutive packet drops, leading to an episode of port
blackout.

emac

4.3 Effect of Port Blackout on Throughput
We have explained the root cause for the port blackout
phenomenon in previous sections using real traces col-
lected from our data center testbed as well as using the
ns-2 simulations. In this section, we present a simulation
model to help us understand the impact of port blackout
on the throughput of TCP flows. More specifically, we
want to analyze the relationship between the number of
flows on an input port (that experiences blackout) and the
impact on their TCP throughput due to port blackout.

We simulate a simple topology in ns-2 consisting of a
single sender node (node 1) and a single receiver node
(node 2) connected via a switch. To simulate the port
blackout behavior, we modified the droptail queue at the
switch to operate in two states. In the ON state, it drops
all packets that it receives from node 1. In the OFF state,
it does not drop any packet. The queue toggles from OFF
to ON state after every k seconds, where k is chosen from
an exponential distribution with a mean of 0.005 sec-
onds, which is the approximate time period between two
blackout periods we observed in our testbed. It remains
in ON state for a fixed duration that corresponds to m
consecutive packet drops. Note that an ON state does not
necessarily correspond to m actual packet drops; it is the
time duration in which the switch would have dropped m
consecutive packets. In other words, we only drop con-
secutive packets if they appear back-to-back during the
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Figure 13: Effect of consecutive packet drops on TCP

ON state.
Using this drop model, we study the impact of the

length of ON duration on the throughput of f TCP
flows from node 1. Figure 13 shows the aggregate TCP
throughput (on y-axis) of f flows, as the number of con-
secutive packet drops m (on x-axis) varies. We observe
that when there are 7 or more flows, port blackout, i.e.
consecutive packets drops during ON state, only affects
the throughput of the flows slightly, even as m grows
to 10. This is because packets dropped in the ON state
are spread across the flows and each flow can recover
quickly from few packet losses due to fast retransmis-
sion. However, when there are few TCP flows, the con-
secutive packet drops have a catastrophic effect on the
TCP throughput of the flows, because the flows may
timeout which reduces the congestion window signifi-
cantly.

5 Mitigating Unfairness
The root cause of the TCP Outcast problem in data cen-
ter networks is input port blackout at bottleneck switches
happening due to the droptail policy of the output queue,
which has a drastic effect on the throughput of the few
flows that share the blackout input port. Hence, the key to
solving the TCP Outcast problem is to distribute packet
drops among all competing flows (for an output port) ar-
riving at the switch to avoid blackout of any flow.

In this section, we study three approaches that all
achieve this goal, but via rather different means. The first
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(b) SFQ
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Figure 14: Distribution of consecutive packet drops under RED, SFQ, and TCP pacing solutions
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Figure 15: Average throughput under RED, SFQ, and TCP pacing solutions

approach includes two solutions that directly get rid of
the droptail packet drop policy, by replacing it with RED
or SFQ. The second approach, TCP pacing, tries to alle-
viate burstiness of packets in each TCP flow (i.e., win-
dow), and hence potentially reduces bursty packet loss
for any particular flow. The third approach avoids port
blackout by forcing flows with nearby senders to detour
to take similar paths as flows with faraway senders so that
their packets are well interleaved along the routing paths.
We evaluate the effectiveness of each approach and fur-
ther discuss their pros and cons in terms of implementa-
tion complexity and feasibility in data center networks.

5.1 RED
RED [10] is an active queue management policy which
detects incipient congestion and randomly marks packets
to avoid window synchronization. The random marking
of packets essentially interleaves the packets from differ-
ent input ports to be dropped and hence avoids blackout
of any particular port. We simulate the RED queuing
discipline in ns-2 with the same configuration as Fig-
ure 4(c), with 12 6-hop flows and 1 2-hop flow destined
to a given receiver. In our setup, we use the classical
RED policy, with the minimum threshold set to 5 pack-
ets, the maximum threshold set to 15 packets, and the
queue weight set to 0.002.

Figure 14(a) shows the distribution of different num-
ber of consecutive packet drops for 2-hop and 6-hop
flows (since there are multiple 6-hop flows we take an
average of all the twelve flows). We observe that the con-

secutive packet drop events are similar for 2-hop and 6-
hop flows. More than 90% of packet drop events consist
of a single consecutive packet loss, suggesting that black-
outs are relatively uncommon, and all the flows should
have achieved a fair share of TCP throughput. However,
Figure 15(a) shows a difference in average throughput
between 2-hop and 6-hop flows. This is explained by the
well-known RTT bias that TCP exhibits; since the 2-hop
flow has a lower RTT, it gets the a larger share of the
throughput (TCP throughput ˜ 1

RTT×
√

droprate
). Thus,

we can clearly see that RED queuing discipline achieves
RTT bias but does not provide the true throughput fair-
ness in data center networks.

5.2 Stochastic Fair Queuing
In this section, we consider stochastic fair queuing or
SFQ [17], which was a queuing policy introduced to pro-
vide fair share of throughput to all the flows arriving at
a switch irrespective of their RTTs. It divides an out-
put buffer into buckets (the number of buckets is a tun-
able parameter) and flows sharing a bucket get their share
of throughput corresponding to the bucket size. A flow
can also opportunistically gain a larger share of the band-
width if some other flow is not utilizing its allocated re-
sources. We simulate the same experimental setup as be-
fore (twelve 6-hop and one 2-hop flow) in ns-2 with SFQ
packet scheduling. We set the number of buckets to 4 to
simulate the common case where there are fewer buckets
than flows.

Figures 15(b) shows the average throughput observed
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by different flows. We see that SFQ achieves almost
equal throughput (true fairness) between the 6-hop flows
and the 2-hop flow. We can also observe in Figure 14(b)
that the 2-hop flow experiences a higher percentage of
consecutive packet drop events (20% of the time, it ex-
periences 2 consecutive drops). Since the 2-hop flow has
a lower RTT, it is more aggressive as compared to the
6-hop flows leading to more dropped packets than those
flows.

5.3 TCP Pacing
TCP pacing, also known as “spacing” or “packet spac-
ing”, is a technique that spreads the transmission of TCP
segments across the entire duration of the estimated RTT
instead of having a burst at the reception of acknowledg-
ments from the TCP receiver (e.g., [1]). Intuitively, TCP
pacing promotes the interleaving of packets of the TCP
flows that compete for the output port in the TCP Out-
cast problem and hence can potentially alleviate blackout
on one input port. We used the TCP pacing in our ns-
2 [23] setup and repeated the same experiment as before.
Figure 15(c) shows that TCP pacing reduces throughput
unfairness; the throughput gap between the 2-hop flow
and 6-hop flows is reduced from 7× (Figure 4(c)) to 2×.
However, the Outcast problem remains. This is also seen
in Figure 14(c), where the 2-hop flow still experiences
many consecutive packet drops. The reason is as follows.
There is only a single (2-hop) flow arriving at one of the
input ports of the bottleneck switch. Hence, there is a
limit on how much TCP pacing can space out the pack-
ets for that flow, i.e. the RTT of that 2-hop flow divided
by the congestion window.

5.4 Equal-Length Routing
As discussed in Section 3, one of the conditions for
TCP Outcast problem was the asymmetrical location of
senders of different distances to the receiver, which re-
sults in disproportionate numbers of flows on different
input ports of the bottleneck switch competing for the
same output port. Given we can not change the loca-
tion of the servers, one intuitive way to negate the above
condition is to make flows from all senders travel simi-
lar paths and hence their packets are well mixed in the
shared links or well balanced between different input
ports. Before discussing how to achieve this, we briefly
discuss a property of the fat-tree network topology that
makes the proposed scheme practical.

In a fat-tree [2] topology, each switch has the same
amount of fan-in and fan-out bandwidth capacity, and
hence the network is fully provisioned to carry the traf-
fic from the lowest level of servers to the topmost core
switches and vice versa. Thus although the conven-
tional shortest path routing may provide a shorter RTT
for packets that do not need to reach the top-most core

switches, the spare capacity in the core cannot be used
by other flows anyways.

Based on the above observation, we propose Equal-
length routing in a fat-tree data-center network topology,
where data packets from every server are forwarded up
to the core switch irrespective of whether the destination
belongs in the same pod of the sender. Effectively, Equal-
length routing prevents the precarious situations where a
given flow alone suffers from consecutive packet losses
(as discussed in Section 3). Since all the flows are routed
to the core of the network, there is enough mixing of
the traffic arriving at various ports of a core switch that
the packet losses are uniformly shared by multiple flows.
Equal-length routing ensures a fair share among multiple
flows without conceding any loss to the total network ca-
pacity. It is simple to implement and requires no changes
to the TCP stack.

Implementation. Equal-length routing can be imple-
mented in a fat-tree by routing each packet to a core
switch randomly or deterministically chosen. Under the
random scheme, the core switch is randomly uniformly
chosen [13]. Under the deterministic scheme, the core
switch is determined based on the destination address as
follows. On our testbed running OpenFlow for routing
control, at the ToR switches, a packet coming from a
server (down port) is forwarded to one of the aggregate
switches (up ports) as decided by the destination address
(e.g., port selection is based on the last bit of the destina-
tion address). Similarly at the aggregate switches, pack-
ets coming from ToR (down) are forwarded to the core
(up) switches and vice versa (e.g., port selection based on
the second last bit of the destination address). Consider
the flow of packets from S1 to the Dest in Figure 1.
Without the Equal-length routing, the packets take the
path S1→ Tor0→ Dest, but under Equal-length rout-
ing, the packets will go through S1→ Tor0→ Agg0→
Core0→ Agg0→ Tor0→ Dest.

Properties. Equal-length routing creates interesting
changes in the dynamics of interactions among these
flows. Under the new routing scheme, all the flows are
mixed at core switches (feasible in a network providing
full-bisection bandwidth) which gives rise to two prop-
erties: (1) The deterministic scheme results in all flows
in many-to-one communication sharing the same down-
ward path, whereas the random scheme results in flows
going to the same destination being well balanced be-
tween different input ports at each switch in the down-
ward paths. Both effects avoid the blackout of any partic-
ular flow; instead, all the competing flows suffer uniform
packet losses. (2) All the flows have similar RTTs and
similar congestion window increases. Together, they en-
sure that competing flows achieve similar true fair share
of the bottleneck link bandwidth.
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Figure 16: Effectiveness of equal-length routing

Evaluation. To analyze the proposed routing scheme,
we implemented Equal-length routing in our data cen-
ter testbed and conducted similar experiments as Fig-
ure 4(c). Other than the new routing scheme, all the
setup was kept the same. We analyze the TCP through-
put achieved by different flows as before. Note that
even though every flow is now communicating via a core
switch, we label them as 2-hop and 6-hop flows for con-
sistency and ease of comparison with previous results.
Figure 16(b) depicts the TCP throughput share between
different flows. We can observe that the flows get a
fair throughput share which is comparable to what they
achieved under the SFQ packet scheduling discipline.
The fair share of throughput can be further explained
from Figure 16(a), which shows that the flows experience
similar packet drops; none of the flows have to suffer a
large number of consecutive packet drops.

5.5 Summary
Table 2 summarizes the four potential solutions for the
TCP Outcast problem we have evaluated. All solutions
share the common theme of trying to break the synchro-
nization of packet arrivals by better interleaving packets
of flows competing for the same output port and hence
evening out packet drops across them. We find that al-
though all approaches alleviate the TCP outcast prob-
lem, RED still leads to RTT bias, and TCP pacing still
leads to significant inverse RTT bias. SFQ and Equal-
length routing provide RTT fairness but have their limi-
tations too. SFQ is not commonly available in commod-
ity switches due to its complexity and hence overhead

Table 2: Fairness property of TCP Outcast solutions
Techniques Fairness Property

RED RTT bias
SFQ RTT fairness

TCP Pacing Inverse RTT bias
Equal-length routing RTT fairness

in maintaining multiple buckets, and Equal-length rout-
ing is feasible only in network topologies without over-
subscription. The final choice of solution will depend on
the fairness requirement, traffic pattern, and topology of
the data center networks.

6 Related Work
Over the past five years or so, data center networking
has received a lot of attention in the research community.
We divide research relevant to our work into two main
categories—TCP problems in data centers and new ab-
stractions for network isolation/slicing. We then discuss
several relevant TCP issues in the Internet context that
people have considered before.

TCP issues in data centers. Much recent work has fo-
cused on exposing various problems associated with TCP
in data centers (already discussed before in Section 2).
The TCP Incast problem was first exposed in [18], later
explored in [22, 7, 25]. Here the authors discover the ad-
verse impact of barrier-synchronized workloads in stor-
age network on TCP performance. [22] proposes several
solutions to mitigate this problem in the form of fine-
grained kernel timers and randomized timeouts, etc.

In [3], the authors observe that TCP does not perform
well in mixed workloads that require low latency as well
as sustained throughput. To address this problem, they
propose a new transport protocol called DC-TCP that
leverages the explicit congestion notification (ECN) fea-
ture in the switches to provide multi-bit feedback to end
hosts. In virtualized data centers, researchers have ob-
served serious negative impact of virtual machine (VM)
consolidation on TCP performance [15, 12]. They ob-
serve that VM consolidation can slow down the TCP
connection progress due to the additional VM schedul-
ing latencies. They propose hypervisor-based techniques
to mitigate these negative effects.

In [11], the authors propose multipath TCP (MPTCP)
to improve the network performance by taking advantage
of multiple parallel paths between a given source and a
destination routinely found in data center environments.
In MPTCP, the sender splits packets of a flow among par-
allel paths dynamically according to the level of conges-
tion in each of the paths. MPTCP does not explicitly deal
with the TCP Outcast problem studied in this paper, and
is complementary to some of the Outcast solutions such
as equal-length routing.
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Network isolation. The second relevant body of work
advocates network isolation and provides each tenant
with a fixed share of network resources [14, 21, 4]. For
example, SecondNet [14] uses rate controllers in hyper-
visor to ensure per-flow rate limits. Seawall [21] uses
hypervisors to share the network resources according to
some pre-allocated weight to each customer. Finally, Ok-
topus [4] provides a virtual cluster and a two-tier over-
subscribed cluster abstraction, and also uses the hyper-
visor to implement these guarantees. Our focus in this
paper, however, is on the flow-level fairness compared to
tenant-level isolation considered in these solutions.

Wide-area TCP issues. While this paper is mainly in
the context of data centers, several TCP issues have been
studied for almost three decades in the wide-area con-
text. One of the most related work is that by Floyd et
al. [9], where they study so-called phase effects on TCP
performance. They discover that droptail gateways with
strongly periodic traffic can result in systematic discrim-
ination and lockout behavior against some connections.
While our port blackout phenomenon occurs because of
systematic biases long mentioned in this classic work and
others (e.g., RFC 2309 [6]), they do not mention the ex-
act Outcast problem we observe in this paper. RTT bias
has also been documented in [9] where TCP throughput
is inversely proportional to the RTT. TCP variants such
as TCP Libra [16] have been proposed to overcome such
biases, but are generally not popular in the wild due to
their complexity. The typical symptom of the TCP Out-
cast problem in data centers is the exact opposite to RTT
bias; a few low RTT connections from nearby servers
experience lower throughput than many high RTT con-
nections from faraway senders in tree-like topologies.

7 Conclusion
The quest for fairness in sharing network resources is an
age-old one. While the fairness achieved by TCP is gen-
erally deemed acceptable in the wide-area Internet con-
text, data centers present a new frontier where it may
be important to reconsider TCP fairness issues. In this
paper, we present a surprising observation we call the
TCP Outcast problem, where if many and few flows ar-
rive at two input ports going towards one output port, the
fewer flows obtain much lower share of the bandwidth
than the many flows. Careful investigation of the root
cause revealed the underlying phenomenon of port black-
out where each input port occassionally loses a sequence
of packets. If these consecutive drops are distributed over
a small number of flows, their throughput can reduce sig-
nificantly because TCP may enter into the timeout phase.
We evaluate a set of solutions such as RED, SFQ, TCP
pacing, and a new solution called equal-length routing
that can mitigate the Outcast problem.
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