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Abstract 

We present some explicit formulas for queue length and waiting time distributions of custo- 

mers in the MfHE,,,/l queue. The formulas are obtained with the aid of roots of quadratic, cubic, 

and quartic polynomials constructed from a recurrence equation. With an example, we demon- 

strate that the formulas for queueing dishbutions are exhemely accurate, while the correspond- 

ing infinite history M IGIII recurrence equation is not Applications include computation of 

queueing distributions, accurate tail probabilities, in qualitative studies, and in systems whcre 

exponentialiey can be replaced by hyperexponentiality. The explicit solutions are easier to use 

than the problem-specific partial fraction expansions of the Pollachek-Khinchin transform. 

Abstract

We present some explicit formulas for queue length and waiting time dislIibutions of custo

melS in the M /HEm l1 queue. The foonulas are obtained with the aid of roots of quadratic, cubic,

and quartic polynomials constructed from a recurrence equation. With ,an example, we demon

strate that the fonnulas for queueing distributions are extremely accurate, while the correspond

ing infinite history M /GI/l recurrence equation is not. Applications include computation of

queueing distributions, accurate tail probabilities. in qUalitative studies. and in systems where

exponentiality can be replaced by hyperexponentiality. The explicit solutions are easier to use

than the problem-specific partial fraction expansions of the Pollachek-Khinchin transform.



I. INTRODUCTION 

For M IGIII systems in which service-time distributions are mixtures of exponentials, we 

present a method that enables us to obtain explicit formulas for steady-state queueing distribu- 

tions. This is done by associating a real-valued, monic polynomid of degree m, with each 

MIGII1 system having an m -component mixture as a service-time distribution. When m 54,  the 

roots of these polynomials are known explicitly. Denoting these roots as rl , . , r,, we show 

that explicit formuIas are easiIy had for such systems, in tern of these roots. When m 1 5, expli- 

cit formulas for roots are not known In this case, the method can still be applied, but one will 

first need to apply a roo t-finding algorithm to determine the roots. 

Though algorithmic methods are available for M/GI/l systems (see [I],[2]), the method we 

develop has some interesting features. First, the explicit formulas are more accurate than the 

standard MIGII1 recurrence equation [I.] simply due to catastrophic cancellation effects [Ill  in 

the use of the latter. Example 1 in section IV demonstrates this effect nurnericalIy. Second, the 

behaviour of the polynomial associated with each queueing system says something about the 

behaviour of the steady-state queueing distribution of the system. With the aid of graphical exam- 

ples (see Example 2, section TV), we illustrate the fact that given two polynomials corresponding 

to two different queueing systems, the one whose largest root is greater yields a system whose 

queue length distribution possesses a longer tail. Additionally we give an example which shows 

that a larger mffic-intensity does not necessariIy impIy a longer tail in queue length distribution. 

Finally, the expIicit formulas we derive can be useful in qualitative analysis (where a formula 

may tell more about system behaviour than a computational procedure), and in systems where 

exponentiality can meaningfully be replaced by hypetexponentiality. 

The earliest work we are aware of that proceeded along these lines is that of Greenberg [33. 

In an elegant result, Greenberg demonstrated that if the service-time distribution of a Poisson 

arrival, single-server queue was HE2 (i.e., two-component hyperexponential), then the sready- 
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I. INTRODUCTION

For M IGIII systems in which service-time distributions are mixtures of exponentials. we

present a method that enables us to obtain explicit fonnulas for steady-state queueing distribu

tions. This is done by associating a real-valued, monic polynomial of degree m, with each

M IGI/l system having an m -component mixture as a service-time distribution. When m :s: 4. the

roots of these polynomials are known explicitly. Denoting these roots as r 1 • •.• , rm, we show

that explicit fOlIDulas are easily had for such systems, in tenus of these roots. When m ~ 5, expli

cit fonnulas for roots are not known. In this case, the method can still be applied. but one will

first need to apply a root-finding algorithm to determine the roots.

Though algorithmic methods are available for M IGll1 systems (see [1],[2]), the method we

develop has some interesting features. FilSt. the explicit formulas are more accurate than the

standard M 10111 recurrence equation [1} simply due to catastrophic cancellation effects [11] in

the use of the latter. Example 1 in section IV demonstrates this effect numerically. Second, the

behaviour of the polynomial associated with each queueing system says something about the

behaviour of the steady-state queueing distribution of the system. With the aid of graphical exam

ples (see Example 2. section IV), we illustrate the fact that given two polynomials corresponding

to two different queueing systems, the one whose largest root is greater yields a system whose

queue length distribution possesses a longer tail. Additionally we give an example which shows

that a larger naffie-intensity does not necessarily imply a longer tail in queue length distribution.

Finally, the explicit fonnulas we derive can be useful in qualitative analysis (where a fonnula

may tell more about system behaviour than a computational procedure), and in systems where

exponentiality can meaningfully be replaced by hyperexponentiality.

The earliest work we are aware of that proceeded along these lines is that of Greenberg [3].

In an elegant result, Greenberg demonstrated that if the service-time distribution of a Poisson

arrival, single~server queue was HEz (i.e., two-component hyperexponential), then the steady-



state customer queue-length and waiting time distributions must also each be two-component 

generalised mixtures of geometric and exponential distributions, respectively. By genedised 

mixture, we mean that the coefficients in the Iinear combination may be arbitrary constants that 

sum to one. The techniques used in [3] involved Laplace-StieItjes transforms. We show that 

Greenberg's results, and generalisarions, can be obtained quite independently via polynomial 

equations in a single real variable. 

In this section we introduce some notation through definitions and outline the general 

approach to our results, which are presented in detail in the next section. First we review the fact 

that the Poisson process maps distinct continuous probability distributions uniquely onto distinct 

discrete probability distributions on (0,~). This result is applied to determine that the Poisson 

process maps distinct hyperexponentials onto distinct mixtures of geometries. Next, the standard 

MIGIII recurrence equation is used, dong with the mixture of geomebics just indicated, to prove 

that steady-state probabilities of customer queue-Iengths must be distributed as generalised mix- 

tures of geomemics. In doing this, we restrict our attention to the case 21m S4, and obtain the 

result via two theorems. We remark on the effects of generalisation to m 2 5. The case nt = 1 is 

one of pureIy exponential service, otherwise known the MIMII queue whose explicit steady-state 

forms are well known. 

The two theorems mentioned above serve the folIowing purpose. The first demonstrates that 
b 

each M / H E , l l  queue is uniquely associated with a monic, real-valued polynomial of degree m . 

It is shown that for each m , the unique polynomial (that we call the churacteriscic polynomial of 

the corresponding queue) has m real and positive roots. The second theorem obtains the steady- 

state queue length distribution as a function of the roots of the characteristic polynomial, and in 

so doing shows that under certain conditions, the roots must a11 be distinct and lie in the interval 
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state customer queue-length and waiting time distributions must also each be two-component

generalised mixtures of geometric and exponential dislributions, respectively. By generalised

mixture, we mean that the coefficients in the linear combination may be arbitrary constants that

sum to one. The techniques used in [31 involved Laplace-Stieltjes transfonns. We show that

Greenberg's results. and generalisations, can be obtained quite independently via polynomial

equations in a single real variable.

II. PRELIMINARIES

In this section we introduce some notation through definitions and outline the general

approach to our results, which are presented in detail in the next section. First we review the fact

that the Poisson process maps distinct continuous probability distributions uniquely onto distinct

discrete probability distributions on (0,-). This result is applied to determine that the Poisson

process maps distinct hyperexponentials onto distinct mixtures of geometries. Next, the standard

M IGIll recurrence equation is used, along with the mixture of geometries just indicated, to prove

that steady-state probabilities of customer queue-lengths must be distributed as generalised mix

tures of geometries. In doing this, we restrict our attention to the case 2S;m S:4, and obtain the

result via two theorems. We remark on the effects of generalisation to m ~ S. The case m = 1 is

one of purely exponential service, otherwise known the M 1M11 queue whose explicit steady-state

fonns are well known.

The two theorems mentioned above serve the following purpose. The finit demonstrates that

each M IHEmil queue is uniquely associated with a monic, real-valued polynomial of degree m.

It is shown that for each m. the unique polynomial (that we call the characteristic polynomial of

the corresponding queue) has m real and positive roots. The second theorem obtains the steady

state queue length distribution as a function of the roots of the characteristic polynomial, and in

so doing shows that under certain conditions) the roots must all be distinct and lie in the interval



(0,l). The queue-length distribution is found to be a generalised mixture of geomebics. A third 

theorem uses a result of Haji and Newel1 [IO] to show that steady-state waiting-time distributions 

must also be generalised rn -component hyperexponentials. 

In the sequel, we use the sets B { a ,  . . . , a }  x ={al , . . . , a,,, X and 

a set of probabilities that is to be used as the finite, discrete, mixing distribution, x contains the 

set of fist terms of different geometric distributions, and y contains parameters of different 

exponential disuibutions. 

Definitions 

A discrete dismbution {ri},?.=o on the nonnegative integers satisfying ri = a  (1-ali for 

0 < a < 1, and 1 I i 5 w, is a geometric distriburion with first term a, denoted by G (a). 

A continuous distribution dS (.) given by dS (t ) =g e-p; 0 S r < =, is an qonenrz'al distribution 

with parameter p, p> 0, denoted by E (p). 

A iinite mixture of rn geometric distributions is defined to be a distribution of the form 

m 
t] aj G (aj). We denote this mixture of geomeb5cs by G,,, (B , x ). 

j =1 

m 

A continuous distribution dF(t ) on the nonnegative reds, t 2 0, satisfying dF(t  ) = C aj E (pi), 
j =1 

is a mixture of exponential distributions. We denote this mixture as H&(B ,y), i.e., an m -  

component hyperexponential distribution. 

m 
If C ={al, . - ,am} is a set of arbitrary constants that sum to one, then C aj G (aj) is a gen- 

j=l  

eralised mixture of geomehics , denoted by G:(C ,x). 

m 
Similarly, dFW(t)= q E(pj) is a generalised mixture of exponentials, denoted by 

j = l  
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(0,1). The queue-length distribution is found to be a generalised mixture of geometries. A third

theorem uses a result of Haji and Newell [10] to show that steady-state waiting-time distributions

must also be genernlised m -component hyperexponentials.

In the sequel, we use the sets B ={(Xl , •••• (Xm 1. x ={a I , .•• , am 1, and

m
Y = {J.11 •...• I!m}. where 0 < aj <I, L CJ.j =1, 0 < Qj < 1, and Jij > 0, 1Sj .:s;;m. Here B contains

i=l

a sel of probabilities that is to be used as the finite, discrete, mixing distribution, x contains the

set of first tenns of different geometric distributions, and y contains parameters of different

exponential distributions.

Definitions

A discrete distribution Vi lr= 0 on the nonnegative integers satisfying Tj =a (1-a)i for

o< a < 1, and 1 ::; i S; 00, is a geometric distribution with first tenn a, denoted by G (a).

A continuous distribution ciS (") given by dS (t) =J.1 e-1U ,0::;:1 < 00, is an exponential distribution

with parameter J.L, f.L> 0, denoted by E (JL).

A finite mixture of m geometric distributions is defined to be a distribution of the form

m
L aj G (aj)' We denote this mixture of geometries by Gm (B. x).

j =1

m
A continuous distribution dF (t ) on the nonnegative reals, t ;2: 0, satisfying dF (I) = L aj E (J.Lj),

j=l

is a mixture of exponential distributions. We denote this mixture as HEm (B ,Y), i.e., an m-

component hyperexponential distribution.

m
If C ={alJ ... ,am} is a set of arbitrary constants that sum to one. then L OJ G(aj) is a gen

j=l

era1is~dmixture ofgeometries t denoted by G~ (C ,x ).

m
Similarly, dF·(l)= L O'jE(~j) is a generalised mixture of exponentials, denoted by

j=]

HE;(C,y).



In an IdGI11 queue operating at steady-state, let X, be a random variable representing the 

number of customers remaining in the queue as the n m  customer dep- from the system. Then 

fin} is a well-known Markov chain [9]. The arrival rate of customers to the system is taken to be 

A, h > 0, and the service-time distribution is a(-). The probability that j customers arrive dur- 

ing an arbitrary customer's service is given by 

where for the sake of generality the StieItjes integral is used. As a conveqtion, we henceforth 

take {kj} to mean {kj}i",,-,. Clearly, {kj} is a discrete distribution defined on the nonnegative 

integers. For a(-) an exponential distribution, it can be shown [5] that a necessary condition for 

1 stability is equivaIent to the condition - c ko cl. In the next two lemmas, we establish the result 
2 

that {kj) takes on special forms when dS (t), t 10, is an exponential distribution or of the form 

HE, (B , y ). Both results are consequences of the fact 141 that a Poisson process maps each pm- 

bability distribution on [0, -) uniquely onto a discrete probability distribution defined on 

{0, 1, 2, . . }. The first Lemma is reproduced from [4] without proof and is easily proved. 

Consider a homogeneous Poisson process with parameter h (i.e., the customer arrival pro- 

cess), and Iet N ( Y )  be the number of points in the time interval 10, Y), with Y a non-negative ran- 

dom variable. 

LEMMA 1 

The random variabIe Y is exponentially distributed with parameter if and only if N ( Y )  has a 

' , f o r h , p >  0. geometric distribution with pameter  - 
P+L 

Interpreting (I)  in the context of Lemma 1, we see that if a(.) is exponential with mean p, 

-4-

m. MAIN RESULTS

In an MlGII! queue operating at steady-state, let Xll be a random variable representing the

number of customers remaining in the queue as the nth customer departs from the system. Then

{XII} is a well-known Markov chain [9]. The arrival rate of customers to the system is taken to be

A, A. > 0, and the seIVice-time distribution is dS(o). The probability that} customers arrive dur-

ing an arbitral)' customerts service is given by

(1)

where for the sake of generality the Stielljes integral is used. As a conven,tion, we hencefoIth

take {kj } to mean {kj Jr=0- Clearly. {kj } is a discrete distribution defined on the nonnegative

integers. For dS (-) an exponential distribution, it can be shown [5] that a necessary condition for

stability is equivalent to the condition ~ < ko<1. In the next two lemmas, we establish the result

that {kj } takes on special fonDS when dS (I). t ~O. is an exponential distribution or of the fonn

HEm (B. y). Both results are consequences of the fact [4] that a Poisson process maps each pro-

bability distribution on [0, 00) uniquely onto a discrete probability distribution defined on

{a, 1, 2, ... }. The first Lemma is reproduced from [4] without proof and is easily proved.

Consider a homogeneous Poisson process with parameter A. (i.e., the customer arrival pro-

cess), and letN(Y) be the number of points in the time interval [0. Y), with Y a non-negative ran-

dom variable.

LEMMA 1

The random variable Y is exponentially distributed with parameter ~ if and only if N(Y) has a

geometric distribution with parameter~.for A. , I-l > O.
J,L+A

Interpreting (I) in the context of Lemma I, we see that if dS(·) is exponential with mean I-l,



then {kj] must be G[&] . Next, consider what must happen if & (-1 is  HE^ (B , y ). 

LEMMA 2 

The random variable Y is distributed as HE,(B, y )  if and only if N ( Y )  is distributed as 

Vj Gm(B,x),withaj= - pi > >,for j = 1,2, - . .  m andh>O. pj+h'  

m 
Assume that Y is distributed as HEm@, y) = aj pj e-pJ*, for > 0, 

j = l  

j = 1, 2, . . , rn. Using (1) withHEm(B, y ) in place of a(-), we obtain 

" we find that {kjrn)] is distributed as G G(B .x). Conversely, assume that where taking aj = - 
~j +k 

{kjm)} is distributed as G (I3 ,x). It follows that 

for j 2 0. An appIication of Lemma 1 to each of the m terms of the summation in (3) yields Y 

distributed as HEm(B, y ) with y = (pI,  - - - , pm). 

I 

From Lemma 1, it is clear that if the service-time distribution of a singIe-server queue is 

-5-

then {kj} must be a[ Jl ~ A] . Nex~ consider what must happen ifdS (-) is HEm (D • y).

LEMMA 2

The random variable Y is distributed as HEm (D , y) if and only if N (Y) is distributed as

Gm(B,x). withaj= Ilj A.' Jl.j > 0, for j = 1,2, '" • m and/...>O.
ILj +

Proof:

m
Assume that Y is distributed as HEm(B, y) == L o.j Jl.j e-IJJ t, for Ilj > 0,

j=1

j =1,2•... , m. Using (1) withHEm(B. y) in place of dS(-), we obtain

... -lICAtY' [ 111 )
kim) = f e . r L ~ Jl.i e-Jlt'l dt

o J. ;=1

= i: [j e-'AI CAlY~j Ilj e-jJ.;1 at]
;=1 0 ) !

m J.Li Al m .= ~ f'f. = ~ A.. Q. (1 _ Q. \l
£oJ "'1 . +1 .LJ I I IF J

i =1 (/... + IljY j =1
(2)

where taking Qj = Jl,j ~ • we find that {kim)} is dislributed as G(B ,x). Conversely, assume that
~j+A

{kim)} is distributed as G(B ,x). It follows that

m [ Jl.i ] ( A ] j rn •k·(m) = ~ a.- = ~ A.. Q. (1 - Q.y
1 ..LJ I A+II. A+II. ..LJ I I "

1=1 ,.., t"'l 1=1
(3)

for j ~ O. An application of Lemma 1 to each of the m terms of the summation in (3) yields Y

disttibuted as HEm(B. y) with y = (p-)•... ,11m)'

•
From Lemma 1, it is clear that if the service-time distribution of a single-server queue is



p e-P', r 20, then the probability of j customer anivals during an arbitrary customer's service- 

time is given by ko(l -ko) j ,  for j 20, with ko = - ' . MOE generally, if the service-time. dis- 
h + ~  

tribu tion is HE, (B , y ), then by Lemma 2, the probability of j customer arrivals during an arbi- 

m Pi trary customer's service-time is given by kj('") = C ai b i  where bi = 1 - ai, and ai=-, 
A+ pi i = l  

for 1 S i <m and j > 0. The next result is a theorem that converts the infinite history M/GII l  

recurrence equation [I] for an M I H E ,  (B  , y )I1 system into one of history (m + 2), for 1 Im 54. 

The notation that is used in the rest of the discussion is explained as follows. A symboI of 

the form ci(m) denotes a particular quantity ci that comes from an M I N E ,  ( B  , y )/I. Thus, @,(m)} 

is the equilibrium queue Iength distribution, {k,m)} is the stationary distribution of customer 

arrivals in a service-time, and dW,(.) is the equiIibrium distribution of waiting time in an 

MIHE, (B , y )/l system, respectively. Since we will need the explicit f o m  of pi(ml, for j 20 

and each rn, 1 I m I 4, these are obtained from the WGYI recurrence equation [I] as 

[(I - kjmfm) )3 + khm) (kf"') - kdm) - I)] PP) = 
[kbm) l3 

where kjm) has already been defined, and p, is the mfBc intensity of the MIHE,,, (B , y )I1 queue, 

THEOREM 1 

m 
Let B = (a1, - - - , a,), and y = (pl, - - , h), with oc; ;, 0, C aj = 1, pi > 0, for 

j=l 

i = 1, 2, . , . , m , and 1 5 rn 5 4. If the arrival rate of an MIGZI1 queue is h, h> 0, and the 

-6-

Jl e-111, I ~0. then the probability of j customer amvals during an arbitrary customer's service-

time is given by ko(l-ko'Y. for j ~O) with ko=~. More generally, if the service-time dis
J\,+11

tribution is HEm(B ,y). then by Lenuna 2, the probability of j customer arrivals during an arbi-

m 11-
trary customer's service-time is given by kim) = L aj hi. where bi =1 - ai, and t2i =~,

i=1 +Jli

for 1 ~i 5.m and j ;::0. The next result is a theorem that converts the infinite history MIGlIl

recurrence equation [1] for an M IHEm(B ,y)11 system into one of history (m + 2), for 1~m :$ 4.

The notation that is used in the rest of the discussion is explained as follows. A symbol of

the fonn cP~) denotes a particular quantity Cj that comes from anMIHEm(B ,y)/1. Thus, {p",(m)}

is the equilibrium queue length distribution, {kJm)} is the stational}' distribution of customer

arrivals in a service-time. and dWm (·) is the equilibrium distribution of waiting time in an

MIHEm(B ,y)11 system, respectively. Since we will need the explicit fonns of p}m), for j ';i!O

and each m, 1 :$ m ~ 4, these are obtained from the MlGIII recurrence equation [1] as

where kim) has already been defined. and Pm is the traffic intensity of the M IHEm(D ,y )/1 queue.

THEOREMl

m
Let B;=: (<Xl> •.• ,am), and y::: (1J.1o •..• IJ.m), with eli > 0, L aj = I, Ili > 0, for

j=l

i =I, 2, .. , ,m, and 1 ~ m ~ 4. If the arrival rate of an M /GIIl queue is A.. A. > 0, and the



service-time distribution is HE,(B, y), then the equilibrium queue length distribution, if it 

exists, is given by a recurrence of history (m +2). Additionally, corresponding to the queueing 

system, there exists a unique real-valued polynomial p,,, (2) of degree m , with real coef!icients 

depending on B and g, with all mots real and positive. 

Proof: 

First, it is necessary to establish that we deal with a stable queue. The traffic intensity p, of the 

MIHE, (B , y )I1 queue can be expressed as [5] 

from where the condition p, c 1 is obtained in terms of q and ai, 1 I i I m ,  as the required sta- 

bility condition. Using a standard MlGVl recurrence equation (see [I]), the steady-state queue 

length probabiIities can be computed as 

wherep dm) = 1 - p, is the probability of an empty queue. 

In the following, we choose to suppress the dependence of each distribution on m for wn- 

venience, taking pains to handle each case separately. The particular system being handled is 

made clear from context. 

The case m = 1 

Using HE1(B, g ), i.e, the exponential distribution e*" , for t > 0, and Lemma 1, it folIows 

that {kj 1 is G (ka), or kj = Lo (1 -key for j 20. Thus, (6) can be written as 

-7-

service-time distribution is HEm (B. y). then the equilibrium queue length distribution. if it

exists, is given by a recurrence of history (m +2). Additionally, corresponding to the queueing

system, there exists a unique real-valued polynomial Pm (z) of degree m, with real coefficients

depending on B and y, with all roots real and positive.

Proof:

First. it is necessary to establish that we deal with a stable queue. The traffic intensity Pm of the

M IHEm (B ,Y )/1 queue can be expressed as [5]

Pm = ~ [ i, (Xi OJ bi]
j=l j =1

m cr- (I-a-)
- ~ I I- ~ ,

j =1 aj

(5)

from where the condition Pm < 1 is obtained in terms of CXj and OJ, 1:S: i ~m. as the required sta-

bility condition. Using a standard MlGIIl recurrence equation (see [ln, the steady-state queue

length probabilities can be computed as

"k~m) pJm)1 =Pnftn ) - p~m) kn(m) - L pjVn) kl1(~J+l' n ~ 0
j =1

where p6m) = I - Pm is the probability of an empty queue.

(6)

In the following, we choose to suppress the dependence of each dislribution on m for con·

venience. taking pains to handle each case separately. The particular system being handled is

made clear from context.

The casem = I

Using HEl(B, y), i.e. the exponential distribution III e-J11t
, for t ~ 0, and Lemma 1, it follows

that {kj } is G (ko), or kj = ko(I-kaY for j ~O. Thus. (6) can be written as

11 •

k OPn+l=Pn-Poko(l-ko)" - :r. pj ko(l-koY'-J+l, n ~O (7)
j =1



with p 0 = 1 - p l .  On comparing (7)  with a version of itself with n replaced by (n - I), multi- 

plying by (1-ko) and submcting, one obtains the simplified recurrence 

with ko=al  a 1 =at, since a1 must equal unity. The stability condition translates into the require- 

1 1 
ment - c ko < 1 (i.e., if ko = 1 the amvd process is nonexistent, and if ko=- the probability 

2 2' 

transition matrix for the chain fin} becomes doubly stochastic and the queueing process is 

unstable). Since (7) is a linear recurrence equation with constant coefficients, it is uniquely asso- 

ciated with a characteristic polynomial P(z) (see [5], [6]), given by 

P ( r )  = ko z 2  - z + (1 - ko) (9) 

1 - ko 
with the mots z = 1 and z = - . The degree one polynomial p , ( z )  which is the characteris- 

k 0 

tic polynomial of the MIHE y)Il queue is obtained by dividing (9) by the factor (z  - 1). 

yielding 

1 
Note that single mot of p ,(z) lies in (OBI) since - c ko c 1.  ClearIy, this root is positive. The 

2 

uniqueness of p l ( z )  in (10) comes from the fact ha t  (9) is the characteristic equation [6] of a 

recurrence relation with constant coefficients. That is, starting with the characteristic equation in 

(9) and reversing the procedure that was used to obtain (9) will give the original recurrence in (6). 

The mse rn = 2 

Using the recurrence in (6) with a se~ce-t ime random variable distributed as HE2@, y ), one 

obtains, for n 2 1, 

- 8 -

with P 0 = 1 - Pl' On comparing (7) with a version of itself with n replaced by (n - I), multi

plying by (l-ko) and subtracting, one obtains the simplified recurrence

(8)

with kO=al a 1=alt since a. must equal unity. The stability condition translates into the require

ment ~ < ko < 1 (Le., if ko= 1 the arrival process is nonexistent, and if ko= ~ • the probability

transition matrix for the chain {XII} becomes doubly stochastic and the queueing process is

unstable). Since (7) is a linear recurrence equation with constant coefficients, it is uniquely asso

ciated with a characteristic polynomial P(z) (see [5], [6]), given by

(9)

with the roots z = 1 and z = 1 ~:o.The degree one polynomial p I(Z) which is the characteris

tic polynomial of the M tHE 1(D ,y )/1 queue is obtained by dividing (9) by the factor (z -I),

yielding

P 1(:) =koz -(I-ko) (10)

Note that single root of P 1(:) lies in (0,1) since ~ < ko < 1. Clearly, this root is positive. The

uniqueness of P I(Z) in (10) comes from the fact that (9) is the characteristic equation [6] of a

recurrence relation with constant coefficients. That is, starting with the characteristic equation in

(9) and reversing the procedure that was used to obtain (9) will give the original recurrence in (6).

The casem = 2

Using the recunence in (6) with a service-time random variable distributed as HE2(B, y), one

obtains. for n ~ 1.

(11)



- f: p m [ q a l b ~ - J + l  + & a 2 b 5 - j +  l 
j = 1 I 

where, po= 1 - p2. On comparing (1 I) with a version of itself with n repIaced by (n - 1) we 

obtain another recurrence, valid for n 2 2. Multiplying this 1 ast recurrence by b and subtracting 

fmm (1 l), we obtain 

for n 1 1. On repeating this procedure with /12), we obtain the simplified four-term recurrence 

for n 1 2. The termspo, pl ,  andp2 can be obtained from (4). 

The unique polynomial P(z ) associated with this recurrence is given by the cubic 

P ( r )  = ( a l a l  -t- %adz3 - (1 + a l a l b 2 +  %a2bl)r2+ (61 4 b2)z - b1b2 (14) 

for which z = 1 is a root Upon dividing out the factor (z - I), we obtain the characteristic polyno- 

mial p2(z ) of the M /HE2(B , y )/I queue as 

Since P ( 2 )  characterises a probabiliv distribution, it will always be the case that z = I is a zero of 

P ( z ) .  We are left with showing that both roots of p2(z) are positive. Using the fact that z =-1 

must be a mot of the polynomial P(-z), we apply Descartes rule of signs [8] to (14). The number 

of sign changes in P ( - z )  is zero, thus implying that P (z) cannot have any negative real roots. 

Consequently, p2(z) cannot have any negative real roots. Finally, the discriminant of (15) is 

easily see to be always positive, for a stable queue, thus yielding its two real, and by our earlier 

work, positive roots r l  and r2 as the zeros 

(12)

-9-

-.± Pm[ C(IQ1bi-
j + 1 +lX2Q2h~-j+1J

J = I

where, Po= 1 - P2. On comparing (11) with a version of itself with n replaced by (n - 1) we

obtain another recurrence, valid for n -;;:: 2. Multiplying this last recurrence by bland subtracting

from (11), we obtain

n n
+~a2bl ~ Pm b~-j -a2aZ L Pmb~-i+1

j=l j=l

for n ~ 1. On repeating this procedure with (12), we obtain the simplified four-term recurrence

Pn+l[a1 a 1+<X2 Q 2] =PII[alalb2+~a2bl+l] -PIl-I[b 1+b2] +b.h2Pn-2 (13)

for n ~ 2. The termspo, PI' andpz can be obtained from (4).

The unique polynomial P (z) associated with this recurrence is given by the cubic

p (z) = (al al + (Xza:z)z3 - (1 + 0.1 a I b2 + ~a2bl)z2 + (hi + b'})z - b 1bz (14)

for which z = 1 is a root Upon dividing out the factor (z -1), we obtain the characteristic polyno-

mial P2(Z) of the M IHEz(B ,y )/1 queue as

(15)

Since P (z) characterises a probability distribution, it will always be the case that z = 1 is a zero of

p (z). We are left with showing that both roots of P2(Z) are positive. Using the fact that z =-1

must be a root of the polynomial P(-z), we apply Descartes rule ofsigns [8] to (14). The number

of sign changes in P(-z) is zero, thus implying that P(z) cannot have any negative real roots.

Consequently, P2(Z) cannot have any negative real roots. Finally, the discriminant of (15) is

easily see to be always positive, for a stable queue, thus yielding its two real, and by our earlier

work, positive roots r I and 72 as the zeros

(16)
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The cases rn = 3,4 

The recurrence in (6) now becomes 

which can be  simplified in a manner similar to that done previously. The simplified five-term 

recurrence is 

A Pn+l=B Pn-C pn-l+D P I I - 2 - E  (1 8) 

for n 2 3. The quantities pj can be obtained from (4) for O < j  13 .  The polynomial P ( z )  

corresponding to Chis Fecurrence is 

P ( ~ ) = A Z ~ - B Z ~ + C Z ~ - D ~  + E  

with 

3 
and E = n (1 - ai). 

i = I  

Since P (z) characterises a probability distribution, z = 1 is a root of P(z ) .  The number v of sign 

changes of P (z) is v=4, meaning that P (z) has either two or four real roots (since (v - k )  must 

be even and nonnegative, where k is the number of roots of P (2)). Substituting -z in place of z  

in (19), we find that the corresponding equation has no sign changes. Correspondingly, P ( 2 )  can- 

not have any negative real roots. Using Descartes rule, we conclude that P ( z )  has at least two 

real roots. 

We divide P ( 2 )  by (z - I)  to abtain the characteristic polynomial 

- 10-

The cases m = 3. 4

The recunence in (6) now becomes

Pn + 1[.~ cx; ai] = Pn - Po [.:E aj ai hi] - t Pm [ :E fX; ai bi - j + 11 (17)
1=1 1=:1 j=1 i=:1 J

which. can be simplified in a manner similar to that done previously. The simplified five-term

recurrence is

A Pn + 1 =B Pn - C Pn - 1 + D Pn - 2 - E (I 8)

for n ~ 3. The quantities Pj can be obtained from (4) for O~j S3. The polynomial P{z)

corresponding to this recurrence is

(19)

with

3
A = 1: <Xi aj t

i = I

3
and E = II (1 - aj).

i = 1

Since P (z) characterises a probability distribution, 2 = 1 is a root of P (z). The number v of sign

changes of P (2) is v =4, meaning that P (z) has either two or four real roots (since (v - k) must

be even and nonnegative, where k is the number of roots of P (z». Substituting -z in place of 2

in (19). we find that me corresponding equation has no sign changes. Correspondingly, P (z) can-

not have any negative real roots. Using Descartes rule, we conclude that P (z) has at least two

real roots.

We divide P (z) by (z - 1) to obtain the characteristic polynomial



of the M/HE3(B ,y ) i l  queue. The term (3 - A )  reduces to 

3 3 
(1 + C (1 - a j )  ( C cti a;) - uj ail which is positive, meaning that (A - B)  is negative. 

j = 1 i = l  
1 * I  

Similarly, C - 3 -t A = 2 + a 1 a2a3 - (a 1 + a2 + a3) which is always positive, and 

C -3 + A  -D = a ~ a ~ a ~ - a l a ~ - ~ ~ a 3 - a 2 a ~ + a l  f a z i - a g  which is always negative. 

At this stage, a tedious term by term comparison of terms shows that as long as the stability con- 

dition pg < 1 is satisfied, the discriminant ofp3(z) will always be positive. Thus we conclude that 

(20) has three real roots, and by our previolls work, dl must be positive. The three roots rl ,  r2, 

and r3 can be written explicitly (for example see 181). We omit these expressions for brevity. 

An alternate method to show that all the roots are positive is to compute the leading 

coefficients of Sturm's remainders directly using (20). These turn out to be 

R ] = ~ B ~ + Z A B  - ~ A ~ - ~ A c  andR2=- C fi / C hi wherethe functions f i  and hi 
[i:, ] [,II ] 

are given in the appendix. An algebraic comparison of terms shows that R 1 > 0 and R2 > 0 for a 

stable queue. Since both leading coefficienrs of Sturn's remainders are positive, all roots of (20) 

must be real, and by our previous work, also positive. 

When m =4, a little labour yields the iinite-history recurrence as 

A p , + l = B  P, - C  P ~ - I + D ~ ~ - ~ - E P , - ~ + F P , - ~  (21) 

for n 2 4. Again, the terms pj can be obtained from (4) for 01 j 14.  The po1ynomia.I P ( z )  

corresponding to this recurrence is given by 

P ( Z ) = A ~ ' - B ~ ~ + C ~ ~ - D Z ~ + E Z - F  

- 11 -

P3(Z)=Az3 +(A -B)z2+(C-B +A)z + [(A +C)-(B +D)] (20)

of the queue. The term (B -A) reduces to

3 3
[1 + L (1- aj) (L (Xj aj) - aj OJ] which is positive, meaning that (A - B) is negative.

j=1 i=1
'''J

At this stage, a tedious term by term comparison of terms shows that as long as the stability con-

dition P3 < 1 is satisfied, the discriminant ofP3{Z) will always be positive. Thus we conclude that

(20) has three real roots, and by our previous work, all must be positive. The three roots TI. T2,

and 73 can be written explicitly (for example see 18]). We omit these expressions for brevity.

An alternate method to show that all the roots are positive is to compute the leading

coefficients of Sturm's remainders directly using (20). These tum out to be

R 1=2B 2 + 2AB - 4A2 - 6AC and R 2 =-[.~ Ii] I[.i hi] where the functions Ii and hj

1=1 ,=1

are given in the appendix. An al gebraic comparison of tenns shows that R 1 > 0 and R 2 > 0 for a

stable queue. Since both leading coefficients of Sturm's remainders are positive, all roots of (20)

must be real, and by our previous work, also positive.

Whenm =4, a little labour yields the finite-history recunence as

A Pn + I = B p,. - C PI1 - I + D Pn - 2 - E Pn - 3 + F prJ. - 4 (21)

for n ;;::4. Again, the terms Pj can be obtained from (4) for O:S:j :S:4. The polynomial P(z)

conesponding to this recurrence is given by

(22)

with

4
A = L Ct; aj ,

i =1



Since (z - 1) is a factor of P (z ), we divide out this factor to obtain the characteristic polynomial 

of the M/HE4(B, y )/1 queueing system. We proceed with the same constructive argument as in 

the case of m = 3 to show that all four roots of p4(Z) are real and positive. Explicit expressions 

for the roots rl. rz, r g ,  and r4 of the quarticp4(z) can be found in [8]. 

Remark 

When rn 25, the expression in (22) generalises to a polynomial P (2) of degree m in the real 

variable z . The coefficients A 1 ,A 2 ,  .... , A of this polynomial can be obtained by generalising 

the coefficients shown for the case rn =4. On dividing P ( z )  by the factor (z-I), we obtain the 

characteristic polynomial p,(z) of the M/HE,,,/I queue. The roots r l , r z ,  , r, of p,(r) must 

be determined with the aid of a root-finding procedure. Due to the lack of a general formula for 

the roots of a d e p e  rn polynomial, rn > 4, the queue-Iength and waiting-time distributions do 

not have an explicit representation form 15. 

In [9], the queue Iength distribution for an MIHE$l system is obtained explicitly via partial 

fraction decomposition of the P-K transform equation. However, note that the partial-fraction 

expansion method must be used on a problem-specific basis. That is, the expansion itself depends 

on the constants involved. On the contrary, our next theorem shows how one can avoid such a 

problem-specific expansion via an application of Theorem 1 (i.e., using known formulae for the 

roots of quadratic, cubic, and quartic polynomials of a single variable). 

- 12-

344
E = L IT (l-aj).andF = IT (l-aj).

i=lj=i i=I
J'"

Since (z -1) is a factor ofP (z)~ we divide out this factor to obtain the characteristic polynomial

P4(z}~A z4+(A -B}z3+(C -B +A}z2+(A +C -B -D)z +(A +C +E-D -B) (23)

of the M IHE4(B ,y)/1 queueing system. We proceed with the same constructive argument as in

the case of m = 3 to show that all four roots ofP4(z) are real and positive. Explicit expressions

•
Remark

When m ~S, the expression in (22) generalises to a polynomial P (z) ofdegree m in the real

variable z. The coefficients A i ,A2 , •••• ~A(m+l) of this polynomial can be obtained by generalising

the coefficients shown for the case m =4. On dividing P(z) by the factor (z-I). we obtain the

characteristic polynomial Pm(z) of the M IHEmll queue. The roots rI.r2,· .. , rm of Pm(z) must

be determined with the aid of a root-finding procedure. Due to the lack of a general fonnula far

the roots of a degree m polynomial, m > 4, the queue-length and waiting-time distributions do

not have an explicit representation for m ~5.

In [9], the queue length distribution for an MIRE"1Il system is obtained explicitly via partial

fraction decomposition of the P-K transfonn equation. However, note that the partial-fraction

expansion method must be used on a problem-specific basis. That is, the expansion itself depends

on the constants involved. On the contrary. our next theorem shows how one can avoid such a

problem-specific expansion via an application of Theorem 1 (Le., using known fonnulae for the

roots of quadratic, cubic, and quartic polynomials of a single variable).



I 

We consider an example (see [9], p. 189) where amvals are Poisson with mte 1, and service 

times are distributed as 

In order to motivate the following theorem, we demonstrate how this result can be obtained 

I 3 as a special case of a more general result. From (24) we obtain the parameters al = 5, = - 
4 '  

w 0 

1 2 
and a1 = I dr = - and 02 = I e" dr = -. Let L2 denote the stationary queue- 

0 2 ' 0 3 

length random variable for this M/HE2(B,  y)ll  queue, where 8 ={L ?}, and y =&21}. 
4 '  4  

Since this is an M/GI/ l  queue, the queue-length dismbution must be of the form 

pk = Pr[L2 = k] = (1 - pd gk , k = 0, 1,2, - - (25) 

where gk , 0 c gk c 1, is some discrete function of k , with go = 1. Corresponding to the 

service-time distribution in (24), gk takes the form 

where r 1 and r2 are the two roots of the characteristic polynomial p2(z ) ,  and c and c2 are certain 

constants. Since the two mots are positive. it is clear that (26) will define a probability distribu- 

don only if each root Iies in (0, I), and the constants c 1 and c2 sum to one. On computing the 

2 2 
roots of the polynomial from (16), we obtain r l  = -, r2 = - The constants cl and c2 can be 

5 3 ' 

obtained by using boundary conditions (i.e., probabilities that we aIready know from (4)). Using 

~ o = l - P 2 ,  and pl=(l-pz) 
( I - a l a l - g a 2 )  1 3 

we obtain c I=- cp- - Finally, computing 
a1 =1+012a2 4' 4 ' 

5 h  5 pz=-- wearriveat 
8h -8' 

-13 -

•
We consider an example (see [9], p. 189) where arrivals are Poisson with rate A, and service

times are distributed as

(24)

In order to motivate the following theorem, we demonstrate how this result can be obtained

as a special case of a more general result. From (24) we obtain the parameters al == ~, «X2 = ~.

~ ~

and al = JAe-2Al dt = ~ J and a2 = JA.e-3At de = ~. Let L 2 denote the stationary queue-
D 0

length random variable for this M IHE2(B •y)/1 queue. where B ={~ , ~}. and y = {A. 2l}.

Since this is anM/GIIl queue, the queue-Ienglh distribution must be of the fonn

Pic = Pr[L2 = k] = (1 - PV g/c, k = 0, 1. 2, '" (25)

where 81; , 0 < 81; < 1. is some discrete function of k. with go = 1. Corresponding to the

service-time distribution in (24), gl; takes the fonn

(26)

where r 1 and 72 are the two roots of the characteristic polynomial P2(:)' and C I and c 2 are certain

constants. Since the two roots are positive. it is clear that (26) will define a probability distribu-

tion only if each root lies in (0,1), and the constants eland c2 sum to one. On computing the

roots of the polynomial from (16), we obtain r 1 = ~. 72 = ~. The constants C I and C2 can be

obtained by using boundary conditions (Le.• probabilities that we already know from (4»). Using

5l 5 .
P2 = 81 =8' we amve at

(27)



Thus, without resoriing to partial-fraction expansion, we have an explicit formula for the 

WHE2(B, y )/I queue. We now present the general result. 

THEOREM 2 (Queue-length distributions) 

Let r l ,  , r, be the zeros of the characteristic polynomiaI p, (z )  of an M/HE,(B, y)/l 

queue with arrival rate h > 0, and 2 I m I 4. If the queueing system is stabIe, then the equili- 

brium queue length distribution is given by a generalised mixture of geometries Gi(C ,r ), i.e,, 

Pfm) PArn) where C ={-, - - . ,- } , r={(l-rl), - . .  ,(l-r,)}, with rl ,  • - -  , rm a11 distinct, 
1-rl I -r, 

m p,O") 
0 < ri c I, and the PP) given constants, i = 1, .. , m , satisfying = I. 

i = l  1 - rp) 

Fmm WGU1 theory the queueing system M / H E , ( B ,  y)/I , 2 5 m 24, is stable provided that 

ai (::ail 
< 1. Without loss of generality, we can assume that B and y each contain distinct 

i d  

elements, for otherwise, combining like elements wilI reduce the number of terms, but still yieId 

distinct elements. The coeficients of the characteristic poIynomial p,(z) are symmetric func- 

tions [8] of the m distinct elements a 1, - - - , a,. But the coefficients must also be symmetric 

functions of the rn roots, and since no collapsing occurs among the ai and ai, i = 1, - , m y  the 

roots r l ,  . , r, must be all distinct. The theory of finite history linear recurrences [6,7] telIs 

us that the characteristic polynomial p,,, (z) possesses a unique solution of the form 

where pfm), . - , are coefficients yet to be determined. In order to discover these 

coefficients, we make use of known boundary conditions. As before, we suppress superscripts, 
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Thus. without resorting to partial-fraction expansion, we have an explicit fonnula for the

MlHEl(B. y)/1 queue. We now present the gene.ral result

THEOREM 2 (Queue-length distributions)

Let r 1> ••• • rm be the zeros of the characteristic polynomial Pm (z) of an M IHEm(B , y)/1

queue with arrival rate A > O. and 2 :S m ~ 4. If the queueing system is stable, then the equili-

brium queue length distribution is given by a generalised mixrure of geometries G':(C.r). i.e.,

m
p/c(m) =Pr[Lm = k] = L 13fm) r/;

i = 1
(28)

13fm) 13~m) •
where C={-1--' ... '1 }, r={(l-r.)•. , . •(l-rm )}, With rlt ... • rm all distinct.

-r1 -rm

0< rj <1. and the ~,cm) given constants. i = 1•..•m. satisfying

Proof:

From MlGIIl theory the queueing system M IHEm(B, Y)/1. 2 :S m $ 4. is stable provided that

m (1j (1-a·)
L I < 1. Without loss of generality. we can assume that Band y each cont$ distinct
i=l ai

elements. for otherwise. combining like elements will reduce the number of terms. but still yield

distinct elements. The coefficients of the characteristic polynomial Pm(z) are symmetric func-

tions [8] of the m distinct elements a It ... , am' But the coefficients must also be symmetric

functions of the m roots, and since no collapsing oecur.; among the ai and aj. i = 1. '.' , m. the

roots r 1. "', rm must be aU distincL The theory of finite history linear recurrences [6. 7] tells

us that the characteristic polynomial Pm (z) possesses a unique solution of the form

(29)

where pfm)•... ,(3~m) are coefficients yet to be detennined. In order to discover these

coefficients, we make use of known boundary conditions. As before, we suppress superscripts,



since each value of m is mated separateIy, and the reIation of each queue length distribution to 

m is made clear from context. 

The case rn = 2 

The boundary conditions are given by po = 1 - pz, and p 1 = (1 - ~ 2 )  
(1 - ko) , for 

k 0 

ko = dl a 1 -I- %a 2. Here p  0 and p 1 are probabilities corresponding to zero length and one custo- 

mer M/HE2(B,  y ) / l  systems, respectively, explicitly given in (4). Upon simplifying these equa- 

tions, we obtain the system 

which can be solved to yield the coefficients 

in terms of the roots rl ,  rz, and the parameters of the distribution G,(B ,x). Thus we obtain 

pk = Plrf  +LT; ,  k =o,  1, 2, . . -  (32) 

as the equilibrium queue length distribution of the M/HE2(B, y )/I queue. Since (32) defines a 

distribution, it is dear that r 1 and 1-2 must boB lie in (0,l). Otherwise the distribution in (32) will 

give terms h a t  grow rapidIy with increasing n.  Since (32) defines a probability distribution, we 

(3; must have - = 1. 
i =l 1-ri 

The case m = 3 

From (29), we can obtain the unique solution to the recumnce in (17) provided that we determine 

- 15-

since each value of m is treated separately, and the relation of each queue length distribution to

m is made clear from context.

Thecasem = 2

(1 - ko)
The boundary condilions are given by Po =1 - P2. and p 1 = (1 - PV k 0 ' for

ko=al a 1+ CX2 a 2. Here Po and PI are probabilities corresponding to zero length and one custo-

mer M IHE2(B. y)/1 systems. respectively, explicitly given in (4). Upon simplifying these equa-

tions, we obtain the system

(31 + 132 = 1 - P2

(1 - <Xl al - CI2a2)
(31 rl + (32 72 = (1- P:V --~:....-......;;.........;;;;..

a.lal + ~a2

which can be solved to yield the coefficients

in tenns oftlte roots r II r2, and the parameters of the distribution Gm(B I x). Thus we obtain

Pi = ~l,f + P2 r!. k =0, 1. 2, ...

(30)

(31)

(32)

as the equilibrium queue length distribution of the M IHE2(B, y)/1 queue. Since (32) defines a

distribution. it is clear that r 1 and r2 must both lie in (0. 1). Otherwise the distribution in (32) wiU

give tenns that grow rapidly with increasing n. Since (32) defines a probability distribution, we

m ~i
must have L~ = 1.

i =1 "

The casem = 3

From (29), we can obtain the unique solution to the recurrence in (17) provided that we detennine



the pi, for i = 1,2,3. The roots T I ,  r3, and r3 are already known (i.e., using the known formula 

for the zeros of a cubic). Using po, p and p2 for boundary conditions, we obtain the system 

Solving this system yields the coefficients 

[ko]2(rl r~ + r3 + r I )  - k0(r3 + r l )  - kl - kO + I 
P2 = (1 - P3) 

[k0l2(r1 f 3 - r2r3 - rl r2 + r22) 

and 

I 
[ko12(r1 r2 -t 7 2  + r l )  - kO(r2 i- r l )  - kl - ko + 1 

P3 = (1 -P3) 
[ko12(r1 7 2  - ' 2  r 3  - rl rg + r z )  I 

where ko=al al+%a2+a3a3,  and kI = a I a l ( l  - a l )  + %a2(1 - aZ) + q a 3 ( l  - a3). Thus 

we obtain 

p k = f l l r f + b r $ + b r $ ,  k = 0 , 1 , 2 ,  - - .  (35) 

as the equilibrium queue length dis!ribution of the MIHE3(B, y)/l queue. As in the last case, 

pi 
(35) defines a distribution, and hence each ri is in (O,l), and C - - - 1. 

i=l 1-ri 

The case m = 4 

The unique solution to (17) for rn = 4 is given by (29)) where the ri are obtained from the expli- 

cit formula for the zeros of a quartic, and the coefficients pi are left to be determined, i = 1,2,3,4. 

Usingpi, j = 0, 1, 2, 3, given in (4), to define boundary conditions, we get 

-16 -

the ~i ~ for i = I, 2 ~ 3. The roots rh r3~ and r3 are already known (i.e., using the known formula

for the zeros of a cubic). Using Po. P1 and P2 for boundary conditions~ we obtain the system

f31 + I3z + 133 = I - P3

[
1 - (alaI + ~a2 + ~a3)]

131 Tl + furz + f33 r3 = (1- P3)
0.1 al + ~a2 + a3 a 3

( I - 0.1 al(2 - 01) - <l:2 a2(2 - 02) - 0.3 a 3(2 - 03)J
131 Tr + I32ri + l33 rl = (l - P3) 2;

(CLI a l + tX2 0 2 + a3 a 3)

Solving this system yields the coefficients

and

(33)

(34)

[

[ko]2(r 1'2 + T2 + T1) - kO(r2 + T1) - k 1 - k o + 1]
f3J = (1 - P3)

[kO]2(Tl T2 - T2'3 - T1 T3 + T5)

where kO=al al +a..za2+a.3a3, and k l =0.1 al(1 - a1) + ~02(l - a2) + 0:3 a3(1 - a3)' Thus

we obtain

(35)

as the equilibrium queue length distribution of the M 1HE3(B. y)/l queue. As in the last case,

(35) defines a distribution, and hence each ri is in (0, 1), and i~l I ~iTi =1.

The case m = 4

The unique solution to (17) for m =4 is given by (29). where the Ti are obtained from the expli-

cit fonnula for the zeros of a quartic, and the coefficients ~j are left to be detennined. i == 1~ 2, 3, 4.

Usingpj. j = 0, I. 2. 3, given in (4). to define boundary conditions. we get



which can be solved to yield the cuefficients Pi, i = 1, 2, 3,4. Introducing the functions 

h ( w , x , y ,  z)=xyz +w2(x + y  + z  - w ) - w ( x y  + x z  +yz), and 

h 1 3 h  Lrzl rs, '4) - [k0I2h2(r2, rg, '4) + h3('2, rg, r4) 
H ( w , x ~ Y , z )  = 

[ko~3h(rll rs, r3, r4) 

we obtain the coefficients explicitly as 

Pi = (1 - p4l H(r2,r3,r4,r~) 
Pz = (1 - ~ 4 )  H(r3 rd r2) 
P3 = (I - P4) H(r4 ~ r l j  r2 9 r3)' (37) 

P 4  = (1 -p4) ff(rl.f2,r3,r4) 
4 4 4 

where ko = C a, ai, kl = C a; ai(1 - ai)  and k2 = cq ai(l - ail2. The equilibrium 
i = l  i - I  i = l  

queue length distribution in this case is given by 

Pi where, just as before, each r; is in (0, I), and C - - - 1 .  
i= l  1-ri 

In the following theorem we make use of results from 151 and [lo] to obtain the waiting 

time distribution of customers in an W H E m  (B , y)Il system as a generalised mixture of 

exponentials. In a useful result Haji and Newell showed [lo] that under certain conditions, the 

equilibrium queue Iength distribution of customers in a single server queue has the same disuibu- 

tion as the number of customers who amve during a random time interval disuibuted as the sta- 

tionary waiting time. In [5] it was shown that geometric equilibrium queue lengths can result if 

and only if both interarrival times and service times are exponentially distributed random vari- 

abIes. Armed with these results, we present a theorem. 
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which can be solved to yield the coefficients 13i. i = I. 2, 3, 4. Introducing the functions

ht(x, y, z) = zyz + xy + xz + yz, hz(:x. y, z) = xy + xz + yz + x + y + z,

h(w.x.y,z)=zyz +w2(x +y +z -w)-w(xy +xz +yz). and

we obtain the coefficients explicitly as

131 = (1- P4) H(r2,r3,ro1. TI)

P2 = (l-p4)H(r3,ro1"I.TZ)

P3 = (I - P4) H(r4 ,'1, '2,T3)'

P4 = (1 - P4) H (r 1, r 2 J '3 •r4)

(37)

444
where ko= L alai, k.= L ajai(l-aj) and k2 = L <Xjai(l-aj)z. The equilibrium

j=1 j=l i=l

queue length distribution in this case is given by

(38)

where,jusl as before, each Tj is in (0,1), and i:~ = 1.
i=l l-rj

•
In the following theorem we make use of results from [5] and [101 to obtain the waiting

time distribution of customers in an MlHEm (D • y}/l system as a generalised mixture of

exponentials. In a useful result Haji and Newell showed [10J that under cenain conditions, the

equilibrium queue length distribution ofcustomers in a single server queue has the same distribu-

tion as the number of customers who arrive during a random time interval distributed as the sta-

tional)' waiting time. In [5] it was shown that geometric equilibrium queue lengths can result if

and only if both interamval times and service times are ex.ponentially distributed random vari-

abIes. Armed with these results, we present a theorem.



THEOREM 3 

In an M/HE, (B , y)/l queue with arrival rate h > 0, the stationary waiting-time distribution is 

explicitly given by 

Proof: 

The proof treats a general m ,  2 S m  14. Using W, ( t )  to denote the cumulative distribution 

function of a customer's waiting time in an MIHE,(B, y )I1 queue, it is known 1171 that 

from which can be obtained an idiaite system of equations that uniquely defines W, (-) for each 

m ,  2 < m I 4. In [5] it was shown that a queue length distribution of the form (1 - p) pn , for 

0 < p c 1 and a Poisson arrival process of rate h > 0, can result if and only if service-times are 

h 
exponentially distributed with mean p = -. It follows that for a given value of rn, an equili- 

P 

b r i m  queue length distribution of the form [I - ri(m)] for 0 < ri(m) < I ,  must come from 

h 
a service-time which is exponentially distributed with mean - i = 1, - - .  , m .  

r!m) ' 

Equivalently, 

fori = 1, . .- , 4. MuItiplying (41) by and summing over i , we get 
[I - rib)] 
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THEOREM 3

In an M tHEm (B. y)/1 queue with arrival rate A. > 0, the stationary waiting-time distribution is

explicitly given by

m
dWm(t) :::: HE;(D, z) = L "Ij OJ e-9Jl

j =t
(39)

(40)

m
with D =(1It ... • 1m). Z = (010 ••• , Om), :E 'Yj =1 - Pm' 0i > O. 2 SiS m, 2 S m S 4.

j=l

Proof:

The proof treats a general m I 2Sm S4. Using Wm (I) to denote the cumulative distribution

function ofa customer's waiting time in anMIHEm(B. y)/1 queue, itis known [17] that

• • 00 AJ k±plm) = ±I e- (~) dWm(t). k = 0, 1,2•...
k=O k=OO k.

from which can be obtained an infinite system of equations that uniquely defines Wm C·) for each

m, 2 ~ m S 4. In [5] it was shown that a queue length distribution of the form (1 - p) pI! , for

0< p < 1 and a Poisson arrival process of rate A> 0. can result if and only if service-times are

exponentially distributed with mean J.L =~. It follows that for a given value of m, an equili
p

brium queue length distribution of the fono [l - rj(m)] [rj(m)]k for 0 < rim) < 1, must come from

a service-time which is exponentially distributed with

Equivalently I

"-mean --r-Cm ) I
I

i=l, ... ,m.

00 e-'Ar.(Al)k O. e-9i' dt
[l-rj(m)][rlm)]k=fo k!1 ,k=0.1,2, ...

~!m)

for i = 1, ... ,4. Multiplying (41) by I ( ) and summing oyer i, we get
[1 - rim]

(41)

(42)



fork 2 0. A tern by tern comparison of each side of (42) reveals that 

h [I - ri(m)] 
from where we obtain 0; = for i = 1, . . - , m . As a consequence of Haji and ,i(m) 

Newell's result, 

so that m;V, (-) = HE;(D, B), with D = 
w-') Mm) 

1 - r {m)  ' 1 - r i m )  1 ' 1 

z = (el, e2, Q3, 04). The fact that the elements in D sum up to one follows by summing up the 

left hand side of (42) for values of k ranging from 0 to -, to get 

which, of course, comes from the fact that the queue-length pmbabilities sum to one. 

IV. COMPUTATIONAL RESULTS 

EXAMPLE 1 : Numerical Accuracy 

1 1 1  
Consider an M/HE3(B, g )/l queueing system with B = {- -h Y = {lo, 30, 601, 2 ' 3 '  6 

23 
and h = 10. From (5), the traffic intensity of this system is pg = -, ensuri~g a stable queue. On 

36 

computing the coefficients A through E and solving for roots of the ~sulting poIynomial given in 

(201, we obtain 

(43)
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for k ~ O. A term by tenn comparison of each side of(42) reveals that

~!m)[ .(tli)l" _ ~lm) [9i ] [ A. JIe

1 rl J - [ I _ r;<mf A. + 9i l + 9 j

A. [l - r·(m)J
from where we obtain 9 j = r.cm)1 for i = I, ... , m. As a consequence of Haji and

I

Newell's result,

so that

z = (91, 92, °3• 94), The fact that the elements in D sum up to one follows by summing up the

left hand side of (42) for values of k ranging from 0 to 00 , to get

m R!m)
L 1-'1 =1

i .. l TI - rlm~

which, ofcourse, comes from the fact that the queue-length probabilities sum to one.

IV. COMPUTATIONAL RESULTS

EXAMPLE 1: Numerical Accuracy

(45)

Consider an M 1HE3(B, y)/1 queueing system with B = {~, ~, ~}, y ={la, 30, 60},

and A.::: 10. From (5), the traffic intensity of this system is P3 = ~,enSuring a stable queue. On

computing the coefficients A through E and solving for roots of the resulting polynomial given in

(20). we obtain

rl = 0.1457024767005490

T2 = 0.2680440436872688

T3 = 0.7112534796121822



Finally, it is lefi to determine the three coefficients PI, &, and h m  (34). which ~IE easily 

computed as 

PI = 4.0208916737761 x lov2 

PZ = 7.5549055768796 x lom2 

& = 2.4535313860455 x lo-' 

The queue lengh dismbution for this system is 

for n 10. In order to verify the correctness of the explicit form given above, the solution to this 

queueing distribution was fso obtained via the classical recumnce equation shown in  (6). The 

results are give in Table 1. In each case the computation was done in double precision on a VAX 

8600. The discrepancy between the numbers in each column of Table 1 is due to the phenomenon 

of catastrophic cancellation that occurs in the use of the recurrence equation. This effect is typical 

in expressions involving sums of numbers of the same magnitude, but of different signs. The 

error can be seen to increase as n increases, meaning that the recurrence equation gives a consid- 

erably large error for probabilities in the tail of the distribution. In fact, for n 11 10 the recurrence 

gives a small (constant) negative result. The fonnula yields values that decrease gradually, until 

finaIly reaching zero (due to underflow) at n =257 ( forp, roughly 10'~' ). 
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Finally, it is left to determine the three coefficients ~h 132, and ~ from (34), which are easily

computed as

PI = 4.0208916737761 x 10-2

pz = 7.5549055768796 x10-2

I3J = 2.4535313860455 x 10-1

The queue length distribution for this system is

for n ~O. In order to verify the correctrless of the explicit fonn given above, the solution to this

queueing distribution was also obtained via the classical recurrence equation shown in (6). The

resultS are give in Table 1. In each case the computation was done in double precision on a VAX

8600. The discrepancy between the numbers in each column of Table 1 is due to the phenomenon

of catastrophic cancellation that occu~ in the use of the recurrence equation. This effect is typical

in expressions involving sums of numbers of the same magnitude, but of different signs. The

error can be seen to increase as n increases, meaning that the recurrence equation gives a consid-

erably large error for probabilities in the tail of the distribution. In fact. for n ~ 110 lhe recurrence

gives a small (constant) negative result. The formula yields values that decrease gradually, until

finally reaching zero (due to underflow) at n =257 ( for Pn roughly 10-39
).



p, (recurrence (6)) 
0 .36I lI1lI l l l l l l  
0.20061728395062 
0.13040123456790 
8.9859825102881d-02 
6.3 197927383402d-02 
4.4766649787809d-02 
3.179261 1469675d-02 
2.2599969290321d-02 
1.6070946344714d-02 
1 -1429619637409d-02 
8.1291169019119d-03 

5.6442588174285d-17 
3.5889798459903d-17 
2.127 15552598 1 Id-17 
1.0874278917929d-17 
3.4791799412752d-18 

- 1.7806099379460d-18 
(negative) 

I. 

I. 

II 

TABLE 1. 

For the waiting-time density, theorem 2 readily yields 

y1 = 4.706664347747 1 x 

EXAMPLE 2: On the largest root of the characteristic polynomial 

In this section we demonstrate a result which shows that two different M/HE3(B ,y)/l sys- 

tems with the same tr@c intensity can exhibit stationary characteristics that are very different. 
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n p,. (formula (32)) PlI (recurrence (6))

0 0.36111111111111 0.36111111111111
1 0.20061728395062 0.20061728395062
2 0.13040123456790 0.13040123456790
3 8.9859824124772d-02 8.9859825102881d-02
4 6.3197925599803d-02 6.3197927383402d-02
5 4.4766647625568d-02 4.4766649787809d-02
6 3.1792609263146d-02 3.1792611469675d·02
7 2.2599967236732d-02 2.2599969290321d-02
8 1.6070944537531d-02 1.6070946344714d-02
9 1.1429618105014d-02 1.1429619637409d-02

10 8.1291156361587d·03 8.1291169019119d-03

105 7.1179196112653d-17 5.644258817428Sd·17
106 5.0626447882063d-17 3.5889798459903d-17
107 3.6008237473062d-17 2.1271SS525981ld-17
108 2.5610982491771d-17 1.0874278917929d-17
109 1.8215900134402d-17 3.4791799412752d-18
110 1.2956122489793d-17 - 1.7806099379460d-18
111 9.2150865001388d-18 (negative)
112 6.5542623636956d-18 It

113 4.6617417781651d-18 ..
114 3.3156800731394d-18 II

251 1.7697612074685d-38 n

252 1.25874885S7041d-38 It

253 8.9528944872728d-39 It

254 6.3677769783387d·39 It

255 4.5291034857057d-39 II

256 3.2213406429007d-39 It

257 0.0 n

TABLE 1.

For the waiting-time density. theorem 2 readily yields

11 = 4.7066643477471 x 10-2

12 = 1.0321530446486x 10-1

"{3 = 8.4971803364994x 10-1

81 = 58.633011001922

92 = 27.307300168800

93 = 4.0596854750494

EXAMPLE 2: On the largest root ofthe characteristic polynomial

In this section we demonstrate a result which shows that two different M IHE3(B.y )/1 sys-

terns with the same traffic intensity can exhibit stationary characteristics that are very different.



With the aid of computational examples, we show that the largest root of the characteristic poly- 

nomiaI plays a role in qualitative behaviour. That is, given the characteristic polynomials of two 

different M/HE,,,Il systems, the queue length distribution possessing a longer tail is given by the 

polynomial whose largest root is greater. Additionally, we also drnoostcate the ~ s u l t  hat  for an 

MlGIll system, a larger value of traffic intensity does nut necessarily mean a longer tail. 

Consider two different single-server queueing systems with Poisson arrivals of rate h= 10, 

and service time distributions HE3(Bj , yj), j = I ,2. We take B1 = {0.7,0.2,0.1), 

B2={0.5,0.2341985 ,0.2658105}, gl={10,15,20}, and y2={17 ,5,22}. From (5), we compute 

the traffic intensities to be pIs3=0.8833333 and p2,~=0.8833335, for j = I  ,2, respectively. 

Though the difference in uaffic intensities is of the order of lo-', one wouId expect the system 

with j =2 to possess a longer tail simply because it does have a larger traffic intensity. For this 

example, this indeed works out to be the case. In Figure la is shown the polynomials (see 

Eq.(18)) for both MIHEd1 queueing systems. Observe that the system corresponding to 

HE3(B2,y2) is the one whose Iargest root is greatest. From Theorem 2 (see Eq.(35)), we see that 

this padcuIar root effects Ionger tails in queue length distribution. Correspondingly, Figure Ib 

dispIays the queue length distributions for both systems, with the system possessing greater larg- 

est root also possessing a longer tail. 

In order to demonstrate that a larger traffic intensity does not imply a longer tail, consider 

the following example. Just as before, we have two queueing systems with h= 10, but now 

Bl={1/3,1/3, 1/31, B2={0.6,0.047311 ,0.352689}, yl={8,10, 13.851, and y2={15,1,30). 

From (S), we compute the traffic intensities to be plm3=0.990673880 and p2,3=0.990673013 for 

j = I ,  2, respectively. In Figure 2a we see the polynomids (see Eq.(18)) corresponding to these 

queueing systems. Since both polynomials have roots clustered near unity (including unity), we 

display the behaviour of the polynomials in this region in Figure 2b. In Figure 2b, we see that the 

system corresponding to HE3(B2, y2) is the one with the greuter largest root but with sntaller 
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With the aid of computational examples, we show that the largest root of the characteristic poly

nomial plays a role in qualitative behaviour. That is, given the characteristic polynomials of two

different M IREmlt systems, the queue length distribution possessing a longer tail is given by the

polynomial whose largest root is greater. Additionally, we also dmonstrate the result rhat for an

MlGII! system, a larger value of traffic intensity does not necessarily mean a longer tail.

Consider two different single-server queueing systems wirh Poisson arrivals of rate A= 10,

and service time distributions HE3(Bj,Yj), j=1,2. We take B1={O.7,O.2,O.1},

B2={0.5 .0.2341985 ,O.2658105}, YI ~{1O,15, 20}. and Y2=={ 17 ,5, 22}. From (5). we compute

the traffic intensities to be Pl,3=0.8833333 and P2,3=0.8833335. for j=1 ,2. respectively.

Though the difference in traffic intensities is of the order of 10-7, one would expect the system

with j =2 to possess a longer tail simply because it does have a larger traffic intensity. For this

example, this indeed works out to be the case. In Figure la is shawn the polynomials (see

Eq.(!8» for both MIHE?!! queueing systems. Observe that the system corresponding to

HE3(B2.yv is the one whose largest root is greatest. From Theorem 2 (see Eq.(35», we see that

this particular root effects longer tails in queue length distribution. Correspondingly, Figure lb

displays the queue length distributions for both systems, with the system possessing greater larg

est root also possessing a longer tail.

In order to demonstrate that a larger traffic intensity does not imply a longer tail, consider

the following example. Just as before, we have two queueing systems with A= 10, but now

B i ={1I3, 113 ,1/3}, B2={O.6 ,0.047311 ,0.352689}, Yt ={8 ,10, 13.85}, and yz={15.1 ,3D}.

From (5), we compute the traffic intensities to be PI ,3=0.990673880 and P2,3 =0.990673013 for

j ~ 1.2, respectively. In Figure 2a we see the polynomials (see Eq.(!8» corresponding to these

queueing systems. Since bath polynomials have roots clustered near unity (including unity), we

display the behaviour of the polynomials in this region in Figure 2b. In Figure 2b. we see that the

system corresponding to HE3(B2J Y2) is the one with the greater largest root but with smaller
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trafic intensiry. Since it has a greater largest mot, the M/HE3(B2 ,yz)Il system will have a 

Ionger tail, and this is shown in Figure 2c. Thus we see that, a larger value of traffic intensity 

does not guarantee a Ionger tail in queue length distribution. Additionally, even though the differ- 

ence in traffic intensity is of the order of the two systems exhibit vastly different queue 

length distributions. 
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traffic intensity. Since it has a greater largest TOOt. the M IHE3(B2 ,Y2)/l system will have a

longer tail. and this is shown in Figure 2c. Thus we see that, a larger value of traffic intensity

does not guarantee a longer tail in queue length distribution. Additionally. even though the differ-

ence in traffic intensity is of the order of 10-1, the two systems exhibit vastly different queue

length distributions.
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APPENDIX 

For m =3, the leading coefficients of Sturm's remainders [I51 are given by R1, and R2, 

which are defined as follows. We k t  define the functions 

f 1=243 A3 LI2 (46) 
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APPENDIX

For m =3, the leading coefficients of Sturm's remainden; [IS] are given by R h and R2..

which are defined as follows_ We first denne the functions

11=243 A3 D2 (46)

12=«-162 A 2 B -324 A 3) C +36 A B 3+54 A2 B 2+270 A 3 B -360 A 4) D (47)

13=36 A2 C3 (48)

/4=(180 A 3+72 A 2 B -9 A B2.) C2 (49)

f s=(-18 A B 3-162 A 2 B 2 -108 A 3 B +288 A 4) C (50)

/6=27 A B-1 (51)

17=18 A 2 B:' (52)

18=27 A 3 B 2 (53)

fs= -216 A 4 B (54)

/9=144 AS (55)

h1=36 A 2 C2 (56)

h2=(-24 A B 2 -24 A2 B +48 A 3) C (57)

h~=4 B 4 (58)

h 4 =8 A B3 (59)

hs= -12 A2 8 2 (60)



Now R2 can be computed as 

and R 1 can be computed as 

where &he quantities A , B , C , and D an? given in (19). 
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Now R 2 can be computed as

and RIcan be computed as

where the quantities A • B • C. and D are given in (19).

(61)

(62)

(63)

(64)
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