
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1990

Visualization of Surfaces in Four-Dimensional Space Visualization of Surfaces in Four-Dimensional Space

Christoph M. Hoffmann
Purdue University, cmh@cs.purdue.edu

Jianhua Zhou

Report Number:
90-960

Hoffmann, Christoph M. and Zhou, Jianhua, "Visualization of Surfaces in Four-Dimensional Space" (1990).
Department of Computer Science Technical Reports. Paper 814.
https://docs.lib.purdue.edu/cstech/814

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4972008?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

VISUALIZATION OF SURFACES
IN FOUR·DIM:ENSIONAL SPACE

Christoph M. Hoffman
Jianhua Zhou

CSD TR·960
May 1990

Visualization of Surfaces in Four-Dimensional Space *

Christoph M. Hoffmann

Jianhua Zhou

Department of Computer Science

Purdue University

West Lafayette, IN 47907

Abstract

We discuss some issues of displaying ~wo-dimensional surfaces in four-dimensional

(4D) space, including the behavior of surface normals under projedion, the silhouette

points due to the projection, and methods Cor object orientation and projection center

specification. We have implemented an interactive 4D display system on z-butrer based

graphics workstations. Preliminary experiments show that such a 4D display system

can give valuable insights into high-dimensional geometry. We present some pictures

from the examples using high-dimensional geometry, offset curve tracing and collision

detection problems, and explain some of the insights they convey.

1 Introduction

The geometry of high-dimensional space has shown to be quite useful in the area of CAGD

and solid modeling. Applications include describing the motion of 3D objects, modeling

solids with nonuniform material properties, and formulating constraints for offset surfaces

and Varonoi surfaces (3, 8, 15]. For inspection and understanding of the properties related to

geometry, pictures are very effecti....e to provide intuitions. Unfortunately it is very hard, if

not impossible, for us to visualize objects in high-dimensional space. Therefore, visualization

of high-dimensional space by means of computer graphics, especially interactively, is a

research topic that attracts growing attention [10, 15].

·Work supported in part by NSF grant CCR 86-19817 and DMC 88·07550 and by the office of Naval

Research under contract N00014-90-J-15!l!l.

1

Visualization of 4D space is a good starting point because not only is it relatively

easy, but also many problems fit naturally into a 4D formulation. For example, describing

3D objects in motion, embedding 3D projective space into affine space, and analyzing

pla-ne curves with complex roots and/or coefficients. Since 4D space has many properties

unfamiliar to us, its visualization is full of problems to be explored.

We briefly review some basic ideas useful in 4D visualization. A solid object in 4D space

is of dimension four. Its boundary is composed of one or more hypersurfaces of dimension

three. In nondegenerate cases, the intersection of two hypersurfaces is a surface of dimension

two, and the intersection of three hypersurfaces is a curve of dimension one. In contrast to

3D space, two surfaces in 4D space generally intersect in a point instead of a curve. Since

human beings have no sense of 4D space, we have to map the 4D solid from 4D space into 3D

space. One method is to intersect the 4D object with a hypersurface (perhaps a hyperplane

normal to one coordinate axis) and get an image in 3D space. In order to perceive the whole

4D object, a series of images with different positions of the intersecting hypersurface would

be needed. Another method is to project the 4D object into 3D space, orthographically or

perspectively. Again, a series of images with different directions of projection is needed.

Both methods must be supplemented with one more intersection or projection step jf we

want to render the 3D image on a conventional 2D device such as a piece of paper or a

computer screen. The intermediate step of mapping objects into 3D can be 50 implemented,

or can be combined with the mapping to 2D into a single procedure.

Eckhart [4] proposes a method to project an object into several planes that are orthog

onal to different pairs of coordinate axes. The 2D images so obtained can be put together

in a systematic way in analogy to the principal views in traditional engineering drawings.

However, since this method only displays curves that are three dimensions lower than a 4D

object, and since the viewer must gather information from different pictures, it may be very

hard to interpret such pictures.

This paper concentrates on the interactive display of two dimensional surfaces in 4D

space, thereafter referred to as 2-surfaces. It is a worthwhile job for several reasons:

1. Some problems are naturally formulated with 2-surfaces in 4D space.

2. 2-sUIface display is an important subtask in visualizing 4D objects.

3. Interactive speeds are possible because of the available hardware on graphics devices.

2

For example, consider the collision detection problem of two .solids moving in 3D space.

Their moving boundaries are hypersurfaces in 4D space. The intersection of the two hy

persurfaces is generally a 2-surface in 4D space. Also, for any curve problem with three

equations in four variables, we can think of two of the equations as the definition of a 2

surface, and consider the third equation as the constraint for a point of the 2-surface to

be on the curve. Displaying the curve and the 2-surface simultaneously is usually easier to

understand than displaying the curve alone.

2-surface display is an important subtask in the visualization of 4D solids. A 4D solid can

be displayed by its boundaries which are hypersurfaces. The projection of a hypersurface

into 3D space is a 3D volume. Basically we have three choices in displaying the 3D volume:

volume rendering, surface rendering, and curve rendering (wire mesh). In volume rendering,

each voxeP corresponds to several points on the hypersurface. It can be reduced into one

point on the hypersurface if we use a hidden hypersurface removal technique, similar to the

hidden surface removal technique used in 3D rendering. To obtain a nontrivial picture, we

need a shading model in 4D space [15]. Although this is an interesting topic, we may want

to eliminate the effect of 4D light while trying to understand the structure of hypersurfaces

as a set of points. On the other hand, rendering a 4D solid by curves shows a wire mesh,

which involves no shading model at all. It is frequently used for displaying surfaces in 3D

space. However, it seems hard to interpret such pictures when they are used for displaying

hypersurfaces of a 4D solid [13]. Rendering a 4D object via surface rendering shows a group

of surfaces placed within a hypersurface, and serves as a bridge between volume rendering

and curve rendering. Surface rendering involves only a 3D shading model [7]. Here, the role

of the 2-surfaces for displaying a hypersurface is analogous to that of curves for displaying

a surface in 3D space. Often we can gain valuable insights from this analogy.

Interactive display is crucial for 4D visualization. After projection from 4D to 3D, and

finally to 2D, a significant amount of information is lost. To compensate, the viewer should

be able to see a real time animation of the object in translation and rotation, controlled

by, say, a mouse. Currently most graphics workstations are designed for 3D rendering, and

use efficient techniques of surface display. Investigating of the relationship between surfaces

before and after projection may lead to efficient algorithms for 4D visualization.

We are experimenting with an interactive 4D visualization system on conventional z·

1 A voxel is a. three-dimensional pixel

3

buffer based graphics workstations. The input 2-surfaces are first polygonalized by algebraic

or space division methods [1]' The polygons in 4D space are projected into 3D space and

then fed into the 3D graphics engine. The method of "polygonalization before projection"

is -more desirable than the method of "projection before polygonalization" for interactive

display. Usually, polygonalization requires more computation. Therefore, polygonalizing

the 2-surface as a preprocessing step means that a better response can be obtained when

changing the projection parameters repeatedly. Moreover, polygonalization in 4D space

can better account for the intriru;ic geometric properties of the 2-surface. Some of these

properties are distorted by the projection to 3D space. We have carefully designed a user

interface which offers position and orientation control of objects, lights, and projection

centers.

The paper is organized as follows. Section 2 deals with intrinsic geometric issues such

as surface normals and silhouettes under projections. Section 3 discusses one aspect of

the user interface, namely, how to extend the Euler angles into 4D space and use these

angles uniformly for object orientation and projection direction specification. In section 4,

several examples are discussed and illustrated with pictures. Section 5, finally, draws some

conclusioru; from this work.

2 Surface Normals And Silhouettes Under Projection

We map a 2-surface in 4D first to a surface in 3D space. Then the surface is rendered on

a 2D device by the standard 3D methods for shading and illumination. To determine the

intensity of the light reflected by a surface in 3D space, it is necessary to find the normal

of the surface at each point. However, the projections of the normals of a 2-surface in

4D do not necessarily coincide with the normal of the projected 2·surface. One way to

find the normal of the projected 2-surface is to calculate it from the equation representing

the projected 2-surface. Another way is to calculate the normal directly from the normal

space of the 2-surface before projection. The latter seems to be more efficient because the

derivation of the equation of the projected 2-surface could be expensive [9].

In this section we discuss in detail how to calculate the normal of the projected 2-surface

from the normals of the 2-surface before projection. Given a 2-surface and a projection,

there are certain points at which the normal space does not determine the normal of the

4

projected 2-surface. We will show that they are exactly those points whose tangent space

is projected into a space of lower dimension, and that they are silhouettes. We also discuss

how to recognize silhouettes.

- A 2-surface S in 4D space (n:t) can be represented either in implicit form:

ft(x,y,z,w) = 0

!2(x,y,z,w) = a

or in parametric form:

x = ftCs, t) z = !J(s, t)

y = h(s, t) w = Ms, t)

At a nonsingular point p on S, there is a unique normal space and a unique tangent

space. The two spaces are orthogonal to each other. Since in 1(.4 both normal space and

tangent space ofa 2-surface have dimension two, both are determined either by two linearly

independent normal vectors nl and n2, or by two linearly independent tangent vectors tl

and t2' For a 2-surface in implicit form, it is easy to find the two normal vectors at a

nonsingular point p:

0, ='Ilft(p)

02 = 'Ilh(p)

On the other hand, for a 2-surface in parametric form, it is easy to find the two tangent

vectors at a point p if the corresponding parameters 05 and t are given:

t _ (8 ft 812 8h 8f4)T
1 - a3' as ' 83 ' 805

t _ (8ft 812 8h 8!4)T
2- at'at'8t'at

A simple method can be used to find two tangent vectors tl and t2 from two normal vectors

nl and n2 and vice versa. Let i, j, k, I be the base vectors of 1(.4, and a, b, c be three

vectors where a = (ax, ay, a.:. aw)T and so on. We define operation ® as:

i J k 1

®(a, b,c) =
a. ay a, aw

b. by b, bw

c. cy c, Cw

5

Obviously ®(a, b, c) is orthogonal to the subspace span(a, b, c) if a, b, c are linearly in

dependent. Given nl and ll2, choose any two vectors a and b such that nl,n2,a,b are

linearly independent. A base of the tangent space is then

In most cases a, b can be chosen from the base vectors, and doing so reduces the needed

arithmetic operations. Sometimes b can be replaced by tl to make tl and t2 orthogonal.

to each other.

A projective mapping v from 'R.4 to n3 can be written as

() ()(P. P, P')Tv P = V pz;,py,pz,Pw = 1 ' 1 ' 1
- rpw - Tpw - rpw

where we assume the center of projection is at 1fr = (O,O,O,lfr)T. It is an orthographic

projection for r = 0 and a perspective projection for r > O. The projection center can be

put into an arbitrary position if translation and rotation in n4 are done before applying v.

Given a 2-surface S and its normal. plane N at a point p, by projection we get their

images in n3 denoted by v(S), v(N), and v(p) respectively. In general. v(N) is of dimension

two and cannot be used as the normal. of'll(S) at point v(p). Fortunately tangency is a

projectively invariant property (see, e.g. (IB]). Hence, a natural method to calculate the

normal of the projected surface is the following:

Step 1: From the two normals, find two tangent vectors tl and t2 as explained above.

Step 2: Project the three points p, p + tIl P + t2 into 1?.3 with the mapping v.

Step 3: Use the cross product to find the normal ii

Ii = [v(p + t1) - v(p)] X [v(p + t2) - v(p)J

To derive a more efficient method, we need to know the relationship of the 2-surface

normals before and after projection. Given a vector a = (az;,ay,az,zw)T in 'R.4, we define

its natural projection into n3 as lTxyz(a) = (az;,ay,uz)T. Given a vector a = (ax,ay,azf

in 1?.3, we define its natural extrusion into 1?.4 as ew(a) = (ax, ay, az, O)T.

Lemma 1 Suppose that tI,t2 (nl,n2) are two linearly independent tangent (normal)

vectors at a nonsingular point p on a 2-surface 5, that v is a projection with center l/r,

and that r = 1fT - p is the ray from the point p to the projection center. Then,

6

(a) if ai = ew(v(p + ti) - v(pn, then Rio til r are linearly dependent for i = 1,2.

(b) if n = !&I(t!, t2,r), then l!'xyz(n) is the normal vector of v(S) at point v(p).

(c) if n = an! + {3n2 satisfying n· r = 0, then l!'xyz(n) is the normal vector of v(S) at

point vIp).

Proof: (a) Since there is no difference for i = 1,2 we drop the subscripts of tj and aj

temporarily. The vector a can be written as:

Then

a =

p,.+l,. ----.&....
1 r(p..,+t..,) - l-rp..,

Py+!¥ _ -E:!....
l-r{pw+tw) l-rpw

~.+<. --"'--
l-rpw+tw) - l-rp..,

o

where

al (1- rpw - rtw)(1- rpw)

"2 -(1- rpw)

Clearly a2 is nonzero because otherwise p is mapped to infinity. Moreover, by choosing the

length of t appropriately, at is also nonzero. For orthographic projection, we can simply

set r =1 and aa = t w , and the proposition is still true.

(b) Let Rj (1 = 1,2) be defined as in (a). Then,

rrxyz(n)· [v(p + til - v(p)] = 0(t" 'z, r)· ai

de'([a" t" tz,rjT)

The determinant is zero according to (a).

(c) n = an! +{3n2 guarantees that n· tl = 0 and n· t2 = O. Together with n· r = 0

we know that n is in the same direction as !&I(tl, t2,r). By (b) the conclusion follows. 0

When the normal vectors of a surface are directly available, the method described in

part (c) of the lemma is quite efficient. This would be the case for definitions of the form

7

f(x, y, z, w) = a g(x, y, z, w). When the tangent vectors are directly available, the method

described in part (b) can be used. This would apply for parametric surface definltions.

Lemma 1 cannot be applied to calculate the normal in all cases. Ifr lies in span(tI , t2),

the calculated n will be a zero vector. This case cannot be avoided with a different choice

of tI, t2 or nI, n2, and is a property of the projection.

We define silhouette points on a surface S with respect to a projection 1/ as those non

singular points whose tangent space reduces dimension under the projection 1/.

Lemma 2 Suppose that tI, t2 are two linearly independent tangent vectors at point p on

a surface, that 1/ is a projection with center l/r, and that r = l/r - p is the ray from p to

the projection center. Then p is a silhouette point with respect to 1/ if and only if tI, t2, r

are linearly dependent.

Proof: First we assume that tI, t21 r are linearly dependent, and so r can be expressed

as linear combination of t I , t2' Let ai (i = 1,2) be the natural extrusion of the vector

1/(p + tj) - v(p). By Lemma 1 (a) ail til r are linearly dependent. Then,

al CtltI+Ct2t2

a2 Pitl + P2t2

Consider the fourth coordinates, alw and a2Wl of the above equations. Then alw = U2w = 0

by definition. But tlw and t2w cannot be both zero because Tw is not zero. So

~O

Hence aI, a2 are in the same direction and so are their natural projections. The direction

will not change if we choose any other pair of vectors within the tangent plane, which means

the tangent plane becomes a line under projection. So p is a silhouette point.

Now assume tIl t21 r are linearly independent. Again by Lemma 1 (a) we have

at = al t l + a2r

a2 PI t 2 +P2r

Since both 0::'1 and PI are nonzero, al, a2 cannot be linearly dependent. The tangent plane

does not reduce dimension under projection. So p is not a silhouette point. 0

8

The picture we actually see is two-dimensional. So we are more concerned with the

silhouette points with respect to a projection from n:t to 7(.2. Define v as:

where IITl and klT2 are the two projection centers. Note that the projection order is

irrelevant: We get the same result mapping first from n4 to the XYZ-hyperplane and then

to the XV-plane, as we obtain by mapping first from n4 to the XYW-hyperplane and then

to the XV-plane.

Lemma 3 Suppose that tI, t2 (nl, n2) are two linearly independent tangent (normal)

vectors at a nonsingular point p on a 2-surface S. that v is a projection from n4 to n2 with

the centers llTl and k1T2. and that rl = IITl - p, r2 = klT2 - p are the two rays from the

point p to the two projection centers. Then,

(a) if ai = ezw(v(p + ti) - v(p», then ai. ti, rl, r2 are linearly dependent for i = 1,2.

(b) p is a silhouette point with respect to v if and only if tI. t2. rl. r2 are linearly depen

dent.

(e) let ml,m2 be two linearly independent vectors in the plane orthogonal to the plane

span(rI' r2), then p is a silhouette point if and only if TIl. 02. fil, m2 are linearly

dependent.

Proof: (a) Since there is no difference for i = 1,2 we drop the subscripts of ti and ai

temporarily.

Then,

where

a

pr+tr pr
1 rdpw+!wl r~(p.+t~) - 1 rlPw r2P~

Py+ty p'!
l-rJ!pw+I",) T~(p~+t~) - 1 rIP", r2P~

o
o

al = [1- Tl(Pw + tw) - T2(Pz + t;:)](l - TIPw - T2P;:)

a2 -(1 - TlPw - T2P;:)

9

0::3 Tltw + TIT2(tzPw - twPz)

0'4 T2tz - TIT2(tzpw - twPz)

Clearly, 0'2 is nonzero because otherwise p is projected to infinity. Moreover, by choosing

the length of t appropriately, al is also nonzero.

(b) First assume that t I , t2, rI, r2 are linearly dependent. Since span(tI' t2) is of di

mension two, we can find another vector b such that rl, r2 each is a linear combination of

tl, t2, b. By (a) we have

aI al tl + a2t2 + 0'3b

a2 .oltI+.o2t2+.o3b

That means aI, a2 lie in the intersection of span(tl, t2, b) and span(i,j). This intersection

must be of dimension lower than two because otherwise span(t I , t2, b) is equal to span(i,j, c)

for some vector c, which causes rI,r2 to be parallel within ZW-plane, and so p is mapped

into infinity. Consequently p is a silhouette point.

Now assume that t I , t2,rl,r2 are linearly independent. Again by (a) we have

al al tI + a2rl + fl3r2

a2 .01 t2 + .o2rl + .oar2

Since both 0:1 and .01 are nonzero, aI, a2 must be linearly independent, and so are their

natural projections into n}. Therefore p is not a silhouette point.

(c) It is sufficient to prove that tI, t2,rl,r2 are linearly independent if and only if

nI, 02, mI, m2 are linearly independent. Assuming that tIl t2, rI, r2 are linearly indepen

dent, they form a base of n4
• Then both Dl and n2 are linear combinations of rl,r2,

and both ml and ffi2 are linear combinations of tIl t2· Therefore 01,02, ml, m2 must be

linearly independent. The converse direction is symmetric. 0

We will explain the application of the above lemma by the examples in Section 4.

10

3 Orientation Specification

3.1 Object orientation specification

Rigid body rotation in 4D space can be expressed by an orthononnal 4 x 4 matrix A called

the direction cosine matrix:

P = ApI

In the equation, p = (Xl Y, z, w)T is a vector expressed in the world coordinate system and

PI = (Xl. YloZl, wdT is the same vector expressed in the body-fixed coordinate system.

Among the sixteen elements in the direction cosine matrix only six are independent. It will

be convenient to specify the orientation of an object by six independent parameters. One

way is to write the direction cosine matrix as a product of six basic rotation matrices. A

basic rotation is a one-parameter rotation within a plane spanned by two coordinate axes.

For example,

1 0 0 0

0 cos (J - sinO 0
Ryz(8) =

0 sinO cos (J 0

0 0 0 1

is a rotation within the plane span(j,k) whose normal plane is span(i,l). The six basic

rotations should be chosen systematically such that the geometric relationship is easy to

explain and easy to remember. We have extended into 40 the Euler angles commonly used

in 3D rigid-body kinematics [17].

3D Euler angles specify the orientation of objects as three successive rotations, first

about the z-axis, then about the x·axis, and finally about the z-axis again. Note that these

axes are body-fixed. If the 3D Euler angles are (h,82 ,83 , the relationship between the world

coordinates p and the body-fixed coordinates Pa is given by:

P = Rxy(8,)Ryz(8,)Rxy(83)P3

vVe conceptualize Euler angles as two separate rotation phases: In the first phase, spec

ified by Rxy(8dRyz(82), the body-fixed z-axis is oriented in n3 and put into its final

position. In the second phase, a single rotation in n2 orthogonal to the already oriented

body-fixed z-axis brings the entire object into its final orientation. Thus the second phase

is expressed as Rxy(83).

11

To clearly distinguish the two phases, we add a number subscript to the rotations,

indicating the subspace that is rotated. Thus the coordinate relationship equation by 3D

Euler angles can be rewritten as:

Note that conceptually RXY3 is a rotation in 113 and RXY2 is a rotation in 1?}, but their

matrix forms are the same if both are written as an n x n matrix, for n > 2.

We extend Euler angles into 114 as follows:

1. Orient the body-fixed w-axis of the object by three rotations in 1l4:

2. Orient the body-fixed z-axis ofthe object in the 3D subspace orthogonal to the already

oriented w-axis, by two rotations in n3 : RXY3(94)RYZ3(9s).

3. Orient the remaining body-fixed x- and y-axes in the 2D subspace orthogonal to the

aheady oriented z- and w-axes, by a single rotation in n2 : RXY2(96).

It is clear that with this conceptualization Euler angle specification can be naturally

extended to any dimension. The Euler angle specification in dimension n + 1 is done

inductively by:

1. Orienting the new xn.+l-axis using n angles.

2. Orienting the n-dimensional subspace orthogonal to the xn.+l-axis with the n·dimensional

Euler angle specification.

Note that the two dimensional Euler angle is simply a single rotation within a plane.

In 4D space, the relationship between the world coordinates p and the body-fixed coor.

dinates Po is:

The rotations caused by each phase are shown in Figure 1. In the following equations

Pi = (Xi, Yi, Zi, wilT is the same vector expressed in the i-th coordinates system, that coin

cides wjth the body-fixed coordinate system at the end of the i-th rotation. Particularly,

pa, Ps, P6 are the coordinates at the end of the three rotation phases, respectively.

12

z,
0,

Z = Zl

YZ = YJ

(al

y

Y6 Ys

L====~·'0,

"

(b)

(e)

13

%

Y3

o
o
o

Y3y

w

Y3 Y,

w,

=
o
o

"
o

c,

o
o
1

Y,

%,

w,

%, %6 %,
Y,

%,
= RxY2(O,)

Y6

%,
w,

=
o
o

o 1 0

o 0 1

Y6

%6

W6

The direction cosine matrix in 1l,4 can also be considered as the world coordinates of

the four base vectors i,j, k, 1of the body-fixed coordinate system at the end of the rotation:

A=

~% Jz: k:z: 1%

~!I j.u ky ill

1% Jz k::. lz

t w iw kw 1w

It is easy to verify that the corresponding Euler angles can be found as follows:

Step 1: Calculate 8lt 82,83 from the fourth column via

I.
- aretan(l)

'=---=/1' +I'V' •82 ::= - arctan(lz)

Vi; + l~ + l~
83 = - arctan(I)

w

Step 2: Left-multiply the third column (kz;. kY1 kz, kw)T by RZW4(-83)RYZ4(-(}2)RxY4(-lh)

to transform it into (k:&'3,ky;pkz3 ,O)T, i.e. the body-fixed vector k expressed in the

third coordinate system. Then calculate 84 ,85 via

(k.,)-arctan
kY3

14

0,
yk2 + k2

%"3 lIa
- arctan(k).,

Step 3: Left-multiply the second column (jr,jy,jz,jwf by

to transform it into (j:t'~ljY~lO,O)T,.i.e. the body-fixed vector j expressed in the fifth

coordinate system. Then calculate (}6 via

86 = - axctaner5
)

J"

Note that steps 2 and 3 can be combined into one by 3D inverse Euler angle formulas

[17]. We stress again the similarity between the rotation chains in n\ n.3 , 'R,2. Within the

rotation chain in nJ (i = 4,3,2), only the angle of RXYi has a full range of 21l', others

are restricted in a range of 11' to eliminate ambiguities. That is why there is no ± before

the square roots. Figure 2 shows the body-fixed vector I and its projections in n.3 and 'R.2.

The angles 81 .82 , 8a can be considered as polar coordinates extended in to n4..
Note that numerical difficulties arise when both the numerator and the denominator in

the argument of arctan are close to zero. This can happen when at least one of the angles

(J2, (J3, (Js is close to k1r (k = 0, ±1, ...), and is a well-known drawback of Euler angles r17].

3.2 Projection Centers Specification

We specify the projection centers in the same way as object orientation. Consider the screen

for display as a rigid body and attach to it a coordinate system (xs, Ys, Zs, we) in such a

way that the first projection center, called the sensor, is along the direction of ws-axis,

and the second projection center, called the eye, is along the direction of zs-axis. Using

Euler angles, the sensor's direction is determined by th, (J2, (J3. In effect, these angles are

polar coordinates extended in 1(.4. The eye's direction is determined by (J4,OS, which are

the usual polar coordinates in 3D, also called the azimuth and incidence angles. The twist

angle, 06 , only affects the orientation of the final 2D picture in the projection plane. In

addition to these angles, the user interface offers other parameters such as the reciprocal. of

the distance from the sensor or the eye to the origin, the field-of-view angle, the distance

15

w

Iw J

-83
z

Ix......
~~.::_--

KXy(J) I,

y

Figure 2: Body-fixed vector 1 and its projections in n.3 and n.2

and the pitch of the front clipping plane. All these quantities are with respect to the

(X6. Y6, Z6, w6)-coordinate system.

4 Examples

4.1 Hypersphere

The unit hypersphere S3 in 'R} has the equation:

If the hypersphere is projected into n3
1 we get an ellipsoid, which contains little information

unless there is a 4D shading model resulting in different intensities at different interior points

of the ellipsoid. A more convenient way to visualize the hypersphere is to mark or color

certain areas on it in analogy to drawing longitude and latitude circles on a sphere 8 2 • We

can obtain the "longitude" and "latitude" on a hypersphere by the Hopf map [11, 14).

(x,y,z,w) ~ (X,Y,Z)

where

X 2(xy+zw)

16

Y 2(xw - yz)

Z = (x' + z') _ (y' +w')

For example, given a latitude Z = a on 8 2, its inverse image on 8 3 is a 2-torus, 8 1 X 8 1 :

2 2 1 +a
x +z --2- 0

, I-a
y2+ W --- 0

2

In Figures 6-8, the inverse images of the latitudes Z = - 4, Z = 0, Z = {f- are represented

by the green, gray and red surfaces respectively. The inverse image of the south and north

poles, Z = -1 and Z = 1 are represented by magenta and blue curves. We also display

x, y, Z, waxes as straight lines of red, orange, green, and blue, respectively. The w-axis is

now invisible because the sensor is positioned on it. The hypersphere is translated by 1

along the positive w-axis so that when the sensor's distance is 2, the hypersphere is mapped

to the whole 'R,3. Figures 6-8 show three snap shots of an animation where the sensor is

moving from infinity towards the hypersphere. The moments shown are when the sensor's

distance is infinity, 3, and 2, respectively. As the sensor approaches, the circumference of

the green 2-surface enlarges significantly while the red one enlarges only moderately. This

animation can be understood by comparing it with an animation in 3D: Look at Figure 6

and consider the surfaces as objects in 3D space. Imagine that your eye is moving on the

y-axis from infinity towards the origin, then you will see a similar animation but happens

in 3D space. Figure 8 also shows how, by using the tilted front clipping plane, some hidden

details can be revealed. See also [11] for a visualization of 4D rotation.

4.2 Offset Curves

Given a curve f(x,y) = 0 in n 2 , its offset curve by distance T > 0 can be formulated by

the envelope method [5, 8] as a set of equations:

g: (x-u)'+(y-v)'-r' = 0

f(u,v) 0

c: '\luvg·t = 0

where

'\luvg

17

IT the parametric form of the curve f is available, the set of equations can be simplified as:

h: (x - u(t))' + (y - v(t))' - T' o

C': (x - u(t))u'(t) + (y - v(t))v'(t) = 0

Note that the condition C' is equivalent to ~ = O. If the greatest common divisor ¢(t) =

GCD(u'(t),v'(t)) is not a constant, the condition C/ can be further simplified as {5]:

C U
: (x - v(t))p(t) + (y - v(t))q(t) = 0

where
v'(t)

p(t) = ¢(t) ,
v'(t)

q(t) =
¢(t)

An implicit equation for the offset curve can be determined by the resultant method [5], or

using Grabner basis [8]. The offset curve can also be traced numerically in 7(,,4 or n.3 by the

method described. in [2].

It is important to note the following points about the envelope method for formulating

offsets:

1. The offset curve may have cusps and/or self-intersections in XV-plane (see Figure 3).

But the singularities often disappear when the curve is traced in higher dimensional

space.

2. The equations may describe additional points which have a distance T from the singular

points on the curve f (see Figure 4).

We tried to explain these phenomena by means of 4D surface visualization. The equa

tions 9 = 0, f = 0 are two hypersurfaces in XYUV-space and their intersection S is a

2-surface. Moreover, at the point p = (x, y, u, v) on S, the two normals are:

n, = \7g(p)

n2 = \7/(p)

= (2(x - v), 2(y - v), -2(x - v), -2(y - v)?

(0 0 al al)T
, 'au' av

They are linearly independent as long as n2 is a nonzero vector since (x - u) and (y - v)

cannot be both zero. The condition C can be rewritten as det(i,j, Dl, D2) = o. If p

is a nonsingular point on 5, by Lemma 3 (c) it is a silhouette point with respect to an

18

,

Figure 3: Curve y - x 2 == 0 and its offset curve by 1

y

",,,,
•,,,

'-~

Figure 4: Curve y2 - x 3 == 0 and its offset curve by 1

19

orthographic projection with two centers along u- and v-axes. The silhouette points form

a curve on the pipe-like surface S in n4 • In Figure 9 and 10 we show the 2-surface S

and the silhouette curve corresponding to the offset curve in Figure 3. In n4 the curve is

smooth without cusps or self-intersections as we can see in Figures 10 from different viewing

direction.

On the other hand, if p is a singular point, then TIl and n2 are linearly dependent, and

so n2 must be a zero vector. Surely condition G is satisfied, but according to our definition

they are not silhouettes. They are exactly the additional points described in the second

phenomenon. In Figure 11 and 12 the 2·surface S and the silhouette curve corresponding to

the offset curve in Figure 4 are shown in different viewing directions. The silhouette curves

are still smooth without cusps or self-intersections. But the 2-surface is not a smooth "pipe".

The singular points form a circle corresponding to the dashed circle in Figure 4.

If the curve f has a parametric form, the offset curve can be traced. in XYT-space. The

two equations h :: 0, ~:: 0 are two surfaces and their intersection is a curve. Note

that ~ :: 0 is equivalent to \lh . k = O. It also means that the intersection curve is the

silhouette on the surface h with respect to a orthographic projection along the t-axis. But

the surface h :: 0 is smooth without any singular points because ~ and ~ cannot be zero

simultaneously and so \]h is always a nonzero vector. The dashed circle in Figure 2 is

actually another branch of silhouette curve as shown in Figures 13 and 14.

If the greatest common divisor ¢(t) is not a constant, the condition \]h . k = 0 is

equivalent to:

¢(t)[(x - u(t))p(t) +(y - v(t))q(t)] = 0

The factor ¢(t) :: 0 represents those silhouette curve branches that are circles resulting

from intersecting the pipe-like surface h :: 0 with the planes t :: tj perpendicular to the

t-axis, where ti's are the roots of ¢(t). The other factor is the same as condition Gil, and

represents the silhouette curve branches corresponding to the offset curve.

4.3 Collision Detection

Cameron [3] proposes an algorithm to detect collisions based on 4D model. The basic idea

is that "if an object can be represented by a set-combination in a eSG scheme. and the

primitive objects can be extruded (into 4D) in this scheme, then the extrusion of the object

is the set-combination of the extrusions of the primitives". The extruded object means the

20

object in motion considered in XYZT-space. Two moving objects collide if and only if the

intersection of their extrusions is nonempty. The problem is then reduced to testing the

intersection of each pair of primitive extrusions. In 3D the primitives can be the half space

to one side of an oriented surface. The extrusion of the surface is a hypersurface in 4D

space.

We discuss some points in the design of an algorithm to test whether two hypersurfaces

intersect. The hypersurfaces are

f(x,y,z,t) = 0, g(x,y,z,t)=O

The intersection is a 2-surface in n4 and can be examined with our visualization system.

Consider a cylinder of radius Tc about the x-axis moving in the positive y-direction

at a constant speed Vc , and a sphere of radius T~ moving in the negative z-direction at

a constant speed v~. At the time t = 0 both are at the origin as shown by the dashed

cylinder and sphere in Figure 5. We consider the 2-surface that is the intersection of the

two hypersurfaces:

(y - v~t)2 +z2 - T~ 0

x2+y2+(z+V~t?_T; = 0

Note that as the radii and speeds change, the topology of the resulting intersection 2-surface

can be quite different. Figure 15 shows the case T~ = T~ = 1, v~ = 0, v., = 1. The green

wire mesh represents the the cylinder at rest, i.e. intersection of the cylinder with the

hyperplane t = O. Since the sensor's position is just a little off the t axis, the intersection

2·surface resembles the sweep of the intersection curve in n3 • Figure 16 shows the case

T~ = 1, T., = 0.7, Vc = 0.2, v., = 1. Since the radius of the sphere is smaller, the intersection

2-surface has two separate components. Figure 17 shows the case r~ = 1, r~ = 1.2, v~ = 0,

v., = 1. The sphere has a larger radius. Although the 2-surface is connected, it has a "hole"

due to the fact that at a certain time period the sphere and the cylinder intersect in a curve

with more than one branch.

One advantage of using 4D geometry is that the intersection is nonempty as long as

there is a collision. The commonly used method to test intersection in n3 at a series of

sampling times may not be able to detect the following cases:

1. The interpenetration begins and ends between two consecutive sampling times.

21

z

r,O r
.~"'.--"\

/.-':.. ,I

", "'_.~'.0 .0-
....,;.~.... -. '\ ..'."

.' • }-",.,L-- y..- ..~....//
...,.,.,.•.•. . . .

,.. X '. ,,-, ,., ./

'...._......
v,--_

Figure 5: A cylinder and a sphere in motion

2. If in n3 the algorithm does only boundary intersection test but not containment test,

an interpenetration that lasts longer than one sampling period may also be overlooked.

Often we only need to find the initial colliding point, i.e. the point in the intersection

2~surface with the smallest value of t. Since we do not consider "patches" or "trimmed

surfacell
, a necessary condition for initial colliding point is:

c: aI/a.
ag/a.

al/ay
ag/ay

al/az
ag/az

G':

Together with f :::; 0, 9 = 0 it represents a zero-dimensional point set in 7(.4.. If t. 9 are

polynomials, this set can be solved by algebraic methods, e.g. using the Grabner Basis

techniques [8]. When the object motion includes a rotation, f and 9 are no longer algebraic

hypersurfaces. Such a set of equations often is hard to solve. One possible method is to

relax the condition G as:
alag _ Nag =0
a. ay aya.

Together with f = 0, 9 = 0 it represents a curve in n4 and can be traced numerically. The

point on the curve with the smallest t is the initial colliding point.

The condition C1 can be rewritten as:

dOI(l, k, \7f, \7g) = 0

22

According to Lemma 3 (c), this is the silhouette curve on the ~-surface with respect to a

orthographic projection along :1:- and y-axes. It also works if k is replaced by any nonzero

linear combination ofi,j, k, corresponding to a projection in other directions. It is important

to note the following phenomena when tracing the silhouette curve:

1. The 2-surface may have several separate components. Then the silhouette curve must

have several separate branches as seen in Figure 16.

2. If the 2-surface is connected, it is nevertheless possible that the silhouette curve has

several separate branches. See also Figure 17.

Finding the initial colliding point can also be considered as a constrained nonlinear

programming problem optimizing t (see, e.g. [12]). Investigating the topology of the 2

surface by means of 4D visualization may help to design faithful algorithms.

5 Conclusion

We have discussed two aspects of visualization of 2-surfa.ces in 4D space: first, some geo

metric issues related to developing an interactive 4D visualization system, and second, some

examples illustrating the use of such a system.

We have presented a method suitable for implementation on conventional z-buffer based

graphics workstations. The input 2-surfaces are polygonalized in 4D space. The 4D poly

gons, with each vertex attached to two linearly independent normal vectors, are then pro

jected into 3D space and fed into the 3D graphics engine. The normal of the projected

surface can be calculated efficiently by Lemma 1. The main problem in devising a user

interface is how to specify the orientation of objects and the directions of projection. They

can he done uniformly by the Euler angles when extended properly into the 4D space.

In Lemma 2 and 3 we have also discussed the conditions for a point on the 2-surface to he

a silhouette point with respect to a projection. This concept plays an important role in the

explanation of our examples. Offset curves, when traced in 4D space, can be considered as

silhouette curves of a pipe-like 2-surface. Silhouette curves also roughly describe the shape

of the 2-surface that is the intersection of two moving surfaces in 3D space. We pointed

out some phenomena to be noticed in designing faithful algorithms for tracing offset curves

and searching for initial colliding points. Our experience convinced us that such a 4D

visualization system is useful for understanding four dimensional geometry.

23

Some problems remain to be solved. For example, the quality of the pictures may not

be good enough because of the resolution of the polygonalization. When the sensor or the

eye is too close to the 2-surface, this problem becomes especially acute, since the nearby

polygons are seen much larger than those further away.

References

[1] Allgawer, E. L. and Gnutzmann S., "An Algorithm for Piecewise Linear Approximation

of Implicitly Defined Two-dimensional Surfaces", SIAM J. Numerical Analysis, Vol. 24,

No.2, pp.452-469, 1987

[2] Bajaj, C., Hoffmann, C., Hopcroft, J. and Lynch, R., "Tracing Surface Intersections",

Computer Aided Geometric Design, 5, pp. 285-307, 1988

[3] Cameron, S. A., Modelling Solids in Motion, Ph.D. Thesis, University of Edinburgh, 1984

[4] Eckhart, L., Four·dimensional space (in German, 1929), English translation by Bigelow,

A. 1. and Slaby, S. M., Indiana University Press, 1968

[5] Farouki, R. T. and Neff, C. A., "Some Analytic and Algebraic Properties of Plane Offset

Curves", Rept. RC 14364, mM Yorktown Heights, 1989

[6] Forsyth, A. R., Geometry of Four dimensions, Cambridge, The University Press, 1930

[7] Glassner, A. S., An Introduction to Ray Tracing, Academic Press, 1989

[8] Hoffmann, C. M., Geometric and Solid Modeling: An Introduction, Morgan Kaufmann

Publishers, Inc. 1989

[9] Hoffmann, C. M., "A Dimensionality Paradigm for Surface Interrogations", Computer

Aided Geometric Design, to appear, 1990

[lOJ KOl;ak, H., Bisshopp, F., Banchoff, T., and Laidlaw, D., "Topology and Mechanics with

Computer Graphics: Linear Hamiltonian Systems in Four Dimensions", Advances in Ap-

plied Mathematics, Vol. 7, pp. 282-308, 1986

[11] Ko~ak, H. and Laidlaw, D., "Computer Graphics and the Geometry of Sa", The Mathe

matical Intelligence, Vol. 9, No.1, pp. 8-10, 1987

[12] Luenberger, D. G., Linear and Nonlinear Programming, Addison-Wesley, 1984

[13] Noll, A. M., "A computer technique for displaying n-dimensional hyperobjecl.s", Commu

nications of the ACM, Vol. 10, pp. 469-473, 1\)67

[14] Pinkall, U., "Hopf tori in Sa", Inventiones Mathematicae, Vol. 81, pp. 379-386, 1985

24

[15] Rossignac, J. R., "Considerations on the Interactive Rendering of Four-Dimensional Vol

urnes", en Volume Visualization Workshop, pp. 67-76, 1989

[16] Semple, J. G. and Kneebone, G. T., Algebraic ProjediveGeometry, The Clarendon Press,

Oxford, 1952

[17] Wittenburg, J., Dynamics of systems of rigid bodies, B. G. Teubner Stuttgart, 1977

25

x

z

Figure 6 Hypersphere viewing from the sensor at infInity

y

z

Figure 7 Hypersphere viewing from the sensor at distance 3

Figure 8 Hypersphere viewing from the sensor at distance 2

Figure 9 Offset curve of Figure 3 traced in 4D. viewing orthographically

Figure 10 Offset curve of Figure 3 traced io 4D. viewing perspectively

y

z- and w-axes are invisible

x

Figure 11 Offset curve of Figure 4 traced in 4D, viewing orthographically

x

y

w-axis is hidden by the 2-surface

Figure 12 Offset curve of Figure 4 traced in 4D, viewing perspectively

z-axis is invisible

Figure 13 Offset curve of Figure 4 traced in 3D, viewing orthographically

y

Figure 14 Offset curve of Figure 4 traced in 3D. viewing perspectively

Figure 15 Intersection of a cylinder and a moving sphere with the same radius

y

Figure 16 Intersection of a moving cylinder and a moving sphere with smaller radius

Figure 17 Intersection of a cylinder and a moving sphere with larger radius

	Visualization of Surfaces in Four-Dimensional Space
	Report Number:
	

	tmp.1307986960.pdf.gw4mx

