
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1986

On Distributions of Run-Times in Distributed Systems On Distributions of Run-Times in Distributed Systems

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Report Number:
86-607

Rego, Vernon J., "On Distributions of Run-Times in Distributed Systems" (1986). Department of Computer
Science Technical Reports. Paper 525.
https://docs.lib.purdue.edu/cstech/525

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972013?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

ON DISTRIBUTIONS OF RUN-TIMES
IN DISTRlBU1ED SYSlEMS

VemonRego

CSD-TR-607
June 1986

ON DISTRIBUTIONS OF RUN-TIMES IN DISTRIBUTED SYSTEMS

Vernon Rego
Department of Computer Sciences

Purdue University
West Lafayette, IN 47907

Abstract

In distributed systems. the inherently variable processing times cannot, in general, be satis

factorily characterized purely by average or worst-case times. These measures are difficult to

interpret when identical inputs show very different processing times, a situation typical of distri

buted algorithms executing on distributed systems. This is due to the nondeteIminisLic nature of

communication, and factors such as network load, reliability, interference, etc. Thus it becomes

important to study Lhe variance of running-times. as a function of various communication param

eters. We propose a simple, yet computationally effective teclmique, to obtain the average

running-time distribution of a distributed algorithm. involving a set of n processors on a local

network.

1. Introduction

It is well-known that the running-time of an algorithm (generally) depends on the size and

nature of its input. An algorithm's behaviour is usually characterized by its average and worst

case running times, for a given input of size n. Such a course is adequate for algorithms and sys

tems exhibiting low variability in processing times, and it can be argued that many known algo

rithms fall in this class. Besides this argument, average (and worst case) times are difficult

enough to obtain and usually rely on such assumptions as equally likely inputs, perfectly random

behaviour, etc. However, an approach that attempts to characterize a disUibuted algorithm's

behaviour (i.e., its ronning-time on a dislributed system) by average and worst-case times fails to

capture the very essence of distributed system behaviour, namely, high variability.

Consider a situation in which M general purpose processors (units) communicate with one

another over a local network:. If n, n 5.M, of these units are simultaneously given a problem at

time ti' and the solution to the problem is obtainable only via mutual cooperation, then the units

must exchange information over the network (using a mutually-agreed upon distributed alga·

rithm), in order that the problem is finally solved at some time 1/. The random time T=t/-ti

will depend on various things, such as the speed and type of local network, speed of the proces

sors, reliability, choice of disUibuted algorithm., nature of the problem, size of n, load on the net

work, etc. In such a situation, it is clear that running-time is highly variable, since variability is

an inherent property of distributed system behaviour, and thus running-time is very poorly

characterized by average or worst-case measures. For example, running-times can be very dif

ferent/or the same input, simply because of network traffic or related phenomena. A mean value

for running-time cannot describe this aspect of the algorithm's behaviour.

Applications involving such problems arise in distributed databases, distributed computing,

network protocols, etc. The exchange of data between computing units chiefly depends on

-2-

(1) the behaviour of the local network (or equivalent) allowing communication between the

computing units. and

(2) the type of algorithms used by the different computing units, bol:h within units and between

units.

In this note, we are interested in the distribution of time required to solve a given problem by

cooperating, but general purpose processors. As a specific example, we choose to work. with a

sorting algorithm on an abstract network.. Such an algorithm has the nice property of being sim

ple. yet sufficient to demonstrate the effects of high variability of processing times on dislributed

systems.

2. The problem definition

Consider a system of n distributed processors that communicate with one another over a

local network, with the intention of solving a given problem. Suppose that each processor j in

the set of processors S = {1 J" ... ,n } is simultaneously loaded with an integer Xj. such that Xj E S I

but j :#.Xj' We assume that the assignment of integers to processors is random, and each

configuration (of assignments) is as likely to occur as every other configuration. As is usually the

case with local networks, we assume that processors are connected over a channel, such as in a

ring or bus network. At any given time, only one processor may successfully utilize the channel.

Given a configuration of integer assigrunents to the various processors in S, we say that pro

cessors i and j are unordered if i < j and Xj > Xj. Let W represent the set of initially unordered

processors, W a subset of S. A distributed algorithm to order the processors is now executed, so

that the set W can be reduced to an empty set by step~wise reduction. When W is empty, we say

that the system is ordered. If at any time IW I=k, then the ordering problem is of size k, and

denoted by P (k).

Let g (n) denote the average running time of the sorting algorilhm for P (n) given that it is

-3-

executed on a single processor. This is equivalent to saying that g (n) is the time taken by the dis

tributed algorithm given that all communication on the network is perfectly reliable, overheads of

communication delay are nonexistent, and only one processor may use the communication chan

nel at any time. For example, if the distributed sorting algorithm is essentially a bubb/esort, then

the algorithm's contribution to g (n) is 0 (n 2).

In the context of distributed control, observe that in using a bubble-sort like algorithm. each

swap no longer takes a constant amount of time (as is the case with sorting in an array). The time

taken by two processors to swap infonnation is highly dependent on the type of local network,

medium access protocol, network loads. reliability, mean response times, etc. As an example, if

the network is a ring network then the mean swap time between two processors is roughly given

by the sum of the expected values of the response times of the two processors involved in the

swap. In order to incorporate reliability, we can say that the swap is successful with a specified

probability r, and unsuccessful with a probability (1- r). In the latter case, the two processors

must tty to swap again (possibly via an alternate route), thus effectively increasing the swap time.

The highly nondetenninistic nature of processing·timcs in dislributed communication

allows us to make the simplifying assumption that the entire system (which is simultaneously

doing many things besides solving this sorting problem) spends a geomelrically dislributed ran

dom time in reducing P(k) to P(k-I), ISk Sn. The random time TA; spent by the system in

reducing P(k) to P(k-I) is assumed to have parameterPA; =rA;lg(k), for k =N ,...•1. Here rk is the

probability that each of the processors involved in solving P(k) will use its network. "slot" (i.e.,

chance to successfully capture and use the channel) towards solving P(k). Thus (I-r,l:J is the

probability that a processor involved in solving P(k) will use its network slot towards something

else. and not involving P(k). When this happens, it naturally takes longer to solve P(k). If lhe

sorting problem is the only load on the system (i.e., an unlikely situation in a local network, for

this means the system is doing nothing else), then rk = 1 for each k E S.

-4-

Observe that for larger values of k the parameter rk will tend to be smaller, meaning that it

will generally take a longer time to reduceP(k) to P(k-I) when k is larger. Correspondingly, 'It.

larger when k is smaller. so that it generally will take a smaller amoWlt of time to solve PCk)

when k is smaller. This can be attributed to the amount of communication involved. When k is

large, more processors are involved in communicating distributed information, and thus the time

taken for them to reach some form of mutual agreement is larger. Not only is network load higher

now, but so is the variability of configurations of relevant (for our algorithm) events. When k is

smaller. this time naturally becomes smaller.

3. Run-time Distribution

The distributed algoriLhm to solve P (n) can be viewed as a system working in phases. In

the initial phase, possibly n processors will have their integers out of order. The processors

decide on the kind of algorithm they will use and then begin to execute it by exchanging informa-

tion. After a certain period of time (depending on the choice of their algorithm) possibly (n - 1)

processors will have their integers out of orner. This begins the second phase. Recall that each

phase takes a geometrically distributed amount of time. Even if two or more processors manage

to arrange themselves (Le., sort themselves based on their respective integers) during the same

phase, we can still assume that this lakes place in different phases via a steady-state "averaging"

argument. This yields a run-time disLribution based on the uni-processor average running-time

g(n). Thus, exactly k phases will be required to solve the problem P (k), k s: n.

The probability that there are (n - k) processors with integers initially out of order is given

by

I I I
Pr[lWI ~n -k]~Pr[lS -WI =k]=-[I--+-+

k! I! 2!
... +(-1)"-' I

(n - k)!
(I)

for k = 0, I. 2, ... ,n. Observe that Pr [IW I = 1] = O. This is known as a matching distribu-

tion, obtained via an application of BooIe's formula.

- 5 -

Given that there are (n - k) processors with integers initially out of order, it takes en - k)

phases of geometrically disttibuted times for them to son themselves in order. Due to the

goemetrically distributed amount of time that the system spends in each phase. the cooperating

set of processors behave in Markov fashion. The system remains in phase 1 with probability

rll _k
(1-#11. _ ,~J = 1- g(n-k) and moves to phase 2 with probability fn _ k. In phase 2 there are

[n - (k + 1)], processors out of order. The system remains in phase 2 with probability

(1-/n _ (k + 1» and moves to phase 3 with probability PlI _ (k + 1). When the system of proces~

SOlS finally leaves phase (n - k), we say that the distributed algorithm has run to completion and

P(n-k) is solved.

Given (n - k) processors with integers out of order, we can define an (n - k + 1) state

Markov chain of the form

where

I

P(n-k+I)=

2

o

3

1

n -k

(2)

I (I-ft. _,) ft.-,
2 (l-P'n -(k +1) Pn -(Ir. + I)

T" -k =

n -k (I-ft,)

is a substochastic matrix, with I - T" _ k nonsingular, and T" _ k e + T 2_k = 1. The vector e

is the unit vector with all enlries set to unity. The matrix P in (2) is used to define the well-

known phase-type distribution [1]. Given that the system begins communicating to solve

P(n-k) (i.e., in phase 1), we use a = (1, 0, 0, ... ,0), an (n - k) vector, as the initial proba-

bility vector, to obtain the probability density {Pm} of the number of steps taken by the distributed

algorithm to complete its execution. The phase-density [1] is given by

- 6 -

Po = 0, and

Pm =a.T:_-A?T:_k.for m ~ 1. (3)

Using (1) and the fact that finite mixtures ofphase-type distributions are also phase-type dislribu-

lions, the running-time distribution of the distributed algorithm is also of phase-type. If the

number of steps required by the distributed algorithm to run to completion is d. then the probabil-

ity that the algorithm runs to completion in m steps is given by

"Pr[d=m]= L Pr[lWI =n-k]Pk
k =0

where for each k. {P,t;} is appropriately defined via T k.

4. Summary

(4)

A simple, yet computationally effective technique for computing the running-time distribution of

a distributed algorithm was presented. We chose to work with a sorting algorithm on an abstract

network to demonstrate the general idea. Since the problem in all its generality is basically

inn-actable, we make an assumption that the system spends a geometrically distributed amount of

time in solving each phase of the entire problem. That is assumption is reasonable follows from

the fact that each time a processor has a chance to use the channel and do its bit towards solving

the current subproblem, a variety of things might happen. The processor might crash temporarily,

or it might use the network to perform another task (solving some other problem that has a higher

priority), or it may communicate with another processor in a manner that prolongs the current

solution phase. The idea presented might be extended to a number of situations. It would be of

some interest to examine the performance of a given algorilhm on different kinds of networks,

since the type ofnetwork (and loads) is bound to affect the algorithm's behaviour.

-7-

References

[1] Marcel F. Neuts, Matrix-Geometric Solutions in Stochastic Models, The Johns Hop

kins University Press, 1981.

	On Distributions of Run-Times in Distributed Systems
	Report Number:
	

	tmp.1307986960.pdf.wXntc

