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Scope and Purpose

In studying the performance of a computer communication system with many queues and
an intellegently allocated resource, it was found that certain conditions regarding the state of the
system could be used to formulate guidelines for assessing the behaviour of the resource, improv-
ing resourcs utilizarion, and minimizing ¢ommunication delay. In parnicular, if the resource
based its service-oriented decisions on the various queue lengths, it was critical to determine
exactly when its decisions were unbiased. This led to 2 series of problems, with the first set inves-
tigated here. We look for conditions under which a single resource (server) in a simple systcm
will find queue lengths that are uniformly distributed (thus forcing the resource to be indifferent
10 queue lengths). In doing so, we present simple probabilistic proefs characterising a class of
single-server queues (see [4]). Addidonaily, it is shown how a queue can be designed so that
equi].ibriuin queue lengths are partly (in a given range) uniformly distibuted, a design that was

essental to the original communication problem.




Abstract

In certain multiqueue systems, a resourceful server may decide on which queue to attend to
next based on criteria that may include the equilibrium queve lengths of some or all quenes. The
server’s decision will be unaffected by queue length only when the distribution of queue length is
uniform. In studying this problem, we present first the simple case of the M/GI/1 queue to deter-
mine conditions under which equilibdum queue lengths can either be wniformly distributed, or
have components that are uniform, and also present a method for designing such a queueing pro-
cess. Itis shown that there is an inherent connection between probability distributions {£; }of the
number of arriving customers during a service that are geometric, and equilibrium queue length
distributions {p;} that are geometric. In particular, we present a simple probabilistic proof via a
recurrence equation that says that the M/M/1 queue is the only M/GI/1 queue with both {k;} and

{p;} geometric.




1. Introduction

An interesung problem in queueing theory is the relationship between arrival and service
processes that interact to yield certain steady-state distributions. For example, in a single server
queue, how can one determine customer interamval and service-time distributions so that given
steady state queuve length and waiting time distributions are obtained, for a siable queue ? The
problem in all its generality is not simple beéause of certain computational problems that arise
with the use of general distributions. In this paper we resirict our atiention to a small class of
M/GI/1 queneing models. Qur motvation lies in describing transition mairices of finite or
infinite M/GI/1 queueing chains thar lead to uniform and geometric steady-stare distributions.
Though we know much abour the M/GI/1 queue at present, resulls that yield qualitaive insights
into its behaviour with simple techniques are scarce. Thus, the results presented in this paper are
praebabilistic and computationally simple, with a focus on understanding characteristics of simple

M/GI/1 processes.

We begin by mentioning a problem that reotivated this work. In modelling a communica-
ton system with two queues and one server, it was necessary o determine the equilibrium queue
length of one queue so that the server could make use of such informadon in scheduling visits to
a second queue. At an exmeme, the behaviour of the server in scheduling such visits couid be
completely indifferent to the contents of the first queue. At steady-state, this would happen only if
the equilibjum distribution of the first queue was the uniform distribution. Narurally, it makes
linle sense to talk about an unbounded queue with such a property. Since the queues found in
computer and communications systems are usually buffered, it remains to determine the kinds of

M/GI/1/K queueing chains that can lead to a uniform queue length distribution.

Such problems as the one just posed are known as inverse problems [1]. In this particular

case, we attempt to determine the characteristics of M/GI/1 processes that lead to equilibrium



.

queue length distributions that are uniform, geometric, or combinations of ll';ese. In the case of
the M/GI/1 queue it is known (see Whitt [2], Karr {3]) that the equilibriumn queue-length distribu-
tion completely characterises the arrival and service processes up o a scale factor. The same can
be said of the equilibrium delay distribution. This is due to the particular structure of the transi-
tion matrix. In what follows, we examine the transition matrices of special M/GI/1 queueing

chains to determine the conditions under which they lead o cenain distributions.

Definition. A discrete disuibution {a; i'= ¢ on the nonnegalive integers satisfying, 0 < a@p < 1,
a; = apf¥, with 1 £{ <o, and B=(Q1-ap) is a geometric distribution with parameter ag,

denoted by G(ao.m)-. A discrete distnbuton {b; }7.o with b; =q; for 0<i <(m—-2), m > 1, and

m=2
bp-1=(1— 3 @;)>0, is a muncate of a geometric distibution, with exactly m terms, denoted by
=0

G(ao ,m).

2. Equilibrium Queue Lengths

In an M/GI/1 queue, let X, be a random variable representing the number of customers
remaining in the queue as the #** cusiomer departs from the system. Then {X, } is a well-known
Markov chain (see for example, Gross and Harris [4}). The arrival rate of customers lo the Isys-
tem is taken to be A, A > 0, and the service-iime distibution is B (*). The probability that j cus-

tomers arrive during an arbitrary customer's service is given by

Y ;
LARCIAPI )

ki =]

0

where for the sake of generality the Sticltjes integral is used. As a convention, we henceforth take
{k;} 1o mean {k;}75. Clearly, {k;} is a distribution on the nonnegative integers. Throughout the
paper, we focus our arention on the class of M/GI/1 and M/GI/1/K chains for which {;} has

special properties, such as being distributed as G (¢t,=) or G(a,N), for 0<o< 1. Note that
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when the queueing chain is finite (i.e., the queue size is restricted), of size ¥, N > 1, the probabil-

ity ransition matrix of the trancate takes the form

N=-2

ko ky ky o0 - 1= 3k
j=0

N=2

ko ky ky - 1= Xk
i=0

N-3

0 ko by 1= 3 k
i=0

N4

0 0 k- 1= 3 &
j=0
P = )

000 - - I-ko |

We first present a characterisation theorem for M/GI/1 queues which effectively says that

equilibrium queue length distibutions that are uniform can be obtained only under very special
conditons, i.e., {k;} is geometrically distributed, the geometric parameter is % , and the queue-

ing chatn is finite. We restrict our atiention to the case where the capacity of the queue is greater
than 1. In the special case where the capacity of the queue is 1, results may be obtained by treat-

ing the system as a special case of the M/GI/K/K queue.

THEQOREM 1
The equilibrium queue length distribution {p; }, withp;=lim P(X, =j)=UN ,0sjsN-1,
A—yea
will exist and coincide with a uniform distribution on {0,1,...N—1} if and only if {k;} is

G (% ), for N > 1, where N is the capacity of the queue.

PROOF
Assuming that a steady-state distribution, p; = lim Pr {X, =j}, for j20, exists is
N —5«

equivalent to assuming that the traffic intensity (4] p satisfics
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p= 3 jk <1 2

j=0

since (2) is a necessary condition for an M/GI/1 queueing chain to be ergodic.

Assume that {p;} is a uniform distribution. It is known [3} that {p;} will be uniform only
when the transition probability matrix for the chain {X, } is doubly stochastic. 1t follows that

F-1l
kj—l"'ZkE:l- jZl, and (3)
i=0

J
ki+ Y k=1, j20 @
i=40

On subtracting (4) frqm (3), we obtain

b =0 21 ®)
Since {k;} defined by (5) is an infinite geometric series, it sums 10 one under the condition that
ko=1-1/2, thus giving the parameter of the distribution {k;} as ko= 1/2. For this value of kq, the
quantry p e\falluates to 1, thus violating (2). Equivalently, the comesponding M/GI/1 chain can-

not have an equilibrium distibution. But, for every integer m, m>1, we have that

m -
2. ko (%)J < 1, ensuring that a distributon {k;} with representation G(% .in) can be used to
j=0

define the m X m probability transition matrix of a corresponding M/GI/1 chain. Consequently,

the Markov chain yielding a uniform equilibrium distribution must be a finite chain,

Conversely, assume that {k;}is G(—;—-.m). for m >1. The m terms of {k;} can be used (o

define an m x m probability transition matrix of an M/GI/1/m chain. Since the queueing chain is
finite, an equilibdum queue length distribudon exists, Since the cr;lumns of the matrix must sum
to uniry, it readily follows that the doubly stochastic matrix must possess an invariant vector
whose components are all equal. Hence, the equilibrium distribution is uniform on

{0,1,..., m-1}
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The above theorem tells us that if a queuing process (possibly within a system of queues) is

10 be constructed so thar the steady-state queue length distribution is to be uniform, then
(a) abufferofsize N, N > 0, must be used 10 limit the queue, and

(b) givena fixed arrival rate A, A > 0, the service-time distribution must be chosen so that

o

-t )
n= [ O gy = oy ! ©)
Ry
forO<m <N -2,

As long as the M/GI/1 queue has finile capacity, it is possible to choose arrival and service
processes that eusuré a uniform distribution for equilibrium queue length. The task of obtaining a
distribution B (-) that satisfies (6) is equivalent (o the Stieltjes moment problem [6]. This result
can be generalised w obtain interesting equilibrium queues by solving the latter problem [5]. The
heighe of the uniform distribution obtained is just the reciprocal of the maximum number of cus-
tomers that can be in the queue at a departure instant, i.e., the system’s capaciry less one. Thus,

the height of the equilibrium distribution falls linearly as a function of the system capacity. Fig-

ure 1 illustrates this behaviour for finite M/GI/1 queues with {f;} having representations G (-% &)

and G(%. 8), respectively. -In the case where {4;} is G(%.df), the probability transition matrix

of the chain is given by

0.5 025 0.125 0.125

0.5 025 0.125 0.125

Ps = 05 025 025
05 05

It would seem natural to ask what other properties of the equilibrium queue length distribu-
tion can be established when {k;} is a geometric series. For example, could {¥;} be an infinite
geometric distribution that caused {p; } to be a non-geometric probability distributdon? Interest-

ingly enough, the answer is in the negative. However, it is possible o force {k;} be of type
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G (cy,i) for j «<i, and of type G(az,oo) forjzi,witha; >0, >0 ,{ > I, to obtain interesting
equilibrium queue length distributions. We present one such construction as a design problem in
this paper. More general constructions and some extensions are discussed in [5]. Some generali-
sations of this approach are mentioned later. Questions in this spirit possess the Aavour of quali-"
tauve analysts and are important in that they allow for an understanding of system behaviour with
the aid of relatively simple methods, possibly even allowing for glimpses of equilibrium

behaviour in more complicared systems.

It turns out thar if {k;} is geometric and ko:-%-, then if the queueing chain is ergodic, the

equilibrium distribution must be a geomerric distribution. This yields a characterisation result for
the M/M/1 queue. In the next lemma, a recurrence equation for M/GY/1 queues is presented, to be

used in the subsequent theorem.

LEMMA 1

If {k;} is distributed as G (¢, =0), and %((X( 1, the equilibrium queue length distribution {p; }
of the  comesponding  M/GI/1 queue is givem by the  recumence
Prnil= (%)pn - (—I-;—a)p,, 1 forn 21, with pg=1- (1—-(-;—‘1—). If 0Sa<1/2, an equili-

brium queue length distribution does not exist.

PROOQOF.
The quantity p is given by
- o ' ) .1_
o=Y k=Y ial-gy =—=

from where the ergodicity condition 0 < p <1 can be seen (o be equivalent to 1/2 <o < 1. Thus,
if 1/2 < e <1, then the equilibrium queue length distribution {p;} of the corresponding M/GI/1

queue exists, and is given by the recurrence
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I n
Pn+l=—pn_p0”cn_ mekn-m-l-l ¢
from which, with a = kg, k, = ko(1— )", we obtain
— 1 i < n—m+1
Prs1= " |Pn -poa(l-a)" — ¥ ppoa(l-o) &
m=1
for n 20. Similarly,
1 ool -
Pn= o |Pn-1 —poa(1-0)* 7 = 3 ppo(l-)* ™7 )
m=1

for n 2 1. From (8) and (9) is obtained the second order recurrence

1 1—
Pasr=(Pn = (5 Pn - (10)

forn 2 I,withpg=1- p=1-(1-01)f0., andp1=po(1/kg-l).

In the next theorem, which characterses the M/M/I queue, it is shown that the equilibrinm
queue-length distribution of an unbounded M/GY/1 queue is geometric if and only if {k;} is

geomemic and infinite, with parameter in the interval (1/2,1).

THEOREM 2

For /2 <a<1, the dismibution {k;} has the representation G (e, =s) if and only if the equili-

brium queue length distribution {p;} of the corresponding M/GI/1 queue has the represemﬁrion

G212,

PROOF
Assume that {k;} is G (a, ), and that 1/2 << 1. From lemma 2 it follows that p <1, so thai an
I«

equilibrium queue-length distribution does exist. Also from lemma 2 we have that pp=1- =

and
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1 1—a
Pr+l = (E)pn - (T)pn -1
for n 2 1, yielding the characteristic equation [7]
az—z+(1-@)=0 €39)
which possesses the roots z =1 and z =(1-¢)/a. Thus, the general solution to the recurrence in

(10) is given by

po=cp a2 12)
In satisfying boundary condilions, we require that
Cl+Cz=1—p (13)
since we know that pp=1-p for M/GI/1 queues, and
2 leaf +eof)=1 14
n=0

since the probabilities must sum to one. From (13) is obtained

(-

C1+€.‘2=1—- p

and from (14) is obtained

. o
C1+C3 2a—1D) =1

solving which yields ¢,=0, and

¢y = (2a0:1) =1— (I;a)

(1-o
o

On making the substitudons for ¢ and ¢5 in (12), with p= , one obtaing

Pa = (1-p)p" (15)
for n 20, which is G (p, ==), and is precisely the equilibdum distribution of an M/M/1 queue.

(1-o)
o

Conversely, assume that (15) holds, with p= , and O<p<I. It follows that

1/2<a< 1. The distribution {k;} defining the probability transition matrix for the corresponding

M/GI/1 queueing chain must satisfy the recurrence of lemma 1, i.e,,
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n
kOPn+1 =PDn _Pokn _plkn - Z Pm kn—m+l (16)
m=2

for n > 0. Given the truth of (15), this is otherwise expressed as

n

kn (PO"‘F I) =Pn = k'ﬂpn-i-i - z (1 —P) Pm kn-m-i-l (1?)
m=2
for n > 0. On comparing (17) with a version of itself with n replaced by (n—1), multiplying this
new version with p, and then subtracting it from (17), we obtain the recumrence

(Po+PDkn —P(Po+P 1) kacy + (1-P)p*kyy =0 (18)
for n > 1, which is easily simplified to yield

by = 22—k, a9
I+p
for n > 1. Since {¥;} is a probability distribution on the nonnegarive integers, it is clear that (19)

defines a geometric series with first term £q= —l-i—- and common raao TEE Thus {k; } has the

. . 1
representation G (¢, «=), with o= 1—:5

An altremate method of showing that {%;} is G (¢, =) is to use the fact that such M/GIL/1 matrices

characteristically satisfy (2]

I e—(x+p): (?u)l 20)
i}

for j 20, and from this is obtained
M

ki = —————
T eyt
= (2D =(-a) o
(T2 =0-0)
where 1> 0 is the mean of the service-lime distribution defined in (1). It follows that {k;} s
G (o, 00).

At this stage, it is clear that the equilibdum queue length distributon {p;} is going to be

geometric as long as {k;} is geometric, with parameter o satisfying 1/2<a< I. Asa—1/2, the
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nrate of decay of the (geometric) equilibrium queue length distribution decreases rapidly, almos:
tending to a uniform distribution. Thus, the steady-state queue lengths ger longer and longer, with
every kind of queue length occurring with nearly the same probability. As o gets arbimrarily close
to 1/2, the queue length distribution gets arbirrarily close to a uniform distrbution. However, this
peculiar property is meaningless when o= 1/2, because it forces the queue length dismibution to
degenerate 10 a sitwation where it does not exist. In queueing terminology, we arrive at p=1,
yielding a chain which is recurrent, and thus one that cannor possibly possess an equilibrium dis-
tribution.

The behaviour described above is graphically illustrated in Figures 2a through 24. In Fig 2a,
®=0.85 (i.e., p=0.176) thus forcing small equilibrium queue lengths with larger probabilities.
Of some interest is the fact that as p decreases to O, the circles and the squares in the figure get
closer and closer together, undl p finally reaches zero, when every circle is made to reside in a
single corresponding square. So as p decreases to O, the {p;} and {%;} distributions converge to
the same geometric distributdon. As p approaches 1/2, larger equilibrivm queue Iengths occur
with larger probabilities, as shown in Fig 2b. The rate of decay of {p;} increases rapidly, but
never does get quite as high as the decay rate of {k;}. Neventheless, there is a balanced interplay
berween the two geometric distributions.

In Fig 2¢, @=0.501 (i.e., p=0.996), with {¥;} falling exceedingly fast, but {p;} falling very
gently. This is made even more visible in Fig 2d, where the same graph is displayed over a
smailer range. In fact, for o.=1/2+¢, with 0 <& <0.001, the line representing {p; } approaches the
horizontal as £ approaches 0, thus making arbitrarily long queues almost as likely to occur as

extremely small queues.
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3. Uniformisation of Queue Lengths

A subject of some interest is the design of queues. More specifically, is it possible to find
arrival rates and service-time combinations that yield a desired steady-state quene length distribu-
tion in an M/GI/1 queue? Though the answer is not simple, such combinations can be found. In
general the task involves the construction of special distribution functions via solutions to the
Steltjes moment problems. In very special cases, however, simple solutions are possible. An

example is presented in the following.

Suppose that we wished 10 construct an M/GI/1 queueing process such that for a given

integer L, L >0, the steady state queve-length distribution {p; } satisfies

c 0<jsL ’1
Pi=) fllc.po. - Pjt ko kgD J>L 1)

where f (-, ..., -) is a functon invelving the recurrence in (7), ¢ is defined by L, and L > 0 may

be chosen arbitrarily. The expression in (21) requires that ¢ =1/(L+1) and {p;} be uniform on

{0,1,...,L}. Applying theorem I, this can be done by choosing %, = %km -1 for
l<m <L ,withkp= % Since {k;} must be a distribudon function function on the nonnega-

tive integers, we require that 3, k; = 1. If we choose k; =apf ~L fore>0,p>0, =L, this
i=0

requirement ranslates into
L=-1 1., = .
TGV e D apth=1 @2)
i=o0 2 i=L
which yields the relation

o= (lz_f- ) 23)

for each fixed L , L > 0. Equation (23) tells us how o is computed for any value of L, given B.

The next step is to determine the range of possible valucs that B can take while stll keeping the
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system stable. Recall that for a stable system, we require p = ¥, j &; < 1. This is simplified to
i=0

give
o L =1 o
Lik= X Jkk+ Tk
i=0 ji=0 i=L
Eol 1y, & . -t
=2 JGY T+ Fjap
i=0 i=L
&+l af L Lo
2k a-p* Q-
_@+D . B L

2L Toka-p 2t @)

=1

=]

which together with the requirement that B > 0, yields the sufficient condition 0 < B < % for an

equilibrium queue length distribution w exist. The quantity p is computed with the aid of (20),
and pg =1 — p. Additionally, from our construction, we know thatp; =1 -p,for1<j<L. It

is now left 10 determine p;, j > L. From the recurrence in (7) is obtained, forz = L,

a-L+1 n

Pn+1=2{Pn—PoaB"_L— > panaprtomrl . ¥ pm(@“"’"*"-} 25)

m=1 m=n-L +2

which after formal manipulation gives

1
pL+1=2(l—-p)[lf"2—2CL+'2-L—] (26)
=3 +2(1 = p) [ —— —1/4—a—20p] @D
PL+2—2PL+1 ( —P) 2L+1 a -
and
Pn +1 =2{Y0Pn FNPr -1+ Pn-2FT V. LPn—L +1 +'{4.LPn—L} (28)

forn 2 L + 2. The constants in (28) are

_B (Bt B
o 1
Be=GF o, md g =o - 29)

We see that even though it is impossible to have equilibrium qucue length distributions that
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are both infinite and uniform, it is possible 1o have queue length distributions that are uniform in
a finite interval, and either zero elsewhere (i.e., a finite queue), or tending to a geometric distribu-
tion. The geometric tendency for the @il is evident from the figures as well as from numerical
verification. One plausible explanatdon for this is as follows. In (28), observer that for large L,
the quantites ys . and vy, are negligible. Thus, for large L, (28) reduces to a recurrence in which
Pn+1 depends only on p,. p,-; and p,—. If additonally, the quantity J is very small, the effect of
Dp-2 00 P, it (28) may be ignored, consequently yielding a second-order recurrence. Under nice
boundary conditions, this is equivalent 1o a geometric distribution. However, when [ is not negli-
gible, the recurrence still involves p,—;, and the resulting characteristic equation for the
recurrence will be a cubic polynomial. This will yield a solution that is a mixture of two exponen-
tials, which shows itself in the tail of the dismpuﬁom

In Fig 3a is shown a dueue designed so that the first three queue-length pro'babilities (ie.,
Do P 1-, and p, ) are all equal, but the rest are not. Note that the manner in which the gueue was
designed ensures thar the empty queue also oceurs with the same uniform probability. If more
queue states are required to have the same uniform probability, this probability must fall, as is

shown in Fig 3d for the case of the first four queue-length probabilities.

4. Concluding Remarks

It may seem both remarkable and yet understandable that vastly different equilibrium queue
lengths can occur with almost the same probability, for M/GE/1 type queues. This uniformisation
of queue-length arises, though, only when p gets arbitrarily close to 1, or when the process is sub-
ject to heavy traffic. Some extensions of the above example are of interest, such as when {k;} is
made up of a "pieced-together" combination of n geometric distributions instead of just two. If

some of the distributions used have a commeon ratio of 1/2, the resulting equilibrium queue length
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distribution will have corresponding uniform portions, which allernating with geometric portions,

yield interesting geo-form distributions.
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Figure 3a (Geometric-Uniform(3) combinaton with p=0.888 )
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Figure 3b (Geomewric-Uniform(4) combination with p=0.937 )
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