
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

A Note on Two Simulation Benchmarks A Note on Two Simulation Benchmarks

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Report Number:
88-741

Rego, Vernon J., "A Note on Two Simulation Benchmarks" (1988). Department of Computer Science
Technical Reports. Paper 639.
https://docs.lib.purdue.edu/cstech/639

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971988?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A NOTE ON TWO SIMULATION BENCHMARKS

VemonRego

CSD-lR-741
February 1988

Abstract: This note presents the results of a comparative study done on the popular simulation

languages SLAM and GPSS. The models that we tested were executed on a CDC Cyber 750, a

multiprogramming system with 3770008 words of main memory and no virtual memory. A single

server queueing model and a multiqueuing model for simulating a token ring local area network.

were used for the comparison. In addition to SLAM and GPSS, we also develop FORmAN ver­

sions of the models to obtain an idea of how a low level model performs in comparison to a

model constructed in a well developed simulation language. The note includes a discussion and

some graphical results that may be useful to a modelling practitioner in planning a simulation

study.

1. Introduction

This note reports the resulrs of a comparison study done on two popular simulation

languages, namely GPSS V and SLAM II. The version of the former that we use is actually a

CDC version of the IBM release of GPSS V, developed by the Vogelback Computing Center at

Northwestern University, and called GPSS V/6000. SLAM II is a descendant of the simulation

languages Q-GERT and GASP IV and was created by Prirsker & Associates, West Lafayette,

Indiana.

In the following sections we will first briefly describe the two languages and then present

the results of our study. The intention is to observe and try to interpret their behaviour in a

fashion that may help users plan well, prior to a (possibly expensive) venture involving simula-

tion. All experiments were performed on a CDC Cyber 750 multiprogramming system with a
"

maximum of 377000s (counting in octal. arithmetic) 60-bit words of main memory.

GPSS V/6000

GPSS (General Purpose Simulation System) is a discrete event simulation language that is

based on the process interaction philosophy. It was developed by Gordon (see [1], [2]) in the

early sixties and was first available on the IBM 704, 709 and 7090 computers. GPSS is an easily

learned and commonly used simulation language. Some plausible reasons for this are its block

structured approach and the close similarity between its blocks and the activities one usually

encounters in a system that is to be simulated. It was designed with the practitioner in mind. and

irs compact form allows fairly complex models to be developed with only a small subset of the

language (i.e., only a few block types).

GPSS V/6000 allows the use of eight unifonn random number generators and one trace

driven generator. The generation of random variates from arbicrary distributions requires

corresponding user supplied functions (pairs of points corresponding to the desired distribution)

-2-

and a GPSS interpolation procedure. A nice feature is the SAVEIREAD utility that enables

models in action to be saved along with current statistics at some point in time and later restarted

from that point lbis is extremely useful as a "checkpoint/restart" procedure for time consum­

ing computer runs where, for example, the stability of the model might be an undecided issue.

GPSS V/6000 is written in Compass (CDC assembly language), presumably for enhanced

speed, and operates in an interpretive fashion. A GPSS program compilation involves the trans­

lation of identifiers into numerics. producing appropriate diagnostics as required. In our environ­

ment, a GPSS model begins execution with a field length of 30008 memory words and is allo­

cated additional memory dynamically when required. There are three standard memory alloca­

tion options for additional memory.

SLAM II

SLAM II (Simulation Language for Alternative Modeling) is a very flexible language [3]

that allows simulation models to operate under three different perspectives: process interaction,

event scheduling and/or activity scanning. It provides an easy to use network modeling capabU·

ity, discrete and continuous modeling, and combinations of these.

The network. models of SLAM II are similar to GPSS models in appearance (flowchan or

language). They are generally easy to develop. The discrete event modeling feature requires user

written FORTRAN subroutines that operate under SLAM IT processing philosophy to describe

and schedule events. The processor undertakes the task of causing the events to occur when

scheduled and maintains statistics. The subroutines are interfaced with the processor not unlike

the FORTRAN/Compass HELP blocks of GPSS V/6000.

SLAM II provides a variety of random number functions including antithetic variates and a

trace driven generator. One may SAVE and LOAD decoded SLAM networks. However, SLAM

does not provide a feature for saving and reslamng models once execution begins. SLAM II

- 3 -

operates on network models in an interpretive fashion, but models other than pure network

models require that the user supplied FORTRAN routines be interfaced with the SLAM II code

prior to the execution of the model.

SLAM II is written in FORTRAN and operates with a fixed field length at all times. This

means that users must estimate their model memory requirements prior to the execution of the

model. In the event that a model may need more memory than that provided in the version

currently available, it is possible to replace the MAIN program in SLAM II with a user written

program in order to redefine the dimensions of file storage areas.

2. A Comparison

The simplest way to make a comparative statement concerning these two languages is to

examine their performance on a common task.. We choose to view performance in a broad sense,

with features including ease of use, speed and cost Since each language requires that such a task

be defined in a different manner, the problem of coding equivalent definitions of the same task is

not, in general, an easy one. In the following discussion we present a description of two models

and graphical representations of the behaviour of these models coded in GPSS V/6000 and

SLA1\1 II on a CDC Cyber 750.

Modell

The first model is a simple model of a single-server queueing station. The customer arrival

process is Poisson, and customer service times are independent and negative exponentially distri­

buted random variables (this is called the M/M/I queue in Kendall's notation) [4]. The first

moments of the interarrival and service time distributions are chosen so that the traffic intensity

of the system (p) works out to be 0.99. thus ensuring a stable but congested system.

Both queuing theory and common sense tell us that the time I taken by such a queueing sys­

tem to attain steady state depends, in a complicated way, on d = 1 - p, for 0 < p < 1. As d

200 ()f'SS V

180

C 160
P
U
T 140
I
M120E

r 100S
E
C 80S
1 GPSS vr.)

60

40
SLAM II

20

10 20 30 40
SIMULATEO

50 60
CUSTOMERS (X

70
10001

80 90 100

Fig la. Execution time for Model I.

10 20 30 40
SIMULATED

50 50
CUSTOMERS (X

70
1000)

60 90 100

Fig lb. Memory usage for Model 1.

30
28
26 G1'SS VJ

0 24
8 22
C 20
0
S 18
T 16
(14
0
0 12 G1'SS V{ol
L
L 10
R 8
R
S 6
I SLRM II4

2

10 20 30 40 50 60 70 80 90 100

51MULRrEO CUSTOMERS ex 10001

Fig le. Job cost for Model I.

-4-

decreases, it can be expected that t will correspondingly increase due to rapid increase of conges­

tion in the system. Since the machine dependent simulation models are dependent on CPU atten­

tion and workspace (CPU time to replicate observations and workspace to keep track of custo­

mers, service. and statistics), a typical simulation run for such a system can be expected to take a

time roughly inversely proportional to d in order to attain steady state.

In Figures 1a, 1b and 1c are displayed characteristic resu1ts of GPSS V/6000 and SLAM IT

on the M/Wl model in terms of CPU time. the amount of main memory used in word hours, and

the cost of the job at low priority rates (Le., batch rates), respectively. Each curve is the result of

a set of simulation runs done for a number of customers ranging from 10000 to 90000. increment­

ing in units of 10000. Also. each curve is obtained through a spline interpolation of the nine

poinlS. Figure la would lead one to conclude that GPSS V/6000 generally takes longer than

SL'AJ.\JI n [0 perform the same task.

The basic dynamic unit of a model is called a transaction in GPSS, and an emity in SLAM.

A model has a high level of congestion when the number of transactions (entities) in the system is

high, and the manner that GPSS (SLAM) scans the current and future events chains (lists) to

decide which transactions (entities) should be moved where and at what point in time is largely

responsible for the large processing time involved. GPSS makes available a feature that enables

users to achieve some reduction in execution time via two blocks. The LINK and UNLmK.

blocks of GPSS remove transactions from processing (deactivating them temporarily) and bring

them into the model when required, thus giving a tremendous potential for reduction in execution

time.

The CUIYe labelled as GPSS V(*) in Figure 1a is the result of a model that makes use of

LINK/UNLINK blocks. The nonlinearity of the GPSS V CUIYe is a function of the congestion in

the system, demonstmting that processing time increases in a nonlinear fashion as the number of

trnnsactions in the system increases. SLAM II behaves linearly due to efficient file entry and

-5-

removal procedures. Apparently. SLAM does not provide anything akin to the LINK and

UNLINK blocks of GPSS, but instead implements an efficient binary search algorithm that

effects considerable reduction in execution time by maintaining pointers to subsets of files which

are used for file entry or deletion. This procedure comes in handy for large files that are ranked

on atttibute value. The search algorithm. must be invoked by data input changes to the model to

get around the standard file processing procedure. The GPSS V(*) curve, like the SLAM II

curve, is linear due to the more stable processing of transactions on the event chains, and demon­

strates that some level of sophistication in the use of the language is required if efficiem models

are to be built

It is interesting to note that the story is quite the reverse, at least in this situation, when we

consider the amount of memory used by the job. In Figure Ib can be seen the disparity between

the memory requirements for both languages. The unit of measurement used is a wOrd-hOUT,

which represents the usage of one memory word for a period of one hour. Thus program code

that utilizes a field length of 100010 memory words for 30 cpu seconds equivalently utilizes

1000 x 30/3600 = 8.33 memory word. hours. During the course of a program's execution the

amount of main memory used by the program is bound to change, being dependent on its tem­

poral requirements. The word hour usage of a job is the amount of memory used by the job,

integrated over the time taken by the job to complete.

While SLAJ.\1 II works with fixed storage and is relatively unaffected by machine architec­

ture (Le., virtual memory vs. no virrual memory), the IBM GPSS V version specially recom­

mends use of a LOAD statement in a GPSS model so as to make repeatedly used routines. reside

in core for the duration of the model's execution to cut down on paging costs. This feature, of

course, does not make sense on the Cyber 750 since it operates without vinual memory, swap­

ping processes back and fonh between main memory and disk. A typical upper bound of

3770008 usable memory words implies that it is highly likely that certain models, whether built in

- 6 -

GPSS V/6000 or SLAM II, may require so much memory during the course of their execution

that the simulation will never run to completion This is very often a problem with large models.

For all practical purposes, such models are useless without drastic changes in their design.

The costs of the different jobs at low priority rates are shown in Figure Ie. Cost is caIcu·

lared as a function that is dependent on the amounts of CPU time, peripheral processor time (pP

time), and word hours used by a job. IfTCPU. Tpp and TWH are used to denote these three times.

respectively, the cost C of ajob in dollars computed as

C = 700. x Tcpu + 9. x Tpp + 0.0037 TeM (I)

where the constan(S reflect the unit costs (al current estimates) for the different types of resources.

ModeIII

The second model is a slightly more complicated model of a multiqueueing system. built to

simulate the behaviour of a token ring network [5]. The system is composed of N = 10 service

stations numbered 1 through N. Initially the system is swted with the server arbitrarily posi­

tioned at one of the N stations. The server cycles around the system, serving a customer at station

j, j = 1 , ,N, if a customer awaits service there. If the server finds one or more customers

awaiting service when he arrives at station j, he spends a random time Xj serving the customer at

the head of the queue, and then moves on to station j mad N + I, taking a random time Wi + 1 to

walk over from station j to its successor. The server spends no time at a queue if it is found

empty. All random variables used are assumed to be exponentially distributed.

Customer arrivals at the various stations are independent, and within a station these arrivals

follow a Poisson process. Each queue is assumed to have unlimited w::rlting room. Because ser­

vice is given to at most one waiting customer at each queue per server visit, the service discipline

is called the one-at-a-time service discipline. The parameters for walk. service and interanival

times for the different stations arc set unequal, so as to yield an asymmclric syslem.

10000

GPSS v
C 1000
P
U

T
SLAM II

I
M 100 FORTRAN VE

(
S
E
C
S 10
I

ID 20 3D 40

SIMULATED

50 60
CUSTOMERS ex

70

10001
60 90 100

Fig 2a. Execution time for Model II.

100000

SLAM II

M ::
E 10000

~
M GPSS V
a
R
y

U 1000 FORTRAN V
S
E
a -----(

100W
a
R
a
H 10
a
U
R
S
l

10 20 90 40
SIMULATEO

50 60
CUSTOMERS (X

70
1000l

80 90 100

Fig 2b. Memory usage for Model II.

150

OPSS V

J
0
8

C 100 SLAM II0
S
T

(
0
0
L
L

50A
R
S
)

10
FORTRAN V

10 20 30 40
SIMULATED

50 60

CUSIOMERS IX
70

1000)
80 90 100

Fig 2c. Job cost for Model II.

-7-

For this model. the interarrival and service time means are chosen so that all queues are

slable (using the stability condition heuristically obtained in [6], formally proved in [7]) and the

value of p averaged over all stations is approximately 0.60. It must be noted that no exact queue­

ing solution exists for this model. which makes simulation a necessity. While a traffic intensity

of p = 0.60 can be taken to mean literally no congestion oftransaetions in a GPSS model, or enti­

ties in a SLAM model for a single server queue, this need nor be the case in our multiqueue

model. Certain queues may be stable while others are unstable or highly active. We avoid these

situations by making all queues stable. with roughly the same traffic intensities. yielding an aver­

age value of p = 0.60.

In Figures 2., 2b and 2c are displayed lbe results of this model in GPSS V/6000 and SLAM

n, corresponding to the same measures as made wil:h Model I. Funher, to demonstrate the costs

associated with making such languages easy for non-specialists. a specific FORTRAN V (CDC

version) model was also developed. with its results included with the graphs in Figures 2a, 2b

and 2c. Such a comparison may not really be fair to simulation languages. especially in view of

the fact that coding a FORTRAN (or equivalently. Pascal or C) version of the model can be rela­

tively time consuming, especially for more complex models. Nevertheless. such a comparison

makes available all information prior to a decision process involving simulation. GPSS and

SLA!Y1 required about the same effOl! for coding, while the FORTRAN model required roughly

twice the effort.

Each of the curves in Figures 2a through 2c is a spline interpolation of nine points, increas­

ing in steps of 10000 customers. The customer count is done at a reference queue. and I19t over

the system. Figure 2a once again reveals the nature of GPSS V/6000 in its tendency to require

greater CPU attention than SLA...\f II (with the Y-axis incremented logarithmically in units of

CPU seconds). In contrast, the FORTRAN V model takes considerably less time than SLAM II

to execute. Due EO the fact that congestion in the system is negligible, the use of LINK and

-8-

UNLINK blocks in GPSS will be of little avail. It is often the case that in such systems, where a

server is required to switch from queue to queue. processing overhead in the model can be very

high in spite of low congestion. In this case the model execures empty server cycles. with the

server scanning queues and waiting for queues to generare customers.

Figure 2b shows the disparity in memory requirements between the two simulation

languages and the FORTRAN V model. again expressed logarithmically on the Y-axis in units of

memory word hours. It may at first seem a little surprising that the SLAM II memory require­

ments exceed those of GPSS V/6000. but this can be attributed to the fact that SLAM works with

a fixed field length that is larger than the average field length of GPSS.

The FORTRAN V model allows for the most control in memory usage through the use of

an efficient technique that would be quile difficult for a package like GPSS or SLAM to dupli­

ca[e. Simply put, the FORTRAN code utilizes a queue of unit capacity for each station. For each

queue only the head-of-line customer's arrival time and corresponding random number seed (i.e.,

seed that generated this customer's arrival time) need be stored. In order to determine the number

of customers queued at station j when the server arrives at queue j, the FORmAN model calls

the random number generator repeatedly until a customer is generated with arrival time greater

than the current simulated value of the clock. Note that these times are only generated, but not

stored. At this stage the number of customers in queue j is precisely the number oftimes the ran­

dom number generator was called minus one. TIlis method of storing seed values and generating

quantities only when required is extremely useful. in particular on a fast machine with very lim­

ited (and expensive) memory, as is the Cyber 750.

Before a model is executed in SLAIvI or GPSS, a user must be able to estimate the number

of dynamic units that will exist in the model at any given instant With an analytic or approxi­

mate technique to help, a SLAM user may do this in the MAIN program, and GPSS user may

specify one of three memory allocation options. In either case this procedure must be followed

-9-

for large models. and it is usually here that users will get a feel for wherher their models will be

treated well by GPSS or SLAM. A program in FORTRAN (or Pascal or C) can avoid this prob-

lem altogether at the expense of some planning and coding effon.

In Figure 2c can be seen the total costs associated with the model in the three languages.

As expected, a GPSS run costs more than a corresponding run in SLAM. Bur. as mentioned

before, cost is not the only facro!. Teaching experience indicates that GPSS is easier for a learner

to grasp than SLAM, lhough the latter may eventually have more [0 offer. Examples of the latter

point are SLAM's continuous and combined modelling capability. GPSS does not require that

users know FORTRAN except for fairly sophisticated models that need [0 modify standard pro-

cessing by using HELP blocks. On the other hand, SLAM models different from the network

models insist that users have a working knowledge of FORTRAN in order that user event roll-

tines be develop¢. Models written only in FORTRAN (or Pascal or C) are usually the most

efficient since they can be tailored to suit the user's specific needs. But such models require a

great deal of effort and a good knowledge of a programming language. Further, since the user

must devise his own filing and accounting system, extreme care must be taken in order that

proper statistical results are obtained from the working model.

REFERENCES

[1] G. Gordon, •• A Geneml Purpose Systems Simulator." IBM Systems Journal, Vol. I, No. I,
1962.

[2] General Purpose Systems Simulator: Program Library, Ref. 7090-CS-05X, International
Business Machines Corporation.

[3] A. Pritsker, Introduction co Simulation and SLAM II, H<1lstead Press. John Wiley, 19815.

[4] A. Allen, Probabiliry • Statistics, and Queueing Theory With Computer Science Applica­
tions, Academic Press, 1978.

[5] V. Rego and L.M. Ni, "Analytic Models of Cyclic Service Systems and their Application to
Token Passing Local Networks," to appear in IEEE Transactions on Computers, 1988.

[6] P. Kuehn, "Multiqueue systems with Nonexhaustive Cyclic Service," The Bell System
Tech. Journal, Vol. 58, 1979.

[7] W. Szpankowski and V. Rego, "Ultimate stability conditions for some multidimensional
distributed systems," Purdue CSD-TR 715, October 1987.

	A Note on Two Simulation Benchmarks
	Report Number:
	

	tmp.1307986960.pdf.1fGu9

