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Scope and Purpose

In srudying the performance of a compUler communication system with many queues and

an intellegently allocared resource, it was found mat cenain conditions regarding the state of the

sySl.em could be used to formulate guidelines for assessing the behaviour of the resource. improv-

ing resource utilization, and minimizing communication delay. In particular, if the resource

.
based i[5 service-orienred decisions on me various queue lengths. it was critical to determine

exactly when i[5 decisions were unbiased. lbis led to a series of problems, wim the first set inves-

tigared here. We look for conditions under which a single resource (server) in a simple systcm

will find queue lengths that are uniformly distributed (thus forcing the resource to be indifferent

to queue lengths). In doing so, we present simple probabilistic proofs characterising a class of

single-server queues (see [4]). Additionally, it is shown how a queue can be designed so that

equilibrium queue lengths are partly (in a given range) uniformly disaibured. a design that was

essential to the original communication problem.



Abstract

In cenain multiqueue systems, a resourceful server may decide on which queue to aucnd to

next based on criteria mat may include !.he equilibrium queue lengths of some or all queues. The

server's decision will be unaffected by queue length only when the distribution of queue length is

uniform. In studying this problem, we present fin;t the simple case of the WGIII queue to deter

mine conditions under which equilibrium queue lengths can either be uniformly disuibuted, or

have components that are uniform, and also presem a method for designing such a queueing pro

cess. It is s~own that there is an inherent connection between probability disuibutions {kj } of the

number of arriving customers during a service that are geometric, and equilibrium queue length

distributions {Pj} that are geometric. In panicular, we present a simple probabilistic proof via a

recurrence equation that says that the MJMII queue is the only WGIII queue wilh balh {kj } and

fpj} geometric.



1. Introduction

An interesting problem in queueing theory is lhe relationship between arrival and service

processes that interact to yield cenain steady-state distributions. For example, in a single servcr

queue, how can one determine CUSlQmer imerarrival and service-time distributions so that givcn

steady stilte queue length and waiting time distributions are obtained, for a slable queue? The

problem in all its generality is not simple because of cel1ain computational problems that arise

with the use of general distributions. In this paper wc restrict our anention to a small class of

WGUI queueing models. Our motivalion lies in describing transition matrices of finite or

infinite M/GUI queueing chains that lead to unifonn and geometric steady-state distributions.

Though we know much about the WGUI queue at present, results that yield qualitative insights

into its behaviour with simple techniques are scarce. Thus, the results presented in this paper are

probabilistic ~d computationally simple, with a focus on understanding characteristics of simple

WGUI processes.

We begin by mentioning a problem that motivated this work. In modelling a communica

tion system with two queues and one server, it was necessary to determine the equilibrium queue

length of one queue so mar the server could make use of such information in scheduling visits to

a second queue. At an eXl:reme, me behaviour of the server in scheduling such visits could be

completely indifferent to the contents of me first queue. At ste:lC1y-state, this would happen only if

the equilibrium distribution of the first queue was the uniform distribution. Narur:l1ly, it makes

little sense to talk. about an unbounded queue with such a property. Since the queues found in

computer and communications systems are usually buffered, it remains to determine the kinds of

WGUl/K queueing chains thar can lead to a unifonn queue length distribution.

Such problems as the one JUSt posed are known as inverse problems [1]. In this particular

case, we attempt to detennine the charncleristics of MfGI/l processes that leJd to equilibrium
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queue length distributions that are uniform. geometric, or combinations of lhese. In the case of

the M/GIIl queue it is known (see Whitt [2], Karr [3]) that the equilibrium queue-length distribu-

tion completely characmrises lhe arrival and service processes up [Q a scale factor. The same can

be said of the equilibrium delay distribution. TItis is due to me particular suucture of the trnnsi-

tion matrix. In what follows. we examine the transition matrices of special MJGIIl queueing

chains to determine the conditions under which they lead to cenain distributions.

Definition. A discrete disnibution {adt'= 0 on the nonnegative integers satisfying, 0 < ao < I,

Gi = aopi, with 1 ~ i ~ <><>, and f3=(l-ao) is a geometric distribution wiih parameter ao.

denoted by G (ao. <><». A discrere distribution {bdj':o with bj =aj for 0$ i :::; (m-2), m > 1, and

m-2

b",_l =(1- L Gi» 0, is a rruncate of a geometric distribution, with exactly m terms, denoLCd by
i-<J

2. Equilibrium Queue Lengths

In an M/GIII queue, let XII be a random variable representing the number of customers

remaining in the queue as the nth customer departS from the system. Then {XII} is a well-known

Markov chain (see for example, Gross and Harris [4]). The arrival rate of CUStOmers Lo the sys-

[em is taken to be A., 'A. > 0, and the service·time distribution is B O. The probability that j cus-

tOmers arrive during an arbimuy custOmer's service is given by

- " .
k

j
= f e- (~y dB(t)
oJ·

(1)

where for lhe sake of generality the Slieltjes integral is used. As a convention, we henceforth take

{kj } [0 mean {kj }]:o. Oearly, {kj } is a distribution on the normegative integers. Throughou[ the

paper, we focus our attention on the class of M/GIII and MIGI/IIK chains for which {kj } has

special properties, such as being distributed as G(a.,oo) or G(a,N), for O<a.<1. No[e that
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when the queueing chain is finite (i.e.• the queue size is resmcted), of size N •N > 1. the probabil-

ity transition matrix of the uuncate takes the form

N -2

ko k, k2 I - L kj
j =0

N -2

ko k, k2 1 - L kj
j =0

N -3

0 ko k, 1 - L kj
j =0

N -4

0 0 ko 1- L kj
j =0

p~

000 1- ko

We first present a characterisation theorem for WOlIl queues which effectively says that

equilibrium queue lengrh disrributions that are uniform can be oblained only under very special

conditions. Le.• {kj } is geometrically disuibmed, the geometric parame[er is ~ I and the queue-

ing chain is finite. We resmer OUf attention to the case where the capacity of the queue is greater

than 1. In the special case where the capacity of the queue is 1, resultS may be obmined by tre3[-

ing the system as a special case of the M/OIJKIK queue.

THEOREMl

The equilibrium queue length distribution {Pj}. with Pi = lim P (XII = j) = liN . OSj 5.N-l,,-
will exist and coincide with a uniform disuibution on {Otl,...,N-I} if and only if {kj} is

G ( ~ I N), for N > 1, where N is the capacity of the queue.

PROOF

Assuming that a steady-stale disLribution, Pi = lim Pr {XII = n, for j ~O, exists is
,~~

equivalem to assuming that Lhe traffic intensity [4] p satisfies
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p ~ L j kj < I
j=O

since (2) is a necessary condition for an M/GI/l queueing chain to be ergodic.

(2)

Assume [hat {Pj} is a uniform distribution. It is known [3] that {Pj} will be unifonn only

when the transition probability matrix for the chain {XII} is doubly stochastic. It follows mat

j - I
kj _ 1 + 2: k i =l,

j = 0

j
kj +2: ki=l.

i = 0

On subrracting (4) from (3), we obtain

j ;;:: I, and

j~D

(3)

(4)

(5)

Since {kj } defined by (5) is an infinite geometric series. it swns to one under the condition that

k o= 1-1/2. thus giving the parameter aCthe disuibution {kjl as ko= 1/2. For this value of ko• the

quantiry p evaluates to I, thus violating (2). Equivalently, the corresponding M/GYI chain can-

not have an equilibrium disuibution. Bur., for every integer m, m > 1, we have that

.:i: k o ( ~ ) j < I, ensuring that a disuibution {kj } with representation G (2
1

,m) can be used to
J=O

define the m x m probability transition maaix of a corresponding M/GI/1 chain. Consequently.

the Markov chain yielding a uniform equilibrium disuibution mus[ be a finite chain.

Conversely, assume that {kj } is G (~ ,m), for m > I. The m terms of f}:j} can be used to

define an m x: m probability transition matrix of an M/GI/l/m chain. Since the queueing chain is

finite, an equilibrium queue length distribution exists. Since the columns of the mauix must sum

to unity, it readily follows that the doubly stochasLic mauix: must possess an invariant vector

whose components are all equal. Hence, the equilibrium disuibution is uniform on

{D,I, ... , m-I}.

o
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The above theorem tells us that if a queuing process (possibly within a system of queues) is

to be constructed so that the steady-state queue length dislribution is to be uniform. then

(a) a buffer of size N. N > O. must be used to limit the queue. and

(b) given a fixed arrival rate A.. A. > O. the service-time distribution must be chosen so that

(6)

forQ5m ~N -2.

As long as the MlGII1 queue has finite capacity, it is possible [0 choose arrival and service

processes that ensure a unifonn distribution for equilibriwn queue length. The task ofobtaining a

distribution B (-) that satisfies (6) is equivalent to the Slielljes moment problem [6]. This result

can be generalised IO obtain imeresling equilibriwn queues by solving the laner problem [5J. The

height of the uniform disoibution obtained is just the reciprocal of the maximum number of cus-

tamers thar can be in the queue at a depanure instant. i.e.• llIe system's,capacicy less one. Thus,

the height of the equilibrium distribution falls linearly as a function of the system capacity. Fig~

ure 1 illustrates this behaviour for finite :MJGI/l queues with {kj } having representations G (~ ,4)

and G( ~ ,8), respectively. ·In the case where {kj } is G (~ ,4), the probability trnnsition maoix

of the chain is given by

0.5 0.25 0.125 0.125

0.5 0.25 0.125 0.125
P, ~

0.5 0.25 0.25

0.5 0.5

It would seem natural to ask what other properties of me equilibrium queue lengm disl:ribu-

tion can be established when {kj } is a geometric series. For example, could {kj } be an infinite

geomel:ric distribution mat caused {Pj} to be a non-geomeuic probability distribution? Interest

ingly enough, lhe answer is in the negative. However, it is possible La force {kj } be of type
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G(a!,i) for j <i. and ofrype G(a:z.,oo) for j ;:::i, with 0.1 >0, CXz>O ,i > 1. to obrain imeresling

equilibrium queue length distributions. We presem one such consuuction as a design problem in

this paper. More general constructions and some extensions are discussed in (5]. Some generali-

satiOilS of this approach are mentioned later. Queslions in this spirit possess the flavour of quali- .

tative analysis and are imponant in that they allow for an undemanding of system behaviour wilh

the aid of relatively simple methods. possibly even allowing for glimpses of equilibrium

behaviour in more complicmed systems.

It turns out that if {kj} is geomelric and ko'= ~. men if !.he queueing chain is ergodic. the

equilibrium distribution must be a geomerric disuibution. This yields a characterisation result for

the MJMJl queue. In me next lemma. a recurrence equation for M/GI/1 queues is presented, to be

used in the subsequent theorem.

LEMMA 1

If (kj } is distributed as G(o.,oo), and ~ <0.<1, the equilibrium queue lengIh distribution {Pj}

of the corresponding MIG!!! queue is given by the recurrence

1 I-a I-a
PII+l=(-)PII -(--)PII-l> for n ~1, withpo=l-(--). If OS"aS" 112, an equili-

n a a

brium queue length distribution does not exist.

PROOF.

The quantity p is given by

- - 1-0.
p= Y. ;k,= Y. ;a(l-aY=--. _., ....... . . a

]=0 j=o

from where the ergodici[y condition 0 < p < 1 can be seen to be equivalent [Q 112 < a. < 1. Thus.

if 1/2 < a <I, then the eqUilibrium queue length distribution fp j} of the corresponding MlGIII

queue exists. and is given by the recurrence
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P.+I=f-[P. -PrJ<. - ±Pmk._m+l]
o m = I

from which, with ex = ko, kn = ko(1- cx)t1 , we obtain

P. +1 = ~ [P. -poaCl-a)' - mt Pm aCI-a)" -m + I]
for n ;:: O. Similarly,

P. = ~ [P. _1-poaCI-ar
l

- :~>m a(l-arm]

for n ;:::'1. From (8) and (9) is obtained the second order recurrence

1 I-a
p" -+ 1 = (Ci)Pn - (----a-)Pn-1

forn ~ I.withpo= I-p=I-(I-a)/Cl,andpI=po(llko-I).

(8)

(9)

CIO)

o

equilibrium queue-length distribution does exist,

In me next theorem, which characterises the MIMIl queue, it is shown that the equilibrium

queue-length distribution of an unbounded WOIl1 queue is geometric if and only if (kj } is

geometric and infinite, with parameter in the imerval (112.1).

THEOREM 2

For 112 < a. < 1, the distribution (kj } has the represemation G(a. oa) if and only if the equili-

brium queue length disuibution {Pj} of the corresponding WOI/1 queue has !.he representation

PROOF

Assume that {kj } is G(a,oo), and that 112 <0:< 1. From lemma 2 it follows that p <1, so that an

1--<>
Also from lemma 2 we have thatpo=l- --.

a

and
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1 I-a
PII+I = (-a)Pn - (-a)Pn-l

for n ~ 1, yielding the characreristic equation [7}

Ctz 2 -z +(l-a.)=O (II)

which possesses the roots z = 1 and z =(1- a)/a. Thus. the general solution to the recurrence in

(10) is given by

(I-a)
P =c +c.,[ "]11

/I [ - a

In satisfying boundary conditions. we require that

c\+c2=1-p

since we know that P0= 1-P for lvI/GI/l queues, and

l: [el ar + czo:il = 1
" =0

since the probabilities must sum to one. From (13) is obtained

(I-a)
c\ + '2 = 1--'-'---=

a
and from (14) is obtained

cI+ez a. =1
(2a-l)

solving which yields c 1=0, and

c, = (2a-1) = 1- (I-a)
a a

On making the substitutions for C I and '2 in (12), wilh p= (I-a) ,one obtains
a

Po = (I_p)pO

for n ~O. which is G (p 1 00), and is precisely me equilibrium distribution of an MIMII queue.

(12)

(13)

(14)

(15)

Conversely, assume that (15) holds. wilh p= (I-a) I and a<p < 1. It follows that
a

1/2 < ex < 1. The distribution {kj } defining lhe probability transition matrix for lhe corresponding

M/GIII queueing chain must satisfy the recurrence of lemma I, Le .•
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•
kOPn+l =p" -Pokfl -p1kn - L P",kn-m.+l

".=2

for n > O. Given the truth of (15), this is otherwise expressed as

•
k.(Po+PI)=P. -koP••I- L (l-p)pmk._m+1

m.2

(16)

(17)

for n > O. On comparing (17) with a version of irself with n replaced by (n-I), multiplying this

new version with p . and then sublracting it from (17), we obtain the recurrence

(Po+PI)k. - p(Po+PI)k.• _1+ (I-p)p'k._1 =0

for n > 1, which is easily simplified [Q yie!d

(18)

k. = ---.E.-
1

k._1 (19)
+p

for n > 1. Since {kf } is a probabiliry distribution on the nonnegative integers, it is clear ~at (19)

defines a geometric series with first term k o= _1_ and common ratio -E-. Thus {kj} has the
l+p l+p

representation G (a.,""'), with a= _1_.
l+p

o

An alternate method of showing that {kf } is G(a, co) is [0 use che fact that such M/GUI matrices

characteristically satisfy [21

(20)

for j ~ O. and from this is obtained

kj = (A+~y+1

= (---.E.-)j+1 (~) = (1- aY CJ.
l+p P

where J.1 >0 is the mean of the service-time distribution defined in (1). It follows that {kf } is

At this stage, it is clear that the equilibrium queue length distribution {Pj} is going to be

geometric as long as {kj } is geometric, wil.h parameler 0: s:ltisfying 1/2 < 0: < 1. As O:~ 112. the
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rare of decay of the (geomeuic) equilibrium queue length distribmion decreases rapidly, almosl

tending to a uniform distribution. Thus, me steady-state queue lengths get longer and longer, with

every kind of queue length occurring with nearly the same probability. As ex ge[S arbitrarily close

to 1/2, the queue length distribution gets arbirrarily close [0 a wtiform disuibution. However,this

peculiar property is meaningless when cx.= 1/2. Ixcause it forces the queue length distribution to

degenerare to a situation where it does nOt exist. In queueing terminology, we arrive at p=l.

yielding a chain which is recurrent, and thus onc that C3JU1or possibly possess an equilibrium dis

tribution.

The behaviour described above is graphically illustrated in Figures 2a through 2d. In Fig 2a.

0;=0.85 (Le.• p=O.176) thus forcing small equilibrium queue lengths with larger probabilities.

Of some interest is the [act lhat as p decreases to 0, the circles and the squares in the figure get

closer and closer togedJ.er, until p finally reaches zero, when every circle is made to reside in a

single corres{Xlnding square. So as p decreases to 0, the {Pj} and {kj } distributions converge to

the same geometric distribution. As p approaches 1/2, larger equilibrium queue lengths occur

with larger probabilities. as shown in Fig 2b. The TIl.[e of decay of (Pj} increases rapidly, but

never does get quite as high as the decay rate of {kj }. Nevenheless, there is a balanced interplay

between the two geometric disuibutions.

In Fig 2e, et=0.50l (Le., p =0.996), with {kj} falling exceedingly fast, but {Pj} falling very

gently. This is made even more visible in Fig 2d, where the same graph is displayed over a

smaller range. In fact, for cx.= 1/2+e, with 0 <e < 0.001, the line representing {Pj} approaches the

horizontal as e approaches 0, thus making arbitrarily long queues almost as likely to occur as

extremely small queues.
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3. Uniformisation of Queue Lengths

A subject of some interest is the design of queues. More specifically, is it possible lO find

arrival rates and service-time combinations that yield a desired steady-srate queue length distribu-

tion in an WGIIl queue? Though lhe answer is nO[ simple, such combinations can be found. In

general !:he task involves the consrruction of special distribution functions via solutions to the

Stieltjes momem problems. In very special cases, however. simple solutions are possible. An

example is presented in the following.

SupIXlse mat we wished to consrruct an M/GIII queueing process such that for a given

imeger L. L > O. the steady srate queue-Iengrh distribution Wj} satisfies

{
eO ~ j~ L

Pj = f({e,p., ... ,Pj_I.k••...• kj_d) j > L (21)

where f (..... , .) is a function involving the recurrence in (7), c is defined by L. and L > 0 may

be chosen arbitrarily. The expression in (21) requires mat c =lI(L+l) and {Pj} be uniform on

I
{O.l, .... L}. Applying theorem 1. this can be done by choosing km = Zkm _ 1. for

I < m < L • wiIh k o= ~. Since {kj } mUSt be a distribution function function on the nonnega-

~

rive integers. we require that l: kj = 1. If we choose kj = a lY - L for a > O. ~ > 0 • j ;;:: L. this
j=O

requirement translates into

(22)

(23)

which yields the relation

a.=(I-~)
2L

for each fixed L l L > O. Equation (23) tells us how a is computed for any value of L. given ~.

The next step is to determine the range of possible values that ~ can take while still keeping the
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system stable. Recalllhar for a stable system. we require P = l: j kj _< 1. This is simplified to
j =0

give

'" L-1
l: j kj = l: j kj + l: j kj

j=O j=O j~L

L -1 1. "" .
= l: j(-y+ l + l: jall'-L

j=o 2 j=L

= 1 _ (L + I) + a~ + La
2L (1_~)2 (I-~)

~1_(L+I)+ P ~-.f...
2L 2L(l_~)' 2L (24)

which together with the requirement that ~ > O. yields the sufficient condition 0 < 13 < ~ for an

equilibrium queue length distribution to exist. The quantity p is computed wiIh the aid of (20),

and Po = 1 - p. Additionally, from our construction, we know that Pj = 1 - p. for I :S: j s: L. It

is now left to determine Pj. j > L. From the recurrence in (7) is obcained, for n ;;::. L.

{
.-L+I • 1 }

Pll';' 1= 2 PlI - POa.~lI -L - 2: Pm etW' -L -(71 + 1 - 2: Pm (Z),I -m +2
m=1 m=/I-L+2

which after formal manipulation gives

1
PL + 1= 2 (I - p)[1/2 - 2a + L]

2
3 1

PL +2= 2:PL +1 + 2(1- p)[ 2L +1 -1I4-a-2a~]

and

(25)

(26)

(27)

P. +1 = 2{YOP. + YIP. -I +"!2P. -2 +Y3.LP. -L +1 +Y4.LP. -L} (28)

for n ~ L + 2. The constants in (28) are

YO=%+I.

~ =("!-)L+I_ a13,£ 2 I
(29)

We see that even lhough it is impossible La have equilibrium queue length distributions that



- 13 -

are born infinite and uniform. it is possible [Q have queue length distributions that are uniform in

a finite interval, and eilher zero elsewhere (Le., a finite queue), or tending to a geometric distribu

tion. The geometric rendcncy for !.he tail is evident from the figures as well as from numerical

verification. One plausible explanation for this is as follows. In (28), observer that for large L.

the quantities Y3,L and Y4,L are negligible. Thus, for large L. (28) reduces to a recurrence in which

P,,+l depends only on p", PfI-I and PlI-2. If additionally, the quantity Pis very small. me effect of

P,,-2 on PlI.+1 in (28) may be ignored. consequently yielding a second-order recurrence. Under nice

boundary conditions. this is equivalent to a geometric distribution. However, when pis not negli

gible. the recurrence srill involves PlI-2, and !:he reSUlting characteristic equation for the

recurrence will be a cubic polynomial. This will yield a solution that is a mixture of two exponen·

tials. which shows itself in the tail of th~ distribution

In Fig 3a is shown a queue designed so that the first three queue~len~ probabilities (Le.•

Po. P I, and pz ) are all equal, but the rest are not. Note that-the manner in which the queue was

designed ensures that the empty queue also occurs with me same uniform probability. If more

queue states are required to have the same uniform probability. this probability must fall. as is

shown in Fig 3d for the case of the first four queue-length probabilities.

4. Concluding Remarks

It may seem both remarkable and yet Wlderstandable that vasdy different equilibrium queue

lengths can occur with almost the same probability, for M/GI/I type queues. This uniformisation

ofqueue~/engtharises, though. only when p gets arbitrarily close LO I, or when the process is sub~

ject to heavy traffic. Some extensions of the above example are of interest. such as when {kj } is

made up of a "pieced~together" combination of n geometric distributions instead of just two. If

some of the distributions used have a common ratio of 1/2. the resulLing equilibrium queue length
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distribution will have corresponding wtifoITIl ponions. which alternating with geometric portions,

yield interesting geo-fonn disuibutions.
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0.5 0.5

0.4 0.4

0.3
(Symbol 0) o

0.3
(Symbol 0)

0.2 0.2

0.1

r

2

o
go

DO
o ODD

o 00000
rOy 0 r 0 r 0 r 0 9g ~ ~ ~ 9 0
4 6 8 10 12 14 16 18 20o

o

0.1

Queue-length

Figure 2b (Geometric distribution with a=0.55 )
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Figure 2c (Geornetric/Uniform disoibution with Cl=O.501 )
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Figure 2d (GeometriclUnifonn distribution with 0:=0.501 )



50 50

40 40

{Pj } 30 30 {kj }

(x lOe-2) 0 (x lOe-2)

'0 '0(symbolo) - - (symbol 0)

10••
5 ••• 5

•• ••q III! 1
1
11 ..tl·t·I·EI.lpo'.'.' r r ..

10 .'2:.

o 10 20 30 40 50

Queue-length

Figure 3a (Geometric-Uniform(3) combination with p=0.888 )
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Figure 3b (Geometric-Uniform(4) combination with p~O.937 )
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