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Abstract

Multidimensional systems with dependent components are useful representations for
processes of interest in the fields of computer science and computer comnnmications.
Such systems can function properly if and only if they are stable. Until now, the
question of ascertaining the stability of such systems in general has been often open,
mainly due to difficulties with dependence and non-Marimvian behaviour. In this
paper we derive very general stability conditions for a class of distributed systems.
These criteria say, as expected, that the average input rate cannol exceed a so called
modified service rate, introduced in the paper, in order to assure stability of the sys
tem. The main results are applied to systems such as token passing rings, coupled
processor systems, buffered ALOHA systems with slotted and unslotted channels.
and buffered multiaccess systems with conflict resolution algorithms.

I. INTRODUCTION

A distributed system can be viewed as a multidimensional, not necessarily Markovian sto-

chastic process over a large (typically infinite) state-space. A fundamental issue in the design of

a such a system is its stability, loosely defined as its ability to possess required properties in the

presence of some disturbances. hnportant examples of such distributed systems are local area

networks (eg., Ethernet, FOOl ring, token ring), multiprocessor systems (e.g., concurrent execu-

tion of tasks on multiprocessors), distributed computations (cooperative problem solving by sets

of distributed processors), etc. More general and thus more important examples arc multidimen-

sional queuing systems with applications which include backoff analysis for multiaccess chan-

nels (Hastad, Leighton and Rogoff [Ill..R87D, channels with exponential backoff (Goodman el

al. [GGM85j,[GGM88J. Aldous [ALD87J), bin packing problem (Floyd and Karp [FlK86j,

• This worlt WIllI mpportcd in pan by NSF under granu NCR-87021IS and CCR-8900305.
t This worlt wu mpponcd in pan by NSF UDder grant NCR-8702I! S.
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Courcoubelis and Weber [CoW86D, dynamic data structures in computer systems (Kir

schenhofer, Prodinger and Szpankowski [KPS89]), stability involving directed acyclic graphs

(Tsitsiklis et al. [TPH86D, stability in data base systems with concurrent processing (Cour

coubetis et aI. [CRSS?]), etc. From these examples it is clear lhat the stability problem is of

considerable importance to the computer science community.

Stability is an intrinsic part of the perfonnance of a system and properly precedes any

analysis of a system. Heuristically speaking, a unidimensional system is said to be stable if the

rate at which traffic (i.e.• customers, messages. items, requests, transactions) enters the system is

slower than the rate at which this uaffic can be handled (Le., served, transmitted, stored,

responded to. processed) by the system (see for example, Floyd and Kaq> [FlK86]). Such a con

dition tends to guarantee that the expected delay of an arbitrary traffic item remains bounded.

There is no ready generalization of this conditions in the multidimensional case. More gen

erally, our interest is in the existence of asymptotically stationary distributions for performance

measures of interest (eg., number of bins, delay of a message, number of nodes in a dynamic

tree, size of a database) in the multidimensional case.

A major difficulty that has plagued researchers in stability over the years is that in moving

from unidimensional to multidimensional systems, there is no simple way to generalize the uni

dimensional definition of slability (ef. [FGL77. MaM8!, HAJ82. SZP88. RaE89J. see also

[BOR76, BOR78, CRS87]). In the unidimensional case, the system tends to drift in a clear

fashion either upwards or downwards, so that some sense of directionality indicates the stability

or instability of the system. In the multidimensional setting, different components of a process

move in different directions, some upwards, some downwards, so that a net effect that yields a

stability condition is not easily to be had. In this paper, we get around lhis problem by introduc

ing a unified model for distributed systems. The unified model allows us to ascertain stability

conditions, determine quantities critical for stability, get a handle on required computations for
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stability, and verify whether a given distributed system is stable.

Before we present our main contribution to the stability problem, we briefly discuss a his

tory of stability criteria for stochastic models that have been influenced by the rapid growth in

the development of distributed systems. We can group relevant papers into three categories:

ergodicity conditions for Markov processes (Markovian approach), stability criteria for non

Marlcovian processes (non-Markovian approach), and stability analyses for some specific sto

chastic systems. such as token passing rings. ALOHA systems, exponential back-off protocols,

data base systems. data structures. ele. In the first category, we restrict our attention to Markov

chains and focus on the classification of states in such a process, i.e., ergodicity and nonergodi

city problems. The first seminal paper introducing easily verifiable ergodicity conditions for

Mark.ov chains wilh a countable number of states was due to Foster [FOS53] (the so called

Lyapunov test fimetion method). Under his influence, in 1969 Pakes derived the so called

Pakes' Lemma [PAK69], a result which is probably the most often used in establishing stability

for a one-dimensional Markov chain. Later, Tweedie in [TWE76, TWE81, TWE83] (and many

other papers of his own or with his collaborators) extended Foster's criteria to uncountable Mar

kov chains. Another line of research is visible in the papeIS of Malyshev [MAL72], Mensikov

[MEN74], and Malyshev and Mensikov [MaM81]. Although they have been able to present, for

some particular cases, sufficient and necessary conditions for ergodicity of a multidimemional

Markov chain, unfortunately their criteria are very difficult to verify in practice, except for two

dimensional Markov chains. In the latter case, however, we should mention a contribution

recently reported by RozenkranlZ [ROS89j, and Vaninskii and Lazareva in [VaL88]. These

authors relaxed the assumption of bounded jumps required by Malyshev in [MAL72]. On the

other hand, Hajek in [HAJ82] studied bounds of exponential type for the first-hitting time and

occupation times of a real-valued random sequence. These bounds present a flexible technique

for providing stability of processes frequently encountered in the control of queues ( e.g.,
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geometric ergodicity for a certain two dimensional Markov chain which arises in the decentral

ized control of a multiaccess system; see also [MlK89]). In [SZP88] Szpankowski introduced

some olher criteria for multidimensional Markov chains. Finally, in 1979 Kaplan [KAP79] ini

tiated studies in (computable) criteria for the nonergodicity of Markov chairu;. This work was

extended in the research of Sennott el aJ. [SHT83J. Szpankowski [SZP8SJ, and Szpankowski

and Rego [SzR88].

Another approach was adopted by Laynes in [LOY62] who derived stability conditions

for a non-Markovian stochastic process, arising in the analysis of the GIGls queue. He proved

that the ergodicity condition of a Markovian queue ( GIIGIls ) is identical to the stability condi

tion for a non-Markovian queue (Le.• GIGls where the arrival and service precesses may be

dependent), and reduces to the intuitively clear condition that the input rate must be smaller than

the output rate. His work was extended by Borovkov in [BOR76. BOR78].

The third category of research in stability problems is motivated by the proliferation of

distributed systems and distributed computing environments. Authors of papers in this category

have studied stability conditions arising in the analysis of particular systems. For example,

Kuehn [KUE79] presented stability criteria for a class of token passing systems, however,

without (formal) proof. Watson observed in [WAT84] that in the perfonnance evaluation of a

token passing ring, "it is convenient to derive stability conditioru; ... (without proof)". Our stu

dies are motivated by this fact and our intention is to fill in this gap. Other stability criteria are

met in the analyses of coupled-processor systems [FaI79]. Unfortunately, the analysis of

[FaI79] is restricted to the two users case, and based on rather sophisticated tools, namely the

Riemann-Hilbert problem approach.

A large class of stability problems arises in the evaluation of multiaccess protocols with

buffered or unbuffered (unit-capacity) users. The ergodicity condition for slotted buffered

ALOHA systems was initiated by Tsybakov and Mikhailov [TsM79]. This research was contin-
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ued by Saadawi and Ephremides, and Roo and Ephremides [SaE81, RaE89]. Tsybakov

[TSY8Sj. Tsybakov and Bakirov [TsB84j. Szpankowski [SZP88j, Shanna [SHA89j and Falin

[FAL88]. Fmally, analysis of exponential back-off algorithms gave another impulse to stability

problems (see [ALD87, ROS84. KEL85]). The contribution of computer scientists to that prob

lem is well established in two excellent papers by Goodman et ol. [OOMB5, GGMS8] and Has

tad et al. [:m..R87] (for other contributions from computer science community see [TPH86,

CoW86. CRS87, AK86, KPS88]).

In this paper, we adopt the approaches taken in the second and the third categories. Our

motivation comes from the token passing ring and the ALOHA system. We use Loynes' idea

(and its extension proposed by Borovkov [BOR78]) who showed that the natural stability condi

tion for the GIGll queue remains troe when service times form a dependent stationary process.

In the setting of disuibuted queues with a single server, this leads easily to general stability con

ditions in terms of "modified selVice times" for an individual queue ( Section 2). These condi

tions involve a leClmicaI stationarity requirement: a set of sufficient conditions. designed to be

easily checkable, are developed in Section 2. This set of conditions applies to many practical

systems such as token passing rings (Section 3.1), coupled processor systems (Section 3.2),

buffered ALOHA systems with slotted and unslotted channels (Section 3.3), and buffered mul

tiaccess systems with conflict resolution algorithms (Section 3.4), previously treated by

disparate methods.

2. MAIN RESULTS

In this section we present our main contribution to the stability of multidimensional distri

buted systems. The systems under considerations are often described by a multidimensional pro

cess Nt = (NI •... , NAt) where time t is discrete (continuous). and the i-th component NI

belongs to a countable state space e. By stability of such process we mean that the distribu

tion of N' as t ~ 00 exists and the distribution is honest. In other words, Nt is stable if for
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X E il M, where il is a set of nonnegative integers, the following holds

lim Pr(N' <x} =F(x),- and lim F(x) = 1x_ (2.10)

where F(x) is the limiting distribution function, and by x , CIO we understand that Xj --+ _ for

all j e m= {I, •... , M}. If a weaker condition holds, namely,

lim lim inf Pr(N' < xl = 1
:E--t_ t-+_

(2.1b)

then the process is called substable [LOY62]. OtheIWise, the system is unstable (for more

details see [LOY62, BOR76, BOR78J ). The relationship between stability and substability is

of course that a stable sequence is necessary substable, and a substablc sequence is stable if the

distribution function tends to a limit. For example, if Nt is an aperiodic and irreducible Markov

chain, then substability is equi.vaient to stability, since a limiting distribution exists (it may be

degenerate) for any such Markov chain.

For simplicity of further comiderations we shall concentrate on a generic distributed

model which is used throughout this section to describe a large class of computer and communi-

cation systems, Let us consider a distributed system with M users that require the use of a sin-

gle scarce resource. In. queueing terminology, we say that customers (messages) from M

queues compete for access to a single server. Each queue has an infinite capacity. The arrival

process to the j-th queue is Poisson with parameter Aj' j E m. Messages arriving to the j-th

queue possess independent lengths that fonn an Li.d random sequence with distribution func~

tion H j (·), The average message length is denoted by hj , and the first two moments of the ser-

vice times are assumed to be finite. The server works in a dislributed fashion. While visiting

the j-th nonempty queue, the server removes at most one message at Lime. A server may visit a

queue and nbt remove a message from the queue (e.g.• the user is "down" or the algorithm

does not allow the user to transmit, as is done in the ALOHA system [FOL77, SaE8l, SZP86,

RaE89]. To avoid confusion, we coin the term successful visit if the server visits a queue and

either removes a message or the queue is empty.
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The details of the mathematical model of the above generic system are as follows. For a

queue, say j, let 'Ci,n n = O. 1 • . . .• denote the end of the n-th successful visit of the server.

We define the n-th cycle time Ci,n. as Ci,n ='tj,II+1 -tj,,,. In addition, we define a so called

modified service time. For that purpose, we choose from the sequence'ti,n of successful visits a

subsequence 'tj,"t.. k = 0, 1 • . . .• such that at a time 'tj,lI. the j-th queue is nonempty, i.e.,

Nj > 0 for t='tj,N.o (the queue is nonempty after the service). We funher denote this sequence

of successful visits to the j-th nonempty queue as 'ttl:. Then, the modified service time is

defined as

(2.2.)

that is. during the time Cj,t exactly one message is removed from the j-th queue, and hence

ej,k may be interpreted as a new modified service time. Note that at time 'ti,IIt..-l the queue may

or may not be empty. If the queue is empty at a successful visit time 'tj,n (Le.• n '#. TlA), then the

time elapsed until the next successful visit of the server is called a vacation time. More

specifically, we define the '~th vacation time Vi,l> where 1=0,1, ... ,as

V-,-,- ,-,-}. - J,Il,+ J,II, for (2.2b)

where at time 'ti.II, the queue is empty, i.e., Nj=O for t=ti.II/. Naturally, if a customer arrives

during a vacation it Carutot be served until the end of this vacation.

In order to illustrate the above definitions, we show in Figure 1 a time diagram for one

isolated queue of the diSbibuted system. It is not difficult to conclude that this queue behaves as

an MIGll (not MIGIIl !) queue with vacation [DOS85l, and with the modified service times and

vacations possible dependent on the input process. Indeed, in a queueing system with vacation

it is assumed lhat a single server of walking type serves, each time it visits a noncmpty queue,

one customer for a service time Sill and then takes a rest period RII • If the queue is empty when

the server rehllns, then the server takes off for a vacation period VII' Any isolated queue in our
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generic distributed model works exactly in this marmer. For example, the modified service time

C: is equal to 8ft +RlI • Note that in our distributed system the server visits other queues during

the rest time R" or the vacation time VII'

In summary, the evolution of the j-th queue in our generic model can be described by a

stochastic equation

(2.3)

where Xj ('tj.II+1. 'Ci,n) stands for the number of new anivals to the j-th queue during the cycle

lime Cj ,n=('tj,II+1 • 'tj,n)' Note fuat the length of the cycle Cj,n = ('tj,II+1 • 'ti,") is equal either to

the modified service time ell: (if lhe queue is nonempty at time 'ti,") or to the vacation time

Vj,I (if the queue is empty at time "Ci,n)' In general the distribution of Xj ('tj,II+1 • 'tj,/I) depends on

whether the interval ('tj,n+l • 'ti,") is the service time or the vacation time. The next two exam-

pIes specify possible distributed algorilhms for server behavior and illustrates the definition of

queue N=2 N=l N=O N=Q N=l
length ~ ~ ~ ~ ~

bsd rest period ~##$d ~vacation

successful " " 'svisits 'I
definition •• • "of {':J 'I '2

Figure 1. illustration of ('tIl}:=O and ('t;l) k=O in an MIGII queue with
vacation.

EXAMPLE 2.1. Token passing ring [KUE79, WAT84].



-9-

In this system, M queues (users) are handled by a single token (server), which visits the

queues in a cyclic order. It is assumed that a walking time, W j • is required to switch from

queue j to (j + 1) mod M. More specifically, when the server visits the j-tIl queue. it serves at

most one customer, then walks in time Wj to the U + 1)-st queue, etc. The sequence Cj,n is

defined as the sequence of time intervals which have elapsed between two consecutive visits of

the server to the j-tIl queue. The vacation Vi,l is the time the server is away from the 1-th empty

queue. and the modified service time C;I: represents the period of time the token is away from

the J-th nonempty queue. Figure 1 shows a typical behavior of such a queue.

EXAMPLE 2.2. BufferedALOHA system [TsM79, SaE81, SZP86, RaE89].

There are M distributed users, each having an infinite buffer for storing fixed-length pack

ets. The packets are transmitted through a broadcast channel. The channel is slotted, and a slot

duration is equal to a packet transmission time. Each nonempty user transmits a packet with a

probability ri in a slot, where i E m. If two or more users transmit simultaneously, then a col

lision occurs and the packets must be retransmitted in the future. When exactly one packet is

transmitted in a slot, then a successful transmission takes place. Referring to our multiqueue

model, we say that the server (channel) visits all queues simultaneously at the end of each slot.

However. a successful visit occurs if and only if, a successful transmission takes place or the

queue is empty (see Figure 2, where empty and dashed boxes represent successful transmission

and collisions, respectively). The end of a successful transmission or the end of a slot in which

a new customer arrives to an empty queue is denoted by tlk. Therefore, elk is the time

between the end of a successful transmission or the end of a slot in which a newly arrived cus

tomer found the queue empty, and the end of the next successful transmission. As suggested by

Figure 2 the vacation time falls into lhe idle time, so any queue in this system can be interpreted

as a synchronized (slotted) MIGI] queue without vacations, but with dependent service times. 0
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N= J
.j,

N=J
.j,

i
new arrival

c

Successful
'tJvisits, til

0

'to 0

Sequence 'tJ

Figure 2. Interpretation of successful visits in stOLted ALOHA systems

Now we are ready to present our main results. The basic idea is as follows. At first, we

prove that for stability of Nt I it is required that every component Nt, i e m of Nt is stable. This

isolation lemma allows us to consider every non-Markovian queue Nt in an isolation. For a sin-

gle general GIGll queue, Laynes [LOY62J and Borovkov [BOR78J proved sufficient and neees-

sary conditions for stability of a single queue (and we shall extend it below to a single queue

with vacation), and this together with the isolation lemma is used to derive sufficient and neces-

sary stability conditions for the multidimensional Markov chain N'.

We start with "isolation" lemmas that allow us to study every (non-Markovian) com-

ponent N! of Nt separately.

Lemma 1. If for all j e m, the one dimensional process N) is stable (substable), then the M

dimensional process N' = (NI.Ni • .•.• NJ-r) is substable.

Proof Since each component of lhe process N' is stable. then by definition (2.1) for all j E m

lim lim Pr{N' >x-}-O
Xr"-t 00 t -+ 00 } }-
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But

M
1::: lim limPr{NjSxjlforj=1.2, ...•M}~1-L lim limPr{Nj>xj}=l

x-!'_t~"" j=lzr-+-'-+-

Thus

lim lim Pr(N' < xl = I
11.-+_'-+_

and N' is substaWe by (2.tb). IfN' is a Markov chain, then substability implies stability. _

Lemma 2. If for some j, say j*, Nj. is unstable. then Nl is also unstable.

Proof Since Nj. is unstable. hence by (2.1)

lim lim inf Pr{Nj. < x~} < 1
Zr-+- l -+ ""

Then

lim lim inf Pr(N' < xl,; lim lim inf Pr(Nj. <X;O) < I
Zr-+- t -+- ~r-+-I-+'"

which proves Lemma 2. •

Let us now assume that N' = (Ni,Ni •... , Nit) represents queue lengths in our generic

queueing model. By the isolation lemmas, we know that Nt is stable if and only if every queue

Nj is stable. We nOle that the process Nj describing the queue length in the j·th buffer is not

Markovian. In particular, the interarrival times {AII}:=o and service times {S,,}:=o might not be

ii.d., and in addition {S",) may depend on {All}' What can be said about stability of such a

general GIGI! queue? In 1962 Loynes proved the following result.

Theorem la [Loynes 1962]. Let the pair {A",S,,]:=o be a strictly stationary and ergodic (metri-

cally transitive) process. We denote by EA and ES the average interarrival time and service

time. Then the following holds

(i) jf EA < ES, then the GIGll queue is stable in the sense of definition (2.1a),

(ii) if EA > ES, then the GIGII queue is unstable,

(iii) if EA =ES then the queue may be stable, substable or unstable. If (S,,] and {A,,) are



· 12·

independent of each other, and one of them is fOllDed of non-constant mutually indcpen-

dent random variables, then the queue is unstable. -

For some distributed systems an isolated queue may be a single queue with a vacation, as

discussed above. Then, we need an extension of Theorem la proved below.

Theorem lb. Consider a Gllall queue with vacation, and let the hypotheses of Theorem la

hold except that the input process fOnDS a renewal process. In addition, we assume that the

vacation sequence {VII} (which may depend on the arrival and service times) can be upper

bounded by a strictly stationary process {VII} with a finite mean that is independent of the sec-

vice times {Sill and the interarrival times {A,.}. Then

(i) EA <ES implies substability of the system

(ii) EA >ES implies instability of the system.

Proof Doshi in [DOS85j has shown, using sample path arguments, that the waiting time W..\: in

the GIGII queue with vacation and the waiting time w,t in the GlGll without vacation are related

x k
by the following stochastic fonnula W.t=w,I;+DJ: where D,I;= L Vj - 1:Ij. In the latter Cannula,

j",1 j ... l

I j represents the i-th idle time in GIGII queue without vacation, and K: is the appropriate index: of

a busy period that the k-th arrival falls in (for details see [DOS85]). From Theorem la we know

that w,I; converges to a stationary distribution if EA < ES. So to prove substability of W,I; it

suffices to show that Di is bounded in the probability sense, that is, lim lim in[ Pr {DJ: <x} = I.
i -joOO :C-joOO

But, from the above assumptions V,tSVj;, hence D,tSDj;, and {Vi} (where S means stochasti-
~ 3/ ~

cally smaller [ST083]) are independent of the arrival and service processes. So, under strict sta-

d
tionarity of {Vi} by [DOS85, Theorem 1, Hypothesis H2] we show that D,t-::,D in dislribution.

Noting that Pr {Dj; <x} ~Pr {D,t <x} and lim Pr{D,t < oo} = 1, we prove immediately the subs
k_

tability of W,t for the GIIGII queue with vacation, and this proves condition (i). For pan (ii) we
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really do not need any additional assumptions regarding the vacation times. Indeed, if EA >ES,

then by Theorem 1a Wk is unstable. hence W,t is also unstable. -

In the view of Theorems 1a and Ib we adopt the following assumptions regarding our gen-

eric model.

AI. The sequence (C;.t) is a strictly stationary (ergodic) random sequence with average

"'I t
C~ = E{C~ }J I,k.

A2. The evolution of the system up to time t is independent of the arrival process in (I, 00).

A3. The sequence {Vi,l } of vacation times is bounded from the above by a strictly stationary

sequence fVj,l} independent of the modified service time and with finite mean.

Then our first main result is given below.

PROPOSITION. Under assumptions AI, A2 and A3, the process N1 satisfying (2.3) is sub-

stable if

and is unstable if

'Aj cj < 1 for all je m

Aj cj > 1 for at least one je m

(2.4.)

(2.4b)

ProD/. Let US concentrate on one queue. say j = 1. From the description of our model. we

know that (2.3) holds for j = I, whence C~,.t, as defined in (2.2a), can be interpreted as a

(modified) service time in an MIGll queue with vacation VI,I. as defined in (2.2b). The process

represented by (2.3) is not Markovian. Assume, however, for a moment that (2.3) represents a

Markov chain. Then by Pakes' Lemma [PAK69] and Kaplan's theorem [KAP79] such a queue

is stable if and only if E {X 1(tll+I, t;) } < 1. But with Al, we have

E {X I ('tll +!, 't;)} = Al C;, as required in (2.4). Fortunately, under assumption AI, Theorem la

f. Note that "boldface" C j,1: denotes a nmdom sequence while "rornmtface" Cj denotes the average of
Cj,l:.
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shows lhat for the MIGIl queue without vacation. (2.4a) is sufficient for stability, and (2.4b) is

sufficient for instability of (2.3) (for j= 1), even when the service times are dependent, as long

as Al holds. If, in addition. A3 holds, then by Theorem Ib the same conditions (2.4a) and

(2.4b) are sufficient for the stability and instability respectively of an MIOIl queue with vaca

tion. Fmally, by the isolation Lemma I, condition (2.4a) is sufficient for substability of Nt. and

by Lemma 2 condition (2Ab) is sufficient for instability.•

In some applications the assumptions Al and A3 regarding strict stationarity of the

modified service times and vacation times are 100 strong. Therefore, we may apply a result of

Borovkov [BOR76] who extended Theorem lao proving that strict stationarity of the interarrival

times and service times in a single GIGII queue can be replaced by asymptotic stationarity

[BOR76, p. 12]. As in [BOR76] a sequence {SII..t=SII+,k I k> O} is arymptolically stationary if

it converges as a process as n~oo to a strictly stationary sequence {Sk ,k>O}. Roughly

speaking, this means that for all sufficiently large n the joint dislribution

PrfS/I=ml.Sk+1 =mz,·· .• S/I+k=mk.} exists. Also in other words, the process {S/I,k=S/I+k}

defined for k >-n + I describes a process with the event n (e.g.• the n-th arrival) chosen as cen

tral, converges in distribution to some limit process {Sk. k > O}. We note here that for asymp

totic stationarity of a Markov sequence Nt it suffices that that one-dimensionallimiting distribu~

tions exist. With this definition in mind, we can relax our assumptions Al and A3, and adopt

the following two modified postulates

At' The sequence of the modified service times {Cj,k} is asymptotically stalionary.

A3' The upper bounded sequence of vacations {Vj,l} is asymptotically stalionary.

Then the following corollary to the Proposition can be established

Corollary 1. If AI' and A3' replace assumptions Al and A3 in our Proposition, then the

thesis (2.4) of the theorem holds.•
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While stability criteria (2.4) appear to be simple, complications arise when one attempts to

compute the average modified service time cj for a particular system since this quantity usually

depends on input rates 1...1: • k ':¢:.J, and the conditional behavior of some subsystems of the system

(see next section). Nevertheless. the criteria (2.4) establish the ultimate goal we need to achieve

in order to prove stability. If, for some reason, cj is difficult to compute, the Proposition and

Corollary 1 can be used to derive sufficient conditions for stability and sufficient conditions for

instability. Indeed, let us assume we can bound the average cj by C from below, and by C;
from above. that is. cj .s; cj s; c; . Then 'Aj C; < 1 for all j E m implies that A.j cj < I,

hence stability. On the other hand. if for some J, A.j C > I, then "Aj cj > 1. and instability

follows.

.. .--Corollary 2. Let ~j .s; Cj S; Cj' (i) If for all j E m

(2.5)

then the system is stable.

(ii) If for some j e m

(2.6)

then the system is unstable. -

It must be sttessed, however, that verifying stationarity assumptions Al and A3 can lead

lO major difficulties in assessing stability of some computer commwtication systems. Therefore,

we present below a set of conditions which are sufficient to verify (asymptotic) stationarity of

the modified service times Cj,k and vacation times Vj,lo More precisely, we shall show that

replacing assumptions (AI) and (A3) by some other hypotheses, which are easier to verify in

practice, leads also to stability condition (2.4). In particular, it turns out that to establish the fact

that condition (2.4a) is necessary for stability of Nt is a rather easy task, and this can be done

under a fairly general hypothesis. Indeed,let us assume the following.
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(A') There exist continuous vector-functions f\o) and g(-) such that the modified service time

and the vacation time can be represented for every n as Cj,k+1I = f(N/+II, X'+lI.) and

Vj,l+fl = g(Nt+ll •X'+n: ) where X' is a stationary sequence.

Then, the next theorem provides easily checkable necessary conditions for stability of Nt.

Theorem 2. If N' is stable, and assumptions A2 and (A') hold, then Aj cj .s; 1 for all

j=I.2 •...• M.

Proof Since Nt is stable, hence Nt+ll converges in distribution to a stationary process N' as

n ---+-. Then, by Ute continuous mapping theorem (cf. [BIL86]), we obtain

d

C;1+11 ---+ c j (k) = feN' • X'), where C j (k) is a strictly stationary process. In the same manner

we prove asymptotic stationarity for Vj,l. Then, postulates Al' and A3' hold, and the theorem

follows form Corollary 1.•

Unfonunately. the reverse to Theorem 2 is much harder to prove. To see this let us look

at ODe queue, say j = 1. We now must show that Al'C ~ < 1 implies stability of this queue

without explicitly referring to strict (asymptotic) stationarity of the modified service time e;,k

and vacation time V1,/· The difficulties arise because that queue may be stable even if the other

queues are WlStable. So, N' might not possess a stationary distribution, or even the limit of Nt

as t tends to infinity might not exist. To avoid these types of problems we simply strengthen

our assumption (A'). First of all. we modify (A') in such a way that we restrict the possible

class of processes ej,k and Vj,r. We shall assume that the modified service time and vacation

time dlJ not depend directly on the aCOJal values of the queue lengths Nf, i = 1, 2, ... , M,

i ~ j, but they are rather a function of whether a queue is empty or not. More precisely,

(A) Lei Y' = (Y(, Y~ , ...• Yj,) where Yj = X(Nj) with X(O) = 0 and X(x) = I for x > O.

Then the modified service time ej,k and the vacation time Vi,l can be represented as

ej,k=!(yt,X
t
,t='ti.lI,iem) and Vj,(=g(yt,Xt , t='ti,II,iem), where the process
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X' is a stationary sequence. and the functions 1(0) and g(o) are continuous mappings.

M
For example. in the token passing ring, one shows that elk = sf + W~ + L Y:'· Sf for

l=l,l"#.i

some I, ='ti,.. , i E m. where Sf, w~ are stationary random sequences representing the service

times at the j-lh station and the total walking time, respectively. Secondly, to assure that certain

limits exist we postulate that Nt imbedded at the instant of successful visits is a Markov chain.

In fact, to simplify notation we assume

(B) Nt is an aperiodic irreducible Markov chain.

These two assumptions are not yet sufficient to establish stability. As explained, to prove

sufficient conditions for stability we must show that the sequence y' converges in distribution to

a stationary one (more precisely, joint distributions of yt must converge. but under (A) and (B)

one shows that the above suffices). This has to be proved in the the case when some queues are

stable while the others are unstable. To formulate it more rigorously, let us partition the set of

all queues m= {I, 2, ... , M} into two disjoint sets, namely, a set of stable queues JJ, and a

set of unstable queues U, i.e., m = JJ u U. rn the same manner, we partition the processes N
'

and Y', that is, N'=(Nut,N.!,') and yt=(yu',Y.!,'). In addition, to describe all possible

states of the process y', we introduce an M dimensional zero-one vector z = (z I , ... , ZM)

such that for every j E m the j-th component Zj is either zero or one, i.e.• Zj E {O, I}. The set

of all zero-one M-tuples is denoted as 8M • i.e.,

(2.7)

Moreover, any vector z can be partitioned as z=(Zu ,z.6), where Zu represents slates of the

process Yu t while Z"b describes states for Y.06 '. By 0= (Ou •0.6 ) and 1 = (lu ' 1.6 ) we mean the

all-zeros and all-ones vectors, respectively. To prove a sufficient condition for stability we need

to show that lim Pr{ y' =z} exists. Naturally, in the presence of (8) lim Pr {y' =O} = 0, but if
'-+<0> '--t<'I>

any component of z becomes one, then difficulties arise. Nevertheless, assumptions (A) and (8)
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imply some interesting properties which are summarized in the next lemma.

Lemma 3. lfU 0'0 ( 0 represents the empty set), and (B) holds,then

limPr(Nu'=o"l =0,-
and

limPr {y' =(0" , ... )} = 0
1-

(2.8.)

(2.8b)

Proof For the simplicity of notation, we assume that U = {I, 2, I •••• L} and 1s:L <M. Since

Nt is an M·dimensional Markov chain, hence limPr{N' =k=(k 1• k 2••.••• kM » =0 Now, using,-
this fact and the stability of the M-th queue we prove that

limPr{ NI =k t •••.• NJ.,_t =kM-tl = 0 (note that the M -1 dimensional process is not Marko
1-

vian). Indeed, for any positive 1C and for M E 1J we obtain

-limPr{N[ =k1•...• N1_1 =kM-d = lim LPr{ N[ =k1•....• Nit = j} =
t___ t--j=l

•
L limPr{ Nl =k l •· ••• NJ.t= j] + limPr{N! =k1, .•. I NAt- > le} :SlimPr{NJ., > le}
j=1 t___ t__ 1-+00

But, lim limP,. ( Nil > IC) = 0 since the M-th queue is stable (see (2.1a». This impliesK--to>,...-

limP,. {NI =k l •...• NM_l =kM _1 ) = 0 as desired. Repeating (M-L) times the same type of
1-

"tighOless" argument applied to stable queues, we finally prove (2.8a). This immediately implies

(2.8) since Pr{ y'=(0" , ... )) ~ Pr[ Yu I =o,,} = o.•

In order to establish easily verifiable conditions for stability, using assumptions (A) and

(B), we need, however, to prove that limPr ( yt =zJ exists for every vector ze 8 M . One possi
1-

ble solution is to adopt one more assumption, namely

(C) Let U '* 0 and U 'F- m. Then, for every k e U we assume the following

limPr{NI=O) =0,- (2.9)
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Then, one proves

Theorem 3. If CA), (B) and (C) hold. then condition (2.4a) is sufficient for stability of the pro-

cess N',

Proof We must prove that limPr{ y' =z} exists for every Z E 8 M, Then our theorem follows,-
from Corollary 1. The value of the probability Pr{ yt =(Zu •~)} depends on whether Zu =Iu

or not. If Zu ;j:.lu • then there exists a k E U such that z,l: = O. Arguments similar to the ones

used in the proof of (2.8b) immediately show that limPr{ y' =z} =0 in this case. SO, DOW we,-
tum to the case Zu = I'll' Then,

Pr( V. =z. j - L Pr[ yl=Oj S; Pr(V'=(I" • z.)} S; Pr(V. '=z. }
'ell

But, condition (2.9) from assumption ee) implies that the LHS of the above is equal to the

RHS. so limPr {yt = (I'll •~ ) } = limPr {Yl. '=:l.b } I and the latter limit exists since YJ., I is a
1-+00 1-+00

stable process. -

There are, however, situations when checking condition (2.9) in assumption (C) is rather

troublesome. Therefore. we suggest yet another approach, which ideally applies to the systems

we plan to study in this seclion. We replace asswnption (C) by a more restriclive one, namely

-,
(C') Let for every k e U be defined a modified queue length Nk such that the k-th queue be

never empty, that is, Nl;;::: 1 for every t=O, I, ... . Then,

, -,
{Nkl..teu ::; {N..t}leU (2.10)

where ::; means "stochastically smaller" [ST083]. In addition, we assume that the

remaining queues form an l,h l-dimensional Markov chain denoted by Nob t = {N:} ieob and

(2.11)

Also, for the process N=<Nu l, Nob ') we denote by c; the average modified service time.

We assume
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(2.12)

Note that (2.11) implies condition (2.9) required for Theorem 3. Since N' ::;; N'. then stability of

N' implies stability of the original process Nt [SZP88]. Together with (2.12) we immediately

find the following conclusion.

-'Corollary 3. Assume that (A), (B) and (C') hold. If A.jCj < I for all j= 1.2, •... , M. then

the original process N' is stable. -

If the process N bounds the original process Nt very tightly. then we may expect that for some

systems cj =C;. In such a case the condition (2.430) is sufficient for stability of N'.

In conclusion, we briefly summarize our approach for proving stability conditions for a

Marlmvian systems analyzed in the next section. At first, Theorem 2 is applied, that is, it is

assumed mat the process Nt is stable and. in the presence of the Markovian assumption (B), one

can consbUct a stationary version of the process by selecling an appropriate initial condition.

Next, the average modified service time cj for every j is computed. and necessary conditions

are established. We note that for M =2 (and for systems analyzed in Section 3 also for M =3)

our Lemma 3 implies assumption (C). So by Theorem 2 the necessary conditions are automati-

cally the sufficient ones. For M>3 we apply some other tricks. In. particular, we shall try to

-'show that Ci inttoduced in assumption (C') is equal to the average value of the original

modified service time cj.

Remarks 1

(i) Our Proposition does not solve the stability problem in the case where Ai Cj = 1 for some j.
Loynes showed that in such a case a queue may be stable or unstable. However. if the interar
rival times and modified service times are independent of each other, Corollary 1 in [LOY62, p.
508] proves that Ai cj = 1 leads to "pure" instability (see our Theorem la (iii)).

(ii) Several generalizations of !.he main Proposition are possible as a consequence of Loynes'
[LOY62] and Borovlrov's [BOR78] results. First, however, we note that strictly speaking,
assumption A2 is redundant for an application of Loynes' result. Nevertheless, we have adopted
it to get a simple expression for the criteria (2.4), and we need it for our applications in Section
3. Regarding extension of the Proposition. we can safely replace the Poisson arrival process
with any renewal process which is independent of !.he service times process. Secondly, we can
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relax the one packet at a time assumption in our model. Let us postulate that whenever the
seNeT visits a nonempty queue. say j. it removes at most Sj messages. Then we can look at the
j-th queue as an MIGlsj queue with an appropriate modification in the definition of ej,k' From
Corollary 1 to Theorem 8 in [LOY62], it follows that our system is substable if

~~<~ ~m

for all j E m and unstable if Aj cj > S j for at least one j. Thirdly, we can replace a one server
model by a many server model. Then, the Proposition holds if one assumes that cj stands for
the average time between two successful visits of any seIVee under the assumption that the j-th
queue is nonempty at the beginning of Cj,1e.

(iii) Let us assume that the process Nt defined at the instant of successful visits, NT" • is an M
dimensional Markov chain. Is it possible to derive stability conditions (2.4) from a standard
ergodicity criteria for Markov chains. that is, through lh.e Lyapunov test function approach
[FOS53. SZP88, TWE76]? The answer seems to be no. Indeed, for such multidimensional Mar
kov chains components of lIle drift vector den) = E (Nt +1 - Nt I N' =n) = (d 1(n) • . . .• dM(n»
are equal either to dj(n) = Aj cj - 1 if nj > 0 or to dj(n) = 'A.j EVj if nj=O. But. in the latter
case dj(n»O for infinitely many states, namely those in the set A = (n = (nl •... , nM):
nj = OJ This causes formidable difficulties in applying the Lyapunov test function approach (cf.
[FOS53, MaM81. SZP88. TWE76, TWE81]) to a stJlbility analysis of the multidimeosional
Marlcov chain N' solved in our Proposition.

3. APPLICATIONS TO SOME DISTRIBUTED SYSTEMS

In this section, we use our Proposition and Corollary 1 to establish stability criteria for

such distributed systems as token passing rings (Sec. 3.1), coupled-processor systems (Sec. 3.2),

buffered ALOHA systems (Sec. 3.3), and multiaccess systems with conflict resolution algo-

rithms (Sec. 3.4).

3.1 Token passing ring [KUE79. WAT84j

In this section we analyze the token passing ring system described in Ex.ample 2.1.

Briefly. we recall that the system consists of M users each containing an infinite capacity buffer.

A seNer (token) visits all queues in a cyclic order. The average transmission time (service

time) is denoted by hj , j E m, and the walking time required to switch from queue j to j + I

mod M. is denoted by Wj. It is easy to see that an isolated queue is a queue with vacation. To

verify assumption A3 we simply upper bound Ute vacation time in, say. the j-th queue by a

vacation sequence (Vj,l) defined in a modified system that force all other queues to be
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nonempty when the j-th queue goes for a vacation. Naturally I the upper bounded sequence is a

renewal process, hence hypotheses of Theorem Ib hold, and one can apply our Proposition.

Having tllis in mind, we first attack necessary conditions for stability by applying Theorem 2.

The system is described by an M-dimensional process N' = (Nf •...• N1) where NJ is the

queue length at the j-th user at time c. In general, Nt is not a Markov chain, but Nt becomes a

Markov chain if one imbeds the process at the token scan instants of all queues. Naturally.

assumption (A') is satisfied. so we can refer to our Theorem 2, and assume that the process Nt

is stationary.

To evaluate cj. we need a little bit of notation. As before, 8M is defined as follows

In addition, zW E 8 U_1' denotes an (M - I)-tuple with the j-th coordinate missing, that is,

z(i) = (z 1 •••. , Zj_lo Zj+l • . • .• ZM) E 8 M - 1

(3. I)

(3.2)

Finally, since only empty and nonempty buffers are important for stability we adopt the follow-

ing definition

P(z(J)=PrIYl=z,. kem-(j} IN;;' >O}

where For example, for M=3 and

(3.3)

z(2) = (1.0)

P(z(l» = P20,O) = Pr(NI ~ 1, N~ = OIN;U > 0), and this represents the conditional probabil-

ity that the first buffer is nonempty, while the third is empty. We emphasize here the fact that

P(z(;) does not depend upon the time I since the process YI=x(Ni) is stationary by selecting

an appropriate initial distribution (such a distribution exists since by our assumption the process

is a stable one).

By the above, the average of the modified service time cj for the j-th user is

M
L [X(z,)h, + w,J + Wj + hi,-,
bj

(3.4.)
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M
and Wi =EWj with Wo = L Wj. Note also that

i=t

L P(z~)) = Pr{Ni;' liN;;' > OJ
{zW;a'~ _I)

So. after grouping all probabilities with the coefficient hk • k *" j, one finds

cj =wo + hj + i: hi. Pr{Nl ~ IINjj,. > OJ
'.1
k.~j

(3.4b)

Now, for a stable (and unstable) system, by Dow balance arguments [KUE79. WAT84], the fo1-

lowing holds

Pr[Ni;' liN! > OJ = min[l, A, ejl

Hence. after some manipulation, one proves

(3.5)

(3.6)

M
where Pj = Aj hj and Po = L Pj' By Theorem 2, Aj cj S 1 for all j E m is necessary for sta

j ..1

bility of the system, if one understands cj in the sense of (3.6).

To establish sufficient conditions for stability of the token passing ring we appeal to our

Corollary 3. It is an easy task to check that all three required assumptions (A), (B) and (C') are

satisfied. We focus on one queue, say the j-tb one, and we allow the other queues to be stable

and unstable. The upper bounding process ~ is defined in the same manner as in (e'), that is,

Ute unstable queues are assumed to be never empty. Then. the remaining queues fonn a stable

Markov chain which is postulated to be stationary by selecting an appropriate initial disl:ribu-

-'tion. In the upper bounding system the average modified service time C j is given by formula

(3.4a) with the probability P(zW) replaced by the probability P(zv») defined in a natural way.

Now, summing up the probabilities p(zv1) over all {zV1: Z.t= I} we obtain. as in (3.4b),

-t _'to

Pr {N i: ~ I I N/J. >O}. which also becomes
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(3.53)

-'as in (3.5) for the original system. Therefore, the modified service time Cj in the upper

-' ,bounded system reduces. after some elementary algebra, to formula (3.6), and hence Cj = C j for

every partition of the set m into stable queues,h and unstable queues U. TItis proves that the

following condition

jem (3.7)

is sufficient and necessary for stability of tile system (except when there is an equality in (3.7),

however, it is reasonable to conjecture that the system is unstable in this case too).

Derivation of (3.7) crucially depends on (3Ab) and (3.5). Indeed, the conditional service

M

time, Le.. L [X(zA)hk + w,t] in (3.4a) is a linear combination of hi. and after regrouping, the
k=l ..~j

probability associated with he reduces to (3Ab), which can be easily computed from (3.5). If

the above properties are not satisfied. then a ciosed-foI1ll fonnuIa for the modified service time

is hard to find. This is illustrated in the next example.

Example 3.1 Coupled-token in a ring.

Let us modify the system in such a way that a token when visiting the j-th nonempty sta~

tion transmits a message with mte 11hj , if the U - l)-st mod M queuc was nonempty, and with
,

rate l/kj if the U - l)-st mod M queue was empty. For simplicity, we assume M = 3. Then,

an appropriate fOImula for cj, say j = 2, is

,
+ [h, Pr{N, > OIN, > OJ + h, Pr{N, > OIN, > OJ] +h, Pr{N, > OIN, > OJ

The joint distribution Pr{N I ~ I, N 3 ~ llNz > OJ, is not easy to compute. This situation is

even better illustrated by the buffcred ALOHA system, which is discussed in Section 3.3.
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Remarks 2

(i) The stability conditions (3.7) for a token passing ring with all infinite buffers have been
intuitively derived by Kuehn [KUE79]. As it was pointed out by Watson [WAT84J. it is con
venient to derive such stability conditions for other modified token passing rings, based on
Kuehn's analysis, however, without proof. To the authors' best knowledge, this paper provides
the first proof of Kuehn's conditions. Some generalization of these conditions are possible.
First, if one assumes that at most Sj messages are removed from the j-tIl queue. then the
modified service time, cj I becomes

.. Wo + Sj hj
Cj = (3.8)

I-PO+Pi

and Aj C; < Sj for all j Em is the stability condition. Furthennore, let us assume that the j-th
station is "up" with probability rj. and "down" with probability Tj = I-rj. Customers can be
served if and only if the station is "up". For simplicity, assume that Sj = 1 for j e m. Then,
the modified service time is

Wo + Tj hj

l-Po+pj (3.9)

M

where Pj = A.j rj hj and Po = L Pj, and A.j cj < 1 for all j is the ultimate stability condition.
j=l

(ii) It is important to understand why in the case of the token passing ring, we have been able
to compute exact stability conditions, that is, to evaluate Ci. Note that knowing the vector zU)
(i.e., under the condition that [X(Nt) , •.. , X,(N)_I), X(Nj +1 ) , ... , X(Nl!)] = z<D) the condi
tional modified service time for the j-th station is a linear function of the average service times
of those stations for which the buffer is nonempty. This allows us to group the joint probabili
ties P(z(j)) such that the coefficient at hk. is a one dimensional probability (3.5), which is easy to
evaluate. If the above grouping does not work, then joint distributions appear in the expression
for cj and this causes additional difficulties. This is illUSlrated in Example 3.1.

3.2 Coupled~processors system

In. [FaI79] (see also [SZP88]) Fayolle and Iasnogrodski described a coupled-processor sys-

tern. A queueing model for this consists of two MIMII queues with infinite capacities. The ser-

vice rate of each server is ~l and J.12 respectively, if the queues are nonempty. If the second

queue is empty, then the service rate for the first queue is J..L;; and reverse, the second queue

serves wilh rate J..Li if the first queue is empty. To establish stability condition we apply

Theorem 2 and Theorem 3 By Lemma 3, the condition (2.9) of assumption (C) required in

Theorem 3 is fulfilled. Indeed, in a two-queue model at least one queue must be stable to assure

stability, and this is enough to quote Lemma 3 and show that for the unstable queue
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lim Pr {NiT =O} = O. In other words, in a two-queue model the set of unstable queues is of cardi-,-
nality not larger than one, and therefore Lemma 3 can be used to verify all assumptions required

in Theorem 3. In conclusion, we assume throughout this subsection that the process yl defined

in assumption (A) is stationary, whence our Proposition can be directly applied. We point out

also that MIMI assumption is not relevant for our analysis. and the analysis below works

without significant changes for GIIGIll coupled-processors system.

For stability purposes, it is convenient to deal with the modified service rate, i.e., lIcj,

j = 1. 2. For obvious reasons, we have

But. the following holds

Pr(Ni = DIN;:" > OJ = max (0, 1 -'-,I1l2 J

Pr{N{ =OIN~~' > 0) = max {O. I-At/!!I }

(3.120)

(3.12b)

Therefore, from (3.11), (3.12) and the Proposition. the system is stable if and only if the follow-

iog inequalities

(3.13.)

(3.13b)

are simultaneously satisfied.

Remarks 3

(i) Conditions (3.13) coincide wilh the stability criteria established in [FaI79]. Note, however,
that the authors of [FaI79] used the Riemann-Hilbert problem to obtain (3.13). A generalization
to M coupled processors, as described in [SZP88], is possible.

(ii) Both inequalities, (3.l3a) and (3.l3b) must be satisfied simultaneously for establisWng
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stability regions. Note. however, that during the course of the derivation, we have to concen
trate on one queue, say the first one. Then, according to (3.12), two regions must be con·
sidered. A,'; 1'2 and A, > 1'2. In lIIe /irs, region (see (3.13.))

• A, •
A, < 1', + - <Il, - 1',) (3.14.)

1'2

while in the second region (Le., "-2 > 1l2)

(3.14b)

Nevertheless, the union of the regions (3.14a) and (3.14b) is contained in the intersection of the
regions from (3.13a) and (3.13b). If we reveme the queues and concentrate on the second
queue. we obtain two inequalities similar to (3.14), that is. one as (3.13b) and the second
Az < Jl2. The intersection of these regions and the one established in (3,14), coincides with
(3.13).

3.3 Buffered ALOHA system [TsM79. SaE81. SZP86. RaE89]

The buffered ALOHA system was described in Example 2.2. It consists of M buffered

users. The channel (server) is slotted and the duration of a slot is equal to a fixed-packet length

transmission time. At the beginning of a slot, the j-th user with a nonempty buffer transmits

with probability rj, and delays transmission for one slot with probability Tj = 1 - rjo If two or

more users transmit simultaneously, then a collision occurs (unsuccessful transmission) and Lhe

colliding users repeat transmission in the future according to the above described random pro-

cedure.

The system is described by an M-dimensional Markov chain Nt = (N1 •• 00' N!I) where

NJ represents the number of packets in the j-tIl queue at the end of lhe Hh slot, t = 1. 2 •....

We first deal with the necessary stability condition, so Theorem 2 is applied. Actually. we

assume a stationary version of the stable system, and for stability we compute the average C;

of the modified seIVice time, which is the average time between two successful transmissions

from the j-th user (see Figure 2, and Example 2.2 for more detailed discussions). In lhis case,

however, it is more convenient to deal with the probability of a successful transmission P}{1c (in

a slot), instead ofC;. These two quantities are related by cj = lIPXkc' Indeed, let zfi) be a

random variable, which takes on value 1 if the transmission from the j-th user is successful at
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C·
the t-th slot, otherwise Z,(j) = O. Then, it must be true that 1 = t ZY>. In the presence of,.,
asswnption A2, by Wald's formula, one immediately proves cj = E cj = l/E zfi) = IIP.ill:c.

The probability PMfa: is a conditional probability of a successful transmission from the j-th

user under the condition that Nj > O. By Theorem 2. stability of the ALOHA system implies

that

for all je m. (3.15)

In order to evaluate PHkc we note that it depends only on the probabilities of emptiness of the

other buffers, so notation from the previous sections is adopted here. In particular, we define the

probability P(zv) as

p(ZU1) =Pr( yi = z" ke m- (j) I Nj>O}

where. as before, Yi=X{Nk). Then. one immediately obtains

Noting that L P(z(j}) = I, (3.11a) can be equiValently expressed as
7!iJ E 8""_1

(3.16)

(3.17a)

pX1 =rj {l- ~ :r (-ItTj j ••••• r... Pr{N!, ~1 •.... Nfl ~lIN;~I) }C3.17b)
1:..1._j (i l •...• ;')eM-{j)

which is useful in evaluating some oounds onPXkc.

As long as a sufficient condition is concerned, we adopt the approach from Corollary 3. To

recall, we divide the set of users m- {j} into stable and unstable subsets. For unstable users we

assume that they are never empty (for example, by transmitting dummy packets). Then the sys-

tern of stable queues is a Markov chain [SZP86], and the original process is upper bounded by

the modified process N' [SZP88] as defined in assumption (C'). Let p~ be the probability of

success in the modified system for any partition of lhe user set into stable and unstable queues.
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TIlls probability is given exactly by the same formula as pYJa (see (3.17) except that the proba

bility P(z(j) is replaced by p(zV1) for the upper bounding system. In particular, Corollary 3

implies that

-V)
J..j<P.!~ for all je m (3.18)

is sufficient for ergodicity of the system. We shall not argue here whetherp~ is equal to pi2c

or not since none of these probabilities, as we shall see, can be easy computed. We shall use

some other arguments to obtain computable stability conditions. We must, however, mention

here that (3.15) is sufficient and necessary for M =2 and M = 3 users due to our Theorem 3 and

Lemma 3 proved in Section 2. For M = 2 we have already shown this fact in Section 3.2, while

the case M = 3 will be discussed soon.

Let us first concentrate on an M=2 users ALOHA system. We know that (3.15) is

sufficient and necessary for stability in this case.. In particular, (3.17a) implies

(3.19)

where PI (0) = I-PI(l) =Pr{Ni =OIN{ > OJ. Since the first buffer is nonempty, this proba-

bility can be easily computed from statistical equilibrium arguments. that is.

Two cases must be considered: (i) A.z < r2 rl and (ii) ~ > r2 rl. In the first case. the second

queue is stable (precisely: conditionally stable), while in the second case. the second queue is

unstable. For Jvz < r2 rl. (3.19) implies

P;!Jc = rl(l-A,jTl)

Reversing the queues. one immediately obtains

(3.20.)

(3.20b)

(3.21.)
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(3.2Ib)

The intersection of both regions (3.20) and (3.21), can be rewritten as

(3.22a)

(3.22b)

where both conditions (3.22a) and (3.22b), must be simultaneously satisfied.

Now we consider the case of M = 3 users which is by far the more difficult. We focus our

attention on the first user. Then (3.15) and (3.17) imply

(3.23)

where the notation was explained earlier. We consider three cases (i) both queues, the second

and the third, are unstable (Le.• 1..z and ~ are "large"), (ii) eilher the second or the third queue

is stable and the other unstable and (iii) both queues are stable 0..1 and ~ are "small"). The

third case is the most difficult to analyze. In the second case we apply Lemma 3 to verify

assumption (C) required in Theorem 3. For the first case we need to be careful in applying

Theorem 3 since P(O, 1) and PO,O) may not exist in such a (unstable) situation. Nevertheless.

we upper bound the system in this case by the one defined in assumption (C') (see also discus-

- - - -
sion above), and then P, (0, 0) = P, (I, 0) = P, (I, I) = 0, and P, (I, I) = 1. Hence by (3.23)

and (3.18)

(3.24.)

is sufficient for ergodicity. We shall soon see that this case is, in fact, entirely covered by the

second case, which is discussed next

In the second case, we can safely apply Theorem 3, so (3.23) is sufficient and necessary

for stability of the system. Let us asswne that the third queue is WlStable and lhe second queue

is stable. Then and P,(I, I) = I-P(I, 0) =
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Pr{N~ > 0 INi > OJ = J..3lr3 "i1 '2. Moreover, (3.23) implies

(3.24b)

and reversing the condition imposed on the second and third queue, one obtains

(3.24c)

In the third case, we must compute the joint probabilities PI (0, 0), PI 0, 0), PI (0. 1) and

PI (I, 1). Note that these probabilities are estimated under the condition that the first queue is

nonempty. There is a relationship between these probabilities, that is. PIO, 0), PICO,l), and

PIO,1) can be expressed as a function of P I (0,0). The latter probability can be, on the other

hand. computed as in [NAI85J. where Nain solved (exactly) a two-user buffered ALOHA sys-

tern. Let F 1(x. y) denote tile generating function of (Ni. N~) under the condition Nf > o.

Then, with a minor modification, it is proved in [NAI8S] (see also [SZP86D that

(3.25a)

(3.25b)

Noting that PI(I, 0) ~FI(I, 0) -FI(O, 0), PI(O, I) ~Fl(O, I) -FI(O, 0), Pl(l, I) = 1-

F 1(0, I) - F 1(I, 0) + F 1(0, 0), and taking into acenunt (3.25) and (3.23), we have

'I. (1) {.:c1..,:=..:.,,,,'lrC.'.'-I--'+--''-.:c,,--,,,,::-Ir--,,1,--"+-,'.=,-,':",,,[P--,I,,(::O:.,O::)c.----=I~J }"'I <P:ruce=rl I--
1-'2 -'3

(3.26)

The probability PI (0, 0) is computed in [NAI85] using the method of the Riemann-Hilbert

reduction problem (see (4.10) in [NAI85])), where either (r2 + r3 * 1)

PI(O,O) = [I-~-~] exp [:&2.] f logg(t) dt
r3 rl r3'1 210 Itl "" I t[t -y(1)]

or

(3.27a)

(3.27b)
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depending on whether PI(0, 0) is computed from F 1(0, y) or F 1(x, 0). Naturally,

F 1(x, 0) I~=o = FCD y) Iy=O = P 1(0. 0), however, the first tem in (3.27) can be expressed in two

different ways as shown in (3.27). The region of validity of (3.27a) and (3.2Th) is defined in

[NAl85]. In (3.27), ')'(x) 1%=1 is the inverse of a conformal mapping of a unit circle onto a curve

4 defined in [NAI85] (see [NAI85], p. 54 and Lemma 4.1). The functions g(t) and g,(t) are

defined in [NAI85], too (see [NAI85]. p. 58).

FonnuIa (3.26) is valid only for those ~ and A3 which assure PI (0. 0) > 0 (see the first

term in (3.27). As in the case of M = 2, the stability region for M = 3 is determined by the

intersection of (3.26a) and

(2) { c~"l..:,-":..ff-,,,-+,--,~,-,-,';::'ff_r.::.,_+..:r-"::-r..:,,,[P....::.,(:.:o-,-,,,0),--_1.:..] }~ <Psu.cc=rz I--
I r1 r3

0) {.A",,,,:'-,':.:ff-,,_+:...::A=-,.:.'",IF.:.r=-,...:+...:r-"...:r-,'''[P'-''-'(:.:0.:.,.:0)'----...:1.:..] }~ <Pollitt =r3 1--
l- r l- r 2

(3.26a)

(3.26b)

where P2(O. 0) and P3(O, 0) have the same pattern as (3.27). Note that, with (3.27a), the fol-

lowing three points belong to the boundary of the stability region

(3.27b), one proves that co, B and C = (rtr3 ,D, rlr3) belong 1O the boundary region, too.

Using (3026b), (3.26c) and an appropriate fonnula on Pl(D, D) and P 3(O, D) we can also show

that 0) belongs to the boundary region, together with D = (0, 0, r3), £(0, rZ'3 , rZr3) and

F = (0, rz ,D). Figure 3 presents boundary lines of the stability region for M = 3 with points

0), A, B, C, D, E and F explicitly shown.

Generalization for M > 3 is very intricate, since we need to estimate P(zU). In this case,

however, some bounds are easy to obtain from (3.17), (3.18) and Corollary 2. Since we deal

(j)' . (J) -(j) (j) -(j)with P.JU/X instead of Cj the Corollary 2 and Corollary 3 read: If E..sIU:C :5 Psu/x :5 PSIU:C :5 Psucc,

then A.j < esf.f1: for j e m, is sufficient for stability and A.j :?:P~ for some j, is sufficient
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,,, ',--------------_.
T.~-----[C

Figure 3. Stability region for M = 3 users in slotted ALOHA system.

for instability. In particular, by (3.17a) and ~ p(zV1) = 1 for all zV) we have
7fIl E 9"'_1

M M
IT (I - T,)X('.) " IT (1 - T,)
,t.,! k",1
bj bj

one immediately proves that

M

1..j < Tj IT (I - T,) j = 1 , . . .• M
k=l
k'#.j

M
is sufficient for stability. On the other hand, since II (1- rSf.(t~) S 1 we prove that

'.1
k;j

for some j is sufficient for instability of lhe ALOHA system (see also [SZP88]).

(3.28)

(3.29)

(3.30)
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To obtain more sophisticated bounds, we need a better estimate of the probability P(z(j).

Let us mention here one possibility (for a more sophisticated approach see [RaE89]). We use

(3.17b) inslead of (3.17.). and let the prob.bility in (3.17b) be denoted as

(3.31.)

Let also for i, E m- (j)

(3.3lb)

Note that

k. k . . .
Pj(l") - L Pj(O") = I - L Pirf) " Pil" , ...• I")" Pi"') (3.32)

1..1 1=1
/""

for some n, 1 E {I. 2 • . . .• k}. The probabilities Pj (1li ) can be estimated using the dominance

arguments presented in [SZP88]. For example

(3.33)

To obtain the LHS of (3.33), it was assumed that all buffers except the j-th are always empty,

while in the RHS of (3.33), we postulate that all buffers except the j-tIl are always nonempty.

Using (3.17b), (3.32) and (3.33) upper and lower bounds on p~ can be obtained. whence

bounds on the stability region.

Fmally, let us apply our Proposition and Corollary 2 to the buffered unslotted ALOHA

system [SANSD, TsB84, TSY8Sj. In this case, the channel is not slotted, and a nonempty user

can tnmsmit whenever it wishes. There is, however, a restriction. Each nonempty user, say j_

th, chooses instants tV), 4° to transmit, where 'tY)=tV21 -tV) is a stationary renewal process

with the average E'tV) = 1/~j and distribution function Hj(t). In addition, we assume that

'tV) ::: T where T is the packet transmission time. TIIis condition assures that suicide transmis-
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sians do not occur [SANgO. TsB84]. Let cj and pU1c denote the average time between two

successful transmissions and probability of successful transmission for the j-th user, respec

tively, assuming lbe j-th user is nonempty. We proved before that cj = 1/PWee. and we focus

here only on some bounds of the stability region. that is, we find eJ/l and P~c such that

e.<t1: ::;P~ s p;t1 :s P~. To assure the LHS of the last inequalities (sufficient conditions

for stability). we assume that all buffers are never empty. Then, using arguments from [SAN80]

and Corollary 2, we immediately prove that

M ~

'A.j < EYJ. = J!j II f [1 - H,(x + T)j dx
.1:=1 T
bj

(3.34)

for j E m is sufficient for stability. On the other hand, assuming that all buffers except the j-th

m -v]
are always empty, we estimate PSII« S Psua: = J.Lj. whence

(3.35)

for some j is sufficient for instability of the system.

Remarks 4

(i) The ergodicity analysis of the buffered slotted ALOHA system was initiated by TsybakoY
and Mikhailov [TsM79] who obtained our bound (3.29). Their method, however, was essen
tially different from ours. They use a mixture of dominance and probabilistic arguments. In
particular, using Malyshev's condition [MAL72], they established the exact stability condition
for M = 2 users. Note, however, that Malyshev's criteria apply only to bounded arrival
processes, and therefore, it does not worle in the case of the Poisson arrival process, Le., the case
we have considered in (3.22). Actually, very recently Rosenkrantz [ROS89], and Vaninskii and
Lazareva [VaL88], extended Malyshev's condition to an unbounded input stream, so (3.22) can
be eventually obtained fonn [ROS89, VaL88]. Roo and Ephremides [RaE89] also provided sta
bility conditions for M = 2 using dominance arguments, however, a Bernoulli input was
assumed. To the best of the authors' knowledge, lhe stability conditions for M = 3 are new.

(ii) Pure dominance arguments have been used in Szpankowski [SZP88] to prove (3.29) and
(3.30). In [SZP88] lhe Lyapunov test function method is used to prove some oilier bounds on
the ergodicity and nonergodicity regions. To obtain more sophisticated bounds, we must evalu
ate the joint distribution of the empty-nonempty probabilities. Using sophisticated dominance
arguments, Rae and Ephremides [RaE89] established such bounds, whence a subset of the ergo
dicity region (the best bounds up to date for not "very asymmetric" ALOHA systems). Finally,
Sbanna in [SHA89j and Fa111n in [FAL88j proved bounds of the fonn (3.29) for stationary
nonindependent input.
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(iii) The unslotted buffered ALOHA system, from the ergodicity view point. was analyzed in
[TsB84] (see also [TSY85J). Tsybakov and Bakirov proved our result (3.34), but more sophisti
cated arguments, similar to those in [TsM791, were used.

3.4 A multiaccess buffered system with conflict resolution algorithms [eAP79. MASSI]

In I.h.is section we shall analyze blocked conflict resolution algorithms (CRA) with a finite

number, say M, of buffered users. The previous analyses of CRA have been restricted to an

infinite number of unit-capacity users (e.g., see [eAP79, FlM85. MASSI, SZP87J). We focus

on the so called blocked stack-type CRA, either modified or non-modified. The description of

these aIgorilhms can be found by the reader in [F1M85. MASSI, SZP87]. In short. the channel

is slotted and users with nonempty buffers transmit fixed-length packets at the beginning of the

slot. If two or more users transmit. then a collision occurs and a divide-and-conquer algorithm

is used to resolve it Let us assume that at the beginning of the t-th slot, an initial collision

occurs and B' = n nonempty users are involved. Then each user from that group flips an unfair

coin, and with probability p. it transmits in the next slot, while with probability 1 - P the user

does not transmit, and delays its transmission until those users who transmitted in the second

slot (the first slot contains the initial collision) resolve the conflict All users who are not

involved in the initial collision are blocked, and can send packets only after the entire collision

is resolved. During a conflict resolution interval (CRI) only one packet can be transmitted from

a nonempty buffer. This is called the non-modified blocked stack algorithm or the non-modified

Capetanakis-Tsybakov-Mikhailov algorithm [MAS81]. In the case of modified eRA some col-

Hsions are avoided by noting that if after a coUision, there is an empty slot. then the nex.t slot

must definitely contain a collision. We can "skip" over that step (wasteful slot) by allowing

all involved users to flip a coin again (see [FlM85, MAS8I]).

To derive a stability condition, let us define C j,k as the length of the k-th conflict resolu-

tion session (Le., the number of slots required to solve the initial collision) under lhe assump-

tion that !.he j-th user is nonempty. In this section we consider only necessary conditions for
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stability or equivalently sufficient conditions for instability. We assume that the process is sta-

tionary, and then compute lhe average modified selVice time as follows

(3.36)

where ?til is the steady-slate probability that at lhe beginning of the CRI, there are exactly n

nonempty buffers except the j-th one, and E (CjiB = n) is the conditional average session

length, subject to the initial conflict ofmuItiplicity n. In [CAP79, MASSI, SZP87] it is proved

that there exist such constants <ly, CIt. Plol. PI that for modified and non-modified CRA

for all n ~ O. Then. the aOOve implies

M-I M-I

~+PI+~n~SE~salol+plol+~n~
,,=<I ,..o{l

(3.37)

(3.38)

M-I

But. L mtll denotes the average number of nonempty buffers at the begiruting of a CRI,

.""
Hence for the stable system, by work: conservative arguments. one easily proves

M-l M

L mtll =cj L A.I:
11=1 .t=l

k<j

Combining (3.38) and (3.39) and referring to Corollary 2, we prove !hat

(3.39)

(3.40)

is sufficient for instability. To prove a sufficient condition for stability one must consider the

RHS of (3.38) and modify equality (3.39) in such a way that only stable queues are involved in

the sums in (3.39). The details are left to the reader.

The constant all. Pit. Oi and Pi are easy to obtain from the previous analysis of the

unbuffered system with conflict resolution algorithms (see [FlM8S. MAS8I, SZP87]). For

example, from [MASSI, SZPS7] for p = 0.5. it is proved that in the case of non-modified
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blocked CRA a,. = 2.8867, ~. = 1.2336, a, = 2.881, ~, =-1.8867.
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