
Purdue University Purdue University

Purdue e-Pubs Purdue e-Pubs

Department of Computer Science Technical
Reports Department of Computer Science

1988

A Band and Bound Technique for Simple Random Algorithms A Band and Bound Technique for Simple Random Algorithms

Vernon J. Rego
Purdue University, rego@cs.purdue.edu

Report Number:
88-844

Rego, Vernon J., "A Band and Bound Technique for Simple Random Algorithms" (1988). Department of
Computer Science Technical Reports. Paper 721.
https://docs.lib.purdue.edu/cstech/721

This document has been made available through Purdue e-Pubs, a service of the Purdue University Libraries.
Please contact epubs@purdue.edu for additional information.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Purdue E-Pubs

https://core.ac.uk/display/4971985?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://docs.lib.purdue.edu/
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/cstech
https://docs.lib.purdue.edu/comp_sci

A BAND AND BOUND TECHNIQUE FOR
SIMPLE RANDOM ALGORITHMS *

Vernon J. Rego

Department of Computer Sciences
Purdue University

West Lafayette, IN 47907

* This research was supported in pan by NSF under gram NCR-8702115.

- 2 -

1. INTRODUCTION

A simple random algorithm A is an algorithm whose behavior is associated with a first

order Markov chain [1,2]. The algorithm A traverses a sequence of "states" during the course

of its execution, where a stare is defined by variables the algorithm uses to record its temporal

progress. For example, A may be a probabilistic finite state automaton, in which case .4 makes a

transition by reading an input and consulting a probability transition table before moving ran-

domly from a current state to a target state. In this case each state is given by a tuple made up

of an input and a state of the finite stale automaton. We generally assume that the input is such

that A terminates in a finite time. Correspondingly, the Markov chain representing ^ is a tran-

sient chain with one or more absorbing states.

Let A be a random algorithm whose states can be mapped onto the nonnegative integers

Z = (0,1,2,. . .}, with either a finite or countable number of states. Given specific information

concerning the behavior of A and its input, we are interested i n^ ' s expected run time, i.e., the

number of steps required for the algorithm to terminate. The standard approach in computing

jd's expected run time is numerical [1,2] since jd's behavior is governed by a Markov chain.

Briefly, let be the transition probability matrix of the Markov chain, and assume there is a

single absorbing state, say state 0. If there is more than absorbing state, then these states can all

be lumped together into a single absorbing state. This is done by adding the probabilities

corresponding to the absorbing states in each row of P(4) and placing the sum in the column

position corresponding to the single (lumped) absorbing state. Order the rows (and columns) of

P(j<1) in decreasing order of state index, let M be the submatrix obtained by deleting the row and

column in P(j1) corresponding to the absorbing state. If we begin to execute algorithm A in

state n, then its expected run time is given by

E[Tn(A)] = S „ (X — M) - 1 e (1.1)

where 5„ is a vcctor with a 1 in the n'h coordinate (counting from right to left) and zeros else-

- 3 -

where, e is a vector with all entries equal to 1, and (I - M)"1 is the fundamental matrix of the

chain.

It is of some interest to determine, qualitatively speaking, if one can get a handle on

E[T„(A)] without resorting to Eq. (1.1). In other words, is it possible to estimate [he expected

run time of a simple random algorithm non-numerically, by either examining the structure or

utilizing some property of P04) ? Interestingly enough, the answer is in the affirmative. In the

following sections we examine how some simple upper and lower bounds on E(T,,(jA)] may be

obtained by imposing certain small requirements on P04). The bounds are of type 0(log ri) and

may help give insights into why certain algorithms yield logarithmic expectcd run times. Addi-

tionally, this type of analysis can also be useful in the expected run time estimation of some

deterministic algorithms (see section 4). Examples of algorithms which can be viewed as sim-

ple random algorithms are given in section 2. It is shown that expected run times for determinis-

tic algorithms can be estimated by placing distributional assumptions on the algorithm's input

and focusing on a Markov chain that is constructed to represent the expected behaviour of the

algorithm. In section 3, we present the main results, speciiying conditions under which an algo-

rithm A yields

Cjlogart £ E[Tn(A)\ $ C2 Iogfl/I (1.2)

for inputs depending on it and certain constants c\, ci, p, a with (3 > a > 1. In each case, a. and

(5 are parameters of model and can usually be determined by examining the transition probabil-

ity matrix of an appropriate Markov chain. Finally, in section 4 we apply the ideas of section 3

to the examples presented in section 2.

- 4 -

2. SOME SIMPLE RANDOM ALGORITHMS

2 A Feedback-less broadcast protocols [Hofri, 1987]

Consider a communications network with n distributed transmitting (and receiving) sta-

tions. Divide the time axis into equal sized slots and assume that transmitters arc synchronized

with respcct to slot boundaries. A phase of the protocol comprises a random number of slots

and is defined as follows. Initially (at the beginning of slot 0) all n stations are active (i.e.,

capable of transmitting with probability 1). At the end of each slot j, j > 0, each active station

transmits a message and either becomes inactive hereafter, with probability p, or remains active

with probability q = 1 -p. To avoid trivialities, we take 0 <;? < 1. The intention is to allow

one particular node to receive necessary information from neighbors who possess such informa-

tion. A phase terminates if, at any slot, only a single station transmits (i.e., a successful phase)

or all stations become inactive (i.e., an unsuccessful phase). What is the expected length of a

phase for large n ? Suppose that we allow each station i to transmit with probability p ; if it is

active, with pt pj for i j. In this case, can we still find bounds on the expected length of a

phase ?

2.B Maximal Independent Sets in Random Graphs

Let G be a random graph on n nodes generated as follows. For each two tuple (i,j),

i < j £ n, 1 £ i S n — 1, let E^j be a Bernoulli random variable with parameter p for which an

instance is observed. If event [Eiwj = 1] occurs, then place an edge between nodes i and j and

call nodes i and j adjacent nodes.

Given a random graph G, the lexicographically first maximal independent set (LFMIS) is

generated by a very simple algorithm. First initialize the set S to be the empty set. Next, for

i = 1 , 2 , . . . , n, if node i is not adjacent to any node in S, then add node i to the set S. What is

the cxpected number of steps required to generate S I As in the previous example, can be

- 5 -

generalized to a Bernoulli random variable with parameter p-,j, for 1 j < n. How docs lliis

affect the expected run time of the LFMIS algorithm ?

2.C Sequential Searches [Knuth, 1973]

We are given a table of records R\, R2 Rn, with respective keys Kx, K2,..., Kn.

We are interested in locating a record with a specified key, say K. For generality, assume that K

n
resides in position i with some unknown probability p; so that £ pi ~ 1 (i.e., search will always

be successful). Clearly, an unsuccessful search requires a scan of the entire list. What is the

expected number of comparisons required for a successful search ?

2.D Random sorts

This example demonstrates an unusual nondeterministic sorting scheme on a uniprocessor.

The algorithm was devised in order to help analyze a similar distributed sorting scheme on n

processors. We begin with the uniprocessor sort Given an input list L of n integers, the task is

to son the list in ascending order. Without loss of generality, assume that 1 < L\J] <M, for

1 < j < n and some arbitrary integer M.

Consider an algorithm which begins with list L = and progresses in nondeterministic

fashion through a sequence of lists Lm, Llk\ . . . until finally terminating with the

required sorted list Ls = L^. At each step, k, 0 < k £ m, the algorithm examines the current

list and computes the number of flags present. Position j in any list L is said to generate a

flag if L[j] > L\j + 1] for 1 < j 5 n - 1. Let F(k) denote the number of flags present in list

In order to obtain list the algorithm randomly chooscs one of the flagged positions

in and exchanges the flagged clement with its right neighbor. Each of the F{k) positions is

equally likely to be chosen. The algorithm terminates with some list L (m) provided F(/n) = 0

(i.e., all flags have been eliminated). Clearly, the simple random algorithm just described may

A

V

O . c h

o

CI lower-end

CI upper-end

Empirical
^ i —j i 1 1 1 j

1000 2000

Size of input list n

Fig.1 Expected Time for Distributed Sort

3000

- f i -

ll ave an extremely large sorting time (i.e., number of comparisons). The question is can we find

a bound on its expected run time ?

Consider how we could generalize the idea to a distributed sorting scheme if rt processors

were available. Initially, load each processor j with list element L [/], for I < j < n. We say

that processor (y'+D is the right neighbor of processor j, for 1 < j < n - 1 (and note that proces-

sor n has no right neighbor). Additionally, assume that:

(1) processors communicate asynchronously,

(2) only processors with flagged elements are allowed to initiate exchanges,

(3) simultaneous initiations of exchanges are illegal, and

(4) a processor with a flagged element can initiate an exchange only with its right neighbour.

The distributed sorting scheme works as follows. Any processor that finds its right neigh-

bour possessing an element smaller than its own will initiate an exchange to restore local order.

Since only one initiation can occur at a time, an error condition in which a processor receives an

incorrect element will not arise. After a finite number of such exchanges each processor will

have obtained its final list element and will stop initiating exchanges so that the algorithm ter-

minates. A simulation model of the sorting scheme was developed and some empirical estimates

of its expected run time are shown in Figure 1. Can we analytically estimate the expected run

time of the distributed sort ?

2.E Dependent service queueing systems [Neuts, 1977]

A queueing system can be viewed as an extension of a simple random algorithm in the

sense that, given an initially nonempty queue, the server has to exccute a simple algorithm

(keep serving customers) until the queue eventually bccomcs empty. A stable queue ensures that

the algorithm terminates in a finite time. While such a view of a queue may be unusual, it is

natural to use the tool we develop towards such an application simply due to the existence of an

- 7 -

underlying Markov chain, albeit one with remarkable structure.

Consider a single server queueing system in which customer arrivals occur in groups at the

epochs of a homogeneous Poisson process of rate X. The sizes of successive groups are sto-

chastically independent and identically distributed with density [pk, k > 1]. Assume that custo-

mer types and service times are generated by an /n-state Markov renewal sequence with an

irreducible transition probability matrix. Such a queue with customers whose service times are

dependent is useful in modeling buffers in computer networks [5]. The so-called batch

M ISM 11 queue [4] yields a customer type and queue length embedded Markov chain

'Bq B i Bz Bz
A0 A2

0 Ai Ax
0 0 Ao A,

where Bj and A -} are substochastic matrices generated by the model, for j > 0. The matrix Q

describes a stochastic process k>0} at customer departure epochs, where Xk is the

queue size and Yk is the customer type at departure instants. Given that the queue initially con-

tains n customers, can we obtain a bound on the expected number of customers served before

the queue bccomes empty ? The known methods for computing such a quantity (i.e., a passage

time) are strictly numerical [4]. In section 4, we demonstrate how a simple bound on this quan-

tity can be obtained without resorting to computation.

- 8 -

3. ON BANDING AND BOUNDING

Let A be a simple random algorithm with underlying Markov chain [Zk\k> 0} defined on

a countable set of states Z = (0,1,2, . . .}. For ease of notation, we will focus our attention on

{Zfc} and neglect mention of A. Assume that state 0 is the only absorbing state for the chain

[Zk] (for otherwise we can lump the absorbing states together into a single state, as explained in

section 1). Given that 2 0 = n, i.e., we start the chain in state n, let T„ denote the number of

steps (run time) required by the chain before it reaches state 0. Though we may work with a

countable state space, we assume that we only deal wiih chains for which lim P(Zm = 0) = 1.
m—i<x>

We begin by demonstrating a sufficient condition for £(Tn) to have an OQog n) upper bound.

The argument used to obtain the result appeals to a negative drift requirement for absorbing

Markov chains.

Theorem 1

Let {Zk\k> 0} be a Markov chain defined on the set Z, with 0 as an absorbing state and all

other states transient. If the inequality

E(Zj+llZj = m) < j (3.1)

is satisfied for all m, m £ 1, and an arbitrary P > 1, then

£ (r „) £ logpn + - p ^ - (3.2)

Proof: Using Pn and En to denote probability and expectation, respectively, conditional on

Zq = n, inequality (3.1) yields

En(Zj+l IZj) < Zj- 1

and the recursion

£„(Z>+1) < E„(Zj)-J

from which is obtained

- 9 -

E n (Z j) < n - ± (3.3)

Since P„(Z,- * 0) < £„(Z ;), we get

P(Tn > j) < En(Zj) 5 min(^ , I) (3.4)

Finally, using the relation E(T„) = £ P(T„ > j), we obtain
jzo

logon j

and the result

E(Tn) < X 1 + (3-5)
/=o P ~~ 1

£(T„) <; logpn + -p^-j-

A version of the above theorem was used by Stavskaya and Pyateskii-Shapiro [6] to prove

existence of an invariant measure in a Markov random Geld for parameter values above a certain

threshold. The version was attributed to L.G. Mituscin, but no proof of the theorem was given.

Additionally, the linear term shown in [6] is * * ^ , which is larger than our linear term
In p

P - r

A more general version of Theorem 1 can easily be shown using essentially the same

argument. Define / : Z -> Z to be some increasing function with / (0) = 0. By replacing con-

dition (3.1) of Theorem 1 by the condition

E[f(Zj+l)\Zj=m] <; ^ (3.6)

for all m, m > 1 and an arbitrary p > 1, we can repeat the arguments used in Theorem 1 to

obtain

Corollary 1.1.

Let (Zi) be a Markov chain on Z with 0 as an absorbing state and all other states transient. If

- 10-

[Zk] satisfies (3.6), then

E[TfW] 5 logpfCn) + j ^ j (3.7)

•

Consider the following examples for function /(•)-

(i) With / (/) = j, j e Z, one obtains E(T„) ~ (?(log n), since the corollary reduces to

Theorem 1.

(ii) With /0 ') = j1, j e Z, one obtains

£ (7 >) < 21ogp/i + - 0(*og n).

(iii) With / (J) = j', j <= Z, one obtains

E(Tn*)-0(n log n).

(iv) The function/(/) = for ; e Z, and 0 > 1 yields

£-(r e-) < n logpQ + ~ 0(b).

(v) A special choice of /(•) yields a stronger form of Mituscin's result [6], Let Z be

decomposed and ordered into mutually disjoint sets So = (0), S l t Sj*. - . , etc. , so

that f (j) = k if j e Sk, for k j e Z. Then, using Corollary 1.1. the expected time

E] to reach state 0, starting from any state in set S„, is given by (3.7).

•

We next take a look at a motivating and illustrative example of the use of Theorem 1.

Consider a set of n urns labeled 1 through n arranged in a row. Inside each urn is placed a sin-

gle ball. At each time step k, k = 1,2,3 we pick up a ball from each nonempty um and

toss it into the air. The tossing is done simultaneously for all the nonempty urns. Assume that

for each nonempty um, the tossed ball falls out of the um with probability p > 0, and falls back

into the um with probability q = 1 - p. We call this algorithm an urn game with parameters

-11 -

(n ,q) and seek an estimate of the number of steps required before all n urns are found empty.

Let Zk be the number of nonempty ums remaining after the k'h toss. With initial state

Z0 = n, the sequence [Zk;k> 1} is clearly a Markov chain, with transition probabilities

P{Zk+1=j\Zk = i) = (j] / 7 ' - V (3-8)

for 1 < i <, n, 0 < j i. Observe that the transition probability matrix for this chain is upper tri-

angular and the probabilities in row i define a distribution which is binomial (n , q). That is, P , j

is given by (3.8), for 1 < i £ n, 0 £ j <, i, and state i = 0 absorbing, where P is the transition

probability matrix of chain {Zk}. Given that we start the um game with n nonempty urns, then

for each state i,

E(ZM \Zk = i) = iq (3.9)

for 1 £ i < n. Since (3.9) demonstrates that the hypothesis of Theorem 1 is satisfied, we

immediately obtain

£ (T „) 5 + (3.1Q)
loc a 1 I—a log q

or asymptotically, E(Tn) ~ 0(Iog n).

A natural question to be asked at this stage is whether we can establish a lower bound in

the same spirit as Theorem 1. While we cannot obtain a lower bound of the form in (3.2), and

indeed cannot even use the arguments of Theorem 1, the um model can be used to demonstrate

that such a lower bound must hold for a large class of Markov chains, and thus for a large class

of simple random algorithms.

To demonstrate the existence of a lower bound, notice that the probability that a ball falls

out of its um within k steps equals 1 - qk. Using P(k,n) to denote the probability that all n

ums are empty at step k, clearly

P(ktn) <; (I ~qk)n. (3.11)

Since P(k,n) is a nondecreasing function of it, it follows that

- 12-

E(Xn) = I d - W l (3.12)
Jfc-0

> k[l-pyc,ri)]

> k[\-{\-qky\

for any k > 0. Choosing

k _ (1 ~ 5) log n
log q~x (3.13)

for 0 < 5 < I, we obtain qk = n5 - 1 , and

log? 1 (3.14)

for any e > 0, 0 < 5 < 1, and n > n 0 so that

c \ - n t x r < E. 8-1 \«D (3-15)
This suggests the following corollary..

Corollary 1.2.

Let [Zk; k > 0) be a Markov chain on (0, 1, 2, • • - , « } , with transition probabilities given by

(3.8) for 1 < z < n, 0< j < j, and state 0 an absorbing state. With ZQ = n, let Tn denote the

time to absorption in this chain. Then

Given a simple random algorithm with underlying Markov chain [Zk], our chief goal is to

obtain an estimate of its expected run time. If we can compare the chain [Zk] in the sense of

time to absorption to a (different) chain that satisfies the conditions (3.1), (3.6) or the hypothesis

of Corollary 1.2, then we will be able to establish bounds on its expected run time. A useful

tool for such a comparison is the notion of a stochastic order relation. A random variable A is

(3.16)

for some constant C.

•

- 1 3 -

said to be stochastically larger than a random variable B if

P[A>x} >sl P[B > x) (3.17)

for all x. Inequality (3.17) is usually written as A >sl B. Using this tool we now examine how

the running times of two different algorithms can be compared, given that we know their under-

lying chains.

Let {Ak} and [3k] be two Markov chains defined on Z such chat both chains have state 0

as an absorbing state and all other states are transient. Let T* and denote the times to

absorption from state n for chains [Ak] and [Bk], respectively. If one process exhibits sample

paths that tend to lie above the sample paths of the other process, then the latter process will

possess a smaller mean time to absorption.

Theorem 2:

If Ao = 5 0 = m and A i >Jt S i for all m, m > 1, then

for any initial state n.

Proof. By our hypothesis, we can begin with A0 = B0 = n. Since Aj >st By, we must have, for

any increasing function /i(-),

(3.189)

A(4,) > , h(BJ.

We choose, in particular, the function

M A i) = / W , > k) , (3.19)

so that

fJP^M;.! Zk)] 2 En[PBx[Bhx >k}]

implying that

En[PH[Aj2k)] > En[Pn[BjZk)]
and

- 1 4 -

Pn[Aj>k) 2: Pn{Bj*k). (3.20)

Using k = 1 in inequality (3.20), and observing that [Aj>\}=[T*> j) , we obtain

P(T*>j) > P{T°>j) (3.21)

for all y, ; > 0. Since T* >sl T*. it follows that E(T'J) > E{Ta
n).

t

At this stage, it is helpful to take stock of what we have done so far. Given a Maikov

chain {Z*} on [0,1,2,. . .} so that 0 is an absorbing state and all other states are transient, we

have determined bounds on the expected time to absorption of the chain starting from any initial

state n. That is, if denotes the lime to absorption from state Z0 = n, then

(a) if (3.1) is satisfied, E(T%)~0(log n),

(b) if (3.6)is satisfied, E{Tf(n))~0(log f(n)).

The above results rely on expectation conditions. To get around this for a lower bound,

we introduced the n-um game Markov chain [Uk} with parameter q = 1 — p > 0 and deter-

mined that

(c) £ (7 f) - 0 (l o g n) . a n d

(d) E(T")-n(logn).

Finally, Theorem 2 tells us what conditions are required of Markov chains {X k] , [Yk] so

that

(e) E{TY
n) > E(T*).

A glance at (a) through (d) demonstrates a bounding technique for simple random algo-

rithms. If one can show that a random algorithm possesses an underlying chain with any of the

specified properties, or if the chain can be compared to another chain whose absorption time is

known, then a bound for the expected run time of the random algorithm in question immedi-

ately follows. Condition (e) allows us to go a step further. If we can place the underlying

- 15-

Markov chain, in the sense of time to absorption, in between two other Markov chains whose

respective times to absorption are known, then we simultaneously obtain both upper and lower

bounds for the expected run time of the random algorithm in question. This is essentially a

banding technique. In order to demonstrate the idea, we draw upon a result from [7] without

reproducing the proof.

Corollary 2.1.

Let [Uk;k > 0} be an um game on n ums with parameter q = 1 - p > 0. Then

= ^ r + y + / > («) + <?(«"1) (3.22)
log q 1 log q 2

where yis Euler's constant, and P(n) is a periodic function with very small amplitude.

In [7] the above result is obtained using purely analytic (asymptotic) methods. The argu-

ments in Theorem 1 and Corollary 1.2 yield essentially the same asymptotics, but with simple,

constructive arguments. Additionally, as we shall see in scction 4, the construction enables us

to obtain bounds for a large class of random algorithms.

Suppose that we are given an absorbing Markov chain [Zk] and one is able to show that

the sample paths of [Zk] tend to lie above and below the sample paths of two other chains {X*}

and [Yk], respectively. Theorem 2 tells us that the mean absorption time E(T%) should satisfy

E(T*) < E (2 f) < £(T„y). (3.23)

The above result is what we call a banding argument and is stated more precisely for chains

[Xk] and {Y}.} whose behavior we understand.

Theorem 3:

Let [Xk; k > 0) and [Yk; k £ 0} be um games on n ums with parameters qx = 1 - px > 0 and

Qy = 1 -Pr > 0- respectively. Let {Zk\k> 0} be a Markov chain on Z with state 0 as an

absorbing state and all other states transient. If

- 16-

E{Xl\XQ=m) <, E(Zi I Z0 =m) < I y0 =s/n) (3.23)

holds for all m > 1. then

<*(Iog/ i+y) + gx(n) <, < c y (log /z+y) + gy(n) (3.24)

where, for x e [X,Y], cx = (1 - p x) ~ l , and

& 0 0 = j +P(n) + Ofr"1).

Proof'. Sincc (3.23) guarantees the hypothesis of Theorem 2, it readily follows that

E(T*) <; E(7*) 5 E{Tl)

V « > 1. Inequality (3.24) results from an application of Corollary 2.1.

c

It must be noted that gx(r0 and gtiri) approach the constant ~ for large n. Tliis is

because lim — =0 , and lim P(n) is negligible (Knuth [3] shows that P(n) < 1.725 x IO-7 for

4. APPLICATIONS

In order to demonstrate how the simple techniques developed in Section 3 can be used, we

apply them to the examples given in Section 2. In each case we begin by formally describing

the algorithm's underlying Markov chain and then use the appropriate result to obtain bounds

on its expected run time.

4.A Feedback-less broadcast protocols

Let [Uk',k > 0} be a sequence of random variables, where Uk is the number of active sta-

tions at the beginning of slot k. With UQ=n, and a constant value of q = 1 -p, [Uk] is a time

homogeneous Markov chain on the set {0,1,2 n}. Let T " denote the length of a phase of

the protocol, with = m if Um.x (0,1) and Ume {0,1}. Clearly, [Uk) is an um game

with parameters (n , q).

- 1 7 -

From Theorem 1, it follows that

£ (7 f) < logpn + p - L - 0(log n) (4.1)

for (3 = q~x, since we can properly bound the expected value of each row of the probability

transition matrix of the chain. Additionally, since we can stochastically bound the state U \,

given Uq = nz for any m, by identifying [Uk] with an um game, Corollary 1.2 gives

£ (2 f) - QGogiO. (4.2)

In order to further refine our estimate of E (T f f) , we resort to Corollary 2.1 to obtain

£ (7 f) - logpft + - j ^ j + y + />(«) + 0CT1). (4.3)

If each (active) node i, I < i <. n, has a probability p; of remaining active at the end of a

slot, then a further refinement of (4.3) is nontrivial. However, if we set

q = max { q{ I / < i £ n }, then our bounding arguments still yield the bounds (4.1) and (4.2).

This is equivalent to saying that the expected length of a phase (um game) in a system with

asymmetric probabilities of transmission is determined by the station (um) whose transmission

(ball) has the largest probability of remaining active (falling back into the um) at each step.

4.B Maximal Independent Sets in Random Graphs

Given a random graph (the number of steps required to obtain one is 0(n2)), we seek the

average number of steps that must be executed by the LFMIS algorithm described in section 2.

The algorithm described in 2.B proceeds by constructing a sequence of sets S0=<j>,

Si ,$2 where S is the required LFMIS.

Consider the construction of some intermediate set S,. Node i is compared to each of the

elements in set i. If found adjacent to any of these elements (the probability of this is p in

each case), node i is discarded, and otherwise Si is given by S^i u {/]. This comparative

behavior in the construction of S,- can be represented by a Markov chain [Vk(i)) on the states

{0,1,2 i - 1}, provided we make the (worst case) assumption that contains the

- 1 8 -

elements {1,2,3, . . . r : - 1}. We demonstrate a logarithmic bound in spite of such an assump-

tion. The underlying chain {Vk(i)} behaves as follows. Starting with V0(<) = i, the algorithm

stops (i.e., Vi (/) =0) if node i is found adjacent to node (i - 1), else the chain moves to state

(i - 1) (i.e., (0 = (' - 1)) so that a check for adjacency to node (i - 2) can be made. The

transition probability matrix of the chain is given by

\q k=j-1
P v u U . k] = k = Q (4.4)

for 2 < j < i, and 0] = 1 fo r ; = 0,1. Theorem 1 yields

E[TY^\ £ l o g p (: - l) + (4.5)

Since the procedure is repeated for each node i, 1 £ i < n, the average number of steps required

for the LFMIS algorithm is bounded from above by E(T%), where

E{Tl) = 1 + £ £ (t £ P)
i = 2

s i + i
i-2

Iogp((- 1) + 1 .
(3 - 1

= logp(/ i - l) ! + 0(1)

= C i (n - l) l o g 2 (n - 1) - c 2 (n - l) + 0(logn) (4.6)

where c y = (log2P)-1 and c2 = (In 2 • logaPr1-

Next, consider how the bound can be improved by appealing to Theorem 2. Since we can

stochastically bound the absorption time sample paths of (V^/)] by the sample paths of another

chain {V*(i)}, with transition probability matrix

q k =j
k = Q (4.7)

for 2 (, and P / (0 [y , 0] = 1 for j - 0,1. Theorem 2 guarantees that £[T%] < E[T?].

Recognizing that /V(o possesses principal submatrices which are strictly diagonal, we resort to

(1.1) to obtain

- 19-

£ [r r c °] = p~l for 1 Zi<n, (4.8)
so chat

E[Tv
n] < E[i n = n • p'1 - 0(n) (4.9)

where the O («) complexity on expected run time holds because p is independent of n. It should

be clear that since every element must be considered for membership in S,] - £2(n).

If the random graph G is generated asymmetrically, so that node j is made adjacent to

node i with probability pij = = I - qij > 0, then setting q = max { I 1 < j < i} and

P = —, the bound (4.6) is still valid. Further, the refined bound in (4.9) also holds, with
<7

p = min {p;j I i < j < n, 1 < i < n - 1}. The complexity of the lower bound on expected run

time in this case remains at n(n).

4.C Sequential Searches

We associate a Markov chain [Wk;k > 0] with the search algorithm described in 2.C as

follows. Assume that our search begins at the right end of the list and set WQ = n. If key K

resides in the n'h position of the table (the probability of this is pn) then the chain moves to

state 0 (gels absorbed) in one step. Otherwise the chain moves to state (n - 1) and the search

continues until the table is exhausted. We obtain a chain whose transition probability matrix is

similar to (4.4), i.e.,

(0 with probability p„^k

Wt- 1 with probability qn_k
 (4'10>

where qk+l = 1 -pk+l for O ^ H n - 1 . Observing that the hypothesis of Theorem 1 is

satisfied, we set q = max {<71,..., q„}, and |3= q~l to obtain

E[T?) S logp* + 0(1). (4.11)

Indeed, using the stochastic bounding argument of the previous example, it can be shown that

E[T?] < p~l (4.12)

where/? = min [p i , p 2 . - - - . p n) '

- 2 0 -

Consider how the same technique may be applied to a general search strategy (Knuth [3]).

Let p = 1 - q > 0, and assume we are given a table of n numbers in ascending order. The algo-

rithm compares key k with the (p n)'* key and then iterates this procedure on smaller blocks.

Let C(n) denote the average number of comparisons required for a successful search on n

records. Then it can be shown (see Knuth [3]) that

C(n)=\ + pC(pn) + qC{qn) (4.13)

for n > 1 and C(l) = 0. The binary search (p = q =0.5) and the Fibonacci search (p =4»-1,

q - <JT2, (j> = 1.618) are special cases of this search algorithm.

In order to demonstrate an asymptotic bound for C(/i), associate a Markov chain (W*}

with the algorithm. Define W0~ n and

{ r p n 1 with probability p

[qn~\ with probability q. (4'13)

so that {Wk} is a chain on the nonnegative integers. In a single step the chain [Wk} moves

from state n to either state Tp n] or state I q n 1. There is a probability p that the search

(approximately) reduces to a (p n) element search and a probability q that it reduces to a (q n)

element search, after the first comparison. For large n, we may ignore the effect caused by

non-integral values of p n and q n.

Without loss of generality, we take p > q, so [W^} moves over states

(0,1,2,3 r ? « l f p / i l «}. Clearly,

E(Wt\W0 = n)=p - [pn~\ + q • Tqnl < n (4.14)

so that the hypothesis of Theorem 1 is satisfied, for |3= (p • [pn 1 + q • \qn I) - 1 . Thus, we

obtain the average run time bound

E(T™) < logp/t + 0(1). (4.15)

- 21-

4.D Random sorts

Let [Xk\k> 0} be a stochastic process representing the behavior of the random sort

described in 2.D. Assume that we begin with a list that has n flags so that Xq = n, and let Xk

denote the number of flags in list L (i) , k £ 1. Observe that (X*) is not a Markov chain, since

the values of the elements in each list determine the behavior of {X*}, and the number of

flags present is not sufficient to determine transitions. Further, it is easy to see that

E(Xk+l I Xk) < Xk + 1 (4.16)

V k > 1, which is a weaker expectation condition than the one we require. Thus, we cannot

resort to Theorem 1 directly. What (4.16) says is that the number of flags in is, on the

average, at most one greater than the number of flags in L^K To get around this, if we can

guarantee that the number of flags in is, on the average, less than the number of flags in

L l k \ for some finite m, we may still use Theorem 1 in a slightly modified form.

Given XQ = r, it is easy to demonstrate that

E(Xm I X0 = O £ j (4.17)

for any r. 1 < r < n, and some value of m, I <n. That is, even though Xx, X2l etc. may

exceed r, the number of flags must eventually fall below r within at most m steps, for some

value of m, \ <m£n. In the worst possible scenario m ~0(Xk), for list L (*\ so that all

flagged elements in a particular list must be examined/selected in order to reduce the number of

flags by one or more. On the average, however, this number will be less than Xk. Clearly,

(4.17) generates the recurrence

E(Xmj I X0 = n) £ jr (4.18)

for j > 1, and some m, 1 < m Introduce a "sparser" process [Yk] defined at every m'h

epoch of the proccss {Xt} with Yq = XQ =n and Yj = Xmj for j > 1 and m fixed. Then (4.18)

yields

- 2 2 -

E(Yj) S y (4.19)

and finally, by Theorem 1,

E(JY
n) £ logp« + (4.20)

for some j3 > 1. Moving from process {Yk} to process {Xt}, we see that, since 1 < m < n,

£(T;f) 5 n logp/i + 0 (/ i) ~ 0 (nlog/i) (4.21)

The random variable does not include the amount of work required, at each step k of

the algorithm, to determine the number of flags present in Since this work is O(n), we

obtain the average run time of the random sorting algorithm on a uniprocessor to be

0(/i2 log n). In the case of an n processor sort, if we agree that processors execute asynchro-

nously and only one processor executes at a time, then the previous 0(n) work required to

determine the number of flags present in the list at each step can be ignored. Thus, the n pro-

cessor distributed sort yields an average run time that is 0(n log n).

In order to determine a lower bound on uniprocessor sorting lime, we proceed as follows.

' ti 1 Define [Xk; k > 0} to be an «-um game with parameter q . The process [Xk] moves
n

from a state with r flags to a state with at least (r — 1) flags in a minimum of one step. Since

movement from an r flag state to an (r - 1) flag state can occur with probability 1 for process

K t) , we must ensure (if a lower bound is to be had) that process {x'k} moves at least as fast.

Choosing q = - — - for the um game process achieves precisely this. Theorem 2 yields
n

E(T%) £ E(T*') = + 0(1) (4.22)
log?

Thus, the uniprocessor random sort yields an average run time lower bound of Q(n log n).

Repeating the argument used in the case of the upper bound, the n processor distributed sort

yields a lower bound of £2(Iog n).

- 2 3 -

4J2 Dependent sevice queuing systems

In this example, we seek, a bound on a passage time, i.e., the mean time for this general

queueing system to drift from an n customer queue to an empty queue. Using Corollary 1.1

(see example (v)), an upper bound can be obtained provided the rows of Q satisfy a neccssary

condition. If

E{Xx I X0 = n) < j (4.23)

V rt > 1 and (3 > 1, then since the grouping of states in Q is "natural", Theorem 1 yields

E(T*) £ logpn + (4.24)

regardless of the size of the groups. Consider a special case of this system, namely, the

M I CI 11 queue, where arrivals occur singly, customers are of only one type, service times are

independent, and group size is 1. For the M \ Gl 11 queue,

E(Xx \ X0 = n) = n -I + p £ ^ (4.25)

for all n, and 1 < B < ——. Applying Theorem 1, wc obtain
n + p - 1

£(T*) S logpn + 0(1). (4.26)

It is simple to obtain a lower bound on E(T*) for the MI Gil 1 queue. Construct an um

game process {!*} with parameters (n,q) and observe that for vinually any value of q,

T* TY
n. Using (3.16) it follows that

£ (7?) S> E(?l) - Q(log/») (4.27)

- 2 4 -

REFERENCES

[1] R. Kemp, Fundamentals of the Average Case Analysis of Particular Algorithms, Wiley-
Teubner, 1984.

[2] M. Hofri, Probabilistic Analysis of Algorithms. Springer-Verlag, 1987.
[3] D. Knuth, The Art of Computer Programming, Vol. 3, Sorting and Searching, Addison-

Wesley, 1973.
[4] M. Neuts, "Some Explicit Formulas for the Steady-State Behavior of the Queue with

Semi-Maricovian Service Times," Adv. Appl. Prob., 9, pp. 141-157, 1977.
[5] V. Rego and W. Szpankowski, "On the Quality of Approximations for High Speed

Rings," Proceedings of the International Symposium on High Performance Computer Sys-
tems,, Ed. E. Gelenbe, North-Holland, pp. 179-193. 1988.

[6] O.N. Stavskaya and I.I. Pyatetskii-Shapiro, "On certain properties of homogeneous nets of
spontaneously active elements," Problemi Cibernetiki, 20. M. Nauka, pp. 91-106, 1968.

[7] W. Szpankowski and V. Rego, "Yet Another Application of a Binomial Recurrence:
Order Statistics," working paper, Purdue CSD-TR-765, April 1988.

	A Band and Bound Technique for Simple Random Algorithms
	Report Number:
	

	tmp.1307986960.pdf.4nIIR

